Abstract

An ultra-wideband metasurface with characteristics of linear-to-circular polarization conversion is proposed in this paper. By virtue of the metallic vias and multi-reflection, the proposed polarization convertor can convert the y (x) polarized electromagnetic (EM) wave to a circularly polarized one after reflection in an ultra-wide frequency band. Simulated results show that the proposed polarization convertor can perform nearly perfect linear-to-circular polarization conversion at five frequency points and achieve a 3-dB axial ratio (AR) in the frequency range of 4.7-21.7 GHz at normal incidence. Reasonable agreement between the experiments and simulations has been obtained. Due to the advantage of the scalable geometry of the proposed metasurface, it is a good candidate to be used for manipulating the polarization states of EM waves from radio to optical frequencies.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-broadband wide-angle linear polarization converter based on H-shaped metasurface

Jin Xu, Rongqiang Li, Jin Qin, Shenyun Wang, and Tiancheng Han
Opt. Express 26(16) 20913-20919 (2018)

Shared aperture metasurface with ultra-wideband and wide-angle low-scattering performance

Yuejun Zheng, Xiangyu Cao, Jun Gao, Huanhuan Yang, Yulong Zhou, and Siming Wang
Opt. Mater. Express 7(8) 2706-2714 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. M. Pozar, Microwave Engineering (Wiley, 1998).
  2. J. D. Kraus and R. J. Marhefka, Antennas for all Applications, 3rd ed., (McGraw-Hill, 2003).
  3. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley, 2007).
  4. Y. J. Jem, C. F. Lin, and M. J. Lin, “Slanted S-shaped nano-columnar thin films for broadband and wide-angle polarization conversion,” Opt. Mater. Express 1(4), 525–534 (2011).
    [Crossref]
  5. S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
    [Crossref] [PubMed]
  6. B. Tremain, H. J. Rance, A. P. Hibbins, and J. R. Sambles, “Polarization conversion from a thin cavity array in the microwave regime,” Sci. Rep. 5(1), 9366 (2015).
    [Crossref] [PubMed]
  7. J. Kim, R. K. Komanduri, K. F. Lawler, D. J. Kekas, and M. J. Escuti, “Efficient and monolithic polarization conversion system based on a polarization grating,” Appl. Opt. 51(20), 4852–4857 (2012).
    [Crossref] [PubMed]
  8. T. Arikawa, X. Wang, A. A. Belyanin, and J. Kono, “Giant tunable Faraday effect in a semiconductor magneto-plasma for broadband terahertz polarization optics,” Opt. Express 20(17), 19484–19492 (2012).
    [Crossref] [PubMed]
  9. E. Almpanis, P. A. Pantazopoulos, N. Papanikolaou, V. Yannopapas, and N. Stefanou, “A birefringent etalon enhances the Faraday rotation of thin magneto-optical films,” J. Opt. 19(7), 075102 (2017).
    [Crossref]
  10. H. Chen, J. Wang, H. Ma, S. Qu, Z. Xu, A. Zhang, M. Yan, and Y. Li, “Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances,” J. Appl. Phys. 115(15), 154504 (2014).
    [Crossref]
  11. H. Kaouach, L. Dussopt, J. Lanteri, T. Koleck, and R. Sauleau, “Wideband low-loss linear and circular polarization transmit-arrays in V-band,” IEEE Trans. Antenn. Propag. 59(7), 2513–2523 (2011).
    [Crossref]
  12. N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
    [Crossref] [PubMed]
  13. L. Wang, H. Hu, K. Liu, S. Jiang, W. Zeng, and Q. Gan, “Polarization management of terahertz extraordinary optical transmission through ultracompact L-shaped subwavelength patterns on metal films,” Plasmonics 8(2), 733–740 (2014).
    [Crossref]
  14. L. Martinez-Lopez, J. Rodriguez, J. I. Maetinez-Lopez, and A. E. Martynyuk, “A multilayer circular polarizer based on bisected split-ring frequency selective surfaces,” IEEE Antennas Wirel. Propag. Lett. 13, 153–156 (2013).
    [Crossref]
  15. Y. Tamayama, K. Yasui, T. Nakanishi, and M. Kitano, “A linear-to-circular polarization converter with half transmission and half reflection using a single-layered metamaterial,” Appl. Phys. Lett. 105(2), 021110 (2014).
    [Crossref]
  16. Y. Li, J. Zhang, S. Qu, J. Wang, and L. Zeng, “Achieving wide-band linear-to-circular polarization conversion using ultra-thin bi-layered metasurfaces,” J. Appl. Phys. 117, 011129 (2015).
  17. J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
    [Crossref] [PubMed]
  18. M. H. Chazizadeh, G. Dadashzadeh, and M. Korshidi, “A novel wideband electromagnetic band gap structure for circular polarization conversion,” ANTEM 2012 15th International Symposium on, Toulouse, France, Jun. 2012.
  19. E. Doumanis, G. Goussetis, J. L. Gomez-Tornero, R. Cahill, and V. Fusco, “Anisotropic impedance surface for linear to circular polarization conversion,” IEEE Trans. Antenn. Propag. 60(1), 212–219 (2012).
    [Crossref]
  20. T. Moroya, S. Makino, T. Hirota, K. Noguchi, K. Itoh, and K. Ikarashi, “Polarization conversion reflector using a metal-plate-loaded meander line,” Proceedings of ISAP, Kaohsiung, Taiwan, Dec. 2014.
    [Crossref]
  21. R. Xia, X. Jing, X. Gui, Y. Tian, and Z. Hong, “Broadband terahertz half-wave plate based on anisotropic polarization conversion metamaterials,” Opt. Mater. Express 7(3), 977–988 (2017).
    [Crossref]
  22. H. T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105(7), 073901 (2010).
    [Crossref] [PubMed]

