Abstract

Ultrafast laser inscription has been used to produce channel waveguides in Ge22As20Se58 glass (GASIR-1, Umicore N.V). The mode field diameter and waveguide losses at 2.94 μm were measured along with the waveguide dispersion in the 1 to 4.5 μm range, which is used to estimate the zero-dispersion wavelength. Z-scan measurements of bulk samples have also been performed to determine the nonlinear refractive index. Finally, mid-IR supercontinuum generation has been shown when pumping the waveguides with femtosecond pulses centered at 4.6 μm. Supercontinuum spanning approximately 4 μm from 2.5 to 6.5 μm was measured which, to the best of the authors’ knowledge, represents the broadest and the deepest IR supercontinuum from an ultrafast laser inscribed waveguide to date. This work, combined with the long wavelength transmission of GASIR-1 up to 15 μm, paves the way for realizing further ultrafast laser inscribed waveguide devices in GASIR-1 for mid-IR integrated optics applications.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Planar waveguide obtained by burying a Ge22As20Se58 fiber in As2S3 glass

Quentin Coulombier, Shaoqian Zhang, Xianghua Zhang, Bruno Bureau, Jacques Lucas, Catherine Boussard-Plédel, Johan Trolès, Laurent Calvez, Hongli Ma, Sébastien Maurugeon, and Erwan Guillevic
Appl. Opt. 47(31) 5750-5752 (2008)

Demonstration and characterization of ultrafast laser-inscribed mid-infrared waveguides in chalcogenide glass IG2

Helen L. Butcher, David G. MacLachlan, David Lee, Robert R. Thomson, and Damien Weidmann
Opt. Express 26(8) 10930-10943 (2018)

Refractive index and dispersion control of ultrafast laser inscribed waveguides in gallium lanthanum sulphide for near and mid-infrared applications

Giorgos Demetriou, Jean-Philippe Bérubé, Réal Vallée, Younès Messaddeq, Christian R. Petersen, Deepak Jain, Ole Bang, Chris Craig, Daniel W. Hewak, and Ajoy K Kar
Opt. Express 24(6) 6350-6358 (2016)

