Abstract

We present a detailed characterization of the optical properties of the recently developed nonlinear material, orientation-patterned gallium phosphide (OP-GaP), by performing difference-frequency-generation experiments in the 2548-2782 nm wavelength range in the mid-infrared (mid-IR). Temperature and spectral acceptance bandwidth measurements have been performed to study the phase-matching characteristics of OP-GaP, and the dependence of nonlinear gain on the polarization of input incident fields has been investigated. The transmission of the OP-GaP crystal at the pump and signal wavelengths has been studied and found to be dependent on polarization as well as temperature. Further, we have observed a polarization-dependent spatial shift in the transmitted pump beam through the OP-GaP sample. We have also measured the damage threshold of the OP-GaP crystal to be 0.84 J/cm2 at 1064 nm.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Picosecond difference-frequency-generation in orientation-patterned gallium phosphide

J. C. Casals, S. Parsa, S. Chaitanya Kumar, K. Devi, P. G. Schunemann, and M. Ebrahim-Zadeh
Opt. Express 25(16) 19595-19602 (2017)

Nanosecond difference-frequency generation in orientation-patterned gallium phosphide

Junxiong Wei, S. Chaitanya Kumar, Hanyu Ye, Kavita Devi, Peter G. Schunemann, and M. Ebrahim-Zadeh
Opt. Lett. 42(11) 2193-2196 (2017)

Mid-wave infrared generation by difference frequency mixing of continuous wave lasers in orientation-patterned Gallium Phosphide

