Abstract

We present the epitaxial growth of ferroelectric potassium tantalate-niobate (KTN) thin films by pulsed laser deposition. As a result of the optimization of the deposition and the surface finishing processes, a c-axis oriented KTa0.5Nb0.5O3 thin film with homogeneous polarization phase grown on KTaO3 and an efficient KTa0.5Nb0.5O3 waveguiding thin film grown on MgO are demonstrated. The highly improved crystalline and optical quality of KTN layers grown in this work reveal the great potential of such films for integrated nonlinear optics.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optical and nonlinear optical study of KTa0.52Nb0.48O3 epitaxial film

H. Y. Zhang, X. H. He, Y. H. Shih, K. S. Harshavardhan, and L. A. Knauss
Opt. Lett. 22(23) 1745-1747 (1997)

Optical properties of epitaxial CaxBa1-xNb2O6 thin film based rib-waveguide structure on (001) MgO for electro-optic applications

Sébastien Vigne, Nadir Hossain, Faezeh Fesharaki, S. M. Humayun Kabir, Joëlle Margot, Ke Wu, and Mohamed Chaker
Opt. Express 24(25) 28573-28582 (2016)

Electro-optic phase modulation in ridge waveguides of epitaxial K0.95Na0.05Ta0.71Nb0.29O3 thin films

Christian Herzog, Steffen Reidt, Gorazd Poberaj, and Peter Günter
Opt. Express 15(12) 7642-7652 (2007)

References

  • View by:
  • |
  • |
  • |

  1. S. Yagi, “KTN crystals open up new possibilities and applications,” NTT Tech. Rev. 7(12), 1–5 (2009).
  2. J. Li, Y. Li, Z. Zhou, A. Bhalla, and R. Guo, “Linear electrooptic coefficient r51 of tetragonal potassium lithium tantalate niobate K0.95Li0.05Ta0.40Nb0.60O3 single crystal,” Opt. Mater. Express 3(12), 2063–2071 (2013).
    [Crossref]
  3. T. Imai, M. Sasaura, K. Nakamura, and K. Fujiura, “Crystal growth and electro-optic properties of KTa1-xNbxO3,” NTT Tech. Rev. 5(9), 1–8 (2007).
  4. S. Triebwasser, “Study of ferroelectric transitions of solid-solution single crystals of KNbO3-KTaO3,” Phys. Rev. 114(1), 63–70 (1959).
    [Crossref]
  5. V. A. Kallur and R. K. Pandey, “Crystal growth and properties of potassium tantalate niobate, KTa1-xNbxO3, ferroelectric,” Ferroelectrics 158(1), 55–60 (1994).
    [Crossref]
  6. Y.-C. Chang, C. Wang, S. Yin, R. C. Hoffman, and A. G. Mott, “Giant electro-optic effect in nanodisordered KTN crystals,” Opt. Lett. 38(22), 4574–4577 (2013).
    [Crossref] [PubMed]
  7. K. Nakamura, J. Miyazu, M. Sasaura, and K. Fujiura, “Wide-angle, low-voltage electro-optic beam deflection based on space-charge-controlled mode of electrical conduction in KTa1−xNbxO3,” Appl. Phys. Lett. 89(13), 131115 (2006).
    [Crossref]
  8. J. Miyazu, T. Imai, S. Toyoda, M. Sasaura, S. Yagi, K. Kato, Y. Sasaki, and K. Fujiura, “New beam scanning model for high-speed operation using KTa1−xNbxO3 crystals,” Appl. Phys. Express 4(11), 111501 (2011).
    [Crossref]
  9. X. Zhang, H. Liu, Z. Zhao, X. Wang, and P. Wu, “Electric-field control of the ferro-paraelectric phase transition in Cu:KTN crystals,” Opt. Express 25(23), 28776–28782 (2017).
    [Crossref]
  10. K. Buse, “Light-induced charge transport processes in photorefractive crystals II: Materials,” Appl. Phys. B 64(4), 391–407 (1997).
    [Crossref]
  11. H. Maiwa, “Electrocaloric properties of potassium tantalate niobate crystals,” Jpn. J. Appl. Phys. 55(10S), 10TB09 (2016).
    [Crossref]
  12. R. Eason, Pulsed laser deposition of thin films: applications-led growth of functional materials (John Wiley & Sons, 2007).
  13. S. Yilmaz, T. Venkatesan, and R. Gerhard-Multhaupt, “Pulsed laser deposition of stoichiometric potassium-tantalate-niobate films from segmented evaporation targets,” Appl. Phys. Lett. 58(22), 2479–2481 (1991).
    [Crossref]
  14. L. A. Knauss, K. S. Harshavardhan, H.-M. Christen, H. Y. Zhang, X. H. He, Y. H. Shih, K. S. Grabowski, and D. L. Knies, “Growth of nonlinear optical thin films of KTa1-xNbxO3 on GaAs by pulsed laser deposition for integrated optics,” Appl. Phys. Lett. 73(26), 3806–3808 (1998).
    [Crossref]
  15. A. Rousseau, V. Laur, S. Députier, V. Bouquet, M. Guilloux-Viry, G. Tanné, P. Laurent, F. Huret, and A. Perrin, “Influence of substrate on the pulsed laser deposition growth and microwave behaviour of KTa0.6Nb0.4O3 potassium tantalate niobate ferroelectric thin films,” Thin Solid Films 516(15), 4882–4888 (2008).
    [Crossref]
  16. W. Yang, Z. Zhou, B. Yang, Y. Jiang, H. Tian, D. Gong, H. Sun, and W. Chen, “Structure and refractive index dispersive behavior of potassium niobate tantalate films prepared by pulsed laser deposition,” Appl. Surf. Sci. 257(16), 7221–7225 (2011).
    [Crossref]
  17. Y. Jia, M. Winkler, J. Szabados, I. Breunig, L. Kirste, V. Cimalla, A. Žukauskaitė, and K. Buse, “Potassium-tantalate-niobate mixed crystal thin films for applications in nonlinear integrated optics,” J. Phys. Conf. Ser. 867, 012020 (2017).
    [Crossref]
  18. R. Swanepoel, “Determination of thickness and optical constants of amorphous silicon,” J. Phys. E Sci. Instrum. 16(12), 1214–1222 (1983).
    [Crossref]
  19. W. Zhu, J.-H. Chao, C. Wang, J. Yao, and S. Yin, “Design and implementation of super broadband high speed waveguide switches,” Proc. SPIE 9586, 95860W (2015).
    [Crossref]
  20. P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta (Lond.) 33(2), 127–143 (1986).
    [Crossref]
  21. D. Yevick and W. Bardyszewski, “Correspondence of variational finite-difference (relaxation) and imaginary-distance propagation methods for modal analysis,” Opt. Lett. 17(5), 329–330 (1992).
    [Crossref] [PubMed]
  22. D. N. Nikogosyan, Theory of Dielectric Optical Waveguides (Academic, New York, 1974).