2017 (2)

E. Almpanis, P. A. Pantazopoulos, N. Papanikolaou, V. Yannopapas, and N. Stefanou, “A birefringent etalon enhances the Faraday rotation of thin magneto-optical films,” J. Opt. 19(7), 075102 (2017).
[Crossref]

R. Xia, X. Jing, X. Gui, Y. Tian, and Z. Hong, “Broadband terahertz half-wave plate based on anisotropic polarization conversion metamaterials,” Opt. Mater. Express 7(3), 977–988 (2017).
[Crossref]

2015 (2)

B. Tremain, H. J. Rance, A. P. Hibbins, and J. R. Sambles, “Polarization conversion from a thin cavity array in the microwave regime,” Sci. Rep. 5(1), 9366 (2015).
[Crossref] [PubMed]

Y. Li, J. Zhang, S. Qu, J. Wang, and L. Zeng, “Achieving wide-band linear-to-circular polarization conversion using ultra-thin bi-layered metasurfaces,” J. Appl. Phys. 117, 011129 (2015).

2014 (3)

Y. Tamayama, K. Yasui, T. Nakanishi, and M. Kitano, “A linear-to-circular polarization converter with half transmission and half reflection using a single-layered metamaterial,” Appl. Phys. Lett. 105(2), 021110 (2014).
[Crossref]

H. Chen, J. Wang, H. Ma, S. Qu, Z. Xu, A. Zhang, M. Yan, and Y. Li, “Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances,” J. Appl. Phys. 115(15), 154504 (2014).
[Crossref]

L. Wang, H. Hu, K. Liu, S. Jiang, W. Zeng, and Q. Gan, “Polarization management of terahertz extraordinary optical transmission through ultracompact L-shaped subwavelength patterns on metal films,” Plasmonics 8(2), 733–740 (2014).
[Crossref]

2013 (2)

L. Martinez-Lopez, J. Rodriguez, J. I. Maetinez-Lopez, and A. E. Martynyuk, “A multilayer circular polarizer based on bisected split-ring frequency selective surfaces,” IEEE Antennas Wirel. Propag. Lett. 13, 153–156 (2013).
[Crossref]

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[Crossref] [PubMed]

2012 (4)