References

  • View by:
  • |
  • |
  • |

  1. D. W. Hewak, “Chalcogenide glasses for photonics device applications,” in Photonic Glasses and Glass-Ceramics, G. S. Murugan, ed. (Research Signpost, 2010).
  2. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
    [Crossref]
  3. A. Ródenas, G. Martin, B. Arezki, N. Psaila, G. Jose, A. Jha, L. Labadie, P. Kern, A. Kar, and R. Thomson, “Three-dimensional mid-infrared photonic circuits in chalcogenide glass,” Opt. Lett. 37(3), 392–394 (2012).
    [Crossref] [PubMed]
  4. C. R. Petersen, N. Prtljaga, M. Farries, J. Ward, B. Napier, G. R. Lloyd, J. Nallala, N. Stone, and O. Bang, “Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source,” Opt. Lett., early posting (2018).
    [Crossref]
  5. N. D. Psaila, R. R. Thomson, H. T. Bookey, S. Shen, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and A. K. Kar, “Supercontinuum generation in an ultrafast laser inscribed chalcogenide glass waveguide,” Opt. Express 15(24), 15776–15781 (2007).
    [Crossref] [PubMed]
  6. J. McCarthy, H. Bookey, S. Beecher, R. Lamb, I. Elder, and A. K. Kar, “Spectrally tailored mid-infrared super-continuum generation in a buried waveguide spanning 1750 nm to 5000 nm for atmospheric transmission,” Appl. Phys. Lett. 103(15), 151103 (2013).
    [Crossref]
  7. M. R. Karim, B. M. Rahman, and G. P. Agrawal, “Mid-infrared supercontinuum generation using dispersion-engineered Ge11.5As24Se64.5 chalcogenide channel waveguide,” Opt. Express 23(5), 6903–6914 (2015).
    [Crossref] [PubMed]
  8. M. R. Karim and B. M. A. Rahman, “Ultra-broadband mid-infrared supercontinuum generation using chalcogenide rib waveguide,” Opt. Quantum Electron. 48(3), 174 (2016).
    [Crossref]
  9. Y. Yu, X. Gai, P. Ma, D. Y. Choi, Z. Y. Yang, R. P. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photonics Rev. 8(5), 792–798 (2014).
    [Crossref]
  10. Y. Yu, X. Gai, P. Ma, K. Vu, Z. Yang, R. Wang, D. Y. Choi, S. Madden, and B. Luther-Davies, “Experimental demonstration of linearly polarized 2-10 μm supercontinuum generation in a chalcogenide rib waveguide,” Opt. Lett. 41(5), 958–961 (2016).
    [Crossref] [PubMed]
  11. H. Lin, Z. Luo, T. Gu, C. Kimerling Lionel, K. Wada, A. Agarwal, and J. Hu, “Mid-infrared integrated photonics on silicon: a perspective,” in Nanophotonics, (2017), p. 393.
  12. P. Mitchell, G. Brown, R. R. Thomson, N. Psaila, and A. Kar, “57 Channel (19x3) Spatial Multiplexer Fabricated using Direct Laser Inscription,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), M3K.5.
    [Crossref]
  13. T. A. Birks, I. Gris-Sánchez, S. Yerolatsitis, S. G. Leon-Saval, and R. R. Thomson, “The photonic lantern,” Adv. Opt. Photonics 7(2), 107 (2015).
    [Crossref]
  14. G. Demetriou, D. W. Hewak, A. Ravagli, C. Craig, and A. Kar, “Nonlinear refractive index of ultrafast laser inscribed waveguides in gallium lanthanum sulphide,” Appl. Opt. 56(19), 5407–5411 (2017).
    [Crossref] [PubMed]
  15. J. A. Frantz, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Waveguide amplifiers in sputtered films of Er3+-doped gallium lanthanum sulfide glass,” Opt. Express 14(5), 1797–1803 (2006).
    [Crossref] [PubMed]
  16. J. Morris, N. K. Stevenson, H. T. Bookey, A. K. Kar, C. T. A. Brown, J. M. Hopkins, M. D. Dawson, and A. A. Lagatsky, “1.9 µm waveguide laser fabricated by ultrafast laser inscription in Tm:Lu2O3ceramic,” Opt. Express 25(13), 14910–14917 (2017).
    [Crossref] [PubMed]
  17. R. Mary, D. Choudhury, and A. K. Kar, “Applications of Fiber Lasers for the Development of Compact Photonic Devices,” IEEE J. Sel. Top. Quant. 20(5), 72–84 (2014).
    [Crossref]
  18. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
    [Crossref]
  19. T. Wang, X. Gai, W. Wei, R. Wang, Z. Yang, X. Shen, S. Madden, and B. Luther-Davies, “Systematic z-scan measurements of the third order nonlinearity of chalcogenide glasses,” Opt. Mater. Express 4(5), 1011–1022 (2014).
    [Crossref]
  20. G. Demetriou, J.-P. Bérubé, R. Vallée, Y. Messaddeq, C. R. Petersen, D. Jain, O. Bang, C. Craig, D. W. Hewak, and A. K. Kar, “Refractive index and dispersion control of ultrafast laser inscribed waveguides in gallium lanthanum sulphide for near and mid-infrared applications,” Opt. Express 24(6), 6350–6358 (2016).
    [Crossref] [PubMed]
  21. C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
    [Crossref]

2017 (2)

2016 (3)

2015 (2)

2014 (4)

T. Wang, X. Gai, W. Wei, R. Wang, Z. Yang, X. Shen, S. Madden, and B. Luther-Davies, “Systematic z-scan measurements of the third order nonlinearity of chalcogenide glasses,” Opt. Mater. Express 4(5), 1011–1022 (2014).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

R. Mary, D. Choudhury, and A. K. Kar, “Applications of Fiber Lasers for the Development of Compact Photonic Devices,” IEEE J. Sel. Top. Quant. 20(5), 72–84 (2014).
[Crossref]

