Abstract

Thin (~250 µm) crystalline layers of monoclinic Ho3+-doped KY(WO4)2 grown by the liquid phase epitaxy method on (010)-oriented undoped KY(WO4)2 substrates are promising for the development of thin-disk lasers at ~2.1 µm. Using a single-bounce pump geometry, 3 at.% and 5 at.% Ho:KY(WO4)2 thin-disk lasers delivering output powers of >1 W at 2056 nm and 2073 nm are demonstrated. The laser performance, beam quality and thermo-optic aberrations of such lasers are strongly affected by the Ho3+ doping concentration. For the 3 at.% Ho3+-doped thin-disk, the thermal lens is negative (the sensitivity factors for the two principal meridional planes, MA(B), are −1.7 and −0.7 m−1/W) and astigmatic. For higher Ho3+ doping (5-10 at.%), the effect of upconversion and end-bulging of the disk enhances the thermo-optic aberrations leading to a deteriorated laser performance.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ho:KY(WO4)2 thin-disk laser passively Q-switched by a GaSb-based SESAM

Xavier Mateos, Pavel Loiko, Samir Lamrini, Karsten Scholle, Peter Fuhrberg, Soile Suomalainen, Antti Härkönen, Mircea Guina, Sergei Vatnik, Ivan Vedin, Magdalena Aguiló, Francesc Díaz, Yicheng Wang, Uwe Griebner, and Valentin Petrov
Opt. Express 26(7) 9011-9016 (2018)

Holmium thin-disk laser based on Ho:KY(WO4)2/KY(WO4)2 epitaxy with 60% slope efficiency and simplified pump geometry

Xavier Mateos, Samir Lamrini, Karsten Scholle, Peter Fuhrberg, Sergei Vatnik, Pavel Loiko, Ivan Vedin, Magdalena Aguiló, Francesc Díaz, Uwe Griebner, and Valentin Petrov
Opt. Lett. 42(17) 3490-3493 (2017)

Tm:KY(WO4)2 waveguide laser

S. Rivier, X. Mateos, V. Petrov, U. Griebner, Y. E. Romanyuk, C. N. Borca, F. Gardillou, and M. Pollnau
Opt. Express 15(9) 5885-5892 (2007)