2017 (2)

X. Zhang, H. Liu, Z. Zhao, X. Wang, and P. Wu, “Electric-field control of the ferro-paraelectric phase transition in Cu:KTN crystals,” Opt. Express 25(23), 28776–28782 (2017).
[Crossref]

Y. Jia, M. Winkler, J. Szabados, I. Breunig, L. Kirste, V. Cimalla, A. Žukauskaitė, and K. Buse, “Potassium-tantalate-niobate mixed crystal thin films for applications in nonlinear integrated optics,” J. Phys. Conf. Ser. 867, 012020 (2017).
[Crossref]

2016 (1)

H. Maiwa, “Electrocaloric properties of potassium tantalate niobate crystals,” Jpn. J. Appl. Phys. 55(10S), 10TB09 (2016).
[Crossref]

2015 (1)

W. Zhu, J.-H. Chao, C. Wang, J. Yao, and S. Yin, “Design and implementation of super broadband high speed waveguide switches,” Proc. SPIE 9586, 95860W (2015).
[Crossref]

2013 (2)

2011 (2)

J. Miyazu, T. Imai, S. Toyoda, M. Sasaura, S. Yagi, K. Kato, Y. Sasaki, and K. Fujiura, “New beam scanning model for high-speed operation using KTa1−xNbxO3 crystals,” Appl. Phys. Express 4(11), 111501 (2011).
[Crossref]

W. Yang, Z. Zhou, B. Yang, Y. Jiang, H. Tian, D. Gong, H. Sun, and W. Chen, “Structure and refractive index dispersive behavior of potassium niobate tantalate films prepared by pulsed laser deposition,” Appl. Surf. Sci. 257(16), 7221–7225 (2011).
[Crossref]

2009 (1)

S. Yagi, “KTN crystals open up new possibilities and applications,” NTT Tech. Rev. 7(12), 1–5 (2009).

2008 (1)

A. Rousseau, V. Laur, S. Députier, V. Bouquet, M. Guilloux-Viry, G. Tanné, P. Laurent, F. Huret, and A. Perrin, “Influence of substrate on the pulsed laser deposition growth and microwave behaviour of KTa0.6Nb0.4O3 potassium tantalate niobate ferroelectric thin films,” Thin Solid Films 516(15), 4882–4888 (2008).
[Crossref]

2007 (1)

T. Imai, M. Sasaura, K. Nakamura, and K. Fujiura, “Crystal growth and electro-optic properties of KTa1-xNbxO3,” NTT Tech. Rev. 5(9), 1–8 (2007).