Y. Yu, X. Gai, P. Ma, D. Y. Choi, Z. Y. Yang, R. P. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photonics Rev. 8(5), 792–798 (2014).
[Crossref]

2013 (1)

J. McCarthy, H. Bookey, S. Beecher, R. Lamb, I. Elder, and A. K. Kar, “Spectrally tailored mid-infrared super-continuum generation in a buried waveguide spanning 1750 nm to 5000 nm for atmospheric transmission,” Appl. Phys. Lett. 103(15), 151103 (2013).
[Crossref]

2012 (1)

2011 (1)

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
[Crossref]

2007 (1)

2006 (1)

1990 (1)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Abdel-Moneim, N.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Aggarwal, I. D.

Agrawal, G. P.

Arezki, B.

Bang, O.

G. Demetriou, J.-P. Bérubé, R. Vallée, Y. Messaddeq, C. R. Petersen, D. Jain, O. Bang, C. Craig, D. W. Hewak, and A. K. Kar, “Refractive index and dispersion control of ultrafast laser inscribed waveguides in gallium lanthanum sulphide for near and mid-infrared applications,” Opt. Express 24(6), 6350–6358 (2016).
[Crossref] [PubMed]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Beecher, S.

J. McCarthy, H. Bookey, S. Beecher, R. Lamb, I. Elder, and A. K. Kar, “Spectrally tailored mid-infrared super-continuum generation in a buried waveguide spanning 1750 nm to 5000 nm for atmospheric transmission,” Appl. Phys. Lett. 103(15), 151103 (2013).
[Crossref]

Benson, T.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Bérubé, J.-P.

Birks, T. A.

T. A. Birks, I. Gris-Sánchez, S. Yerolatsitis, S. G. Leon-Saval, and R. R. Thomson, “The photonic lantern,” Adv. Opt. Photonics 7(2), 107 (2015).
[Crossref]

Bookey, H.

J. McCarthy, H. Bookey, S. Beecher, R. Lamb, I. Elder, and A. K. Kar, “Spectrally tailored mid-infrared super-continuum generation in a buried waveguide spanning 1750 nm to 5000 nm for atmospheric transmission,” Appl. Phys. Lett. 103(15), 151103 (2013).
[Crossref]

Bookey, H. T.

Brown, C. T. A.

Cerullo, G.

Chiodo, N.

Choi, D. Y.

Y. Yu, X. Gai, P. Ma, K. Vu, Z. Yang, R. Wang, D. Y. Choi, S. Madden, and B. Luther-Davies, “Experimental demonstration of linearly polarized 2-10 μm supercontinuum generation in a chalcogenide rib waveguide,” Opt. Lett. 41(5), 958–961 (2016).
[Crossref] [PubMed]

Y. Yu, X. Gai, P. Ma, D. Y. Choi, Z. Y. Yang, R. P. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photonics Rev. 8(5), 792–798 (2014).
[Crossref]

Choudhury, D.

R. Mary, D. Choudhury, and A. K. Kar, “Applications of Fiber Lasers for the Development of Compact Photonic Devices,” IEEE J. Sel. Top. Quant. 20(5), 72–84 (2014).
[Crossref]

Craig, C.

Dawson, M. D.

Debbarma, S.

Y. Yu, X. Gai, P. Ma, D. Y. Choi, Z. Y. Yang, R. P. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photonics Rev. 8(5), 792–798 (2014).
[Crossref]

Demetriou, G.

Dupont, S.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Eggleton, B. J.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
[Crossref]

Elder, I.

J. McCarthy, H. Bookey, S. Beecher, R. Lamb, I. Elder, and A. K. Kar, “Spectrally tailored mid-infrared super-continuum generation in a buried waveguide spanning 1750 nm to 5000 nm for atmospheric transmission,” Appl. Phys. Lett. 103(15), 151103 (2013).
[Crossref]

Frantz, J. A.

Furniss, D.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Gai, X.

Gris-Sánchez, I.