References

  • View by:
  • |
  • |
  • |

  1. A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
    [Crossref]
  2. F. Brunner, T. Südmeyer, E. Innerhofer, F. Morier-Genoud, R. Paschotta, V. E. Kisel, V. G. Shcherbitsky, N. V. Kuleshov, J. Gao, K. Contag, A. Giesen, and U. Keller, “240-fs pulses with 22-W average power from a mode-locked thin-disk Yb:KY(WO4)2 laser,” Opt. Lett. 27(13), 1162–1164 (2002).
    [Crossref] [PubMed]
  3. A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
    [Crossref]
  4. G. Stoeppler, D. Parisi, M. Tonelli, and M. Eichhorn, “High-efficiency 1.9 µm Tm3+:LiLuF4 thin-disk laser,” Opt. Lett. 37(7), 1163–1165 (2012).
    [Crossref] [PubMed]
  5. J. Speiser, G. Renz, and A. Giesen, “Thin disk laser in the 2 µm wavelength range,” Proc. SPIE 8547, 85470E (2012).
    [Crossref]
  6. M. Schellhorn, “Performance of a Ho:YAG thin-disc laser pumped by a diode-pumped 1.9 μm thulium laser,” Appl. Phys. B 85(4), 549–552 (2006).
    [Crossref]
  7. G. Renz, “Moderate high power 1 to 20 μs and kHz Ho:YAG thin disk laser pulses for laser lithotripsy,” Proc. SPIE 9342, 93421W (2015).
    [Crossref]
  8. J. Zhang, K. F. Mak, N. Nagl, M. Seidel, F. Krausz, and O. Pronin, “7-W, 2-cycle self-compressed pulses at 2.1 micron from a Ho:YAG thin disk laser oscillator,” in CLEO/Europe-EQEC Conference (IEEE, 2017), P. PD-1.5 WED.
  9. J. Zhang, K. F. Mak, S. Gröbmeyer, D. Bauer, D. Sutter, V. Pervak, F. Krausz, and O. Pronin, “270 fs, 30-W-level Kerr-lens mode-locked Ho:YAG thin-disk oscillator at 2 μm,” in Nonlinear Optics, OSA Technical Digest (Optical Society of America, 2017), P. NTu3A.2.
  10. V. Jambunathan, X. Mateos, M. C. Pujol, J. J. Carvajal, F. Díaz, M. Aguiló, U. Griebner, and V. Petrov, “Continuous-wave laser generation at ~2.1 µm in Ho:KRE(WO4)2 (RE = Y, Gd, Lu) crystals: a comparative study,” Opt. Express 19(25), 25279–25289 (2011).
    [Crossref] [PubMed]
  11. V. Jambunathan, X. Mateos, P. A. Loiko, J. M. Serres, U. Griebner, V. Petrov, K. V. Yumashev, M. Aguiló, and F. Díaz, “Growth, spectroscopy and laser operation of Ho:KY(WO4)2,” J. Lumin. 179, 50–58 (2016).
    [Crossref]
  12. P. Loiko, J. M. Serres, X. Mateos, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “In-band-pumped Ho:KLu(WO4)2 microchip laser with 84% slope efficiency,” Opt. Lett. 40(3), 344–347 (2015).
    [Crossref] [PubMed]
  13. X. Mateos, S. Lamrini, K. Scholle, P. Fuhrberg, S. Vatnik, P. Loiko, I. Vedin, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Holmium thin-disk laser based on Ho:KY(WO4)2/KY(WO4)2 epitaxy with 60% slope efficiency and simplified pump geometry,” Opt. Lett. 42(17), 3490–3493 (2017).
    [Crossref] [PubMed]
  14. S. Vatnik, I. Vedin, M. Segura, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, F. Díaz, V. Petrov, and U. Griebner, “Efficient thin-disk Tm-laser operation based on Tm:KLu(WO4)2/KLu(WO4)2 epitaxies,” Opt. Lett. 37(3), 356–358 (2012).
    [Crossref] [PubMed]
  15. P. A. Loiko, V. G. Savitski, A. Kemp, A. A. Pavlyuk, N. V. Kuleshov, and K. V. Yumashev, “Anisotropy of the photo-elastic effect in Nd:KGd(WO4)2 laser crystals,” Laser Phys. Lett. 11(5), 055002 (2014).
    [Crossref]
  16. P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, G. E. Rachkovskaya, and A. A. Pavlyuk, “Detailed characterization of thermal expansion tensor in monoclinic KRe(WO4)2 (where Re = Gd, Y, Lu, Yb),” Opt. Mater. 34(1), 23–26 (2011).
    [Crossref]
  17. K. Yumashev and P. Loiko, “Thermal stress and end-bulging in monoclinic crystals: The case study of double tungstates,” Appl. Opt. 56(13), 3857–3866 (2017).
    [Crossref] [PubMed]
  18. P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, G. E. Rachkovskaya, and A. A. Pavlyuk, “Thermo-optic dispersion formulas for monoclinic double tungstates KRe(WO4)2 where Re = Gd, Y, Lu, Yb,” Opt. Mater. 33(11), 1688–1694 (2011).
    [Crossref]
  19. A. A. Lyapin, P. A. Ryabochkina, A. N. Chabushkin, S. N. Ushakov, and P. P. Fedorov, “Investigation of the mechanisms of upconversion luminescence in Ho3+ doped CaF2 crystals and ceramics upon excitation of 5I7 level,” J. Lumin. 167, 120–125 (2015).
    [Crossref]

2017 (2)

2016 (1)

