Abstract

We present a controlled Fano resonance in the mid-infrared (MIR) region from a kind of plasmonic metasurface consisting of a single-atom-thick surface layer with a periodic pattern of graphene nanostrip pairs on a dielectric substrate. Both the numerical and theoretical results indicate that the Fano resonance spectrum can be flexibly tailored through adjusting the geometrical parameters, such as the asymmetric distance and coupling gap between each pair of graphene nanostrips. Particularly, we achieve the dynamic tunability of the plasmonic Fano resonance spectrum by controlling the polarization of incident light and the Fermi level of graphene. The theoretical calculations agree well with the numerical simulations. These results could find significant applications in nanoscale light control and functional devices operating in the MIR region.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced transmission modulation based on dielectric metasurfaces loaded with graphene

Christos Argyropoulos
Opt. Express 23(18) 23787-23797 (2015)

Controlling plasmon-induced transparency of graphene metamolecules with external magnetic field

Jian-Qiang Liu, Yu-Xiu Zhou, Li Li, Pan Wang, and Anatoly V. Zayats
Opt. Express 23(10) 12524-12532 (2015)

Tunable polarization-independent plasmonically induced transparency based on metal-graphene metasurface

Zhewei Dong, Chen Sun, Jiangnan Si, and Xiaoxu Deng
Opt. Express 25(11) 12251-12259 (2017)

References

  • View by:
  • |
  • |
  • |

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
    [Crossref] [PubMed]
  2. F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
    [Crossref]
  3. X. Gan, R. Shiue, Y. Gao, I. Meric, T. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).
    [Crossref]
  4. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
    [Crossref] [PubMed]
  5. V. Apalkov and M. Stockman, “Proposed graphene nanospasers,” Light Sci. Appl. 3(7), e191 (2014).
    [Crossref]
  6. Q. Bao, H. Zhang, B. Wang, Z. Ni, C. Lim, Y. Wang, D. Tang, and K. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
    [Crossref]
  7. Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
    [Crossref] [PubMed]
  8. D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
    [Crossref] [PubMed]
  9. A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
    [Crossref] [PubMed]
  10. N. Emani, D. Wang, T. Chung, L. Prokopeva, A. Kildishev, V. Shalaev, Y. Chen, and A. Boltasseva, “Plasmon resonance in multilayer graphene nanoribbons,” Laser Photonics Rev. 9, 106–3114 (2017).
  11. Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
    [Crossref] [PubMed]
  12. T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8(2), 1086–1101 (2014).
    [Crossref] [PubMed]
  13. A. Grigorenko, M. Polini, and K. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
    [Crossref]
  14. P. Goncalves and N. Peres, An Introduction to Graphene Plasmonics (World Scientific, 2016).
  15. F. J. G. de Abajo, “Graphene plasmonics: challenges and opportunities,” ACS Photonics 1(3), 135–152 (2014).
    [Crossref]
  16. Q. Zhang, X. Li, M. M. Hossain, Y. Xue, J. Zhang, J. Song, J. Liu, M. D. Turner, S. Fan, Q. Bao, and M. Gu, “Graphene surface plasmons at the near-infrared optical regime,” Sci. Rep. 4, 6559 (2015).
    [Crossref] [PubMed]
  17. D. Gramotnev and S. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
    [Crossref]
  18. H. Lu, X. Gan, D. Mao, B. Jia, and J. Zhao, “Flexibly tunable high-quality-factor induced transparency in plasmonic systems,” Sci. Rep. 8, 1558 (2018).
    [Crossref] [PubMed]
  19. C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
    [Crossref] [PubMed]
  20. Z. Yue, B. Cai, L. Wang, X. Wang, and M. Gu, “Intrinsically core-shell plasmonic dielectric nanostructures with ultrahigh refractive index,” Sci. Adv. 2(3), e1501536 (2016).
    [Crossref] [PubMed]
  21. H. Lu, X. Gan, D. Mao, and J. Zhao, “Graphene-supported manipulation of surface plasmon polaritons in metallic nanowaveguides,” Photon. Res. 5(3), 162–167 (2017).
    [Crossref]
  22. J. Li, P. Yu, C. Tang, H. Cheng, J. Li, S. Chen, and J. Tian, “Bidirectional perfect absorber using free substrate plasmonic metasurfaces,” Adv. Opt. Mater. 5(12), 1700152 (2017).
    [Crossref]
  23. H. Lu, Y. Gong, D. Mao, X. Gan, and J. Zhao, “Strong plasmonic confinement and optical force in phosphorene pairs,” Opt. Express 25(5), 5255–5263 (2017).
    [Crossref] [PubMed]
  24. M. Amin, M. Farhat, and H. Bağcı, “A nonlinear plasmonic resonator for three-state all-optical switching,” Opt. Express 22(6), 6966–6975 (2014).
    [Crossref] [PubMed]
  25. S. AbdollahRamezani, K. Arik, A. Khavasi, and Z. Kavehvash, “Analog computing using graphene-based metalines,” Opt. Lett. 40(22), 5239–5242 (2015).
    [Crossref] [PubMed]
  26. H. Lu, X. Liu, D. Mao, L. Wang, and Y. Gong, “Tunable band-pass plasmonic waveguide filters with nanodisk resonators,” Opt. Express 18(17), 17922–17927 (2010).
    [Crossref] [PubMed]
  27. S. Foteinopoulou, J. P. Vigneron, and C. Vandenbem, “Optical near-field excitations on plasmonic nanoparticle-based structures,” Opt. Express 15(7), 4253–4267 (2007).
    [Crossref] [PubMed]
  28. R. Yu, R. Alaee, F. Lederer, and C. Rockstuhl, “Manipulating the interaction between localized and delocalized surface plasmon-polaritons in graphene,” Phys. Rev. B 90(8), 085409 (2014).
    [Crossref]
  29. Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, “Tunable dual-band asymmetric transmission for circularly polarized waves with graphene planar chiral metasurfaces,” Opt. Lett. 41(13), 3142–3145 (2016).
    [Crossref] [PubMed]
  30. W. Luo, W. Cai, W. Wu, Y. Xiang, M. Ren, X. Zhang, and J. Xu, “Tailorable reflection of surface plasmons in defect engineered graphene,” 2D Mater. 3(4), 045001 (2016).
    [Crossref]
  31. Z. Zhang, Y. Long, and X. Zang, “Unidirectional plasmonically induced transparency behavior in a compact graphene-based waveguide,” J. Phys. D Appl. Phys. 50(29), 295301 (2017).
    [Crossref]
  32. Q. Xu, T. Ma, M. Danesh, B. Shivananju, S. Gan, J. Song, C. Qiu, H. Cheng, W. Ren, and Q. Bao, “Effects of edge on graphene plasmons as revealed by infrared nanoimaging,” Light Sci. Appl. 6(2), e16204 (2016).
    [Crossref]
  33. H. Xu, W. Lu, W. Zhu, Z. Dong, and T. Cui, “Efficient manipulation of surface plasmon polariton waves in graphene,” Appl. Phys. Lett. 100(24), 243110 (2012).
    [Crossref]
  34. H. Lu, C. Zeng, Q. Zhang, X. Liu, M. M. Hossain, P. Reineck, and M. Gu, “Graphene-based active slow surface plasmon polaritons,” Sci. Rep. 5, 8443 (2015).
    [Crossref] [PubMed]
  35. S. Ke, B. Wang, H. Huang, H. Long, K. Wang, and P. Lu, “Plasmonic absorption enhancement in periodic cross-shaped graphene arrays,” Opt. Express 23(7), 8888–8900 (2015).
    [Crossref] [PubMed]
  36. B. Shi, W. Cai, X. Zhang, Y. Xiang, Y. Zhan, J. Geng, M. Ren, and J. Xu, “Tunable band-stop filters for graphene plasmons based on periodically modulated graphene,” Sci. Rep. 6, 26796 (2016).
    [Crossref] [PubMed]
  37. X. Xu, L. Shi, Y. Liu, Z. Wang, and X. Zhang, “Enhanced optical gradient forces between coupled graphene sheets,” Sci. Rep. 6(1), 28568 (2016).
    [Crossref] [PubMed]
  38. Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7(3), 2388–2395 (2013).
    [Crossref] [PubMed]
  39. G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
    [Crossref] [PubMed]
  40. P. Gonçalves, S. I. Bozhevolnyi, N. A. Mortensen, and N. Peres, “Universal description of channel plasmons in two-dimensional materials,” Optica 4(6), 595–600 (2017).
    [Crossref]
  41. P. Gonçalves, E. Dias, S. Xiao, M. Vasilevskiy, N. Mortensen, and N. Peres, “Graphene Plasmons in Triangular Wedges and Grooves,” ACS Photonics 3(11), 2176–2183 (2016).
    [Crossref]
  42. M. Amin, M. Farhat, and H. Bağcı, “An ultra-broadband multilayered graphene absorber,” Opt. Express 21(24), 29938–29948 (2013).
    [Crossref] [PubMed]
  43. M. Amin, M. Farhat, and H. Baǧcı, “A dynamically reconfigurable Fano metamaterial through graphene tuning for switching and sensing applications,” Sci. Rep. 3, 2105 (2013).
    [Crossref] [PubMed]
  44. P. Gonçalves, S. Xiao, N. Peres, and N. Mortensen, “Hybridized plasmons in 2D nanoslits: from graphene to anisotropic 2D materials,” ACS Photonics 4(12), 3045–3054 (2017).
    [Crossref]
  45. P. Goncalves, E. Dias, Y. Bludov, and N. Peres, “Modeling the excitation of graphene plasmons in periodic grids of graphene ribbons: An analytical approach,” Phys. Rev. B 94(19), 195421 (2016).
    [Crossref]
  46. S. AbdollahRamezani, K. Arik, S. Farajollahi, A. Khavasi, and Z. Kavehvash, “Beam manipulating by gate-tunable graphene-based metasurfaces,” Opt. Lett. 40(22), 5383–5386 (2015).
    [Crossref] [PubMed]
  47. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
    [Crossref]
  48. A. Miroshnichenko, S. Flach, and Y. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
    [Crossref]
  49. M. Rahmani, B. Luk’yanchuk, and M. Hong, “Fano resonance in novel plasmonic nanostructures,” Laser Photonics Rev. 7(3), 329–349 (2013).
    [Crossref]
  50. M. Limonov, M. Rybin, A. Poddubny, and Y. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
    [Crossref]
  51. H. Lu, X. Liu, D. Mao, and G. Wang, “Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators,” Opt. Lett. 37(18), 3780–3782 (2012).
    [Crossref] [PubMed]
  52. Y. Zhan, D. Y. Lei, X. Li, and S. A. Maier, “Plasmonic Fano resonances in nanohole quadrumers for ultra-sensitive refractive index sensing,” Nanoscale 6(9), 4705–4715 (2014).
    [Crossref] [PubMed]
  53. S. D. Liu, E. S. Leong, G. C. Li, Y. Hou, J. Deng, J. H. Teng, H. C. Ong, and D. Y. Lei, “Polarization-independent multiple Fano resonances in plasmonic nonamers for multimode-matching enhanced multiband second-harmonic generation,” ACS Nano 10(1), 1442–1453 (2016).
    [Crossref] [PubMed]
  54. P. Y. Chen and A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5(7), 5855–5863 (2011).
    [Crossref] [PubMed]
  55. T. Wang and X. Zhang, “Improved third-order nonlinear effect in graphene based on bound states in the continuum,” Photon. Res. 5(6), 629 (2017).
    [Crossref]
  56. J. H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, “Intrinsic and extrinsic performance limits of graphene devices on SiO2.,” Nat. Nanotechnol. 3(4), 206–209 (2008).
    [Crossref] [PubMed]
  57. A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. 2000 (Artech House, Boston).
  58. V. W. Brar, M. S. Jang, M. Sherrott, J. J. Lopez, and H. A. Atwater, “Highly confined tunable mid-infrared plasmonics in graphene nanoresonators,” Nano Lett. 13(6), 2541–2547 (2013).
    [Crossref] [PubMed]
  59. Z. J. Yang, Z. S. Zhang, L. H. Zhang, Q. Q. Li, Z. H. Hao, and Q. Q. Wang, “Fano resonances in dipole-quadrupole plasmon coupling nanorod dimers,” Opt. Lett. 36(9), 1542–1544 (2011).
    [Crossref] [PubMed]
  60. V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach,” Nano Lett. 11(7), 2835–2840 (2011).
    [Crossref] [PubMed]
  61. S. Biswas, J. Duan, D. Nepal, K. Park, R. Pachter, and R. A. Vaia, “Plasmon-induced transparency in the visible region via self-assembled gold nanorod heterodimers,” Nano Lett. 13(12), 6287–6291 (2013).
    [Crossref] [PubMed]
  62. H. A. Haus, Waves and Fields in Optoelectronics (Englewood Cliffs, NJ: Prentice-Hall, 1984), Chap. 7.
  63. S. Chen, S. Jin, and R. Gordon, “Subdiffraction focusing enabled by a Fano resonance,” Phys. Rev. X 4(3), 031021 (2014).
    [Crossref]
  64. M. Heuck, P. T. Kristensen, Y. Elesin, and J. Mørk, “Improved switching using Fano resonances in photonic crystal structures,” Opt. Lett. 38(14), 2466–2468 (2013).
    [Crossref] [PubMed]
  65. Y. Yang, Z. Shi, J. Li, and Z. Li, “Optical forces exerted on a graphene-coated dielectric particle by a focused Gaussian beam,” Photon. Res. 4(2), 65 (2016).
    [Crossref]
  66. R. Yu, J. Cox, J. Saavedra, and F. García de Abajo, “Analytical modeling of graphene plasmons,” ACS Photonics 4(12), 3106–3114 (2017).
    [Crossref]
  67. N. K. Emani, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Review of graphene as a dynamic platform for electrical control of plasmonic resonance,” Nanophoton. 4(1), 214–223 (2015).
    [Crossref]
  68. M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
    [Crossref]