E. Doumanis, G. Goussetis, J. L. Gomez-Tornero, R. Cahill, and V. Fusco, “Anisotropic impedance surface for linear to circular polarization conversion,” IEEE Trans. Antenn. Propag. 60(1), 212–219 (2012).
[Crossref]

J. Kim, R. K. Komanduri, K. F. Lawler, D. J. Kekas, and M. J. Escuti, “Efficient and monolithic polarization conversion system based on a polarization grating,” Appl. Opt. 51(20), 4852–4857 (2012).
[Crossref] [PubMed]

T. Arikawa, X. Wang, A. A. Belyanin, and J. Kono, “Giant tunable Faraday effect in a semiconductor magneto-plasma for broadband terahertz polarization optics,” Opt. Express 20(17), 19484–19492 (2012).
[Crossref] [PubMed]

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

2011 (2)

H. Kaouach, L. Dussopt, J. Lanteri, T. Koleck, and R. Sauleau, “Wideband low-loss linear and circular polarization transmit-arrays in V-band,” IEEE Trans. Antenn. Propag. 59(7), 2513–2523 (2011).
[Crossref]

Y. J. Jem, C. F. Lin, and M. J. Lin, “Slanted S-shaped nano-columnar thin films for broadband and wide-angle polarization conversion,” Opt. Mater. Express 1(4), 525–534 (2011).
[Crossref]

2010 (1)

H. T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105(7), 073901 (2010).
[Crossref] [PubMed]

2007 (1)

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Aieta, F.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

Almpanis, E.

E. Almpanis, P. A. Pantazopoulos, N. Papanikolaou, V. Yannopapas, and N. Stefanou, “A birefringent etalon enhances the Faraday rotation of thin magneto-optical films,” J. Opt. 19(7), 075102 (2017).
[Crossref]

Arikawa, T.

Azad, A. K.

H. T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105(7), 073901 (2010).
[Crossref] [PubMed]

Belyanin, A. A.

Cahill, R.

E. Doumanis, G. Goussetis, J. L. Gomez-Tornero, R. Cahill, and V. Fusco, “Anisotropic impedance surface for linear to circular polarization conversion,” IEEE Trans. Antenn. Propag. 60(1), 212–219 (2012).
[Crossref]

Capasso, F.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

Chan, C. T.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Chen, F.

H. T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105(7), 073901 (2010).
[Crossref] [PubMed]

Chen, H.

H. Chen, J. Wang, H. Ma, S. Qu, Z. Xu, A. Zhang, M. Yan, and Y. Li, “Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances,” J. Appl. Phys. 115(15), 154504 (2014).
[Crossref]

Chen, H. T.

H. T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105(7), 073901 (2010).
[Crossref] [PubMed]

Doumanis, E.

E. Doumanis, G. Goussetis, J. L. Gomez-Tornero, R. Cahill, and V. Fusco, “Anisotropic impedance surface for linear to circular polarization conversion,” IEEE Trans. Antenn. Propag. 60(1), 212–219 (2012).
[Crossref]

Dussopt, L.

H. Kaouach, L. Dussopt, J. Lanteri, T. Koleck, and R. Sauleau, “Wideband low-loss linear and circular polarization transmit-arrays in V-band,” IEEE Trans. Antenn. Propag. 59(7), 2513–2523 (2011).
[Crossref]

Escuti, M. J.

Fusco, V.

E. Doumanis, G. Goussetis, J. L. Gomez-Tornero, R. Cahill, and V. Fusco, “Anisotropic impedance surface for linear to circular polarization conversion,” IEEE Trans. Antenn. Propag. 60(1), 212–219 (2012).
[Crossref]

Gaburro, Z.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

Gan, Q.

L. Wang, H. Hu, K. Liu, S. Jiang, W. Zeng, and Q. Gan, “Polarization management of terahertz extraordinary optical transmission through ultracompact L-shaped subwavelength patterns on metal films,” Plasmonics 8(2), 733–740 (2014).
[Crossref]

Genevet, P.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

Gomez-Tornero, J. L.