2006 (1)

K. Nakamura, J. Miyazu, M. Sasaura, and K. Fujiura, “Wide-angle, low-voltage electro-optic beam deflection based on space-charge-controlled mode of electrical conduction in KTa1−xNbxO3,” Appl. Phys. Lett. 89(13), 131115 (2006).
[Crossref]

1998 (1)

L. A. Knauss, K. S. Harshavardhan, H.-M. Christen, H. Y. Zhang, X. H. He, Y. H. Shih, K. S. Grabowski, and D. L. Knies, “Growth of nonlinear optical thin films of KTa1-xNbxO3 on GaAs by pulsed laser deposition for integrated optics,” Appl. Phys. Lett. 73(26), 3806–3808 (1998).
[Crossref]

1997 (1)

K. Buse, “Light-induced charge transport processes in photorefractive crystals II: Materials,” Appl. Phys. B 64(4), 391–407 (1997).
[Crossref]

1994 (1)

V. A. Kallur and R. K. Pandey, “Crystal growth and properties of potassium tantalate niobate, KTa1-xNbxO3, ferroelectric,” Ferroelectrics 158(1), 55–60 (1994).
[Crossref]

1992 (1)

1991 (1)

S. Yilmaz, T. Venkatesan, and R. Gerhard-Multhaupt, “Pulsed laser deposition of stoichiometric potassium-tantalate-niobate films from segmented evaporation targets,” Appl. Phys. Lett. 58(22), 2479–2481 (1991).
[Crossref]

1986 (1)

P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta (Lond.) 33(2), 127–143 (1986).
[Crossref]

1983 (1)

R. Swanepoel, “Determination of thickness and optical constants of amorphous silicon,” J. Phys. E Sci. Instrum. 16(12), 1214–1222 (1983).
[Crossref]

1959 (1)

S. Triebwasser, “Study of ferroelectric transitions of solid-solution single crystals of KNbO3-KTaO3,” Phys. Rev. 114(1), 63–70 (1959).
[Crossref]

Bardyszewski, W.

Bhalla, A.

Bouquet, V.

A. Rousseau, V. Laur, S. Députier, V. Bouquet, M. Guilloux-Viry, G. Tanné, P. Laurent, F. Huret, and A. Perrin, “Influence of substrate on the pulsed laser deposition growth and microwave behaviour of KTa0.6Nb0.4O3 potassium tantalate niobate ferroelectric thin films,” Thin Solid Films 516(15), 4882–4888 (2008).
[Crossref]

Breunig, I.

Y. Jia, M. Winkler, J. Szabados, I. Breunig, L. Kirste, V. Cimalla, A. Žukauskaitė, and K. Buse, “Potassium-tantalate-niobate mixed crystal thin films for applications in nonlinear integrated optics,” J. Phys. Conf. Ser. 867, 012020 (2017).
[Crossref]

Buse, K.

Y. Jia, M. Winkler, J. Szabados, I. Breunig, L. Kirste, V. Cimalla, A. Žukauskaitė, and K. Buse, “Potassium-tantalate-niobate mixed crystal thin films for applications in nonlinear integrated optics,” J. Phys. Conf. Ser. 867, 012020 (2017).
[Crossref]

K. Buse, “Light-induced charge transport processes in photorefractive crystals II: Materials,” Appl. Phys. B 64(4), 391–407 (1997).
[Crossref]

Chandler, P. J.

P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta (Lond.) 33(2), 127–143 (1986).
[Crossref]

Chang, Y.-C.

Chao, J.-H.

W. Zhu, J.-H. Chao, C. Wang, J. Yao, and S. Yin, “Design and implementation of super broadband high speed waveguide switches,” Proc. SPIE 9586, 95860W (2015).
[Crossref]

Chen, W.

W. Yang, Z. Zhou, B. Yang, Y. Jiang, H. Tian, D. Gong, H. Sun, and W. Chen, “Structure and refractive index dispersive behavior of potassium niobate tantalate films prepared by pulsed laser deposition,” Appl. Surf. Sci. 257(16), 7221–7225 (2011).
[Crossref]

Christen, H.-M.

L. A. Knauss, K. S. Harshavardhan, H.-M. Christen, H. Y. Zhang, X. H. He, Y. H. Shih, K. S. Grabowski, and D. L. Knies, “Growth of nonlinear optical thin films of KTa1-xNbxO3 on GaAs by pulsed laser deposition for integrated optics,” Appl. Phys. Lett. 73(26), 3806–3808 (1998).
[Crossref]

Cimalla, V.

Y. Jia, M. Winkler, J. Szabados, I. Breunig, L. Kirste, V. Cimalla, A. Žukauskaitė, and K. Buse, “Potassium-tantalate-niobate mixed crystal thin films for applications in nonlinear integrated optics,” J. Phys. Conf. Ser. 867, 012020 (2017).
[Crossref]

Députier, S.

A. Rousseau, V. Laur, S. Députier, V. Bouquet, M. Guilloux-Viry, G. Tanné, P. Laurent, F. Huret, and A. Perrin, “Influence of substrate on the pulsed laser deposition growth and microwave behaviour of KTa0.6Nb0.4O3 potassium tantalate niobate ferroelectric thin films,” Thin Solid Films 516(15), 4882–4888 (2008).
[Crossref]

Fujiura, K.