2018 (1)

H. Lu, X. Gan, D. Mao, B. Jia, and J. Zhao, “Flexibly tunable high-quality-factor induced transparency in plasmonic systems,” Sci. Rep. 8, 1558 (2018).
[Crossref] [PubMed]

2017 (10)

N. Emani, D. Wang, T. Chung, L. Prokopeva, A. Kildishev, V. Shalaev, Y. Chen, and A. Boltasseva, “Plasmon resonance in multilayer graphene nanoribbons,” Laser Photonics Rev. 9, 106–3114 (2017).

H. Lu, X. Gan, D. Mao, and J. Zhao, “Graphene-supported manipulation of surface plasmon polaritons in metallic nanowaveguides,” Photon. Res. 5(3), 162–167 (2017).
[Crossref]

J. Li, P. Yu, C. Tang, H. Cheng, J. Li, S. Chen, and J. Tian, “Bidirectional perfect absorber using free substrate plasmonic metasurfaces,” Adv. Opt. Mater. 5(12), 1700152 (2017).
[Crossref]

H. Lu, Y. Gong, D. Mao, X. Gan, and J. Zhao, “Strong plasmonic confinement and optical force in phosphorene pairs,” Opt. Express 25(5), 5255–5263 (2017).
[Crossref] [PubMed]

Z. Zhang, Y. Long, and X. Zang, “Unidirectional plasmonically induced transparency behavior in a compact graphene-based waveguide,” J. Phys. D Appl. Phys. 50(29), 295301 (2017).
[Crossref]

P. Gonçalves, S. I. Bozhevolnyi, N. A. Mortensen, and N. Peres, “Universal description of channel plasmons in two-dimensional materials,” Optica 4(6), 595–600 (2017).
[Crossref]

P. Gonçalves, S. Xiao, N. Peres, and N. Mortensen, “Hybridized plasmons in 2D nanoslits: from graphene to anisotropic 2D materials,” ACS Photonics 4(12), 3045–3054 (2017).
[Crossref]

M. Limonov, M. Rybin, A. Poddubny, and Y. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
[Crossref]

T. Wang and X. Zhang, “Improved third-order nonlinear effect in graphene based on bound states in the continuum,” Photon. Res. 5(6), 629 (2017).
[Crossref]

R. Yu, J. Cox, J. Saavedra, and F. García de Abajo, “Analytical modeling of graphene plasmons,” ACS Photonics 4(12), 3106–3114 (2017).
[Crossref]

2016 (10)

Y. Yang, Z. Shi, J. Li, and Z. Li, “Optical forces exerted on a graphene-coated dielectric particle by a focused Gaussian beam,” Photon. Res. 4(2), 65 (2016).
[Crossref]

S. D. Liu, E. S. Leong, G. C. Li, Y. Hou, J. Deng, J. H. Teng, H. C. Ong, and D. Y. Lei, “Polarization-independent multiple Fano resonances in plasmonic nonamers for multimode-matching enhanced multiband second-harmonic generation,” ACS Nano 10(1), 1442–1453 (2016).
[Crossref] [PubMed]

P. Goncalves, E. Dias, Y. Bludov, and N. Peres, “Modeling the excitation of graphene plasmons in periodic grids of graphene ribbons: An analytical approach,” Phys. Rev. B 94(19), 195421 (2016).
[Crossref]

P. Gonçalves, E. Dias, S. Xiao, M. Vasilevskiy, N. Mortensen, and N. Peres, “Graphene Plasmons in Triangular Wedges and Grooves,” ACS Photonics 3(11), 2176–2183 (2016).
[Crossref]

Q. Xu, T. Ma, M. Danesh, B. Shivananju, S. Gan, J. Song, C. Qiu, H. Cheng, W. Ren, and Q. Bao, “Effects of edge on graphene plasmons as revealed by infrared nanoimaging,” Light Sci. Appl. 6(2), e16204 (2016).
[Crossref]

Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, “Tunable dual-band asymmetric transmission for circularly polarized waves with graphene planar chiral metasurfaces,” Opt. Lett. 41(13), 3142–3145 (2016).
[Crossref] [PubMed]

W. Luo, W. Cai, W. Wu, Y. Xiang, M. Ren, X. Zhang, and J. Xu, “Tailorable reflection of surface plasmons in defect engineered graphene,” 2D Mater. 3(4), 045001 (2016).
[Crossref]

B. Shi, W. Cai, X. Zhang, Y. Xiang, Y. Zhan, J. Geng, M. Ren, and J. Xu, “Tunable band-stop filters for graphene plasmons based on periodically modulated graphene,” Sci. Rep. 6, 26796 (2016).
[Crossref] [PubMed]

X. Xu, L. Shi, Y. Liu, Z. Wang, and X. Zhang, “Enhanced optical gradient forces between coupled graphene sheets,” Sci. Rep. 6(1), 28568 (2016).
[Crossref] [PubMed]

Z. Yue, B. Cai, L. Wang, X. Wang, and M. Gu, “Intrinsically core-shell plasmonic dielectric nanostructures with ultrahigh refractive index,” Sci. Adv. 2(3), e1501536 (2016).
[Crossref] [PubMed]

2015 (7)

S. AbdollahRamezani, K. Arik, A. Khavasi, and Z. Kavehvash, “Analog computing using graphene-based metalines,” Opt. Lett. 40(22), 5239–5242 (2015).
[Crossref] [PubMed]

Q. Zhang, X. Li, M. M. Hossain, Y. Xue, J. Zhang, J. Song, J. Liu, M. D. Turner, S. Fan, Q. Bao, and M. Gu, “Graphene surface plasmons at the near-infrared optical regime,” Sci. Rep. 4, 6559 (2015).
[Crossref] [PubMed]

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref] [PubMed]

S. AbdollahRamezani, K. Arik, S. Farajollahi, A. Khavasi, and Z. Kavehvash, “Beam manipulating by gate-tunable graphene-based metasurfaces,” Opt. Lett. 40(22), 5383–5386 (2015).
[Crossref] [PubMed]

H. Lu, C. Zeng, Q. Zhang, X. Liu, M. M. Hossain, P. Reineck, and M. Gu, “Graphene-based active slow surface plasmon polaritons,” Sci. Rep. 5, 8443 (2015).
[Crossref] [PubMed]

S. Ke, B. Wang, H. Huang, H. Long, K. Wang, and P. Lu, “Plasmonic absorption enhancement in periodic cross-shaped graphene arrays,” Opt. Express 23(7), 8888–8900 (2015).
[Crossref] [PubMed]

N. K. Emani, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Review of graphene as a dynamic platform for electrical control of plasmonic resonance,” Nanophoton. 4(1), 214–223 (2015).
[Crossref]

2014 (7)

S. Chen, S. Jin, and R. Gordon, “Subdiffraction focusing enabled by a Fano resonance,” Phys. Rev. X 4(3), 031021 (2014).
[Crossref]

R. Yu, R. Alaee, F. Lederer, and C. Rockstuhl, “Manipulating the interaction between localized and delocalized surface plasmon-polaritons in graphene,” Phys. Rev. B 90(8), 085409 (2014).
[Crossref]

Y. Zhan, D. Y. Lei, X. Li, and S. A. Maier, “Plasmonic Fano resonances in nanohole quadrumers for ultra-sensitive refractive index sensing,” Nanoscale 6(9), 4705–4715 (2014).
[Crossref] [PubMed]

V. Apalkov and M. Stockman, “Proposed graphene nanospasers,” Light Sci. Appl. 3(7), e191 (2014).
[Crossref]

T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8(2), 1086–1101 (2014).
[Crossref] [PubMed]

F. J. G. de Abajo, “Graphene plasmonics: challenges and opportunities,” ACS Photonics 1(3), 135–152 (2014).
[Crossref]

M. Amin, M. Farhat, and H. Bağcı, “A nonlinear plasmonic resonator for three-state all-optical switching,” Opt. Express 22(6), 6966–6975 (2014).
[Crossref] [PubMed]