V. Jambunathan, X. Mateos, P. A. Loiko, J. M. Serres, U. Griebner, V. Petrov, K. V. Yumashev, M. Aguiló, and F. Díaz, “Growth, spectroscopy and laser operation of Ho:KY(WO4)2,” J. Lumin. 179, 50–58 (2016).
[Crossref]

2015 (3)

P. Loiko, J. M. Serres, X. Mateos, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “In-band-pumped Ho:KLu(WO4)2 microchip laser with 84% slope efficiency,” Opt. Lett. 40(3), 344–347 (2015).
[Crossref] [PubMed]

G. Renz, “Moderate high power 1 to 20 μs and kHz Ho:YAG thin disk laser pulses for laser lithotripsy,” Proc. SPIE 9342, 93421W (2015).
[Crossref]

A. A. Lyapin, P. A. Ryabochkina, A. N. Chabushkin, S. N. Ushakov, and P. P. Fedorov, “Investigation of the mechanisms of upconversion luminescence in Ho3+ doped CaF2 crystals and ceramics upon excitation of 5I7 level,” J. Lumin. 167, 120–125 (2015).
[Crossref]

2014 (1)

P. A. Loiko, V. G. Savitski, A. Kemp, A. A. Pavlyuk, N. V. Kuleshov, and K. V. Yumashev, “Anisotropy of the photo-elastic effect in Nd:KGd(WO4)2 laser crystals,” Laser Phys. Lett. 11(5), 055002 (2014).
[Crossref]

2012 (3)

2011 (3)

V. Jambunathan, X. Mateos, M. C. Pujol, J. J. Carvajal, F. Díaz, M. Aguiló, U. Griebner, and V. Petrov, “Continuous-wave laser generation at ~2.1 µm in Ho:KRE(WO4)2 (RE = Y, Gd, Lu) crystals: a comparative study,” Opt. Express 19(25), 25279–25289 (2011).
[Crossref] [PubMed]

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, G. E. Rachkovskaya, and A. A. Pavlyuk, “Detailed characterization of thermal expansion tensor in monoclinic KRe(WO4)2 (where Re = Gd, Y, Lu, Yb),” Opt. Mater. 34(1), 23–26 (2011).
[Crossref]

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, G. E. Rachkovskaya, and A. A. Pavlyuk, “Thermo-optic dispersion formulas for monoclinic double tungstates KRe(WO4)2 where Re = Gd, Y, Lu, Yb,” Opt. Mater. 33(11), 1688–1694 (2011).
[Crossref]

2007 (1)

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
[Crossref]

2006 (1)

M. Schellhorn, “Performance of a Ho:YAG thin-disc laser pumped by a diode-pumped 1.9 μm thulium laser,” Appl. Phys. B 85(4), 549–552 (2006).
[Crossref]

2002 (1)

1994 (1)

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

Aguiló, M.

Brauch, U.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

Brunner, F.

Carvajal, J. J.

Chabushkin, A. N.

A. A. Lyapin, P. A. Ryabochkina, A. N. Chabushkin, S. N. Ushakov, and P. P. Fedorov, “Investigation of the mechanisms of upconversion luminescence in Ho3+ doped CaF2 crystals and ceramics upon excitation of 5I7 level,” J. Lumin. 167, 120–125 (2015).
[Crossref]

Contag, K.

Díaz, F.

Eichhorn, M.

Fedorov, P. P.

A. A. Lyapin, P. A. Ryabochkina, A. N. Chabushkin, S. N. Ushakov, and P. P. Fedorov, “Investigation of the mechanisms of upconversion luminescence in Ho3+ doped CaF2 crystals and ceramics upon excitation of 5I7 level,” J. Lumin. 167, 120–125 (2015).
[Crossref]

Fuhrberg, P.

Gao, J.

Giesen, A.