J. Miyazu, T. Imai, S. Toyoda, M. Sasaura, S. Yagi, K. Kato, Y. Sasaki, and K. Fujiura, “New beam scanning model for high-speed operation using KTa1−xNbxO3 crystals,” Appl. Phys. Express 4(11), 111501 (2011).
[Crossref]

T. Imai, M. Sasaura, K. Nakamura, and K. Fujiura, “Crystal growth and electro-optic properties of KTa1-xNbxO3,” NTT Tech. Rev. 5(9), 1–8 (2007).

K. Nakamura, J. Miyazu, M. Sasaura, and K. Fujiura, “Wide-angle, low-voltage electro-optic beam deflection based on space-charge-controlled mode of electrical conduction in KTa1−xNbxO3,” Appl. Phys. Lett. 89(13), 131115 (2006).
[Crossref]

Gerhard-Multhaupt, R.

S. Yilmaz, T. Venkatesan, and R. Gerhard-Multhaupt, “Pulsed laser deposition of stoichiometric potassium-tantalate-niobate films from segmented evaporation targets,” Appl. Phys. Lett. 58(22), 2479–2481 (1991).
[Crossref]

Gong, D.

W. Yang, Z. Zhou, B. Yang, Y. Jiang, H. Tian, D. Gong, H. Sun, and W. Chen, “Structure and refractive index dispersive behavior of potassium niobate tantalate films prepared by pulsed laser deposition,” Appl. Surf. Sci. 257(16), 7221–7225 (2011).
[Crossref]

Grabowski, K. S.

L. A. Knauss, K. S. Harshavardhan, H.-M. Christen, H. Y. Zhang, X. H. He, Y. H. Shih, K. S. Grabowski, and D. L. Knies, “Growth of nonlinear optical thin films of KTa1-xNbxO3 on GaAs by pulsed laser deposition for integrated optics,” Appl. Phys. Lett. 73(26), 3806–3808 (1998).
[Crossref]

Guilloux-Viry, M.

A. Rousseau, V. Laur, S. Députier, V. Bouquet, M. Guilloux-Viry, G. Tanné, P. Laurent, F. Huret, and A. Perrin, “Influence of substrate on the pulsed laser deposition growth and microwave behaviour of KTa0.6Nb0.4O3 potassium tantalate niobate ferroelectric thin films,” Thin Solid Films 516(15), 4882–4888 (2008).
[Crossref]

Guo, R.

Harshavardhan, K. S.

L. A. Knauss, K. S. Harshavardhan, H.-M. Christen, H. Y. Zhang, X. H. He, Y. H. Shih, K. S. Grabowski, and D. L. Knies, “Growth of nonlinear optical thin films of KTa1-xNbxO3 on GaAs by pulsed laser deposition for integrated optics,” Appl. Phys. Lett. 73(26), 3806–3808 (1998).
[Crossref]

He, X. H.

L. A. Knauss, K. S. Harshavardhan, H.-M. Christen, H. Y. Zhang, X. H. He, Y. H. Shih, K. S. Grabowski, and D. L. Knies, “Growth of nonlinear optical thin films of KTa1-xNbxO3 on GaAs by pulsed laser deposition for integrated optics,” Appl. Phys. Lett. 73(26), 3806–3808 (1998).
[Crossref]

Hoffman, R. C.

Huret, F.

A. Rousseau, V. Laur, S. Députier, V. Bouquet, M. Guilloux-Viry, G. Tanné, P. Laurent, F. Huret, and A. Perrin, “Influence of substrate on the pulsed laser deposition growth and microwave behaviour of KTa0.6Nb0.4O3 potassium tantalate niobate ferroelectric thin films,” Thin Solid Films 516(15), 4882–4888 (2008).
[Crossref]

Imai, T.

J. Miyazu, T. Imai, S. Toyoda, M. Sasaura, S. Yagi, K. Kato, Y. Sasaki, and K. Fujiura, “New beam scanning model for high-speed operation using KTa1−xNbxO3 crystals,” Appl. Phys. Express 4(11), 111501 (2011).
[Crossref]

T. Imai, M. Sasaura, K. Nakamura, and K. Fujiura, “Crystal growth and electro-optic properties of KTa1-xNbxO3,” NTT Tech. Rev. 5(9), 1–8 (2007).

Jia, Y.

Y. Jia, M. Winkler, J. Szabados, I. Breunig, L. Kirste, V. Cimalla, A. Žukauskaitė, and K. Buse, “Potassium-tantalate-niobate mixed crystal thin films for applications in nonlinear integrated optics,” J. Phys. Conf. Ser. 867, 012020 (2017).
[Crossref]

Jiang, Y.

W. Yang, Z. Zhou, B. Yang, Y. Jiang, H. Tian, D. Gong, H. Sun, and W. Chen, “Structure and refractive index dispersive behavior of potassium niobate tantalate films prepared by pulsed laser deposition,” Appl. Surf. Sci. 257(16), 7221–7225 (2011).
[Crossref]

Kallur, V. A.

V. A. Kallur and R. K. Pandey, “Crystal growth and properties of potassium tantalate niobate, KTa1-xNbxO3, ferroelectric,” Ferroelectrics 158(1), 55–60 (1994).
[Crossref]

Kato, K.