2013 (10)

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref] [PubMed]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

X. Gan, R. Shiue, Y. Gao, I. Meric, T. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).
[Crossref]

M. Rahmani, B. Luk’yanchuk, and M. Hong, “Fano resonance in novel plasmonic nanostructures,” Laser Photonics Rev. 7(3), 329–349 (2013).
[Crossref]

M. Amin, M. Farhat, and H. Bağcı, “An ultra-broadband multilayered graphene absorber,” Opt. Express 21(24), 29938–29948 (2013).
[Crossref] [PubMed]

M. Amin, M. Farhat, and H. Baǧcı, “A dynamically reconfigurable Fano metamaterial through graphene tuning for switching and sensing applications,” Sci. Rep. 3, 2105 (2013).
[Crossref] [PubMed]

M. Heuck, P. T. Kristensen, Y. Elesin, and J. Mørk, “Improved switching using Fano resonances in photonic crystal structures,” Opt. Lett. 38(14), 2466–2468 (2013).
[Crossref] [PubMed]

V. W. Brar, M. S. Jang, M. Sherrott, J. J. Lopez, and H. A. Atwater, “Highly confined tunable mid-infrared plasmonics in graphene nanoresonators,” Nano Lett. 13(6), 2541–2547 (2013).
[Crossref] [PubMed]

S. Biswas, J. Duan, D. Nepal, K. Park, R. Pachter, and R. A. Vaia, “Plasmon-induced transparency in the visible region via self-assembled gold nanorod heterodimers,” Nano Lett. 13(12), 6287–6291 (2013).
[Crossref] [PubMed]

2012 (4)

H. Lu, X. Liu, D. Mao, and G. Wang, “Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators,” Opt. Lett. 37(18), 3780–3782 (2012).
[Crossref] [PubMed]

A. Grigorenko, M. Polini, and K. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[Crossref] [PubMed]

H. Xu, W. Lu, W. Zhu, Z. Dong, and T. Cui, “Efficient manipulation of surface plasmon polariton waves in graphene,” Appl. Phys. Lett. 100(24), 243110 (2012).
[Crossref]

2011 (6)

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. Lim, Y. Wang, D. Tang, and K. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Z. J. Yang, Z. S. Zhang, L. H. Zhang, Q. Q. Li, Z. H. Hao, and Q. Q. Wang, “Fano resonances in dipole-quadrupole plasmon coupling nanorod dimers,” Opt. Lett. 36(9), 1542–1544 (2011).
[Crossref] [PubMed]

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach,” Nano Lett. 11(7), 2835–2840 (2011).
[Crossref] [PubMed]

P. Y. Chen and A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5(7), 5855–5863 (2011).
[Crossref] [PubMed]

2010 (5)

A. Miroshnichenko, S. Flach, and Y. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

D. Gramotnev and S. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

H. Lu, X. Liu, D. Mao, L. Wang, and Y. Gong, “Tunable band-pass plasmonic waveguide filters with nanodisk resonators,” Opt. Express 18(17), 17922–17927 (2010).
[Crossref] [PubMed]

2009 (1)

M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
[Crossref]

2008 (1)

J. H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, “Intrinsic and extrinsic performance limits of graphene devices on SiO2.,” Nat. Nanotechnol. 3(4), 206–209 (2008).
[Crossref] [PubMed]

2007 (1)

2004 (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

1961 (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[Crossref]

AbdollahRamezani, S.

Ajayan, P. M.

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref] [PubMed]

Alaee, R.

R. Yu, R. Alaee, F. Lederer, and C. Rockstuhl, “Manipulating the interaction between localized and delocalized surface plasmon-polaritons in graphene,” Phys. Rev. B 90(8), 085409 (2014).
[Crossref]

Altug, H.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref] [PubMed]

Alù, A.

P. Y. Chen and A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5(7), 5855–5863 (2011).
[Crossref] [PubMed]

Amin, M.

Amrania, H.

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach,” Nano Lett. 11(7), 2835–2840 (2011).
[Crossref] [PubMed]

Andreev, G. O.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[Crossref] [PubMed]

Apalkov, V.

V. Apalkov and M. Stockman, “Proposed graphene nanospasers,” Light Sci. Appl. 3(7), e191 (2014).
[Crossref]

Arik, K.

Assefa, S.

X. Gan, R. Shiue, Y. Gao, I. Meric, T. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).
[Crossref]

Atwater, H. A.

V. W. Brar, M. S. Jang, M. Sherrott, J. J. Lopez, and H. A. Atwater, “Highly confined tunable mid-infrared plasmonics in graphene nanoresonators,” Nano Lett. 13(6), 2541–2547 (2013).
[Crossref] [PubMed]

Avouris, P.

T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8(2), 1086–1101 (2014).
[Crossref] [PubMed]

Bagci, H.

Bao, Q.

Q. Xu, T. Ma, M. Danesh, B. Shivananju, S. Gan, J. Song, C. Qiu, H. Cheng, W. Ren, and Q. Bao, “Effects of edge on graphene plasmons as revealed by infrared nanoimaging,” Light Sci. Appl. 6(2), e16204 (2016).
[Crossref]

Q. Zhang, X. Li, M. M. Hossain, Y. Xue, J. Zhang, J. Song, J. Liu, M. D. Turner, S. Fan, Q. Bao, and M. Gu, “Graphene surface plasmons at the near-infrared optical regime,” Sci. Rep. 4, 6559 (2015).
[Crossref] [PubMed]

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. Lim, Y. Wang, D. Tang, and K. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Bao, W.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[Crossref] [PubMed]

Basko, D. M.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Basov, D. N.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[Crossref] [PubMed]

Biswas, S.

S. Biswas, J. Duan, D. Nepal, K. Park, R. Pachter, and R. A. Vaia, “Plasmon-induced transparency in the visible region via self-assembled gold nanorod heterodimers,” Nano Lett. 13(12), 6287–6291 (2013).
[Crossref] [PubMed]

Bludov, Y.

P. Goncalves, E. Dias, Y. Bludov, and N. Peres, “Modeling the excitation of graphene plasmons in periodic grids of graphene ribbons: An analytical approach,” Phys. Rev. B 94(19), 195421 (2016).
[Crossref]

Boltasseva, A.

N. Emani, D. Wang, T. Chung, L. Prokopeva, A. Kildishev, V. Shalaev, Y. Chen, and A. Boltasseva, “Plasmon resonance in multilayer graphene nanoribbons,” Laser Photonics Rev. 9, 106–3114 (2017).

N. K. Emani, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Review of graphene as a dynamic platform for electrical control of plasmonic resonance,” Nanophoton. 4(1), 214–223 (2015).
[Crossref]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

Bonaccorso, F.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Bozhevolnyi, S.

D. Gramotnev and S. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

Bozhevolnyi, S. I.

Brar, V. W.

V. W. Brar, M. S. Jang, M. Sherrott, J. J. Lopez, and H. A. Atwater, “Highly confined tunable mid-infrared plasmonics in graphene nanoresonators,” Nano Lett. 13(6), 2541–2547 (2013).
[Crossref] [PubMed]

Buljan, H.

M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
[Crossref]

Cai, B.

Z. Yue, B. Cai, L. Wang, X. Wang, and M. Gu, “Intrinsically core-shell plasmonic dielectric nanostructures with ultrahigh refractive index,” Sci. Adv. 2(3), e1501536 (2016).
[Crossref] [PubMed]

Cai, W.

W. Luo, W. Cai, W. Wu, Y. Xiang, M. Ren, X. Zhang, and J. Xu, “Tailorable reflection of surface plasmons in defect engineered graphene,” 2D Mater. 3(4), 045001 (2016).
[Crossref]

B. Shi, W. Cai, X. Zhang, Y. Xiang, Y. Zhan, J. Geng, M. Ren, and J. Xu, “Tunable band-stop filters for graphene plasmons based on periodically modulated graphene,” Sci. Rep. 6, 26796 (2016).
[Crossref] [PubMed]

Castro Neto, A. H.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[Crossref] [PubMed]

Chen, J. H.

J. H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, “Intrinsic and extrinsic performance limits of graphene devices on SiO2.,” Nat. Nanotechnol. 3(4), 206–209 (2008).
[Crossref] [PubMed]

Chen, P. Y.

P. Y. Chen and A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5(7), 5855–5863 (2011).
[Crossref] [PubMed]

Chen, S.

J. Li, P. Yu, C. Tang, H. Cheng, J. Li, S. Chen, and J. Tian, “Bidirectional perfect absorber using free substrate plasmonic metasurfaces,” Adv. Opt. Mater. 5(12), 1700152 (2017).
[Crossref]

Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, “Tunable dual-band asymmetric transmission for circularly polarized waves with graphene planar chiral metasurfaces,” Opt. Lett. 41(13), 3142–3145 (2016).
[Crossref] [PubMed]

S. Chen, S. Jin, and R. Gordon, “Subdiffraction focusing enabled by a Fano resonance,” Phys. Rev. X 4(3), 031021 (2014).
[Crossref]

Chen, Y.

N. Emani, D. Wang, T. Chung, L. Prokopeva, A. Kildishev, V. Shalaev, Y. Chen, and A. Boltasseva, “Plasmon resonance in multilayer graphene nanoribbons,” Laser Photonics Rev. 9, 106–3114 (2017).

Cheng, H.

J. Li, P. Yu, C. Tang, H. Cheng, J. Li, S. Chen, and J. Tian, “Bidirectional perfect absorber using free substrate plasmonic metasurfaces,” Adv. Opt. Mater. 5(12), 1700152 (2017).
[Crossref]

Q. Xu, T. Ma, M. Danesh, B. Shivananju, S. Gan, J. Song, C. Qiu, H. Cheng, W. Ren, and Q. Bao, “Effects of edge on graphene plasmons as revealed by infrared nanoimaging,” Light Sci. Appl. 6(2), e16204 (2016).
[Crossref]

Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, “Tunable dual-band asymmetric transmission for circularly polarized waves with graphene planar chiral metasurfaces,” Opt. Lett. 41(13), 3142–3145 (2016).
[Crossref] [PubMed]

Chung, T.

N. Emani, D. Wang, T. Chung, L. Prokopeva, A. Kildishev, V. Shalaev, Y. Chen, and A. Boltasseva, “Plasmon resonance in multilayer graphene nanoribbons,” Laser Photonics Rev. 9, 106–3114 (2017).

Cox, J.

R. Yu, J. Cox, J. Saavedra, and F. García de Abajo, “Analytical modeling of graphene plasmons,” ACS Photonics 4(12), 3106–3114 (2017).
[Crossref]

Cui, T.