J. Speiser, G. Renz, and A. Giesen, “Thin disk laser in the 2 µm wavelength range,” Proc. SPIE 8547, 85470E (2012).
[Crossref]

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
[Crossref]

F. Brunner, T. Südmeyer, E. Innerhofer, F. Morier-Genoud, R. Paschotta, V. E. Kisel, V. G. Shcherbitsky, N. V. Kuleshov, J. Gao, K. Contag, A. Giesen, and U. Keller, “240-fs pulses with 22-W average power from a mode-locked thin-disk Yb:KY(WO4)2 laser,” Opt. Lett. 27(13), 1162–1164 (2002).
[Crossref] [PubMed]

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

Griebner, U.

Hügel, H.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

Innerhofer, E.

Jambunathan, V.

V. Jambunathan, X. Mateos, P. A. Loiko, J. M. Serres, U. Griebner, V. Petrov, K. V. Yumashev, M. Aguiló, and F. Díaz, “Growth, spectroscopy and laser operation of Ho:KY(WO4)2,” J. Lumin. 179, 50–58 (2016).
[Crossref]

V. Jambunathan, X. Mateos, M. C. Pujol, J. J. Carvajal, F. Díaz, M. Aguiló, U. Griebner, and V. Petrov, “Continuous-wave laser generation at ~2.1 µm in Ho:KRE(WO4)2 (RE = Y, Gd, Lu) crystals: a comparative study,” Opt. Express 19(25), 25279–25289 (2011).
[Crossref] [PubMed]

Keller, U.

Kemp, A.

P. A. Loiko, V. G. Savitski, A. Kemp, A. A. Pavlyuk, N. V. Kuleshov, and K. V. Yumashev, “Anisotropy of the photo-elastic effect in Nd:KGd(WO4)2 laser crystals,” Laser Phys. Lett. 11(5), 055002 (2014).
[Crossref]

Kisel, V. E.

Kuleshov, N.

Kuleshov, N. V.

P. A. Loiko, V. G. Savitski, A. Kemp, A. A. Pavlyuk, N. V. Kuleshov, and K. V. Yumashev, “Anisotropy of the photo-elastic effect in Nd:KGd(WO4)2 laser crystals,” Laser Phys. Lett. 11(5), 055002 (2014).
[Crossref]

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, G. E. Rachkovskaya, and A. A. Pavlyuk, “Thermo-optic dispersion formulas for monoclinic double tungstates KRe(WO4)2 where Re = Gd, Y, Lu, Yb,” Opt. Mater. 33(11), 1688–1694 (2011).
[Crossref]

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, G. E. Rachkovskaya, and A. A. Pavlyuk, “Detailed characterization of thermal expansion tensor in monoclinic KRe(WO4)2 (where Re = Gd, Y, Lu, Yb),” Opt. Mater. 34(1), 23–26 (2011).
[Crossref]

F. Brunner, T. Südmeyer, E. Innerhofer, F. Morier-Genoud, R. Paschotta, V. E. Kisel, V. G. Shcherbitsky, N. V. Kuleshov, J. Gao, K. Contag, A. Giesen, and U. Keller, “240-fs pulses with 22-W average power from a mode-locked thin-disk Yb:KY(WO4)2 laser,” Opt. Lett. 27(13), 1162–1164 (2002).
[Crossref] [PubMed]

Lamrini, S.

Loiko, P.

Loiko, P. A.

V. Jambunathan, X. Mateos, P. A. Loiko, J. M. Serres, U. Griebner, V. Petrov, K. V. Yumashev, M. Aguiló, and F. Díaz, “Growth, spectroscopy and laser operation of Ho:KY(WO4)2,” J. Lumin. 179, 50–58 (2016).
[Crossref]

P. A. Loiko, V. G. Savitski, A. Kemp, A. A. Pavlyuk, N. V. Kuleshov, and K. V. Yumashev, “Anisotropy of the photo-elastic effect in Nd:KGd(WO4)2 laser crystals,” Laser Phys. Lett. 11(5), 055002 (2014).
[Crossref]

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, G. E. Rachkovskaya, and A. A. Pavlyuk, “Thermo-optic dispersion formulas for monoclinic double tungstates KRe(WO4)2 where Re = Gd, Y, Lu, Yb,” Opt. Mater. 33(11), 1688–1694 (2011).
[Crossref]

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, G. E. Rachkovskaya, and A. A. Pavlyuk, “Detailed characterization of thermal expansion tensor in monoclinic KRe(WO4)2 (where Re = Gd, Y, Lu, Yb),” Opt. Mater. 34(1), 23–26 (2011).
[Crossref]

Lyapin, A. A.

