Abstract

Silicon nanostructures have been attracting increasing attention as nanoscale Mie scatters for various applications due to the subwavelength light concentration capability endowed by its high refractive index and the fabrication compatibility with the chip manufacturing processes. In this work, we investigate the polarization-dependent scattering properties of lithographic single-crystalline silicon nanocylindroids at the visible range. Both simulated and experimental studies were carried out to reveal the electric and magnetic resonance modes that occur in the silicon nanocylindroids. Systematic control experiments were conducted to demonstrate the polarization and size dependence of the resonance-induced scattering peaks. The unique anisotropic optical property of lithographically fabricated Si nanostructures at the single particle resolution provides an extra freedom to design silicon-based optical elements at the visible range for enhanced light-matter interactions.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
All-dielectric nanophotonics: the quest for better materials and fabrication techniques

Denis G. Baranov, Dmitry A. Zuev, Sergey I. Lepeshov, Oleg V. Kotov, Alexander E. Krasnok, Andrey B. Evlyukhin, and Boris N. Chichkov
Optica 4(7) 814-825 (2017)

Substrate-modified scattering properties of silicon nanostructures for solar energy applications

N. T. Fofang, T. S. Luk, M. Okandan, G. N. Nielson, and I. Brener
Opt. Express 21(4) 4774-4782 (2013)

All-silicon-based nano-antennas for wavelength and polarization demultiplexing

Mingcheng Panmai, Jin Xiang, Zhibo Sun, Yuanyuan Peng, Hongfeng Liu, Haiying Liu, Qiaofeng Dai, Shaolong Tie, and Sheng Lan
Opt. Express 26(10) 12344-12362 (2018)