J. Miyazu, T. Imai, S. Toyoda, M. Sasaura, S. Yagi, K. Kato, Y. Sasaki, and K. Fujiura, “New beam scanning model for high-speed operation using KTa1−xNbxO3 crystals,” Appl. Phys. Express 4(11), 111501 (2011).
[Crossref]

Kirste, L.

Y. Jia, M. Winkler, J. Szabados, I. Breunig, L. Kirste, V. Cimalla, A. Žukauskaitė, and K. Buse, “Potassium-tantalate-niobate mixed crystal thin films for applications in nonlinear integrated optics,” J. Phys. Conf. Ser. 867, 012020 (2017).
[Crossref]

Knauss, L. A.

L. A. Knauss, K. S. Harshavardhan, H.-M. Christen, H. Y. Zhang, X. H. He, Y. H. Shih, K. S. Grabowski, and D. L. Knies, “Growth of nonlinear optical thin films of KTa1-xNbxO3 on GaAs by pulsed laser deposition for integrated optics,” Appl. Phys. Lett. 73(26), 3806–3808 (1998).
[Crossref]

Knies, D. L.

L. A. Knauss, K. S. Harshavardhan, H.-M. Christen, H. Y. Zhang, X. H. He, Y. H. Shih, K. S. Grabowski, and D. L. Knies, “Growth of nonlinear optical thin films of KTa1-xNbxO3 on GaAs by pulsed laser deposition for integrated optics,” Appl. Phys. Lett. 73(26), 3806–3808 (1998).
[Crossref]

Lama, F. L.

P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta (Lond.) 33(2), 127–143 (1986).
[Crossref]

Laur, V.

A. Rousseau, V. Laur, S. Députier, V. Bouquet, M. Guilloux-Viry, G. Tanné, P. Laurent, F. Huret, and A. Perrin, “Influence of substrate on the pulsed laser deposition growth and microwave behaviour of KTa0.6Nb0.4O3 potassium tantalate niobate ferroelectric thin films,” Thin Solid Films 516(15), 4882–4888 (2008).
[Crossref]

Laurent, P.

A. Rousseau, V. Laur, S. Députier, V. Bouquet, M. Guilloux-Viry, G. Tanné, P. Laurent, F. Huret, and A. Perrin, “Influence of substrate on the pulsed laser deposition growth and microwave behaviour of KTa0.6Nb0.4O3 potassium tantalate niobate ferroelectric thin films,” Thin Solid Films 516(15), 4882–4888 (2008).
[Crossref]

Li, J.

Li, Y.

Liu, H.

Maiwa, H.

H. Maiwa, “Electrocaloric properties of potassium tantalate niobate crystals,” Jpn. J. Appl. Phys. 55(10S), 10TB09 (2016).
[Crossref]

Miyazu, J.

J. Miyazu, T. Imai, S. Toyoda, M. Sasaura, S. Yagi, K. Kato, Y. Sasaki, and K. Fujiura, “New beam scanning model for high-speed operation using KTa1−xNbxO3 crystals,” Appl. Phys. Express 4(11), 111501 (2011).
[Crossref]

K. Nakamura, J. Miyazu, M. Sasaura, and K. Fujiura, “Wide-angle, low-voltage electro-optic beam deflection based on space-charge-controlled mode of electrical conduction in KTa1−xNbxO3,” Appl. Phys. Lett. 89(13), 131115 (2006).
[Crossref]

Mott, A. G.

Nakamura, K.

T. Imai, M. Sasaura, K. Nakamura, and K. Fujiura, “Crystal growth and electro-optic properties of KTa1-xNbxO3,” NTT Tech. Rev. 5(9), 1–8 (2007).

K. Nakamura, J. Miyazu, M. Sasaura, and K. Fujiura, “Wide-angle, low-voltage electro-optic beam deflection based on space-charge-controlled mode of electrical conduction in KTa1−xNbxO3,” Appl. Phys. Lett. 89(13), 131115 (2006).
[Crossref]

Pandey, R. K.

V. A. Kallur and R. K. Pandey, “Crystal growth and properties of potassium tantalate niobate, KTa1-xNbxO3, ferroelectric,” Ferroelectrics 158(1), 55–60 (1994).
[Crossref]

Perrin, A.

A. Rousseau, V. Laur, S. Députier, V. Bouquet, M. Guilloux-Viry, G. Tanné, P. Laurent, F. Huret, and A. Perrin, “Influence of substrate on the pulsed laser deposition growth and microwave behaviour of KTa0.6Nb0.4O3 potassium tantalate niobate ferroelectric thin films,” Thin Solid Films 516(15), 4882–4888 (2008).
[Crossref]

Rousseau, A.

A. Rousseau, V. Laur, S. Députier, V. Bouquet, M. Guilloux-Viry, G. Tanné, P. Laurent, F. Huret, and A. Perrin, “Influence of substrate on the pulsed laser deposition growth and microwave behaviour of KTa0.6Nb0.4O3 potassium tantalate niobate ferroelectric thin films,” Thin Solid Films 516(15), 4882–4888 (2008).
[Crossref]

Sasaki, Y.