A. A. Lyapin, P. A. Ryabochkina, A. N. Chabushkin, S. N. Ushakov, and P. P. Fedorov, “Investigation of the mechanisms of upconversion luminescence in Ho3+ doped CaF2 crystals and ceramics upon excitation of 5I7 level,” J. Lumin. 167, 120–125 (2015).
[Crossref]

Mateos, X.

Morier-Genoud, F.

Opower, H.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

Parisi, D.

Paschotta, R.

Pavlyuk, A. A.

P. A. Loiko, V. G. Savitski, A. Kemp, A. A. Pavlyuk, N. V. Kuleshov, and K. V. Yumashev, “Anisotropy of the photo-elastic effect in Nd:KGd(WO4)2 laser crystals,” Laser Phys. Lett. 11(5), 055002 (2014).
[Crossref]

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, G. E. Rachkovskaya, and A. A. Pavlyuk, “Thermo-optic dispersion formulas for monoclinic double tungstates KRe(WO4)2 where Re = Gd, Y, Lu, Yb,” Opt. Mater. 33(11), 1688–1694 (2011).
[Crossref]

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, G. E. Rachkovskaya, and A. A. Pavlyuk, “Detailed characterization of thermal expansion tensor in monoclinic KRe(WO4)2 (where Re = Gd, Y, Lu, Yb),” Opt. Mater. 34(1), 23–26 (2011).
[Crossref]

Petrov, V.

Pujol, M. C.

Rachkovskaya, G. E.

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, G. E. Rachkovskaya, and A. A. Pavlyuk, “Thermo-optic dispersion formulas for monoclinic double tungstates KRe(WO4)2 where Re = Gd, Y, Lu, Yb,” Opt. Mater. 33(11), 1688–1694 (2011).
[Crossref]

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, G. E. Rachkovskaya, and A. A. Pavlyuk, “Detailed characterization of thermal expansion tensor in monoclinic KRe(WO4)2 (where Re = Gd, Y, Lu, Yb),” Opt. Mater. 34(1), 23–26 (2011).
[Crossref]

Renz, G.

G. Renz, “Moderate high power 1 to 20 μs and kHz Ho:YAG thin disk laser pulses for laser lithotripsy,” Proc. SPIE 9342, 93421W (2015).
[Crossref]

J. Speiser, G. Renz, and A. Giesen, “Thin disk laser in the 2 µm wavelength range,” Proc. SPIE 8547, 85470E (2012).
[Crossref]

Ryabochkina, P. A.

A. A. Lyapin, P. A. Ryabochkina, A. N. Chabushkin, S. N. Ushakov, and P. P. Fedorov, “Investigation of the mechanisms of upconversion luminescence in Ho3+ doped CaF2 crystals and ceramics upon excitation of 5I7 level,” J. Lumin. 167, 120–125 (2015).
[Crossref]

Savitski, V. G.

P. A. Loiko, V. G. Savitski, A. Kemp, A. A. Pavlyuk, N. V. Kuleshov, and K. V. Yumashev, “Anisotropy of the photo-elastic effect in Nd:KGd(WO4)2 laser crystals,” Laser Phys. Lett. 11(5), 055002 (2014).
[Crossref]

Schellhorn, M.

M. Schellhorn, “Performance of a Ho:YAG thin-disc laser pumped by a diode-pumped 1.9 μm thulium laser,” Appl. Phys. B 85(4), 549–552 (2006).
[Crossref]

Scholle, K.