H. Xu, W. Lu, W. Zhu, Z. Dong, and T. Cui, “Efficient manipulation of surface plasmon polariton waves in graphene,” Appl. Phys. Lett. 100(24), 243110 (2012).
[Crossref]

Danesh, M.

Q. Xu, T. Ma, M. Danesh, B. Shivananju, S. Gan, J. Song, C. Qiu, H. Cheng, W. Ren, and Q. Bao, “Effects of edge on graphene plasmons as revealed by infrared nanoimaging,” Light Sci. Appl. 6(2), e16204 (2016).
[Crossref]

de Abajo, F. J. G.

F. J. G. de Abajo, “Graphene plasmonics: challenges and opportunities,” ACS Photonics 1(3), 135–152 (2014).
[Crossref]

Deng, J.

S. D. Liu, E. S. Leong, G. C. Li, Y. Hou, J. Deng, J. H. Teng, H. C. Ong, and D. Y. Lei, “Polarization-independent multiple Fano resonances in plasmonic nonamers for multimode-matching enhanced multiband second-harmonic generation,” ACS Nano 10(1), 1442–1453 (2016).
[Crossref] [PubMed]

Dias, E.

P. Gonçalves, E. Dias, S. Xiao, M. Vasilevskiy, N. Mortensen, and N. Peres, “Graphene Plasmons in Triangular Wedges and Grooves,” ACS Photonics 3(11), 2176–2183 (2016).
[Crossref]

P. Goncalves, E. Dias, Y. Bludov, and N. Peres, “Modeling the excitation of graphene plasmons in periodic grids of graphene ribbons: An analytical approach,” Phys. Rev. B 94(19), 195421 (2016).
[Crossref]

Dominguez, G.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[Crossref] [PubMed]

Dong, Z.

H. Xu, W. Lu, W. Zhu, Z. Dong, and T. Cui, “Efficient manipulation of surface plasmon polariton waves in graphene,” Appl. Phys. Lett. 100(24), 243110 (2012).
[Crossref]

Du, L.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

Duan, J.

S. Biswas, J. Duan, D. Nepal, K. Park, R. Pachter, and R. A. Vaia, “Plasmon-induced transparency in the visible region via self-assembled gold nanorod heterodimers,” Nano Lett. 13(12), 6287–6291 (2013).
[Crossref] [PubMed]

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Elesin, Y.

Emani, N.

N. Emani, D. Wang, T. Chung, L. Prokopeva, A. Kildishev, V. Shalaev, Y. Chen, and A. Boltasseva, “Plasmon resonance in multilayer graphene nanoribbons,” Laser Photonics Rev. 9, 106–3114 (2017).

Emani, N. K.

N. K. Emani, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Review of graphene as a dynamic platform for electrical control of plasmonic resonance,” Nanophoton. 4(1), 214–223 (2015).
[Crossref]

Engheta, N.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Englund, D.

X. Gan, R. Shiue, Y. Gao, I. Meric, T. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).
[Crossref]

Etezadi, D.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref] [PubMed]

Fan, S.

Q. Zhang, X. Li, M. M. Hossain, Y. Xue, J. Zhang, J. Song, J. Liu, M. D. Turner, S. Fan, Q. Bao, and M. Gu, “Graphene surface plasmons at the near-infrared optical regime,” Sci. Rep. 4, 6559 (2015).
[Crossref] [PubMed]

Fang, H.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

Fang, Z.

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref] [PubMed]

Fano, U.

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[Crossref]

Farajollahi, S.

Farhat, M.

Fei, Z.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[Crossref] [PubMed]

Ferrari, A.

F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Ferrari, A. C.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Flach, S.

A. Miroshnichenko, S. Flach, and Y. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Fogler, M. M.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[Crossref] [PubMed]

Foteinopoulou, S.

Francescato, Y.

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach,” Nano Lett. 11(7), 2835–2840 (2011).
[Crossref] [PubMed]

Fuhrer, M. S.

J. H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, “Intrinsic and extrinsic performance limits of graphene devices on SiO2.,” Nat. Nanotechnol. 3(4), 206–209 (2008).
[Crossref] [PubMed]

Gan, S.

Q. Xu, T. Ma, M. Danesh, B. Shivananju, S. Gan, J. Song, C. Qiu, H. Cheng, W. Ren, and Q. Bao, “Effects of edge on graphene plasmons as revealed by infrared nanoimaging,” Light Sci. Appl. 6(2), e16204 (2016).
[Crossref]

Gan, X.

H. Lu, X. Gan, D. Mao, B. Jia, and J. Zhao, “Flexibly tunable high-quality-factor induced transparency in plasmonic systems,” Sci. Rep. 8, 1558 (2018).
[Crossref] [PubMed]

H. Lu, Y. Gong, D. Mao, X. Gan, and J. Zhao, “Strong plasmonic confinement and optical force in phosphorene pairs,” Opt. Express 25(5), 5255–5263 (2017).
[Crossref] [PubMed]

H. Lu, X. Gan, D. Mao, and J. Zhao, “Graphene-supported manipulation of surface plasmon polaritons in metallic nanowaveguides,” Photon. Res. 5(3), 162–167 (2017).
[Crossref]

X. Gan, R. Shiue, Y. Gao, I. Meric, T. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).
[Crossref]

Gao, Y.

X. Gan, R. Shiue, Y. Gao, I. Meric, T. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).
[Crossref]

García de Abajo, F.

R. Yu, J. Cox, J. Saavedra, and F. García de Abajo, “Analytical modeling of graphene plasmons,” ACS Photonics 4(12), 3106–3114 (2017).
[Crossref]

García de Abajo, F. J.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref] [PubMed]

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref] [PubMed]

Geim, A. K.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Geng, B.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Geng, J.

B. Shi, W. Cai, X. Zhang, Y. Xiang, Y. Zhan, J. Geng, M. Ren, and J. Xu, “Tunable band-stop filters for graphene plasmons based on periodically modulated graphene,” Sci. Rep. 6, 26796 (2016).
[Crossref] [PubMed]

Giannini, V.

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach,” Nano Lett. 11(7), 2835–2840 (2011).
[Crossref] [PubMed]

Goncalves, P.

P. Goncalves, E. Dias, Y. Bludov, and N. Peres, “Modeling the excitation of graphene plasmons in periodic grids of graphene ribbons: An analytical approach,” Phys. Rev. B 94(19), 195421 (2016).
[Crossref]

Gonçalves, P.

P. Gonçalves, S. Xiao, N. Peres, and N. Mortensen, “Hybridized plasmons in 2D nanoslits: from graphene to anisotropic 2D materials,” ACS Photonics 4(12), 3045–3054 (2017).
[Crossref]

P. Gonçalves, S. I. Bozhevolnyi, N. A. Mortensen, and N. Peres, “Universal description of channel plasmons in two-dimensional materials,” Optica 4(6), 595–600 (2017).
[Crossref]

P. Gonçalves, E. Dias, S. Xiao, M. Vasilevskiy, N. Mortensen, and N. Peres, “Graphene Plasmons in Triangular Wedges and Grooves,” ACS Photonics 3(11), 2176–2183 (2016).
[Crossref]

Gong, Y.

Gordon, R.

S. Chen, S. Jin, and R. Gordon, “Subdiffraction focusing enabled by a Fano resonance,” Phys. Rev. X 4(3), 031021 (2014).
[Crossref]

Gramotnev, D.

D. Gramotnev and S. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

Grigorenko, A.

A. Grigorenko, M. Polini, and K. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Grigorieva, I. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Gu, M.

Z. Yue, B. Cai, L. Wang, X. Wang, and M. Gu, “Intrinsically core-shell plasmonic dielectric nanostructures with ultrahigh refractive index,” Sci. Adv. 2(3), e1501536 (2016).
[Crossref] [PubMed]

Q. Zhang, X. Li, M. M. Hossain, Y. Xue, J. Zhang, J. Song, J. Liu, M. D. Turner, S. Fan, Q. Bao, and M. Gu, “Graphene surface plasmons at the near-infrared optical regime,” Sci. Rep. 4, 6559 (2015).
[Crossref] [PubMed]

H. Lu, C. Zeng, Q. Zhang, X. Liu, M. M. Hossain, P. Reineck, and M. Gu, “Graphene-based active slow surface plasmon polaritons,” Sci. Rep. 5, 8443 (2015).
[Crossref] [PubMed]

Halas, N. J.

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref] [PubMed]

Hao, Z. H.

Hasan, T.

F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Heinz, T.

X. Gan, R. Shiue, Y. Gao, I. Meric, T. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).
[Crossref]

Heuck, M.

Hone, J.

X. Gan, R. Shiue, Y. Gao, I. Meric, T. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).
[Crossref]

Hong, M.

M. Rahmani, B. Luk’yanchuk, and M. Hong, “Fano resonance in novel plasmonic nanostructures,” Laser Photonics Rev. 7(3), 329–349 (2013).
[Crossref]

Hossain, M. M.

H. Lu, C. Zeng, Q. Zhang, X. Liu, M. M. Hossain, P. Reineck, and M. Gu, “Graphene-based active slow surface plasmon polaritons,” Sci. Rep. 5, 8443 (2015).
[Crossref] [PubMed]

Q. Zhang, X. Li, M. M. Hossain, Y. Xue, J. Zhang, J. Song, J. Liu, M. D. Turner, S. Fan, Q. Bao, and M. Gu, “Graphene surface plasmons at the near-infrared optical regime,” Sci. Rep. 4, 6559 (2015).
[Crossref] [PubMed]

Hou, Y.

S. D. Liu, E. S. Leong, G. C. Li, Y. Hou, J. Deng, J. H. Teng, H. C. Ong, and D. Y. Lei, “Polarization-independent multiple Fano resonances in plasmonic nonamers for multimode-matching enhanced multiband second-harmonic generation,” ACS Nano 10(1), 1442–1453 (2016).
[Crossref] [PubMed]

Huang, H.

Ishigami, M.

J. H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, “Intrinsic and extrinsic performance limits of graphene devices on SiO2.,” Nat. Nanotechnol. 3(4), 206–209 (2008).
[Crossref] [PubMed]

Jablan, M.

M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
[Crossref]

Jang, C.

J. H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, “Intrinsic and extrinsic performance limits of graphene devices on SiO2.,” Nat. Nanotechnol. 3(4), 206–209 (2008).
[Crossref] [PubMed]

Jang, M. S.

V. W. Brar, M. S. Jang, M. Sherrott, J. J. Lopez, and H. A. Atwater, “Highly confined tunable mid-infrared plasmonics in graphene nanoresonators,” Nano Lett. 13(6), 2541–2547 (2013).
[Crossref] [PubMed]

Janner, D.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref] [PubMed]

Jia, B.

H. Lu, X. Gan, D. Mao, B. Jia, and J. Zhao, “Flexibly tunable high-quality-factor induced transparency in plasmonic systems,” Sci. Rep. 8, 1558 (2018).
[Crossref] [PubMed]

Jiang, D.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Jin, S.