J. Miyazu, T. Imai, S. Toyoda, M. Sasaura, S. Yagi, K. Kato, Y. Sasaki, and K. Fujiura, “New beam scanning model for high-speed operation using KTa1−xNbxO3 crystals,” Appl. Phys. Express 4(11), 111501 (2011).
[Crossref]

Sasaura, M.

J. Miyazu, T. Imai, S. Toyoda, M. Sasaura, S. Yagi, K. Kato, Y. Sasaki, and K. Fujiura, “New beam scanning model for high-speed operation using KTa1−xNbxO3 crystals,” Appl. Phys. Express 4(11), 111501 (2011).
[Crossref]

T. Imai, M. Sasaura, K. Nakamura, and K. Fujiura, “Crystal growth and electro-optic properties of KTa1-xNbxO3,” NTT Tech. Rev. 5(9), 1–8 (2007).

K. Nakamura, J. Miyazu, M. Sasaura, and K. Fujiura, “Wide-angle, low-voltage electro-optic beam deflection based on space-charge-controlled mode of electrical conduction in KTa1−xNbxO3,” Appl. Phys. Lett. 89(13), 131115 (2006).
[Crossref]

Shih, Y. H.

L. A. Knauss, K. S. Harshavardhan, H.-M. Christen, H. Y. Zhang, X. H. He, Y. H. Shih, K. S. Grabowski, and D. L. Knies, “Growth of nonlinear optical thin films of KTa1-xNbxO3 on GaAs by pulsed laser deposition for integrated optics,” Appl. Phys. Lett. 73(26), 3806–3808 (1998).
[Crossref]

Sun, H.

W. Yang, Z. Zhou, B. Yang, Y. Jiang, H. Tian, D. Gong, H. Sun, and W. Chen, “Structure and refractive index dispersive behavior of potassium niobate tantalate films prepared by pulsed laser deposition,” Appl. Surf. Sci. 257(16), 7221–7225 (2011).
[Crossref]

Swanepoel, R.

R. Swanepoel, “Determination of thickness and optical constants of amorphous silicon,” J. Phys. E Sci. Instrum. 16(12), 1214–1222 (1983).
[Crossref]

Szabados, J.

Y. Jia, M. Winkler, J. Szabados, I. Breunig, L. Kirste, V. Cimalla, A. Žukauskaitė, and K. Buse, “Potassium-tantalate-niobate mixed crystal thin films for applications in nonlinear integrated optics,” J. Phys. Conf. Ser. 867, 012020 (2017).
[Crossref]

Tanné, G.

A. Rousseau, V. Laur, S. Députier, V. Bouquet, M. Guilloux-Viry, G. Tanné, P. Laurent, F. Huret, and A. Perrin, “Influence of substrate on the pulsed laser deposition growth and microwave behaviour of KTa0.6Nb0.4O3 potassium tantalate niobate ferroelectric thin films,” Thin Solid Films 516(15), 4882–4888 (2008).
[Crossref]

Tian, H.

W. Yang, Z. Zhou, B. Yang, Y. Jiang, H. Tian, D. Gong, H. Sun, and W. Chen, “Structure and refractive index dispersive behavior of potassium niobate tantalate films prepared by pulsed laser deposition,” Appl. Surf. Sci. 257(16), 7221–7225 (2011).
[Crossref]

Toyoda, S.

J. Miyazu, T. Imai, S. Toyoda, M. Sasaura, S. Yagi, K. Kato, Y. Sasaki, and K. Fujiura, “New beam scanning model for high-speed operation using KTa1−xNbxO3 crystals,” Appl. Phys. Express 4(11), 111501 (2011).
[Crossref]

Triebwasser, S.

S. Triebwasser, “Study of ferroelectric transitions of solid-solution single crystals of KNbO3-KTaO3,” Phys. Rev. 114(1), 63–70 (1959).
[Crossref]

Venkatesan, T.

S. Yilmaz, T. Venkatesan, and R. Gerhard-Multhaupt, “Pulsed laser deposition of stoichiometric potassium-tantalate-niobate films from segmented evaporation targets,” Appl. Phys. Lett. 58(22), 2479–2481 (1991).
[Crossref]

Wang, C.

W. Zhu, J.-H. Chao, C. Wang, J. Yao, and S. Yin, “Design and implementation of super broadband high speed waveguide switches,” Proc. SPIE 9586, 95860W (2015).
[Crossref]

Y.-C. Chang, C. Wang, S. Yin, R. C. Hoffman, and A. G. Mott, “Giant electro-optic effect in nanodisordered KTN crystals,” Opt. Lett. 38(22), 4574–4577 (2013).
[Crossref] [PubMed]

Wang, X.

Winkler, M.