Segura, M.

Serres, J. M.

V. Jambunathan, X. Mateos, P. A. Loiko, J. M. Serres, U. Griebner, V. Petrov, K. V. Yumashev, M. Aguiló, and F. Díaz, “Growth, spectroscopy and laser operation of Ho:KY(WO4)2,” J. Lumin. 179, 50–58 (2016).
[Crossref]

P. Loiko, J. M. Serres, X. Mateos, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “In-band-pumped Ho:KLu(WO4)2 microchip laser with 84% slope efficiency,” Opt. Lett. 40(3), 344–347 (2015).
[Crossref] [PubMed]

Shcherbitsky, V. G.

Speiser, J.

J. Speiser, G. Renz, and A. Giesen, “Thin disk laser in the 2 µm wavelength range,” Proc. SPIE 8547, 85470E (2012).
[Crossref]

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
[Crossref]

Stoeppler, G.

Südmeyer, T.

Tonelli, M.

Ushakov, S. N.

A. A. Lyapin, P. A. Ryabochkina, A. N. Chabushkin, S. N. Ushakov, and P. P. Fedorov, “Investigation of the mechanisms of upconversion luminescence in Ho3+ doped CaF2 crystals and ceramics upon excitation of 5I7 level,” J. Lumin. 167, 120–125 (2015).
[Crossref]

Vatnik, S.

Vedin, I.

Voss, A.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

Wittig, K.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

Yumashev, K.

Yumashev, K. V.

V. Jambunathan, X. Mateos, P. A. Loiko, J. M. Serres, U. Griebner, V. Petrov, K. V. Yumashev, M. Aguiló, and F. Díaz, “Growth, spectroscopy and laser operation of Ho:KY(WO4)2,” J. Lumin. 179, 50–58 (2016).
[Crossref]

P. A. Loiko, V. G. Savitski, A. Kemp, A. A. Pavlyuk, N. V. Kuleshov, and K. V. Yumashev, “Anisotropy of the photo-elastic effect in Nd:KGd(WO4)2 laser crystals,” Laser Phys. Lett. 11(5), 055002 (2014).
[Crossref]

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, G. E. Rachkovskaya, and A. A. Pavlyuk, “Thermo-optic dispersion formulas for monoclinic double tungstates KRe(WO4)2 where Re = Gd, Y, Lu, Yb,” Opt. Mater. 33(11), 1688–1694 (2011).
[Crossref]

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, G. E. Rachkovskaya, and A. A. Pavlyuk, “Detailed characterization of thermal expansion tensor in monoclinic KRe(WO4)2 (where Re = Gd, Y, Lu, Yb),” Opt. Mater. 34(1), 23–26 (2011).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (2)

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

M. Schellhorn, “Performance of a Ho:YAG thin-disc laser pumped by a diode-pumped 1.9 μm thulium laser,” Appl. Phys. B 85(4), 549–552 (2006).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
[Crossref]

J. Lumin. (2)

V. Jambunathan, X. Mateos, P. A. Loiko, J. M. Serres, U. Griebner, V. Petrov, K. V. Yumashev, M. Aguiló, and F. Díaz, “Growth, spectroscopy and laser operation of Ho:KY(WO4)2,” J. Lumin. 179, 50–58 (2016).
[Crossref]

A. A. Lyapin, P. A. Ryabochkina, A. N. Chabushkin, S. N. Ushakov, and P. P. Fedorov, “Investigation of the mechanisms of upconversion luminescence in Ho3+ doped CaF2 crystals and ceramics upon excitation of 5I7 level,” J. Lumin. 167, 120–125 (2015).
[Crossref]

Laser Phys. Lett. (1)

P. A. Loiko, V. G. Savitski, A. Kemp, A. A. Pavlyuk, N. V. Kuleshov, and K. V. Yumashev, “Anisotropy of the photo-elastic effect in Nd:KGd(WO4)2 laser crystals,” Laser Phys. Lett. 11(5), 055002 (2014).
[Crossref]