T. A. Birks, I. Gris-Sánchez, S. Yerolatsitis, S. G. Leon-Saval, and R. R. Thomson, “The photonic lantern,” Adv. Opt. Photonics 7(2), 107 (2015).
[Crossref]

Hagan, D. J.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Hewak, D. W.

Hopkins, J. M.

Jain, D.

Jha, A.

Jose, G.

Kar, A.

Kar, A. K.

Karim, M. R.

M. R. Karim and B. M. A. Rahman, “Ultra-broadband mid-infrared supercontinuum generation using chalcogenide rib waveguide,” Opt. Quantum Electron. 48(3), 174 (2016).
[Crossref]

M. R. Karim, B. M. Rahman, and G. P. Agrawal, “Mid-infrared supercontinuum generation using dispersion-engineered Ge11.5As24Se64.5 chalcogenide channel waveguide,” Opt. Express 23(5), 6903–6914 (2015).
[Crossref] [PubMed]

Kern, P.

Kubat, I.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Labadie, L.

Lagatsky, A. A.

Lamb, R.

J. McCarthy, H. Bookey, S. Beecher, R. Lamb, I. Elder, and A. K. Kar, “Spectrally tailored mid-infrared super-continuum generation in a buried waveguide spanning 1750 nm to 5000 nm for atmospheric transmission,” Appl. Phys. Lett. 103(15), 151103 (2013).
[Crossref]

Leon-Saval, S. G.

T. A. Birks, I. Gris-Sánchez, S. Yerolatsitis, S. G. Leon-Saval, and R. R. Thomson, “The photonic lantern,” Adv. Opt. Photonics 7(2), 107 (2015).
[Crossref]

Luther-Davies, B.

Y. Yu, X. Gai, P. Ma, K. Vu, Z. Yang, R. Wang, D. Y. Choi, S. Madden, and B. Luther-Davies, “Experimental demonstration of linearly polarized 2-10 μm supercontinuum generation in a chalcogenide rib waveguide,” Opt. Lett. 41(5), 958–961 (2016).
[Crossref] [PubMed]

Y. Yu, X. Gai, P. Ma, D. Y. Choi, Z. Y. Yang, R. P. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photonics Rev. 8(5), 792–798 (2014).
[Crossref]

T. Wang, X. Gai, W. Wei, R. Wang, Z. Yang, X. Shen, S. Madden, and B. Luther-Davies, “Systematic z-scan measurements of the third order nonlinearity of chalcogenide glasses,” Opt. Mater. Express 4(5), 1011–1022 (2014).
[Crossref]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
[Crossref]

Ma, P.

Y. Yu, X. Gai, P. Ma, K. Vu, Z. Yang, R. Wang, D. Y. Choi, S. Madden, and B. Luther-Davies, “Experimental demonstration of linearly polarized 2-10 μm supercontinuum generation in a chalcogenide rib waveguide,” Opt. Lett. 41(5), 958–961 (2016).
[Crossref] [PubMed]

Y. Yu, X. Gai, P. Ma, D. Y. Choi, Z. Y. Yang, R. P. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photonics Rev. 8(5), 792–798 (2014).
[Crossref]

Madden, S.

Madden, S. J.

Y. Yu, X. Gai, P. Ma, D. Y. Choi, Z. Y. Yang, R. P. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photonics Rev. 8(5), 792–798 (2014).
[Crossref]

Martin, G.

Mary, R.

R. Mary, D. Choudhury, and A. K. Kar, “Applications of Fiber Lasers for the Development of Compact Photonic Devices,” IEEE J. Sel. Top. Quant. 20(5), 72–84 (2014).
[Crossref]

McCarthy, J.

J. McCarthy, H. Bookey, S. Beecher, R. Lamb, I. Elder, and A. K. Kar, “Spectrally tailored mid-infrared super-continuum generation in a buried waveguide spanning 1750 nm to 5000 nm for atmospheric transmission,” Appl. Phys. Lett. 103(15), 151103 (2013).
[Crossref]

Messaddeq, Y.