E. Doumanis, G. Goussetis, J. L. Gomez-Tornero, R. Cahill, and V. Fusco, “Anisotropic impedance surface for linear to circular polarization conversion,” IEEE Trans. Antenn. Propag. 60(1), 212–219 (2012).
[Crossref]

Goussetis, G.

E. Doumanis, G. Goussetis, J. L. Gomez-Tornero, R. Cahill, and V. Fusco, “Anisotropic impedance surface for linear to circular polarization conversion,” IEEE Trans. Antenn. Propag. 60(1), 212–219 (2012).
[Crossref]

Gui, X.

Hao, J.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Hibbins, A. P.

B. Tremain, H. J. Rance, A. P. Hibbins, and J. R. Sambles, “Polarization conversion from a thin cavity array in the microwave regime,” Sci. Rep. 5(1), 9366 (2015).
[Crossref] [PubMed]

Hirota, T.

T. Moroya, S. Makino, T. Hirota, K. Noguchi, K. Itoh, and K. Ikarashi, “Polarization conversion reflector using a metal-plate-loaded meander line,” Proceedings of ISAP, Kaohsiung, Taiwan, Dec. 2014.
[Crossref]

Hong, Z.

Hu, H.

L. Wang, H. Hu, K. Liu, S. Jiang, W. Zeng, and Q. Gan, “Polarization management of terahertz extraordinary optical transmission through ultracompact L-shaped subwavelength patterns on metal films,” Plasmonics 8(2), 733–740 (2014).
[Crossref]

Ikarashi, K.

T. Moroya, S. Makino, T. Hirota, K. Noguchi, K. Itoh, and K. Ikarashi, “Polarization conversion reflector using a metal-plate-loaded meander line,” Proceedings of ISAP, Kaohsiung, Taiwan, Dec. 2014.
[Crossref]

Itoh, K.

T. Moroya, S. Makino, T. Hirota, K. Noguchi, K. Itoh, and K. Ikarashi, “Polarization conversion reflector using a metal-plate-loaded meander line,” Proceedings of ISAP, Kaohsiung, Taiwan, Dec. 2014.
[Crossref]

Jem, Y. J.

Jiang, S.

L. Wang, H. Hu, K. Liu, S. Jiang, W. Zeng, and Q. Gan, “Polarization management of terahertz extraordinary optical transmission through ultracompact L-shaped subwavelength patterns on metal films,” Plasmonics 8(2), 733–740 (2014).
[Crossref]

Jiang, T.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Jing, X.

Kaouach, H.

H. Kaouach, L. Dussopt, J. Lanteri, T. Koleck, and R. Sauleau, “Wideband low-loss linear and circular polarization transmit-arrays in V-band,” IEEE Trans. Antenn. Propag. 59(7), 2513–2523 (2011).
[Crossref]

Kats, M. A.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

Kekas, D. J.

Kim, J.

Kitano, M.

Y. Tamayama, K. Yasui, T. Nakanishi, and M. Kitano, “A linear-to-circular polarization converter with half transmission and half reflection using a single-layered metamaterial,” Appl. Phys. Lett. 105(2), 021110 (2014).
[Crossref]

Koleck, T.

H. Kaouach, L. Dussopt, J. Lanteri, T. Koleck, and R. Sauleau, “Wideband low-loss linear and circular polarization transmit-arrays in V-band,” IEEE Trans. Antenn. Propag. 59(7), 2513–2523 (2011).
[Crossref]

Komanduri, R. K.

Kong, J. A.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Kono, J.

Lanteri, J.

H. Kaouach, L. Dussopt, J. Lanteri, T. Koleck, and R. Sauleau, “Wideband low-loss linear and circular polarization transmit-arrays in V-band,” IEEE Trans. Antenn. Propag. 59(7), 2513–2523 (2011).
[Crossref]

Lawler, K. F.

Li, Y.

Y. Li, J. Zhang, S. Qu, J. Wang, and L. Zeng, “Achieving wide-band linear-to-circular polarization conversion using ultra-thin bi-layered metasurfaces,” J. Appl. Phys. 117, 011129 (2015).