Opt. Express (1)

Opt. Lett. (5)

Opt. Mater. (2)

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, G. E. Rachkovskaya, and A. A. Pavlyuk, “Detailed characterization of thermal expansion tensor in monoclinic KRe(WO4)2 (where Re = Gd, Y, Lu, Yb),” Opt. Mater. 34(1), 23–26 (2011).
[Crossref]

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, G. E. Rachkovskaya, and A. A. Pavlyuk, “Thermo-optic dispersion formulas for monoclinic double tungstates KRe(WO4)2 where Re = Gd, Y, Lu, Yb,” Opt. Mater. 33(11), 1688–1694 (2011).
[Crossref]

Proc. SPIE (2)

J. Speiser, G. Renz, and A. Giesen, “Thin disk laser in the 2 µm wavelength range,” Proc. SPIE 8547, 85470E (2012).
[Crossref]

G. Renz, “Moderate high power 1 to 20 μs and kHz Ho:YAG thin disk laser pulses for laser lithotripsy,” Proc. SPIE 9342, 93421W (2015).
[Crossref]

Other (2)

J. Zhang, K. F. Mak, N. Nagl, M. Seidel, F. Krausz, and O. Pronin, “7-W, 2-cycle self-compressed pulses at 2.1 micron from a Ho:YAG thin disk laser oscillator,” in CLEO/Europe-EQEC Conference (IEEE, 2017), P. PD-1.5 WED.

J. Zhang, K. F. Mak, S. Gröbmeyer, D. Bauer, D. Sutter, V. Pervak, F. Krausz, and O. Pronin, “270 fs, 30-W-level Kerr-lens mode-locked Ho:YAG thin-disk oscillator at 2 μm,” in Nonlinear Optics, OSA Technical Digest (Optical Society of America, 2017), P. NTu3A.2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Photograph of the as-grown 3 and 5 at.% Ho:KYW/KYW epitaxies, their orientation with respect to the crystallographic axes ( a , b , c ); (b) cut, polished, and AR/HR coated 3 at.% Ho-doped sample (top image) soldered to a Cu heat-sink (bottom image); (c) thin-disk laser set-up: CL – collimating lens, FL –focusing lens, HR and AR – high-reflection and antireflection coatings, respectively, OC – output coupler.
Fig. 2
Fig. 2 (a,b) Input-output dependences for the 3 and 5 at.% Ho:KYW thin-disk lasers in quasi-CW (qCW, duty cycle 1:2) (a) and CW (b) operation modes (symbols: experimental data, lines: fits for the calculation of the slope efficiency η); (c) typical laser emission spectra for the Ho:KYW thin-disk lasers for various OCs (CW regime, Pabs ~1.7 W). The laser polarization is E || Nm.
Fig. 3
Fig. 3 (a,b) Spatial profiles of the output laser beam for the 3 at.% Ho:KYW (a) and 5 at.% Ho:KYW (b) thin-disk lasers measured at different Pabs as indicated by the numbers below the figures (CW regime, TOC = 1.5%); (c) comparison of the spatial profiles of the output laser beam for the 3 and 5 at.% Ho:KYW thin-disk lasers in the CW and quasi-CW (qCW) regimes.
Fig. 4
Fig. 4 (a) Optical power of the TL in the 3 at.% Ho:KYW thin disk along A(B) directions (symbols: experimental data, lines: Linear fits for the calculation of the sensitivity factors M); (b) upconversion luminescence (UCL) spectra of the 3 - 10 at.% Ho:KYW/KYW epitaxies, λexc = 1960 nm; (c) scheme of the energy levels of the Ho3+ ion showing relevant processes: GSA – ground-state absorption, ETU – energy-transfer upconversion, CR – cross-relaxation, NR – nonradiative relaxation.

Metrics