Shekhar Guha, Jacob O. Barnes, and Peter G. Schunemann
Opt. Mater. Express 5(12) 2911-2923 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. W. Sigrist, “Mid-infrared laser-spectroscopic sensing of chemical species,” J. Adv. Res. 6(3), 529–533 (2015).
    [Crossref] [PubMed]
  2. V. A. Serebryakov, É. V. Boĭko, N. N. Petrishchev, and A. V. Yan, “Medical applications of mid-IR lasers. Problems and prospects,” J. Opt. Technol. 77(1), 6–17 (2010).
    [Crossref]
  3. M. Ebrahim-Zadeh and I. T. Sorokina, Mid-Infrared Coherent Sources and Applications, New York, NY, USA: Springer, 2008.
  4. M. Ebrahim-Zadeh and K. Vodopyanov, “Mid-infrared coherent sources and applications: introduction,” J. Opt. Soc. Am. B 33(11), MIC1 (2016).
    [Crossref]
  5. S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
    [Crossref]
  6. Y. Yao, A. J. Hoffman, and C. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
    [Crossref]
  7. R. Bhatt, I. Bhaumik, S. Ganesamoorthy, R. Bright, M. Soharab, A. K. Karnal, and P. K. Gupta, “Control of intrinsic defects in lithium niobate single crystals for optoelectronic applications,” Crystals 7(2), 23 (2017).
    [Crossref]
  8. M. Henriksson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, “Mid-infrared ZGP OPO pumped by near-degenerate narrowband type-I PPKTP parametric oscillator,” Appl. Phys. B 88(1), 37–41 (2007).
    [Crossref] [PubMed]
  9. R. K. Feaver, R. D. Peterson, and P. E. Powers, “Longwave-IR optical parametric oscillator in orientation-patterned GaAs pumped by a 2 µm Tm,Ho:YLF laser,” Opt. Express 21(13), 16104–16110 (2013).
    [Crossref] [PubMed]
  10. K. Devi, P. G. Schunemann, and M. Ebrahim-Zadeh, “Continuous-wave, multimilliwatt, mid-infrared source tunable across 6.4-7.5 μm based on orientation-patterned GaAs,” Opt. Lett. 39(23), 6751–6754 (2014).
    [Crossref] [PubMed]
  11. V. Petrov, “Parametric down-conversion devices: The coverage of the mid-infrared spectral range by solid-state laser sources,” Opt. Mater. 34(3), 536–554 (2012).
    [Crossref]
  12. V. Petrov, “Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals,” Prog. Quantum Electron. 42, 1–106 (2015).
    [Crossref]
  13. P. G. Schunemann, K. T. Zawilski, L. A. Pomeranz, D. J. Creeden, and P. A. Budni, “Advances in nonlinear optical crystals for mid-infrared coherent sources,” J. Opt. Soc. Am. B 33(11), D36–D43 (2016).
    [Crossref]
  14. L. A. Pomeranz, P. G. Schunemann, D. J. Magarrell, J. C. McCarthy, K. T. Zawilski, and D. E. Zelmon, “1-μm-pumped OPO based on orientation-patterned GaP,” Proc. SPIE 9347, 93470K (2015).
    [Crossref]
  15. P. G. Schunemann, L. A. Pomeranz, and D. J. Magarrell, “First OPO based on orientation-patterned gallium phosphide (OP-GaP),” in CLEO: Science and Innovations (Optical Society of America, 2015), paper SW3O–1.
    [Crossref]
  16. J. Wei, S. Chaitanya Kumar, H. Ye, K. Devi, P. G. Schunemann, and M. Ebrahim-Zadeh, “Nanosecond difference-frequency generation in orientation-patterned gallium phosphide,” Opt. Lett. 42(11), 2193–2196 (2017).
    [Crossref] [PubMed]
  17. H. Ye, S. Chaitanya Kumar, J. Wei, P. G. Schunemann, and M. Ebrahim-Zadeh, “Optical parametric generation in orientation-patterned gallium phosphide,” Opt. Lett. 42(18), 3694–3697 (2017).
    [Crossref] [PubMed]
  18. J. C. Casals, S. Parsa, S. C. Kumar, K. Devi, P. G. Schunemann, and M. Ebrahim-Zadeh, “Picosecond difference-frequency-generation in orientation-patterned gallium phosphide,” Opt. Express 25(16), 19595–19602 (2017).
    [Crossref] [PubMed]
  19. S. Guha, J. O. Barnes, and P. G. Schunemann, “Mid-wave infrared generation by difference frequency mixing of continuous wave lasers in orientation-patterned Gallium Phosphide,” Opt. Mater. Express 5(12), 2911–2923 (2015).
    [Crossref]
  20. G. Insero, C. Clivati, D. D’Ambrosio, P. Natale, G. Santambrogio, P. G. Schunemann, J. J. Zondy, and S. Borri, “Difference frequency generation in the mid-infrared with orientation-patterned gallium phosphide crystals,” Opt. Lett. 41(21), 5114–5117 (2016).
    [Crossref] [PubMed]
  21. M. R. Lorenz, G. D. Pettit, and R. C. Taylor, “Band gap of gallium phosphide from 0 to 900°K and light emission from diodes at high temperatures,” Phys. Rev. 171(3), 876–881 (1968).
    [Crossref]
  22. A. L. Bajor, “Investigation of stress-induced birefringence in large semiconductor wafers by imaging polarimetry,” Proc. SPIE 2265, 431–442 (1994).
    [Crossref]
  23. Y. Li, F. Liu, Y. Li, L. Chai, Q. Xing, M. Hu, and C. Wang, “Experimental study on GaP surface damage threshold induced by a high repetition rate femtosecond laser,” Appl. Opt. 50(13), 1958–1962 (2011).
    [Crossref] [PubMed]

2017 (4)

2016 (3)

2015 (4)

S. Guha, J. O. Barnes, and P. G. Schunemann, “Mid-wave infrared generation by difference frequency mixing of continuous wave lasers in orientation-patterned Gallium Phosphide,” Opt. Mater. Express 5(12), 2911–2923 (2015).
[Crossref]

M. W. Sigrist, “Mid-infrared laser-spectroscopic sensing of chemical species,” J. Adv. Res. 6(3), 529–533 (2015).
[Crossref] [PubMed]

V. Petrov, “Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals,” Prog. Quantum Electron. 42, 1–106 (2015).
[Crossref]

L. A. Pomeranz, P. G. Schunemann, D. J. Magarrell, J. C. McCarthy, K. T. Zawilski, and D. E. Zelmon, “1-μm-pumped OPO based on orientation-patterned GaP,” Proc. SPIE 9347, 93470K (2015).
[Crossref]

2014 (1)

2013 (1)

2012 (3)

V. Petrov, “Parametric down-conversion devices: The coverage of the mid-infrared spectral range by solid-state laser sources,” Opt. Mater. 34(3), 536–554 (2012).
[Crossref]