S. Chen, S. Jin, and R. Gordon, “Subdiffraction focusing enabled by a Fano resonance,” Phys. Rev. X 4(3), 031021 (2014).
[Crossref]

Ju, L.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Kavehvash, Z.

Ke, S.

Keilmann, F.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[Crossref] [PubMed]

Khavasi, A.

Kildishev, A.

N. Emani, D. Wang, T. Chung, L. Prokopeva, A. Kildishev, V. Shalaev, Y. Chen, and A. Boltasseva, “Plasmon resonance in multilayer graphene nanoribbons,” Laser Photonics Rev. 9, 106–3114 (2017).

Kildishev, A. V.

N. K. Emani, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Review of graphene as a dynamic platform for electrical control of plasmonic resonance,” Nanophoton. 4(1), 214–223 (2015).
[Crossref]

Kivshar, Y.

M. Limonov, M. Rybin, A. Poddubny, and Y. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
[Crossref]

A. Miroshnichenko, S. Flach, and Y. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Kristensen, P. T.

Lau, C. N.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[Crossref] [PubMed]

Lederer, F.

R. Yu, R. Alaee, F. Lederer, and C. Rockstuhl, “Manipulating the interaction between localized and delocalized surface plasmon-polaritons in graphene,” Phys. Rev. B 90(8), 085409 (2014).
[Crossref]

Lei, D. Y.

S. D. Liu, E. S. Leong, G. C. Li, Y. Hou, J. Deng, J. H. Teng, H. C. Ong, and D. Y. Lei, “Polarization-independent multiple Fano resonances in plasmonic nonamers for multimode-matching enhanced multiband second-harmonic generation,” ACS Nano 10(1), 1442–1453 (2016).
[Crossref] [PubMed]

Y. Zhan, D. Y. Lei, X. Li, and S. A. Maier, “Plasmonic Fano resonances in nanohole quadrumers for ultra-sensitive refractive index sensing,” Nanoscale 6(9), 4705–4715 (2014).
[Crossref] [PubMed]

Lei, T.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

Leong, E. S.

S. D. Liu, E. S. Leong, G. C. Li, Y. Hou, J. Deng, J. H. Teng, H. C. Ong, and D. Y. Lei, “Polarization-independent multiple Fano resonances in plasmonic nonamers for multimode-matching enhanced multiband second-harmonic generation,” ACS Nano 10(1), 1442–1453 (2016).
[Crossref] [PubMed]

Li, G. C.

S. D. Liu, E. S. Leong, G. C. Li, Y. Hou, J. Deng, J. H. Teng, H. C. Ong, and D. Y. Lei, “Polarization-independent multiple Fano resonances in plasmonic nonamers for multimode-matching enhanced multiband second-harmonic generation,” ACS Nano 10(1), 1442–1453 (2016).
[Crossref] [PubMed]

Li, J.

J. Li, P. Yu, C. Tang, H. Cheng, J. Li, S. Chen, and J. Tian, “Bidirectional perfect absorber using free substrate plasmonic metasurfaces,” Adv. Opt. Mater. 5(12), 1700152 (2017).
[Crossref]

J. Li, P. Yu, C. Tang, H. Cheng, J. Li, S. Chen, and J. Tian, “Bidirectional perfect absorber using free substrate plasmonic metasurfaces,” Adv. Opt. Mater. 5(12), 1700152 (2017).
[Crossref]

Y. Yang, Z. Shi, J. Li, and Z. Li, “Optical forces exerted on a graphene-coated dielectric particle by a focused Gaussian beam,” Photon. Res. 4(2), 65 (2016).
[Crossref]

Li, Q. Q.

Li, X.

Q. Zhang, X. Li, M. M. Hossain, Y. Xue, J. Zhang, J. Song, J. Liu, M. D. Turner, S. Fan, Q. Bao, and M. Gu, “Graphene surface plasmons at the near-infrared optical regime,” Sci. Rep. 4, 6559 (2015).
[Crossref] [PubMed]

Y. Zhan, D. Y. Lei, X. Li, and S. A. Maier, “Plasmonic Fano resonances in nanohole quadrumers for ultra-sensitive refractive index sensing,” Nanoscale 6(9), 4705–4715 (2014).
[Crossref] [PubMed]

Li, Z.

Lim, C.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. Lim, Y. Wang, D. Tang, and K. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Limaj, O.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref] [PubMed]

Limonov, M.

M. Limonov, M. Rybin, A. Poddubny, and Y. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
[Crossref]

Liu, J.

Q. Zhang, X. Li, M. M. Hossain, Y. Xue, J. Zhang, J. Song, J. Liu, M. D. Turner, S. Fan, Q. Bao, and M. Gu, “Graphene surface plasmons at the near-infrared optical regime,” Sci. Rep. 4, 6559 (2015).
[Crossref] [PubMed]

Liu, M.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Liu, S. D.

S. D. Liu, E. S. Leong, G. C. Li, Y. Hou, J. Deng, J. H. Teng, H. C. Ong, and D. Y. Lei, “Polarization-independent multiple Fano resonances in plasmonic nonamers for multimode-matching enhanced multiband second-harmonic generation,” ACS Nano 10(1), 1442–1453 (2016).
[Crossref] [PubMed]

Liu, W.

Liu, X.

Liu, Y.

X. Xu, L. Shi, Y. Liu, Z. Wang, and X. Zhang, “Enhanced optical gradient forces between coupled graphene sheets,” Sci. Rep. 6(1), 28568 (2016).
[Crossref] [PubMed]

Liu, Z.

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref] [PubMed]

Loh, K.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. Lim, Y. Wang, D. Tang, and K. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Long, H.

Long, Y.

Z. Zhang, Y. Long, and X. Zang, “Unidirectional plasmonically induced transparency behavior in a compact graphene-based waveguide,” J. Phys. D Appl. Phys. 50(29), 295301 (2017).
[Crossref]

Lopez, J. J.

V. W. Brar, M. S. Jang, M. Sherrott, J. J. Lopez, and H. A. Atwater, “Highly confined tunable mid-infrared plasmonics in graphene nanoresonators,” Nano Lett. 13(6), 2541–2547 (2013).
[Crossref] [PubMed]

Low, T.

T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8(2), 1086–1101 (2014).
[Crossref] [PubMed]

Lu, H.

Lu, P.

Lu, W.

H. Xu, W. Lu, W. Zhu, Z. Dong, and T. Cui, “Efficient manipulation of surface plasmon polariton waves in graphene,” Appl. Phys. Lett. 100(24), 243110 (2012).
[Crossref]

Luk’yanchuk, B.

M. Rahmani, B. Luk’yanchuk, and M. Hong, “Fano resonance in novel plasmonic nanostructures,” Laser Photonics Rev. 7(3), 329–349 (2013).
[Crossref]

Luo, W.

W. Luo, W. Cai, W. Wu, Y. Xiang, M. Ren, X. Zhang, and J. Xu, “Tailorable reflection of surface plasmons in defect engineered graphene,” 2D Mater. 3(4), 045001 (2016).
[Crossref]

Ma, L.

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref] [PubMed]

Ma, T.

Q. Xu, T. Ma, M. Danesh, B. Shivananju, S. Gan, J. Song, C. Qiu, H. Cheng, W. Ren, and Q. Bao, “Effects of edge on graphene plasmons as revealed by infrared nanoimaging,” Light Sci. Appl. 6(2), e16204 (2016).
[Crossref]

Maier, S. A.

Y. Zhan, D. Y. Lei, X. Li, and S. A. Maier, “Plasmonic Fano resonances in nanohole quadrumers for ultra-sensitive refractive index sensing,” Nanoscale 6(9), 4705–4715 (2014).
[Crossref] [PubMed]

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach,” Nano Lett. 11(7), 2835–2840 (2011).
[Crossref] [PubMed]

Mao, D.

McLeod, A. S.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[Crossref] [PubMed]

Meric, I.

X. Gan, R. Shiue, Y. Gao, I. Meric, T. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).
[Crossref]

Min, C.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

Miroshnichenko, A.

A. Miroshnichenko, S. Flach, and Y. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Mørk, J.

Morozov, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Mortensen, N.

P. Gonçalves, S. Xiao, N. Peres, and N. Mortensen, “Hybridized plasmons in 2D nanoslits: from graphene to anisotropic 2D materials,” ACS Photonics 4(12), 3045–3054 (2017).
[Crossref]

P. Gonçalves, E. Dias, S. Xiao, M. Vasilevskiy, N. Mortensen, and N. Peres, “Graphene Plasmons in Triangular Wedges and Grooves,” ACS Photonics 3(11), 2176–2183 (2016).
[Crossref]

Mortensen, N. A.

Naik, G. V.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

Nepal, D.

S. Biswas, J. Duan, D. Nepal, K. Park, R. Pachter, and R. A. Vaia, “Plasmon-induced transparency in the visible region via self-assembled gold nanorod heterodimers,” Nano Lett. 13(12), 6287–6291 (2013).
[Crossref] [PubMed]

Ni, Z.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. Lim, Y. Wang, D. Tang, and K. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Nordlander, P.

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref] [PubMed]

Novoselov, K.

A. Grigorenko, M. Polini, and K. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Novoselov, K. S.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Ong, H. C.

S. D. Liu, E. S. Leong, G. C. Li, Y. Hou, J. Deng, J. H. Teng, H. C. Ong, and D. Y. Lei, “Polarization-independent multiple Fano resonances in plasmonic nonamers for multimode-matching enhanced multiband second-harmonic generation,” ACS Nano 10(1), 1442–1453 (2016).
[Crossref] [PubMed]

Pachter, R.

S. Biswas, J. Duan, D. Nepal, K. Park, R. Pachter, and R. A. Vaia, “Plasmon-induced transparency in the visible region via self-assembled gold nanorod heterodimers,” Nano Lett. 13(12), 6287–6291 (2013).
[Crossref] [PubMed]

Park, K.

S. Biswas, J. Duan, D. Nepal, K. Park, R. Pachter, and R. A. Vaia, “Plasmon-induced transparency in the visible region via self-assembled gold nanorod heterodimers,” Nano Lett. 13(12), 6287–6291 (2013).
[Crossref] [PubMed]

Peres, N.

P. Gonçalves, S. Xiao, N. Peres, and N. Mortensen, “Hybridized plasmons in 2D nanoslits: from graphene to anisotropic 2D materials,” ACS Photonics 4(12), 3045–3054 (2017).
[Crossref]

P. Gonçalves, S. I. Bozhevolnyi, N. A. Mortensen, and N. Peres, “Universal description of channel plasmons in two-dimensional materials,” Optica 4(6), 595–600 (2017).
[Crossref]

P. Goncalves, E. Dias, Y. Bludov, and N. Peres, “Modeling the excitation of graphene plasmons in periodic grids of graphene ribbons: An analytical approach,” Phys. Rev. B 94(19), 195421 (2016).
[Crossref]

P. Gonçalves, E. Dias, S. Xiao, M. Vasilevskiy, N. Mortensen, and N. Peres, “Graphene Plasmons in Triangular Wedges and Grooves,” ACS Photonics 3(11), 2176–2183 (2016).
[Crossref]

Phillips, C. C.