H. Chen, J. Wang, H. Ma, S. Qu, Z. Xu, A. Zhang, M. Yan, and Y. Li, “Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances,” J. Appl. Phys. 115(15), 154504 (2014).
[Crossref]

Lin, C. F.

Lin, M. J.

Liu, K.

L. Wang, H. Hu, K. Liu, S. Jiang, W. Zeng, and Q. Gan, “Polarization management of terahertz extraordinary optical transmission through ultracompact L-shaped subwavelength patterns on metal films,” Plasmonics 8(2), 733–740 (2014).
[Crossref]

Ma, H.

H. Chen, J. Wang, H. Ma, S. Qu, Z. Xu, A. Zhang, M. Yan, and Y. Li, “Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances,” J. Appl. Phys. 115(15), 154504 (2014).
[Crossref]

Maetinez-Lopez, J. I.

L. Martinez-Lopez, J. Rodriguez, J. I. Maetinez-Lopez, and A. E. Martynyuk, “A multilayer circular polarizer based on bisected split-ring frequency selective surfaces,” IEEE Antennas Wirel. Propag. Lett. 13, 153–156 (2013).
[Crossref]

Makino, S.

T. Moroya, S. Makino, T. Hirota, K. Noguchi, K. Itoh, and K. Ikarashi, “Polarization conversion reflector using a metal-plate-loaded meander line,” Proceedings of ISAP, Kaohsiung, Taiwan, Dec. 2014.
[Crossref]

Martinez-Lopez, L.

L. Martinez-Lopez, J. Rodriguez, J. I. Maetinez-Lopez, and A. E. Martynyuk, “A multilayer circular polarizer based on bisected split-ring frequency selective surfaces,” IEEE Antennas Wirel. Propag. Lett. 13, 153–156 (2013).
[Crossref]

Martynyuk, A. E.

L. Martinez-Lopez, J. Rodriguez, J. I. Maetinez-Lopez, and A. E. Martynyuk, “A multilayer circular polarizer based on bisected split-ring frequency selective surfaces,” IEEE Antennas Wirel. Propag. Lett. 13, 153–156 (2013).
[Crossref]

Moroya, T.

T. Moroya, S. Makino, T. Hirota, K. Noguchi, K. Itoh, and K. Ikarashi, “Polarization conversion reflector using a metal-plate-loaded meander line,” Proceedings of ISAP, Kaohsiung, Taiwan, Dec. 2014.
[Crossref]

Nakanishi, T.

Y. Tamayama, K. Yasui, T. Nakanishi, and M. Kitano, “A linear-to-circular polarization converter with half transmission and half reflection using a single-layered metamaterial,” Appl. Phys. Lett. 105(2), 021110 (2014).
[Crossref]

Noguchi, K.

T. Moroya, S. Makino, T. Hirota, K. Noguchi, K. Itoh, and K. Ikarashi, “Polarization conversion reflector using a metal-plate-loaded meander line,” Proceedings of ISAP, Kaohsiung, Taiwan, Dec. 2014.
[Crossref]

O’Hara, J. F.

H. T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105(7), 073901 (2010).
[Crossref] [PubMed]

Pantazopoulos, P. A.

E. Almpanis, P. A. Pantazopoulos, N. Papanikolaou, V. Yannopapas, and N. Stefanou, “A birefringent etalon enhances the Faraday rotation of thin magneto-optical films,” J. Opt. 19(7), 075102 (2017).
[Crossref]

Papanikolaou, N.

E. Almpanis, P. A. Pantazopoulos, N. Papanikolaou, V. Yannopapas, and N. Stefanou, “A birefringent etalon enhances the Faraday rotation of thin magneto-optical films,” J. Opt. 19(7), 075102 (2017).
[Crossref]

Qu, S.

Y. Li, J. Zhang, S. Qu, J. Wang, and L. Zeng, “Achieving wide-band linear-to-circular polarization conversion using ultra-thin bi-layered metasurfaces,” J. Appl. Phys. 117, 011129 (2015).

H. Chen, J. Wang, H. Ma, S. Qu, Z. Xu, A. Zhang, M. Yan, and Y. Li, “Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances,” J. Appl. Phys. 115(15), 154504 (2014).
[Crossref]

Ran, L.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Rance, H. J.