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

Y. Yao, A. J. Hoffman, and C. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

2011 (1)

2010 (1)

2007 (1)

M. Henriksson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, “Mid-infrared ZGP OPO pumped by near-degenerate narrowband type-I PPKTP parametric oscillator,” Appl. Phys. B 88(1), 37–41 (2007).
[Crossref] [PubMed]

1994 (1)

A. L. Bajor, “Investigation of stress-induced birefringence in large semiconductor wafers by imaging polarimetry,” Proc. SPIE 2265, 431–442 (1994).
[Crossref]

1968 (1)

M. R. Lorenz, G. D. Pettit, and R. C. Taylor, “Band gap of gallium phosphide from 0 to 900°K and light emission from diodes at high temperatures,” Phys. Rev. 171(3), 876–881 (1968).
[Crossref]

Bajor, A. L.

A. L. Bajor, “Investigation of stress-induced birefringence in large semiconductor wafers by imaging polarimetry,” Proc. SPIE 2265, 431–442 (1994).
[Crossref]

Barnes, J. O.

Bhatt, R.

R. Bhatt, I. Bhaumik, S. Ganesamoorthy, R. Bright, M. Soharab, A. K. Karnal, and P. K. Gupta, “Control of intrinsic defects in lithium niobate single crystals for optoelectronic applications,” Crystals 7(2), 23 (2017).
[Crossref]

Bhaumik, I.

R. Bhatt, I. Bhaumik, S. Ganesamoorthy, R. Bright, M. Soharab, A. K. Karnal, and P. K. Gupta, “Control of intrinsic defects in lithium niobate single crystals for optoelectronic applications,” Crystals 7(2), 23 (2017).
[Crossref]

Boiko, É. V.

Borri, S.

Bright, R.

R. Bhatt, I. Bhaumik, S. Ganesamoorthy, R. Bright, M. Soharab, A. K. Karnal, and P. K. Gupta, “Control of intrinsic defects in lithium niobate single crystals for optoelectronic applications,” Crystals 7(2), 23 (2017).
[Crossref]

Budni, P. A.

Casals, J. C.

Chai, L.

Chaitanya Kumar, S.

Clivati, C.

Creeden, D. J.

D’Ambrosio, D.

Devi, K.

Ebrahim-Zadeh, M.

Feaver, R. K.

Ganesamoorthy, S.

R. Bhatt, I. Bhaumik, S. Ganesamoorthy, R. Bright, M. Soharab, A. K. Karnal, and P. K. Gupta, “Control of intrinsic defects in lithium niobate single crystals for optoelectronic applications,” Crystals 7(2), 23 (2017).
[Crossref]

Gmachl, C.

Y. Yao, A. J. Hoffman, and C. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

Guha, S.

Gupta, P. K.

R. Bhatt, I. Bhaumik, S. Ganesamoorthy, R. Bright, M. Soharab, A. K. Karnal, and P. K. Gupta, “Control of intrinsic defects in lithium niobate single crystals for optoelectronic applications,” Crystals 7(2), 23 (2017).
[Crossref]

Henriksson, M.

M. Henriksson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, “Mid-infrared ZGP OPO pumped by near-degenerate narrowband type-I PPKTP parametric oscillator,” Appl. Phys. B 88(1), 37–41 (2007).
[Crossref] [PubMed]

Hoffman, A. J.

Y. Yao, A. J. Hoffman, and C. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

Hu, M.

Insero, G.

Jackson, S. D.

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

Karnal, A. K.

R. Bhatt, I. Bhaumik, S. Ganesamoorthy, R. Bright, M. Soharab, A. K. Karnal, and P. K. Gupta, “Control of intrinsic defects in lithium niobate single crystals for optoelectronic applications,” Crystals 7(2), 23 (2017).
[Crossref]

Kumar, S. C.

Laurell, F.

M. Henriksson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, “Mid-infrared ZGP OPO pumped by near-degenerate narrowband type-I PPKTP parametric oscillator,” Appl. Phys. B 88(1), 37–41 (2007).
[Crossref] [PubMed]

Li, Y.

Liu, F.

Lorenz, M. R.