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach,” Nano Lett. 11(7), 2835–2840 (2011).
[Crossref] [PubMed]

Poddubny, A.

M. Limonov, M. Rybin, A. Poddubny, and Y. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
[Crossref]

Polini, M.

A. Grigorenko, M. Polini, and K. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Popa, D.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Privitera, G.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Prokopeva, L.

N. Emani, D. Wang, T. Chung, L. Prokopeva, A. Kildishev, V. Shalaev, Y. Chen, and A. Boltasseva, “Plasmon resonance in multilayer graphene nanoribbons,” Laser Photonics Rev. 9, 106–3114 (2017).

Pruneri, V.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref] [PubMed]

Qiu, C.

Q. Xu, T. Ma, M. Danesh, B. Shivananju, S. Gan, J. Song, C. Qiu, H. Cheng, W. Ren, and Q. Bao, “Effects of edge on graphene plasmons as revealed by infrared nanoimaging,” Light Sci. Appl. 6(2), e16204 (2016).
[Crossref]

Rahmani, M.

M. Rahmani, B. Luk’yanchuk, and M. Hong, “Fano resonance in novel plasmonic nanostructures,” Laser Photonics Rev. 7(3), 329–349 (2013).
[Crossref]

Reineck, P.

H. Lu, C. Zeng, Q. Zhang, X. Liu, M. M. Hossain, P. Reineck, and M. Gu, “Graphene-based active slow surface plasmon polaritons,” Sci. Rep. 5, 8443 (2015).
[Crossref] [PubMed]

Ren, M.

B. Shi, W. Cai, X. Zhang, Y. Xiang, Y. Zhan, J. Geng, M. Ren, and J. Xu, “Tunable band-stop filters for graphene plasmons based on periodically modulated graphene,” Sci. Rep. 6, 26796 (2016).
[Crossref] [PubMed]

W. Luo, W. Cai, W. Wu, Y. Xiang, M. Ren, X. Zhang, and J. Xu, “Tailorable reflection of surface plasmons in defect engineered graphene,” 2D Mater. 3(4), 045001 (2016).
[Crossref]

Ren, W.

Q. Xu, T. Ma, M. Danesh, B. Shivananju, S. Gan, J. Song, C. Qiu, H. Cheng, W. Ren, and Q. Bao, “Effects of edge on graphene plasmons as revealed by infrared nanoimaging,” Light Sci. Appl. 6(2), e16204 (2016).
[Crossref]

Rockstuhl, C.

R. Yu, R. Alaee, F. Lederer, and C. Rockstuhl, “Manipulating the interaction between localized and delocalized surface plasmon-polaritons in graphene,” Phys. Rev. B 90(8), 085409 (2014).
[Crossref]

Rodin, A. S.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[Crossref] [PubMed]

Rodrigo, D.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref] [PubMed]

Rybin, M.

M. Limonov, M. Rybin, A. Poddubny, and Y. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
[Crossref]

Saavedra, J.

R. Yu, J. Cox, J. Saavedra, and F. García de Abajo, “Analytical modeling of graphene plasmons,” ACS Photonics 4(12), 3106–3114 (2017).
[Crossref]

Schlather, A.

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref] [PubMed]

Shalaev, V.

N. Emani, D. Wang, T. Chung, L. Prokopeva, A. Kildishev, V. Shalaev, Y. Chen, and A. Boltasseva, “Plasmon resonance in multilayer graphene nanoribbons,” Laser Photonics Rev. 9, 106–3114 (2017).

Shalaev, V. M.

N. K. Emani, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Review of graphene as a dynamic platform for electrical control of plasmonic resonance,” Nanophoton. 4(1), 214–223 (2015).
[Crossref]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

Shen, J.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

Shen, Z.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

Shepard, K.

X. Gan, R. Shiue, Y. Gao, I. Meric, T. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).
[Crossref]

Sherrott, M.

V. W. Brar, M. S. Jang, M. Sherrott, J. J. Lopez, and H. A. Atwater, “Highly confined tunable mid-infrared plasmonics in graphene nanoresonators,” Nano Lett. 13(6), 2541–2547 (2013).
[Crossref] [PubMed]

Shi, B.

B. Shi, W. Cai, X. Zhang, Y. Xiang, Y. Zhan, J. Geng, M. Ren, and J. Xu, “Tunable band-stop filters for graphene plasmons based on periodically modulated graphene,” Sci. Rep. 6, 26796 (2016).
[Crossref] [PubMed]

Shi, L.

X. Xu, L. Shi, Y. Liu, Z. Wang, and X. Zhang, “Enhanced optical gradient forces between coupled graphene sheets,” Sci. Rep. 6(1), 28568 (2016).
[Crossref] [PubMed]

Shi, Z.

Shiue, R.

X. Gan, R. Shiue, Y. Gao, I. Meric, T. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).
[Crossref]

Shivananju, B.

Q. Xu, T. Ma, M. Danesh, B. Shivananju, S. Gan, J. Song, C. Qiu, H. Cheng, W. Ren, and Q. Bao, “Effects of edge on graphene plasmons as revealed by infrared nanoimaging,” Light Sci. Appl. 6(2), e16204 (2016).
[Crossref]

Soljacic, M.

M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
[Crossref]

Song, J.

Q. Xu, T. Ma, M. Danesh, B. Shivananju, S. Gan, J. Song, C. Qiu, H. Cheng, W. Ren, and Q. Bao, “Effects of edge on graphene plasmons as revealed by infrared nanoimaging,” Light Sci. Appl. 6(2), e16204 (2016).
[Crossref]

Q. Zhang, X. Li, M. M. Hossain, Y. Xue, J. Zhang, J. Song, J. Liu, M. D. Turner, S. Fan, Q. Bao, and M. Gu, “Graphene surface plasmons at the near-infrared optical regime,” Sci. Rep. 4, 6559 (2015).
[Crossref] [PubMed]

Stockman, M.

V. Apalkov and M. Stockman, “Proposed graphene nanospasers,” Light Sci. Appl. 3(7), e191 (2014).
[Crossref]

Sun, Z.

F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Tang, C.

J. Li, P. Yu, C. Tang, H. Cheng, J. Li, S. Chen, and J. Tian, “Bidirectional perfect absorber using free substrate plasmonic metasurfaces,” Adv. Opt. Mater. 5(12), 1700152 (2017).
[Crossref]

Tang, D.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. Lim, Y. Wang, D. Tang, and K. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Teng, J. H.

S. D. Liu, E. S. Leong, G. C. Li, Y. Hou, J. Deng, J. H. Teng, H. C. Ong, and D. Y. Lei, “Polarization-independent multiple Fano resonances in plasmonic nonamers for multimode-matching enhanced multiband second-harmonic generation,” ACS Nano 10(1), 1442–1453 (2016).
[Crossref] [PubMed]

Thiemens, M.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[Crossref] [PubMed]

Thongrattanasiri, S.

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref] [PubMed]

Tian, J.

J. Li, P. Yu, C. Tang, H. Cheng, J. Li, S. Chen, and J. Tian, “Bidirectional perfect absorber using free substrate plasmonic metasurfaces,” Adv. Opt. Mater. 5(12), 1700152 (2017).
[Crossref]

Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, “Tunable dual-band asymmetric transmission for circularly polarized waves with graphene planar chiral metasurfaces,” Opt. Lett. 41(13), 3142–3145 (2016).
[Crossref] [PubMed]

Torrisi, F.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Turner, M. D.

Q. Zhang, X. Li, M. M. Hossain, Y. Xue, J. Zhang, J. Song, J. Liu, M. D. Turner, S. Fan, Q. Bao, and M. Gu, “Graphene surface plasmons at the near-infrared optical regime,” Sci. Rep. 4, 6559 (2015).
[Crossref] [PubMed]

Ulin-Avila, E.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Vaia, R. A.

S. Biswas, J. Duan, D. Nepal, K. Park, R. Pachter, and R. A. Vaia, “Plasmon-induced transparency in the visible region via self-assembled gold nanorod heterodimers,” Nano Lett. 13(12), 6287–6291 (2013).
[Crossref] [PubMed]

Vakil, A.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Vandenbem, C.

Vasilevskiy, M.

P. Gonçalves, E. Dias, S. Xiao, M. Vasilevskiy, N. Mortensen, and N. Peres, “Graphene Plasmons in Triangular Wedges and Grooves,” ACS Photonics 3(11), 2176–2183 (2016).
[Crossref]

Vigneron, J. P.

Wagner, M.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[Crossref] [PubMed]

Wang, B.

S. Ke, B. Wang, H. Huang, H. Long, K. Wang, and P. Lu, “Plasmonic absorption enhancement in periodic cross-shaped graphene arrays,” Opt. Express 23(7), 8888–8900 (2015).
[Crossref] [PubMed]

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. Lim, Y. Wang, D. Tang, and K. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Wang, D.

N. Emani, D. Wang, T. Chung, L. Prokopeva, A. Kildishev, V. Shalaev, Y. Chen, and A. Boltasseva, “Plasmon resonance in multilayer graphene nanoribbons,” Laser Photonics Rev. 9, 106–3114 (2017).

Wang, F.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Wang, G.

Wang, K.

Wang, L.

Z. Yue, B. Cai, L. Wang, X. Wang, and M. Gu, “Intrinsically core-shell plasmonic dielectric nanostructures with ultrahigh refractive index,” Sci. Adv. 2(3), e1501536 (2016).
[Crossref] [PubMed]

H. Lu, X. Liu, D. Mao, L. Wang, and Y. Gong, “Tunable band-pass plasmonic waveguide filters with nanodisk resonators,” Opt. Express 18(17), 17922–17927 (2010).
[Crossref] [PubMed]

Wang, Q. Q.

Wang, T.

Wang, X.

Z. Yue, B. Cai, L. Wang, X. Wang, and M. Gu, “Intrinsically core-shell plasmonic dielectric nanostructures with ultrahigh refractive index,” Sci. Adv. 2(3), e1501536 (2016).
[Crossref] [PubMed]

Wang, Y.

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref] [PubMed]

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. Lim, Y. Wang, D. Tang, and K. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Wang, Z.

X. Xu, L. Shi, Y. Liu, Z. Wang, and X. Zhang, “Enhanced optical gradient forces between coupled graphene sheets,” Sci. Rep. 6(1), 28568 (2016).
[Crossref] [PubMed]

Wu, W.

W. Luo, W. Cai, W. Wu, Y. Xiang, M. Ren, X. Zhang, and J. Xu, “Tailorable reflection of surface plasmons in defect engineered graphene,” 2D Mater. 3(4), 045001 (2016).
[Crossref]

Xiang, Y.