Y. Jia, M. Winkler, J. Szabados, I. Breunig, L. Kirste, V. Cimalla, A. Žukauskaitė, and K. Buse, “Potassium-tantalate-niobate mixed crystal thin films for applications in nonlinear integrated optics,” J. Phys. Conf. Ser. 867, 012020 (2017).
[Crossref]

Wu, P.

Yagi, S.

J. Miyazu, T. Imai, S. Toyoda, M. Sasaura, S. Yagi, K. Kato, Y. Sasaki, and K. Fujiura, “New beam scanning model for high-speed operation using KTa1−xNbxO3 crystals,” Appl. Phys. Express 4(11), 111501 (2011).
[Crossref]

S. Yagi, “KTN crystals open up new possibilities and applications,” NTT Tech. Rev. 7(12), 1–5 (2009).

Yang, B.

W. Yang, Z. Zhou, B. Yang, Y. Jiang, H. Tian, D. Gong, H. Sun, and W. Chen, “Structure and refractive index dispersive behavior of potassium niobate tantalate films prepared by pulsed laser deposition,” Appl. Surf. Sci. 257(16), 7221–7225 (2011).
[Crossref]

Yang, W.

W. Yang, Z. Zhou, B. Yang, Y. Jiang, H. Tian, D. Gong, H. Sun, and W. Chen, “Structure and refractive index dispersive behavior of potassium niobate tantalate films prepared by pulsed laser deposition,” Appl. Surf. Sci. 257(16), 7221–7225 (2011).
[Crossref]

Yao, J.

W. Zhu, J.-H. Chao, C. Wang, J. Yao, and S. Yin, “Design and implementation of super broadband high speed waveguide switches,” Proc. SPIE 9586, 95860W (2015).
[Crossref]

Yevick, D.

Yilmaz, S.

S. Yilmaz, T. Venkatesan, and R. Gerhard-Multhaupt, “Pulsed laser deposition of stoichiometric potassium-tantalate-niobate films from segmented evaporation targets,” Appl. Phys. Lett. 58(22), 2479–2481 (1991).
[Crossref]

Yin, S.

W. Zhu, J.-H. Chao, C. Wang, J. Yao, and S. Yin, “Design and implementation of super broadband high speed waveguide switches,” Proc. SPIE 9586, 95860W (2015).
[Crossref]

Y.-C. Chang, C. Wang, S. Yin, R. C. Hoffman, and A. G. Mott, “Giant electro-optic effect in nanodisordered KTN crystals,” Opt. Lett. 38(22), 4574–4577 (2013).
[Crossref] [PubMed]

Zhang, H. Y.

L. A. Knauss, K. S. Harshavardhan, H.-M. Christen, H. Y. Zhang, X. H. He, Y. H. Shih, K. S. Grabowski, and D. L. Knies, “Growth of nonlinear optical thin films of KTa1-xNbxO3 on GaAs by pulsed laser deposition for integrated optics,” Appl. Phys. Lett. 73(26), 3806–3808 (1998).
[Crossref]

Zhang, X.

Zhao, Z.

Zhou, Z.

J. Li, Y. Li, Z. Zhou, A. Bhalla, and R. Guo, “Linear electrooptic coefficient r51 of tetragonal potassium lithium tantalate niobate K0.95Li0.05Ta0.40Nb0.60O3 single crystal,” Opt. Mater. Express 3(12), 2063–2071 (2013).
[Crossref]

W. Yang, Z. Zhou, B. Yang, Y. Jiang, H. Tian, D. Gong, H. Sun, and W. Chen, “Structure and refractive index dispersive behavior of potassium niobate tantalate films prepared by pulsed laser deposition,” Appl. Surf. Sci. 257(16), 7221–7225 (2011).
[Crossref]

Zhu, W.

W. Zhu, J.-H. Chao, C. Wang, J. Yao, and S. Yin, “Design and implementation of super broadband high speed waveguide switches,” Proc. SPIE 9586, 95860W (2015).
[Crossref]

Žukauskaite, A.

Y. Jia, M. Winkler, J. Szabados, I. Breunig, L. Kirste, V. Cimalla, A. Žukauskaitė, and K. Buse, “Potassium-tantalate-niobate mixed crystal thin films for applications in nonlinear integrated optics,” J. Phys. Conf. Ser. 867, 012020 (2017).
[Crossref]

Appl. Phys. B (1)

K. Buse, “Light-induced charge transport processes in photorefractive crystals II: Materials,” Appl. Phys. B 64(4), 391–407 (1997).
[Crossref]

Appl. Phys. Express (1)

J. Miyazu, T. Imai, S. Toyoda, M. Sasaura, S. Yagi, K. Kato, Y. Sasaki, and K. Fujiura, “New beam scanning model for high-speed operation using KTa1−xNbxO3 crystals,” Appl. Phys. Express 4(11), 111501 (2011).
[Crossref]

Appl. Phys. Lett. (3)

S. Yilmaz, T. Venkatesan, and R. Gerhard-Multhaupt, “Pulsed laser deposition of stoichiometric potassium-tantalate-niobate films from segmented evaporation targets,” Appl. Phys. Lett. 58(22), 2479–2481 (1991).
[Crossref]