B. Tremain, H. J. Rance, A. P. Hibbins, and J. R. Sambles, “Polarization conversion from a thin cavity array in the microwave regime,” Sci. Rep. 5(1), 9366 (2015).
[Crossref] [PubMed]

Rodriguez, J.

L. Martinez-Lopez, J. Rodriguez, J. I. Maetinez-Lopez, and A. E. Martynyuk, “A multilayer circular polarizer based on bisected split-ring frequency selective surfaces,” IEEE Antennas Wirel. Propag. Lett. 13, 153–156 (2013).
[Crossref]

Sambles, J. R.

B. Tremain, H. J. Rance, A. P. Hibbins, and J. R. Sambles, “Polarization conversion from a thin cavity array in the microwave regime,” Sci. Rep. 5(1), 9366 (2015).
[Crossref] [PubMed]

Sauleau, R.

H. Kaouach, L. Dussopt, J. Lanteri, T. Koleck, and R. Sauleau, “Wideband low-loss linear and circular polarization transmit-arrays in V-band,” IEEE Trans. Antenn. Propag. 59(7), 2513–2523 (2011).
[Crossref]

Stefanou, N.

E. Almpanis, P. A. Pantazopoulos, N. Papanikolaou, V. Yannopapas, and N. Stefanou, “A birefringent etalon enhances the Faraday rotation of thin magneto-optical films,” J. Opt. 19(7), 075102 (2017).
[Crossref]

Tamayama, Y.

Y. Tamayama, K. Yasui, T. Nakanishi, and M. Kitano, “A linear-to-circular polarization converter with half transmission and half reflection using a single-layered metamaterial,” Appl. Phys. Lett. 105(2), 021110 (2014).
[Crossref]

Taylor, A. J.

H. T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105(7), 073901 (2010).
[Crossref] [PubMed]

Tian, Y.

Tremain, B.

B. Tremain, H. J. Rance, A. P. Hibbins, and J. R. Sambles, “Polarization conversion from a thin cavity array in the microwave regime,” Sci. Rep. 5(1), 9366 (2015).
[Crossref] [PubMed]

Wang, J.

Y. Li, J. Zhang, S. Qu, J. Wang, and L. Zeng, “Achieving wide-band linear-to-circular polarization conversion using ultra-thin bi-layered metasurfaces,” J. Appl. Phys. 117, 011129 (2015).

H. Chen, J. Wang, H. Ma, S. Qu, Z. Xu, A. Zhang, M. Yan, and Y. Li, “Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances,” J. Appl. Phys. 115(15), 154504 (2014).
[Crossref]

Wang, L.

L. Wang, H. Hu, K. Liu, S. Jiang, W. Zeng, and Q. Gan, “Polarization management of terahertz extraordinary optical transmission through ultracompact L-shaped subwavelength patterns on metal films,” Plasmonics 8(2), 733–740 (2014).
[Crossref]

Wang, X.

Wu, S.

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[Crossref] [PubMed]

Xia, R.

Xu, Z.

H. Chen, J. Wang, H. Ma, S. Qu, Z. Xu, A. Zhang, M. Yan, and Y. Li, “Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances,” J. Appl. Phys. 115(15), 154504 (2014).
[Crossref]

Yan, M.

H. Chen, J. Wang, H. Ma, S. Qu, Z. Xu, A. Zhang, M. Yan, and Y. Li, “Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances,” J. Appl. Phys. 115(15), 154504 (2014).
[Crossref]

Yannopapas, V.

E. Almpanis, P. A. Pantazopoulos, N. Papanikolaou, V. Yannopapas, and N. Stefanou, “A birefringent etalon enhances the Faraday rotation of thin magneto-optical films,” J. Opt. 19(7), 075102 (2017).
[Crossref]

Yasui, K.

Y. Tamayama, K. Yasui, T. Nakanishi, and M. Kitano, “A linear-to-circular polarization converter with half transmission and half reflection using a single-layered metamaterial,” Appl. Phys. Lett. 105(2), 021110 (2014).
[Crossref]

Yu, N.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

Yuan, Y.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Zeng, L.