Møller, U.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Morris, J.

Osellame, R.

Petersen, C. R.

G. Demetriou, J.-P. Bérubé, R. Vallée, Y. Messaddeq, C. R. Petersen, D. Jain, O. Bang, C. Craig, D. W. Hewak, and A. K. Kar, “Refractive index and dispersion control of ultrafast laser inscribed waveguides in gallium lanthanum sulphide for near and mid-infrared applications,” Opt. Express 24(6), 6350–6358 (2016).
[Crossref] [PubMed]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Psaila, N.

Psaila, N. D.

Rahman, B. M.

Rahman, B. M. A.

M. R. Karim and B. M. A. Rahman, “Ultra-broadband mid-infrared supercontinuum generation using chalcogenide rib waveguide,” Opt. Quantum Electron. 48(3), 174 (2016).
[Crossref]

Ramsay, J.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Ravagli, A.

Richardson, K.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
[Crossref]

Ródenas, A.

Said, A. A.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Sanghera, J. S.

Seddon, A.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Shaw, L. B.

Sheik-Bahae, M.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Shen, S.

Shen, X.

Stevenson, N. K.

Sujecki, S.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Tang, Z.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Thomson, R.

Thomson, R. R.

Vallée, R.

Van Stryland, E. W.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Vu, K.

Wang, R.

Wang, R. P.

Y. Yu, X. Gai, P. Ma, D. Y. Choi, Z. Y. Yang, R. P. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photonics Rev. 8(5), 792–798 (2014).
[Crossref]

Wang, T.

Wei, T. H.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Wei, W.

Yang, Z.

Yang, Z. Y.

Y. Yu, X. Gai, P. Ma, D. Y. Choi, Z. Y. Yang, R. P. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photonics Rev. 8(5), 792–798 (2014).
[Crossref]

Yerolatsitis, S.

T. A. Birks, I. Gris-Sánchez, S. Yerolatsitis, S. G. Leon-Saval, and R. R. Thomson, “The photonic lantern,” Adv. Opt. Photonics 7(2), 107 (2015).
[Crossref]

Yu, Y.

Y. Yu, X. Gai, P. Ma, K. Vu, Z. Yang, R. Wang, D. Y. Choi, S. Madden, and B. Luther-Davies, “Experimental demonstration of linearly polarized 2-10 μm supercontinuum generation in a chalcogenide rib waveguide,” Opt. Lett. 41(5), 958–961 (2016).
[Crossref] [PubMed]

Y. Yu, X. Gai, P. Ma, D. Y. Choi, Z. Y. Yang, R. P. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photonics Rev. 8(5), 792–798 (2014).
[Crossref]

Zhou, B.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Adv. Opt. Photonics (1)

T. A. Birks, I. Gris-Sánchez, S. Yerolatsitis, S. G. Leon-Saval, and R. R. Thomson, “The photonic lantern,” Adv. Opt. Photonics 7(2), 107 (2015).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

J. McCarthy, H. Bookey, S. Beecher, R. Lamb, I. Elder, and A. K. Kar, “Spectrally tailored mid-infrared super-continuum generation in a buried waveguide spanning 1750 nm to 5000 nm for atmospheric transmission,” Appl. Phys. Lett. 103(15), 151103 (2013).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

IEEE J. Sel. Top. Quant. (1)

R. Mary, D. Choudhury, and A. K. Kar, “Applications of Fiber Lasers for the Development of Compact Photonic Devices,” IEEE J. Sel. Top. Quant. 20(5), 72–84 (2014).
[Crossref]

Laser Photonics Rev. (1)

Y. Yu, X. Gai, P. Ma, D. Y. Choi, Z. Y. Yang, R. P. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photonics Rev. 8(5), 792–798 (2014).
[Crossref]

Nat. Photonics (2)

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Opt. Mater. Express (1)

Opt. Quantum Electron. (1)

M. R. Karim and B. M. A. Rahman, “Ultra-broadband mid-infrared supercontinuum generation using chalcogenide rib waveguide,” Opt. Quantum Electron. 48(3), 174 (2016).
[Crossref]

Other (4)

H. Lin, Z. Luo, T. Gu, C. Kimerling Lionel, K. Wada, A. Agarwal, and J. Hu, “Mid-infrared integrated photonics on silicon: a perspective,” in Nanophotonics, (2017), p. 393.