L. A. Knauss, K. S. Harshavardhan, H.-M. Christen, H. Y. Zhang, X. H. He, Y. H. Shih, K. S. Grabowski, and D. L. Knies, “Growth of nonlinear optical thin films of KTa1-xNbxO3 on GaAs by pulsed laser deposition for integrated optics,” Appl. Phys. Lett. 73(26), 3806–3808 (1998).
[Crossref]

K. Nakamura, J. Miyazu, M. Sasaura, and K. Fujiura, “Wide-angle, low-voltage electro-optic beam deflection based on space-charge-controlled mode of electrical conduction in KTa1−xNbxO3,” Appl. Phys. Lett. 89(13), 131115 (2006).
[Crossref]

Appl. Surf. Sci. (1)

W. Yang, Z. Zhou, B. Yang, Y. Jiang, H. Tian, D. Gong, H. Sun, and W. Chen, “Structure and refractive index dispersive behavior of potassium niobate tantalate films prepared by pulsed laser deposition,” Appl. Surf. Sci. 257(16), 7221–7225 (2011).
[Crossref]

Ferroelectrics (1)

V. A. Kallur and R. K. Pandey, “Crystal growth and properties of potassium tantalate niobate, KTa1-xNbxO3, ferroelectric,” Ferroelectrics 158(1), 55–60 (1994).
[Crossref]

J. Phys. Conf. Ser. (1)

Y. Jia, M. Winkler, J. Szabados, I. Breunig, L. Kirste, V. Cimalla, A. Žukauskaitė, and K. Buse, “Potassium-tantalate-niobate mixed crystal thin films for applications in nonlinear integrated optics,” J. Phys. Conf. Ser. 867, 012020 (2017).
[Crossref]

J. Phys. E Sci. Instrum. (1)

R. Swanepoel, “Determination of thickness and optical constants of amorphous silicon,” J. Phys. E Sci. Instrum. 16(12), 1214–1222 (1983).
[Crossref]

Jpn. J. Appl. Phys. (1)

H. Maiwa, “Electrocaloric properties of potassium tantalate niobate crystals,” Jpn. J. Appl. Phys. 55(10S), 10TB09 (2016).
[Crossref]

NTT Tech. Rev. (2)

S. Yagi, “KTN crystals open up new possibilities and applications,” NTT Tech. Rev. 7(12), 1–5 (2009).

T. Imai, M. Sasaura, K. Nakamura, and K. Fujiura, “Crystal growth and electro-optic properties of KTa1-xNbxO3,” NTT Tech. Rev. 5(9), 1–8 (2007).

Opt. Acta (Lond.) (1)

P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta (Lond.) 33(2), 127–143 (1986).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Opt. Mater. Express (1)

Phys. Rev. (1)

S. Triebwasser, “Study of ferroelectric transitions of solid-solution single crystals of KNbO3-KTaO3,” Phys. Rev. 114(1), 63–70 (1959).
[Crossref]

Proc. SPIE (1)

W. Zhu, J.-H. Chao, C. Wang, J. Yao, and S. Yin, “Design and implementation of super broadband high speed waveguide switches,” Proc. SPIE 9586, 95860W (2015).
[Crossref]

Thin Solid Films (1)

A. Rousseau, V. Laur, S. Députier, V. Bouquet, M. Guilloux-Viry, G. Tanné, P. Laurent, F. Huret, and A. Perrin, “Influence of substrate on the pulsed laser deposition growth and microwave behaviour of KTa0.6Nb0.4O3 potassium tantalate niobate ferroelectric thin films,” Thin Solid Films 516(15), 4882–4888 (2008).
[Crossref]

Other (2)

R. Eason, Pulsed laser deposition of thin films: applications-led growth of functional materials (John Wiley & Sons, 2007).

D. N. Nikogosyan, Theory of Dielectric Optical Waveguides (Academic, New York, 1974).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) θ-2θ scan XRD patterns of (001)-oriented KTa0.5Nb0.5O3 thin films. (b) HRXRD reciprocal space maps of (420) reflex of KTN films grown on MgO(001) and KTaO3(001) substrates.
Fig. 2
Fig. 2 SEM images of as-deposited KTN thin films on (a) MgO and (b) KTaO3 substrates. Piezoresponse force microscopy (PFM) images of (c), (d) piezoelectric amplitude and (e), (f) piezoelectric phase for polished thin films.
Fig. 3
Fig. 3 (a) Transmission spectra and (b) refractive index profiles of KTa0.5Nb0.5O3/MgO film and KTa0.57Nb0.43O3 bulk single crystal (NTT-AT, Japan). The dispersion of the refractive indices was fitted with an one-pole Sellmeier equation including a quadratic IR correction term in the form of (no)2 = A + B/(λ2C) – 2.
Fig. 4
Fig. 4 (a) Reconstructed refractive index profile of PLD-grown KTN/MgO thin films. (b) Experimental and simulated results of near-field intensity distributions of transmitted guided waves at 632.8 nm.

Metrics