W. Luo, W. Cai, W. Wu, Y. Xiang, M. Ren, X. Zhang, and J. Xu, “Tailorable reflection of surface plasmons in defect engineered graphene,” 2D Mater. 3(4), 045001 (2016).
[Crossref]

B. Shi, W. Cai, X. Zhang, Y. Xiang, Y. Zhan, J. Geng, M. Ren, and J. Xu, “Tunable band-stop filters for graphene plasmons based on periodically modulated graphene,” Sci. Rep. 6, 26796 (2016).
[Crossref] [PubMed]

Xiao, S.

P. Gonçalves, S. Xiao, N. Peres, and N. Mortensen, “Hybridized plasmons in 2D nanoslits: from graphene to anisotropic 2D materials,” ACS Photonics 4(12), 3045–3054 (2017).
[Crossref]

P. Gonçalves, E. Dias, S. Xiao, M. Vasilevskiy, N. Mortensen, and N. Peres, “Graphene Plasmons in Triangular Wedges and Grooves,” ACS Photonics 3(11), 2176–2183 (2016).
[Crossref]

J. H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, “Intrinsic and extrinsic performance limits of graphene devices on SiO2.,” Nat. Nanotechnol. 3(4), 206–209 (2008).
[Crossref] [PubMed]

Xu, H.

H. Xu, W. Lu, W. Zhu, Z. Dong, and T. Cui, “Efficient manipulation of surface plasmon polariton waves in graphene,” Appl. Phys. Lett. 100(24), 243110 (2012).
[Crossref]

Xu, J.

W. Luo, W. Cai, W. Wu, Y. Xiang, M. Ren, X. Zhang, and J. Xu, “Tailorable reflection of surface plasmons in defect engineered graphene,” 2D Mater. 3(4), 045001 (2016).
[Crossref]

B. Shi, W. Cai, X. Zhang, Y. Xiang, Y. Zhan, J. Geng, M. Ren, and J. Xu, “Tunable band-stop filters for graphene plasmons based on periodically modulated graphene,” Sci. Rep. 6, 26796 (2016).
[Crossref] [PubMed]

Xu, Q.

Q. Xu, T. Ma, M. Danesh, B. Shivananju, S. Gan, J. Song, C. Qiu, H. Cheng, W. Ren, and Q. Bao, “Effects of edge on graphene plasmons as revealed by infrared nanoimaging,” Light Sci. Appl. 6(2), e16204 (2016).
[Crossref]

Xu, X.

X. Xu, L. Shi, Y. Liu, Z. Wang, and X. Zhang, “Enhanced optical gradient forces between coupled graphene sheets,” Sci. Rep. 6(1), 28568 (2016).
[Crossref] [PubMed]

Xue, Y.

Q. Zhang, X. Li, M. M. Hossain, Y. Xue, J. Zhang, J. Song, J. Liu, M. D. Turner, S. Fan, Q. Bao, and M. Gu, “Graphene surface plasmons at the near-infrared optical regime,” Sci. Rep. 4, 6559 (2015).
[Crossref] [PubMed]

Yang, Y.

Yang, Z. J.

Yin, X.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Yu, P.

J. Li, P. Yu, C. Tang, H. Cheng, J. Li, S. Chen, and J. Tian, “Bidirectional perfect absorber using free substrate plasmonic metasurfaces,” Adv. Opt. Mater. 5(12), 1700152 (2017).
[Crossref]

Yu, R.

R. Yu, J. Cox, J. Saavedra, and F. García de Abajo, “Analytical modeling of graphene plasmons,” ACS Photonics 4(12), 3106–3114 (2017).
[Crossref]

R. Yu, R. Alaee, F. Lederer, and C. Rockstuhl, “Manipulating the interaction between localized and delocalized surface plasmon-polaritons in graphene,” Phys. Rev. B 90(8), 085409 (2014).
[Crossref]

Yuan, G.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

Yuan, X.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

Yue, Z.

Z. Yue, B. Cai, L. Wang, X. Wang, and M. Gu, “Intrinsically core-shell plasmonic dielectric nanostructures with ultrahigh refractive index,” Sci. Adv. 2(3), e1501536 (2016).
[Crossref] [PubMed]

Zang, X.

Z. Zhang, Y. Long, and X. Zang, “Unidirectional plasmonically induced transparency behavior in a compact graphene-based waveguide,” J. Phys. D Appl. Phys. 50(29), 295301 (2017).
[Crossref]

Zeng, C.

H. Lu, C. Zeng, Q. Zhang, X. Liu, M. M. Hossain, P. Reineck, and M. Gu, “Graphene-based active slow surface plasmon polaritons,” Sci. Rep. 5, 8443 (2015).
[Crossref] [PubMed]

Zentgraf, T.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Zhan, Y.

B. Shi, W. Cai, X. Zhang, Y. Xiang, Y. Zhan, J. Geng, M. Ren, and J. Xu, “Tunable band-stop filters for graphene plasmons based on periodically modulated graphene,” Sci. Rep. 6, 26796 (2016).
[Crossref] [PubMed]

Y. Zhan, D. Y. Lei, X. Li, and S. A. Maier, “Plasmonic Fano resonances in nanohole quadrumers for ultra-sensitive refractive index sensing,” Nanoscale 6(9), 4705–4715 (2014).
[Crossref] [PubMed]

Zhang, H.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. Lim, Y. Wang, D. Tang, and K. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Zhang, J.

Q. Zhang, X. Li, M. M. Hossain, Y. Xue, J. Zhang, J. Song, J. Liu, M. D. Turner, S. Fan, Q. Bao, and M. Gu, “Graphene surface plasmons at the near-infrared optical regime,” Sci. Rep. 4, 6559 (2015).
[Crossref] [PubMed]

Zhang, L. H.

Zhang, L. M.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[Crossref] [PubMed]

Zhang, Q.

Q. Zhang, X. Li, M. M. Hossain, Y. Xue, J. Zhang, J. Song, J. Liu, M. D. Turner, S. Fan, Q. Bao, and M. Gu, “Graphene surface plasmons at the near-infrared optical regime,” Sci. Rep. 4, 6559 (2015).
[Crossref] [PubMed]

H. Lu, C. Zeng, Q. Zhang, X. Liu, M. M. Hossain, P. Reineck, and M. Gu, “Graphene-based active slow surface plasmon polaritons,” Sci. Rep. 5, 8443 (2015).
[Crossref] [PubMed]

Zhang, X.

T. Wang and X. Zhang, “Improved third-order nonlinear effect in graphene based on bound states in the continuum,” Photon. Res. 5(6), 629 (2017).
[Crossref]

B. Shi, W. Cai, X. Zhang, Y. Xiang, Y. Zhan, J. Geng, M. Ren, and J. Xu, “Tunable band-stop filters for graphene plasmons based on periodically modulated graphene,” Sci. Rep. 6, 26796 (2016).
[Crossref] [PubMed]

X. Xu, L. Shi, Y. Liu, Z. Wang, and X. Zhang, “Enhanced optical gradient forces between coupled graphene sheets,” Sci. Rep. 6(1), 28568 (2016).
[Crossref] [PubMed]

W. Luo, W. Cai, W. Wu, Y. Xiang, M. Ren, X. Zhang, and J. Xu, “Tailorable reflection of surface plasmons in defect engineered graphene,” 2D Mater. 3(4), 045001 (2016).
[Crossref]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Zhang, Y.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Zhang, Z.

Z. Zhang, Y. Long, and X. Zang, “Unidirectional plasmonically induced transparency behavior in a compact graphene-based waveguide,” J. Phys. D Appl. Phys. 50(29), 295301 (2017).
[Crossref]

Zhang, Z. S.

Zhao, J.

Zhao, Z.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[Crossref] [PubMed]

Zhu, S.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

Zhu, W.

H. Xu, W. Lu, W. Zhu, Z. Dong, and T. Cui, “Efficient manipulation of surface plasmon polariton waves in graphene,” Appl. Phys. Lett. 100(24), 243110 (2012).
[Crossref]

2D Mater. (1)

W. Luo, W. Cai, W. Wu, Y. Xiang, M. Ren, X. Zhang, and J. Xu, “Tailorable reflection of surface plasmons in defect engineered graphene,” 2D Mater. 3(4), 045001 (2016).
[Crossref]

ACS Nano (5)

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref] [PubMed]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8(2), 1086–1101 (2014).
[Crossref] [PubMed]

S. D. Liu, E. S. Leong, G. C. Li, Y. Hou, J. Deng, J. H. Teng, H. C. Ong, and D. Y. Lei, “Polarization-independent multiple Fano resonances in plasmonic nonamers for multimode-matching enhanced multiband second-harmonic generation,” ACS Nano 10(1), 1442–1453 (2016).
[Crossref] [PubMed]

P. Y. Chen and A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5(7), 5855–5863 (2011).
[Crossref] [PubMed]

ACS Photonics (4)

P. Gonçalves, E. Dias, S. Xiao, M. Vasilevskiy, N. Mortensen, and N. Peres, “Graphene Plasmons in Triangular Wedges and Grooves,” ACS Photonics 3(11), 2176–2183 (2016).
[Crossref]

P. Gonçalves, S. Xiao, N. Peres, and N. Mortensen, “Hybridized plasmons in 2D nanoslits: from graphene to anisotropic 2D materials,” ACS Photonics 4(12), 3045–3054 (2017).
[Crossref]

R. Yu, J. Cox, J. Saavedra, and F. García de Abajo, “Analytical modeling of graphene plasmons,” ACS Photonics 4(12), 3106–3114 (2017).
[Crossref]

F. J. G. de Abajo, “Graphene plasmonics: challenges and opportunities,” ACS Photonics 1(3), 135–152 (2014).
[Crossref]

Adv. Mater. (1)

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

J. Li, P. Yu, C. Tang, H. Cheng, J. Li, S. Chen, and J. Tian, “Bidirectional perfect absorber using free substrate plasmonic metasurfaces,” Adv. Opt. Mater. 5(12), 1700152 (2017).
[Crossref]

Appl. Phys. Lett. (1)

H. Xu, W. Lu, W. Zhu, Z. Dong, and T. Cui, “Efficient manipulation of surface plasmon polariton waves in graphene,” Appl. Phys. Lett. 100(24), 243110 (2012).
[Crossref]

J. Phys. D Appl. Phys. (1)

Z. Zhang, Y. Long, and X. Zang, “Unidirectional plasmonically induced transparency behavior in a compact graphene-based waveguide,” J. Phys. D Appl. Phys. 50(29), 295301 (2017).
[Crossref]

Laser Photonics Rev. (2)

N. Emani, D. Wang, T. Chung, L. Prokopeva, A. Kildishev, V. Shalaev, Y. Chen, and A. Boltasseva, “Plasmon resonance in multilayer graphene nanoribbons,” Laser Photonics Rev. 9, 106–3114 (2017).