P. Mitchell, G. Brown, R. R. Thomson, N. Psaila, and A. Kar, “57 Channel (19x3) Spatial Multiplexer Fabricated using Direct Laser Inscription,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), M3K.5.
[Crossref]

C. R. Petersen, N. Prtljaga, M. Farries, J. Ward, B. Napier, G. R. Lloyd, J. Nallala, N. Stone, and O. Bang, “Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source,” Opt. Lett., early posting (2018).
[Crossref]

D. W. Hewak, “Chalcogenide glasses for photonics device applications,” in Photonic Glasses and Glass-Ceramics, G. S. Murugan, ed. (Research Signpost, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Transmission microscope images showing the resulting material modification from two fabrication parameter sweeps. a) single line scan results for increasing pulse energies from 34 to 90 nJ. b) The array of multi-scan waveguides used in this work. Written with identical laser parameters but increasing scan number to vary the waveguide core width. In both cases the inscription beam is incident from above.
Fig. 2
Fig. 2 Experimental setup for initial waveguide testing, waveguide losses and guided mode dimensions. a) Setup where: Mx, silver mirrors; VA, reflective variable ND filter; BD, beam dump; L1 and L2, BBAR-coated ZnSe objectives; WUT, waveguide under test; FM, flip mirror. Blue dotted box signifies components mounted on waveguide alignment workstation. b) Waveguide losses including coupling and propagation loss for WG2-7. c) Waveguide 1/e2 MFD measurements for x and z directions for WG2-7 with an insert showing the near field mode image of WG5.
Fig. 3
Fig. 3 Z-scan measurement and spectrometer results. a) Representative Z-scan trace taken using 10 nJ pulses centered at 2 μm with a linear aperture transmittance of 50% and fit using the closed aperture Z-scan formula. b) Plot of measured n2 values vs wavelength including errors ( ± 15%). c) Transmission spectra showing band edge with a zoomed in view insert showing the absorption tail, includes Fresnel losses.
Fig. 4
Fig. 4 Dispersion results and analysis. Top: Measured dispersion of different waveguides. The lines represent the mean of four measurements with error bars indicating measurement uncertainty. The insert shows a zoomed in view on the long-wavelength edge of the measurement, indicating a ZDW around 4.44 μm and 4.56 μm for WG1 and WG3, respectively. Bottom: Windowed Fourier transform analysis of interference spectra from a) WG1 and b) WG5, which demonstrates that WG5 exhibit multimode beating below 1.7 μm. In this particular example the higher-order mode is dominating at short wavelengths making it difficult to measure the dispersion in this region.
Fig. 5
Fig. 5 Supercontinuum measurement setup and results. a) Setup where: Mx, gold mirrors; FSL, fused silica lens; DFG-X, DFG crystal; BFL, BaF2 lens; LPx, long pass filters; WP, waveplate; POL, wire grid polarizer; FMx, flip mirrors; L1 and L2, BBAR-coated ZnSe objectives or uncoated CaF2 lens; WUT, waveguide under test; MCT, MCT detector. Blue dotted box signifies components mounted on waveguide alignment workstation. b) Broadest supercontinuum measured spanning ~4 um at −20 dB points. Produced by pumping WG7 with 130 nJ pulses coupled and collected with CaF2 lens set. Input pulse spectrum is also shown. c) Evolution of supercontinuum with input pump power for WG5 with ZnSe objective set. Broadening is seen from pulse energies as low as 3 nJ.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

z c = 2 n 0 M 2 λ π N A 2
T c l ( z ) = 1 + 4 x Δ ϕ 0 ( 1 S ) 0.25 ( 1 + x 2 ) ( 9 + x 2 )

Metrics