M. R. Lorenz, G. D. Pettit, and R. C. Taylor, “Band gap of gallium phosphide from 0 to 900°K and light emission from diodes at high temperatures,” Phys. Rev. 171(3), 876–881 (1968).
[Crossref]

Magarrell, D. J.

L. A. Pomeranz, P. G. Schunemann, D. J. Magarrell, J. C. McCarthy, K. T. Zawilski, and D. E. Zelmon, “1-μm-pumped OPO based on orientation-patterned GaP,” Proc. SPIE 9347, 93470K (2015).
[Crossref]

McCarthy, J. C.

L. A. Pomeranz, P. G. Schunemann, D. J. Magarrell, J. C. McCarthy, K. T. Zawilski, and D. E. Zelmon, “1-μm-pumped OPO based on orientation-patterned GaP,” Proc. SPIE 9347, 93470K (2015).
[Crossref]

Natale, P.

Parsa, S.

Pasiskevicius, V.

M. Henriksson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, “Mid-infrared ZGP OPO pumped by near-degenerate narrowband type-I PPKTP parametric oscillator,” Appl. Phys. B 88(1), 37–41 (2007).
[Crossref] [PubMed]

Peterson, R. D.

Petrishchev, N. N.

Petrov, V.

V. Petrov, “Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals,” Prog. Quantum Electron. 42, 1–106 (2015).
[Crossref]

V. Petrov, “Parametric down-conversion devices: The coverage of the mid-infrared spectral range by solid-state laser sources,” Opt. Mater. 34(3), 536–554 (2012).
[Crossref]

Pettit, G. D.

M. R. Lorenz, G. D. Pettit, and R. C. Taylor, “Band gap of gallium phosphide from 0 to 900°K and light emission from diodes at high temperatures,” Phys. Rev. 171(3), 876–881 (1968).
[Crossref]

Pomeranz, L. A.

P. G. Schunemann, K. T. Zawilski, L. A. Pomeranz, D. J. Creeden, and P. A. Budni, “Advances in nonlinear optical crystals for mid-infrared coherent sources,” J. Opt. Soc. Am. B 33(11), D36–D43 (2016).
[Crossref]

L. A. Pomeranz, P. G. Schunemann, D. J. Magarrell, J. C. McCarthy, K. T. Zawilski, and D. E. Zelmon, “1-μm-pumped OPO based on orientation-patterned GaP,” Proc. SPIE 9347, 93470K (2015).
[Crossref]

Powers, P. E.

Santambrogio, G.

Schunemann, P. G.

H. Ye, S. Chaitanya Kumar, J. Wei, P. G. Schunemann, and M. Ebrahim-Zadeh, “Optical parametric generation in orientation-patterned gallium phosphide,” Opt. Lett. 42(18), 3694–3697 (2017).
[Crossref] [PubMed]

J. C. Casals, S. Parsa, S. C. Kumar, K. Devi, P. G. Schunemann, and M. Ebrahim-Zadeh, “Picosecond difference-frequency-generation in orientation-patterned gallium phosphide,” Opt. Express 25(16), 19595–19602 (2017).
[Crossref] [PubMed]

J. Wei, S. Chaitanya Kumar, H. Ye, K. Devi, P. G. Schunemann, and M. Ebrahim-Zadeh, “Nanosecond difference-frequency generation in orientation-patterned gallium phosphide,” Opt. Lett. 42(11), 2193–2196 (2017).
[Crossref] [PubMed]

G. Insero, C. Clivati, D. D’Ambrosio, P. Natale, G. Santambrogio, P. G. Schunemann, J. J. Zondy, and S. Borri, “Difference frequency generation in the mid-infrared with orientation-patterned gallium phosphide crystals,” Opt. Lett. 41(21), 5114–5117 (2016).
[Crossref] [PubMed]

P. G. Schunemann, K. T. Zawilski, L. A. Pomeranz, D. J. Creeden, and P. A. Budni, “Advances in nonlinear optical crystals for mid-infrared coherent sources,” J. Opt. Soc. Am. B 33(11), D36–D43 (2016).
[Crossref]