Y. Li, J. Zhang, S. Qu, J. Wang, and L. Zeng, “Achieving wide-band linear-to-circular polarization conversion using ultra-thin bi-layered metasurfaces,” J. Appl. Phys. 117, 011129 (2015).

Zeng, W.

L. Wang, H. Hu, K. Liu, S. Jiang, W. Zeng, and Q. Gan, “Polarization management of terahertz extraordinary optical transmission through ultracompact L-shaped subwavelength patterns on metal films,” Plasmonics 8(2), 733–740 (2014).
[Crossref]

Zhang, A.

H. Chen, J. Wang, H. Ma, S. Qu, Z. Xu, A. Zhang, M. Yan, and Y. Li, “Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances,” J. Appl. Phys. 115(15), 154504 (2014).
[Crossref]

Zhang, J.

Y. Li, J. Zhang, S. Qu, J. Wang, and L. Zeng, “Achieving wide-band linear-to-circular polarization conversion using ultra-thin bi-layered metasurfaces,” J. Appl. Phys. 117, 011129 (2015).

Zhang, K.

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[Crossref] [PubMed]

Zhang, X.

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[Crossref] [PubMed]

Zhang, Y.

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[Crossref] [PubMed]

Zhang, Z.

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[Crossref] [PubMed]

Zhou, J.

H. T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105(7), 073901 (2010).
[Crossref] [PubMed]

Zhou, L.

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[Crossref] [PubMed]

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Zhu, Y.

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

Y. Tamayama, K. Yasui, T. Nakanishi, and M. Kitano, “A linear-to-circular polarization converter with half transmission and half reflection using a single-layered metamaterial,” Appl. Phys. Lett. 105(2), 021110 (2014).
[Crossref]

IEEE Antennas Wirel. Propag. Lett. (1)

L. Martinez-Lopez, J. Rodriguez, J. I. Maetinez-Lopez, and A. E. Martynyuk, “A multilayer circular polarizer based on bisected split-ring frequency selective surfaces,” IEEE Antennas Wirel. Propag. Lett. 13, 153–156 (2013).
[Crossref]

IEEE Trans. Antenn. Propag. (2)

H. Kaouach, L. Dussopt, J. Lanteri, T. Koleck, and R. Sauleau, “Wideband low-loss linear and circular polarization transmit-arrays in V-band,” IEEE Trans. Antenn. Propag. 59(7), 2513–2523 (2011).
[Crossref]

E. Doumanis, G. Goussetis, J. L. Gomez-Tornero, R. Cahill, and V. Fusco, “Anisotropic impedance surface for linear to circular polarization conversion,” IEEE Trans. Antenn. Propag. 60(1), 212–219 (2012).
[Crossref]

J. Appl. Phys. (2)

Y. Li, J. Zhang, S. Qu, J. Wang, and L. Zeng, “Achieving wide-band linear-to-circular polarization conversion using ultra-thin bi-layered metasurfaces,” J. Appl. Phys. 117, 011129 (2015).

H. Chen, J. Wang, H. Ma, S. Qu, Z. Xu, A. Zhang, M. Yan, and Y. Li, “Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances,” J. Appl. Phys. 115(15), 154504 (2014).
[Crossref]

J. Opt. (1)

E. Almpanis, P. A. Pantazopoulos, N. Papanikolaou, V. Yannopapas, and N. Stefanou, “A birefringent etalon enhances the Faraday rotation of thin magneto-optical films,” J. Opt. 19(7), 075102 (2017).
[Crossref]

Nano Lett. (1)

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Mater. Express (2)

Phys. Rev. Lett. (3)

H. T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105(7), 073901 (2010).
[Crossref] [PubMed]

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[Crossref] [PubMed]

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Plasmonics (1)

L. Wang, H. Hu, K. Liu, S. Jiang, W. Zeng, and Q. Gan, “Polarization management of terahertz extraordinary optical transmission through ultracompact L-shaped subwavelength patterns on metal films,” Plasmonics 8(2), 733–740 (2014).
[Crossref]