M. Rahmani, B. Luk’yanchuk, and M. Hong, “Fano resonance in novel plasmonic nanostructures,” Laser Photonics Rev. 7(3), 329–349 (2013).
[Crossref]

Light Sci. Appl. (2)

V. Apalkov and M. Stockman, “Proposed graphene nanospasers,” Light Sci. Appl. 3(7), e191 (2014).
[Crossref]

Q. Xu, T. Ma, M. Danesh, B. Shivananju, S. Gan, J. Song, C. Qiu, H. Cheng, W. Ren, and Q. Bao, “Effects of edge on graphene plasmons as revealed by infrared nanoimaging,” Light Sci. Appl. 6(2), e16204 (2016).
[Crossref]

Nano Lett. (3)

V. W. Brar, M. S. Jang, M. Sherrott, J. J. Lopez, and H. A. Atwater, “Highly confined tunable mid-infrared plasmonics in graphene nanoresonators,” Nano Lett. 13(6), 2541–2547 (2013).
[Crossref] [PubMed]

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach,” Nano Lett. 11(7), 2835–2840 (2011).
[Crossref] [PubMed]

S. Biswas, J. Duan, D. Nepal, K. Park, R. Pachter, and R. A. Vaia, “Plasmon-induced transparency in the visible region via self-assembled gold nanorod heterodimers,” Nano Lett. 13(12), 6287–6291 (2013).
[Crossref] [PubMed]

Nanophoton. (1)

N. K. Emani, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Review of graphene as a dynamic platform for electrical control of plasmonic resonance,” Nanophoton. 4(1), 214–223 (2015).
[Crossref]

Nanoscale (1)

Y. Zhan, D. Y. Lei, X. Li, and S. A. Maier, “Plasmonic Fano resonances in nanohole quadrumers for ultra-sensitive refractive index sensing,” Nanoscale 6(9), 4705–4715 (2014).
[Crossref] [PubMed]

Nat. Commun. (1)

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

J. H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, “Intrinsic and extrinsic performance limits of graphene devices on SiO2.,” Nat. Nanotechnol. 3(4), 206–209 (2008).
[Crossref] [PubMed]

Nat. Photonics (6)

M. Limonov, M. Rybin, A. Poddubny, and Y. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
[Crossref]

D. Gramotnev and S. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

A. Grigorenko, M. Polini, and K. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. Lim, Y. Wang, D. Tang, and K. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

X. Gan, R. Shiue, Y. Gao, I. Meric, T. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).
[Crossref]

Nature (2)

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (6)

Optica (1)

Photon. Res. (3)

Phys. Rev. (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[Crossref]

Phys. Rev. B (3)

P. Goncalves, E. Dias, Y. Bludov, and N. Peres, “Modeling the excitation of graphene plasmons in periodic grids of graphene ribbons: An analytical approach,” Phys. Rev. B 94(19), 195421 (2016).
[Crossref]

M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
[Crossref]

R. Yu, R. Alaee, F. Lederer, and C. Rockstuhl, “Manipulating the interaction between localized and delocalized surface plasmon-polaritons in graphene,” Phys. Rev. B 90(8), 085409 (2014).
[Crossref]

Phys. Rev. X (1)

S. Chen, S. Jin, and R. Gordon, “Subdiffraction focusing enabled by a Fano resonance,” Phys. Rev. X 4(3), 031021 (2014).
[Crossref]

Rev. Mod. Phys. (1)

A. Miroshnichenko, S. Flach, and Y. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Sci. Adv. (1)

Z. Yue, B. Cai, L. Wang, X. Wang, and M. Gu, “Intrinsically core-shell plasmonic dielectric nanostructures with ultrahigh refractive index,” Sci. Adv. 2(3), e1501536 (2016).
[Crossref] [PubMed]

Sci. Rep. (6)

H. Lu, X. Gan, D. Mao, B. Jia, and J. Zhao, “Flexibly tunable high-quality-factor induced transparency in plasmonic systems,” Sci. Rep. 8, 1558 (2018).
[Crossref] [PubMed]

Q. Zhang, X. Li, M. M. Hossain, Y. Xue, J. Zhang, J. Song, J. Liu, M. D. Turner, S. Fan, Q. Bao, and M. Gu, “Graphene surface plasmons at the near-infrared optical regime,” Sci. Rep. 4, 6559 (2015).
[Crossref] [PubMed]

B. Shi, W. Cai, X. Zhang, Y. Xiang, Y. Zhan, J. Geng, M. Ren, and J. Xu, “Tunable band-stop filters for graphene plasmons based on periodically modulated graphene,” Sci. Rep. 6, 26796 (2016).
[Crossref] [PubMed]

X. Xu, L. Shi, Y. Liu, Z. Wang, and X. Zhang, “Enhanced optical gradient forces between coupled graphene sheets,” Sci. Rep. 6(1), 28568 (2016).
[Crossref] [PubMed]

H. Lu, C. Zeng, Q. Zhang, X. Liu, M. M. Hossain, P. Reineck, and M. Gu, “Graphene-based active slow surface plasmon polaritons,” Sci. Rep. 5, 8443 (2015).
[Crossref] [PubMed]

M. Amin, M. Farhat, and H. Baǧcı, “A dynamically reconfigurable Fano metamaterial through graphene tuning for switching and sensing applications,” Sci. Rep. 3, 2105 (2013).
[Crossref] [PubMed]

Science (3)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref] [PubMed]

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Other (3)

P. Goncalves and N. Peres, An Introduction to Graphene Plasmonics (World Scientific, 2016).

A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. 2000 (Artech House, Boston).

H. A. Haus, Waves and Fields in Optoelectronics (Englewood Cliffs, NJ: Prentice-Hall, 1984), Chap. 7.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic diagram of the plasmonic metasurface composed of a single-layer graphene array with a nanostrip pair in each cell unit on a dielectric substrate. The inset shows the graphene nanostrip pair in each unit cell. Here, P1: the pitch of graphene array in the x-axis direction, P2: the pitch of graphene array in the y-axis direction, g: the coupling gap between the graphene nanostrip pair, a: the asymmetric distance between the centers (dashed lines) of the graphene nanostrip pair, θ: the polarization angle of incident light, W1 (W2): the width of the graphene nanostrip 1 (2), L1 (L2): the length of the graphene nanostrip 1 (2).
Fig. 2
Fig. 2 (a) Reflection spectra of the plasmonic metasurface with the symmetric graphene nanostrip pairs (a = 0) for the x- and y-polarized incident light. (b)-(c) Normalized electric field distributions |E|2 in the plane at the distance of 1 nm above the graphene nanostrip pairs at the reflection spectral peaks for x- and y-polarized incident light. The red arrows in (b) and (c) denote the x- and y-polarized light, respectively. The inset in (a) shows the normalized field distribution |E|2 at the spectral peak (λ = 5.7 μm) for x-polarized incident light. The geometrical parameters are set as P1 = 70 nm, P2 = 40 nm, W1 = 20 nm, L1 = 21 nm, W2 = 20 nm, L2 = 16 nm, and g = 6 nm.
Fig. 3
Fig. 3 (a)-(b) Reflection spectra of the plasmonic metasurface with different asymmetric distances a for the x- and y-polarized incident light. Here, P1 = 70 nm, P2 = 40 nm, W1 = 20 nm, L1 = 21 nm, W2 = 20 nm, L2 = 16 nm, and g = 6 nm.
Fig. 4
Fig. 4 (a) Numerical (FDTD simulation) and theoretical (CMT fitting) results of reflection spectrum for the x-polarized light impinging on the metasurface with a = 5 nm. The inset shows the results of the term I and II in Eq. (4). (b) Normalized electric field distribution |E|2 at the dip (λ = 6.36 μm) of reflection spectrum in (a). The inset shows the corresponding field distribution of Ez component. Here, P1 = 70 nm, P2 = 40 nm, W1 = 20 nm, L1 = 21 nm, W2 = 20 nm, L2 = 16 nm, and g = 6 nm.
Fig. 5
Fig. 5 (a) Resonance frequency ω1 of the metasurface with different asymmetric distances a for the x- and y-polarized incident light. These results are obtained by fitting the simulation results in Fig. 3. The inset shows the detuning resonance frequency δ as a function of a. (b) Spectral profile of the term I in Eq. (4) for the x-polarized incident light with different a. The arrows denote the positions of Lorentzian resonance from the term II in Eq. (4). Here, P1 = 70 nm, P2 = 40 nm, W1 = 20 nm, L1 = 21 nm, W2 = 20 nm, L2 = 16 nm, and g = 6 nm.
Fig. 6
Fig. 6 (a)-(b) Reflection spectra of the metasurface with different coupling distance g for the x- and y-polarized incident light. The solid circles and curves stand for the FDTD simulation and CMT fitting results, respectively. The parameters are set as P1 = 70 nm, P2 = 40 nm, W1 = 20 nm, L1 = 21 nm, W2 = 20 nm, L2 = 16 nm, and a = 12 nm.
Fig. 7
Fig. 7 Resonance frequency ω1 of the metasurface with different coupling distances g for the x- and y-polarized incident light. These results are achieved by the CMT fitting in Fig. 6. The inset shows the detuning resonance frequency δ as a function of g. (b) Coupling coefficient κ between the graphene nanostrip pair with different g. Here, P1 = 70 nm, P2 = 40 nm, W1 = 20 nm, L1 = 21 nm, W2 = 20 nm, L2 = 16 nm, and a = 12 nm.
Fig. 8
Fig. 8 (a) Evolution of reflection spectrum from the metasurface with the polarization angle θ of incident light when a = 12 nm. (b) Reflection spectra with different θ. The solid circles and curves denotes the FDTD simulation and CMT fitting results, respectively. (c) Fitting results of the resonance frequency ω1 with different θ. The inset shows the coefficient κ as a function of θ. (d) Reflection spectra with different Fermi levels Ef of graphene for the x-polarized incident light when a = 5 nm. The geometrical parameters are set as P1 = 70 nm, P2 = 40 nm, W1 = 20 nm, L1 = 21 nm, W2 = 20 nm, L2 = 16 nm, and g = 6 nm.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

σ i n t r a = i e 2 k B T π ћ 2 ( ω + i τ 1 ) [ E f k B T + 2 ln ( exp ( E f k B T ) + 1 ) ] .
σ i n t e r = i e 2 4 π ћ ln [ 2 | E f | ћ ( ω + i τ 1 ) 2 | E f | + ћ ( ω + i τ 1 ) ] ,
R ( ω ) = C 1 Q ( ω ) + C 2 ,
Q ( ω ) = | ( ω ω 1 j γ 1 ) ( ω ω 1 + δ j γ 2 ) ( ω ω 1 j γ 1 ) ( ω ω 1 + δ j γ 2 ) κ 2 | 2 × γ 1 2 ( ω ω 1 ) 2 + γ 1 2 ,

Metrics