L. A. Pomeranz, P. G. Schunemann, D. J. Magarrell, J. C. McCarthy, K. T. Zawilski, and D. E. Zelmon, “1-μm-pumped OPO based on orientation-patterned GaP,” Proc. SPIE 9347, 93470K (2015).
[Crossref]

S. Guha, J. O. Barnes, and P. G. Schunemann, “Mid-wave infrared generation by difference frequency mixing of continuous wave lasers in orientation-patterned Gallium Phosphide,” Opt. Mater. Express 5(12), 2911–2923 (2015).
[Crossref]

K. Devi, P. G. Schunemann, and M. Ebrahim-Zadeh, “Continuous-wave, multimilliwatt, mid-infrared source tunable across 6.4-7.5 μm based on orientation-patterned GaAs,” Opt. Lett. 39(23), 6751–6754 (2014).
[Crossref] [PubMed]

Serebryakov, V. A.

Sigrist, M. W.

M. W. Sigrist, “Mid-infrared laser-spectroscopic sensing of chemical species,” J. Adv. Res. 6(3), 529–533 (2015).
[Crossref] [PubMed]

Soharab, M.

R. Bhatt, I. Bhaumik, S. Ganesamoorthy, R. Bright, M. Soharab, A. K. Karnal, and P. K. Gupta, “Control of intrinsic defects in lithium niobate single crystals for optoelectronic applications,” Crystals 7(2), 23 (2017).
[Crossref]

Taylor, R. C.

M. R. Lorenz, G. D. Pettit, and R. C. Taylor, “Band gap of gallium phosphide from 0 to 900°K and light emission from diodes at high temperatures,” Phys. Rev. 171(3), 876–881 (1968).
[Crossref]

Tiihonen, M.

M. Henriksson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, “Mid-infrared ZGP OPO pumped by near-degenerate narrowband type-I PPKTP parametric oscillator,” Appl. Phys. B 88(1), 37–41 (2007).
[Crossref] [PubMed]

Vodopyanov, K.

Wang, C.

Wei, J.

Xing, Q.

Yan, A. V.

Yao, Y.

Y. Yao, A. J. Hoffman, and C. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

Ye, H.

Zawilski, K. T.

P. G. Schunemann, K. T. Zawilski, L. A. Pomeranz, D. J. Creeden, and P. A. Budni, “Advances in nonlinear optical crystals for mid-infrared coherent sources,” J. Opt. Soc. Am. B 33(11), D36–D43 (2016).
[Crossref]

L. A. Pomeranz, P. G. Schunemann, D. J. Magarrell, J. C. McCarthy, K. T. Zawilski, and D. E. Zelmon, “1-μm-pumped OPO based on orientation-patterned GaP,” Proc. SPIE 9347, 93470K (2015).
[Crossref]

Zelmon, D. E.

L. A. Pomeranz, P. G. Schunemann, D. J. Magarrell, J. C. McCarthy, K. T. Zawilski, and D. E. Zelmon, “1-μm-pumped OPO based on orientation-patterned GaP,” Proc. SPIE 9347, 93470K (2015).
[Crossref]

Zondy, J. J.

Appl. Opt. (1)

Appl. Phys. B (1)

M. Henriksson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, “Mid-infrared ZGP OPO pumped by near-degenerate narrowband type-I PPKTP parametric oscillator,” Appl. Phys. B 88(1), 37–41 (2007).
[Crossref] [PubMed]

Crystals (1)

R. Bhatt, I. Bhaumik, S. Ganesamoorthy, R. Bright, M. Soharab, A. K. Karnal, and P. K. Gupta, “Control of intrinsic defects in lithium niobate single crystals for optoelectronic applications,” Crystals 7(2), 23 (2017).
[Crossref]

J. Adv. Res. (1)

M. W. Sigrist, “Mid-infrared laser-spectroscopic sensing of chemical species,” J. Adv. Res. 6(3), 529–533 (2015).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (2)

J. Opt. Technol. (1)

Nat. Photonics (2)

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

Y. Yao, A. J. Hoffman, and C. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

Opt. Express (2)

Opt. Lett. (4)

Opt. Mater. (1)

V. Petrov, “Parametric down-conversion devices: The coverage of the mid-infrared spectral range by solid-state laser sources,” Opt. Mater. 34(3), 536–554 (2012).
[Crossref]