Sci. Rep. (1)

B. Tremain, H. J. Rance, A. P. Hibbins, and J. R. Sambles, “Polarization conversion from a thin cavity array in the microwave regime,” Sci. Rep. 5(1), 9366 (2015).
[Crossref] [PubMed]

Other (5)

D. M. Pozar, Microwave Engineering (Wiley, 1998).

J. D. Kraus and R. J. Marhefka, Antennas for all Applications, 3rd ed., (McGraw-Hill, 2003).

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley, 2007).

T. Moroya, S. Makino, T. Hirota, K. Noguchi, K. Itoh, and K. Ikarashi, “Polarization conversion reflector using a metal-plate-loaded meander line,” Proceedings of ISAP, Kaohsiung, Taiwan, Dec. 2014.
[Crossref]

M. H. Chazizadeh, G. Dadashzadeh, and M. Korshidi, “A novel wideband electromagnetic band gap structure for circular polarization conversion,” ANTEM 2012 15th International Symposium on, Toulouse, France, Jun. 2012.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Top/side view of the unit cell of the polarization convertor. The gray region is a substrate and the other regions are all perfect conductor. The two L-shaped patches are connected to the ground by two metallic vias. (b) The fabricated prototype of the metasurface consisting of 26×26 unit cells with a total dimension of 234 mm×234 mm. (c) Schematic of measurement setup. (d) Simulated (black square) and measured (blue triangle) AR.
Fig. 2
Fig. 2 (a) Schematic of the electric field decomposition. The red and blue arrows represent the incident plane waves and reflected plane waves, respectively. Inset shows the schematic diagram used to calculate the axial ratio of the reflected wave under a normally incident y-polarized wave. (b) Simulated reflection coefficients and phases of the unit cell illuminated by the incident plane wave with u polarization (blue triangle for reflection phase and black line for reflection coefficient) and v polarization (blue square for reflection phase and black dot for reflection coefficient).
Fig. 3
Fig. 3 Polarization ellipses at different frequencies
Fig. 4
Fig. 4 (a) Axial ratio comparison between unit cell with (black square) and without (blue triangle) metallic vias. (b) Simulated reflection coefficients and phases of the unit cell illuminated by the incident plane wave with u polarization (blue triangle for reflection phase and black line for reflection coefficient) and v polarization (blue square for reflection phase and black dot for reflection coefficient). (c) and (d) show the current distributions on the patches and ground of the unit cell with metallic vias under u-polarized and v-polarized incident plane waves, respectively. (e) and (f) show the current distributions on the patches and ground of the unit cell without metallic vias under u-polarized and v-polarized incident plane wave, respectively.
Fig. 5
Fig. 5 (a) Axial ratio comparison between unit cell with (black square) and without (blue triangle) the patterned patch at the center of the unit cell. (b) Reflection phases of the unit cell with (black lines) and without (blue scatters) the patterned patch illuminated by the incident plane wave with u polarization (solid line and blue square) and v polarization (black dot line and blue triangle).
Fig. 6
Fig. 6 (a) Intuitive scheme of the multi-reflection under a normally incident y-polarized wave. (b) and (c) show the axial ratio and phase difference between ϕ u and ϕ v of unit cells with superstrate thickness of 2mm (black square), 4mm (red circle), and 6mm (blue triangle).
Fig. 7
Fig. 7 Axial ratio of the proposed polarization convertor with the incident angles of 0° (black square), 10° (red circle), and 20° (blue triangle).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E i = E y = y ^ E 0 e i k z z = E i u + E i v = ( 2 / 2 ) ( u ^ E 0 e i k z z + v ^ E 0 e i k z z )
E r = ( 2 / 2 ) ( u ^ r u E 0 e i ( k z z + u ) + v ^ r v E 0 e i ( k z z + v ) )
E r = ( 2 / 2 ) E 0 ( u ^ e i ( k z z + v + π / 2 ) + v ^ e i ( k z z + v ) )

Metrics