Opt. Mater. Express (1)

Phys. Rev. (1)

M. R. Lorenz, G. D. Pettit, and R. C. Taylor, “Band gap of gallium phosphide from 0 to 900°K and light emission from diodes at high temperatures,” Phys. Rev. 171(3), 876–881 (1968).
[Crossref]

Proc. SPIE (2)

A. L. Bajor, “Investigation of stress-induced birefringence in large semiconductor wafers by imaging polarimetry,” Proc. SPIE 2265, 431–442 (1994).
[Crossref]

L. A. Pomeranz, P. G. Schunemann, D. J. Magarrell, J. C. McCarthy, K. T. Zawilski, and D. E. Zelmon, “1-μm-pumped OPO based on orientation-patterned GaP,” Proc. SPIE 9347, 93470K (2015).
[Crossref]

Prog. Quantum Electron. (1)

V. Petrov, “Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals,” Prog. Quantum Electron. 42, 1–106 (2015).
[Crossref]

Other (2)

P. G. Schunemann, L. A. Pomeranz, and D. J. Magarrell, “First OPO based on orientation-patterned gallium phosphide (OP-GaP),” in CLEO: Science and Innovations (Optical Society of America, 2015), paper SW3O–1.
[Crossref]

M. Ebrahim-Zadeh and I. T. Sorokina, Mid-Infrared Coherent Sources and Applications, New York, NY, USA: Springer, 2008.

Supplementary Material (1)

NameDescription
» Visualization 1       This media file demonstrates the polarization dependent spatial beam shift observed in OP-GaP at 1064 nm.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) Spectrum of the generated parasitic SFG at 664.6 nm (pump + signal) and at 761.4 nm (pump + DFG). Inset: 40-mm-long OP-GaP sample generating red parasitic output beam at the exit of the crystal. (b) Variation of the parasitic SFG wavelengths as a function of OP-GaP crystal temperature. Inset: Corresponding DFG temperature tuning.
Fig. 2
Fig. 2 (a) Experimentally measured temperature acceptance and the corresponding sinc2 fit, and (b) theoretically calculated temperature acceptance bandwidth, for the 40-mm-long OP-GaP crystal.
Fig. 3
Fig. 3 (a) Experimentally measured spectral acceptance and the corresponding sinc2 fit, and (b) theoretically calculated spectral acceptance bandwidth for the 40-mm-long OP-GaP crystal.
Fig. 4
Fig. 4 (a) Variation of the nonlinear gain factor (δ2) as function of the pump and signal polarization in OP-GaP. (b) Variation of the maximum and minimum values of the gain factor for different pump polarizations in the first quadrant.
Fig. 5
Fig. 5 Variation of the normalized DFG output power as a function of signal polarization, ��s, for a fixed pump polarization of (a) ��p= 0°, (b) ��p= 90°, (c) ��p=54.7°. Inset: Corresponding theoretical calculations.
Fig. 6
Fig. 6 DFG power scaling as a function of the pump power at a constant signal power for two different pump polarizations of ��p=54.7° and ��p=90°. Inset: Spatial beam profile of the DFG beam at maximum power.
Fig. 7
Fig. 7 Transmission measurements of the 40-mm-long OP-GaP crystal at room temperature for (a) pump, and (b) signal wavelengths, while generating a maximum DFG power at 2719 nm. Inset: Similar measurements at a different position in the crystal.
Fig. 8
Fig. 8 Transmission of the 40-mm-long OP-GaP crystal at 1064 nm in (a) continuous-wave, (b) nanosecond, and (c) high-repetition-rate picosecond time-scale, for the two orthogonal pump polarizations.
Fig. 9
Fig. 9 (Visualization 1) The shift in the spatial position of the pump beam at 1064 nm as function of polarization. (a) ��p = 0°, (b) ��p = 90°.
Fig. 10
Fig. 10 (a) Maximum tolerable average pump power before damage in the OP-GaP crystal, and the corresponding peak intensity. (b) Pulse energy and fluence, as a function of the pump laser repetition rate at 1064 nm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

δ 2   =   ( d e f f d 14 ) 2 = sin 2 ( ψ p + ψ s ) + sin 2 ψ p sin 2 ψ s

Metrics