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
    [Crossref] [PubMed]
  2. J. Dai, F. Čajko, I. Tsukerman, and M. I. Stockman, “Electrodynamic effects in plasmonic nanolenses,” Phys. Rev. B 77(11), 115419 (2008).
    [Crossref]
  3. V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111(6), 3888–3912 (2011).
    [Crossref] [PubMed]
  4. Z. Liu, W. Hou, P. Pavaskar, M. Aykol, and S. B. Cronin, “Plasmon resonant enhancement of photocatalytic water splitting under visible illumination,” Nano Lett. 11(3), 1111–1116 (2011).
    [Crossref] [PubMed]
  5. S. Mubeen, J. Lee, N. Singh, S. Krämer, G. D. Stucky, and M. Moskovits, “An autonomous photosynthetic device in which all charge carriers derive from surface plasmons,” Nat. Nanotechnol. 8(4), 247–251 (2013).
    [Crossref] [PubMed]
  6. N. Accanto, L. Piatkowski, I. M. Hancu, J. Renger, and N. F. van Hulst, “Resonant plasmonic nanoparticles for multicolor second harmonic imaging,” Appl. Phys. Lett. 108(8), 083115 (2016).
    [Crossref]
  7. J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
    [Crossref] [PubMed]
  8. Y. Zheng, T. Thai, P. Reineck, L. Qiu, Y. Guo, and U. Bach, “DNA-directed self-assembly of core-satellite plasmonic nanostructures: a highly sensitive and reproducible near-IR SERS sensor,” Adv. Funct. Mater. 23(12), 1519–1526 (2013).
    [Crossref]
  9. A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
    [Crossref] [PubMed]
  10. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
    [Crossref]
  11. P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, and R. Devlin, “Recent advances in planar optics: from plasmonic to dielectric metasurfaces,” Optica 4(1), 139–152 (2017).
    [Crossref]
  12. A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
    [Crossref] [PubMed]
  13. A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2(1), 492 (2012).
    [Crossref] [PubMed]
  14. A. Andres-Arroyo, B. Gupta, F. Wang, J. J. Gooding, and P. J. Reece, “Optical manipulation and spectroscopy of silicon nanoparticles exhibiting dielectric resonances,” Nano Lett. 16(3), 1903–1910 (2016).
    [Crossref] [PubMed]
  15. Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
    [Crossref] [PubMed]
  16. J. van de Groep and A. Polman, “Designing dielectric resonators on substrates: combining magnetic and electric resonances,” Opt. Express 21(22), 26285–26302 (2013).
    [Crossref] [PubMed]
  17. I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
    [Crossref] [PubMed]
  18. J. Cheng, D. Ansari-Oghol-Beig, and H. Mosallaei, “Wave manipulation with designer dielectric metasurfaces,” Opt. Lett. 39(21), 6285–6288 (2014).
    [Crossref] [PubMed]
  19. A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
    [Crossref] [PubMed]
  20. S. Kruk, B. Hopkins, I. I. Kravchenko, A. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Invited Article: Broadband highly efficient dielectric metadevices for polarization control,” APL Photonics 1(3), 030801 (2016).
    [Crossref]
  21. U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses,” Nat. Commun. 5, 3402 (2014).
    [Crossref] [PubMed]
  22. J. K. Yang, B. Cord, H. Duan, K. K. Berggren, J. Klingfus, S.-W. Nam, K.-B. Kim, and M. J. Rooks, “Understanding of hydrogen silsesquioxane electron resist for sub-5-nm-half-pitch lithography,” J. Vac. Sci. Technol. B 27(6), 2622–2627 (2009).
    [Crossref]
  23. Z. Li, Y. Chen, X. Zhu, M. Zheng, F. Dong, P. Chen, L. Xu, W. Chu, and H. Duan, “Fabrication of single-crystal silicon nanotubes with sub-10 nm walls using cryogenic inductively coupled plasma reactive ion etching,” Nanotechnology 27(36), 365302 (2016).
    [Crossref] [PubMed]
  24. J. Proust, F. Bedu, S. Chenot, I. Soumahoro, I. Ozerov, B. Gallas, R. Abdeddaim, and N. Bonod, “Chemical alkaline etching of silicon Mie particles,” Adv. Opt. Mater. 3(9), 1280–1286 (2015).
    [Crossref]
  25. U. Zywietz, M. K. Schmidt, A. B. Evlyukhin, C. Reinhardt, J. Aizpurua, and B. N. Chichkov, “Electromagnetic resonances of silicon nanoparticle dimers in the visible,” ACS Photonics 2(7), 913–920 (2015).
    [Crossref]
  26. A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B 84(23), 235429 (2011).
    [Crossref]
  27. M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
    [Crossref]
  28. Z. Li, A. W. Clark, and J. M. Cooper, “Dual Color Plasmonic Pixels Create a Polarization Controlled Nano Color Palette,” ACS Nano 10(1), 492–498 (2016).
    [Crossref] [PubMed]
  29. Y. Cui, R. S. Hegde, I. Y. Phang, H. K. Lee, and X. Y. Ling, “Encoding molecular information in plasmonic nanostructures for anti-counterfeiting applications,” Nanoscale 6(1), 282–288 (2014).
    [Crossref] [PubMed]

2017 (1)

2016 (5)

Z. Li, A. W. Clark, and J. M. Cooper, “Dual Color Plasmonic Pixels Create a Polarization Controlled Nano Color Palette,” ACS Nano 10(1), 492–498 (2016).
[Crossref] [PubMed]

A. Andres-Arroyo, B. Gupta, F. Wang, J. J. Gooding, and P. J. Reece, “Optical manipulation and spectroscopy of silicon nanoparticles exhibiting dielectric resonances,” Nano Lett. 16(3), 1903–1910 (2016).
[Crossref] [PubMed]

N. Accanto, L. Piatkowski, I. M. Hancu, J. Renger, and N. F. van Hulst, “Resonant plasmonic nanoparticles for multicolor second harmonic imaging,” Appl. Phys. Lett. 108(8), 083115 (2016).
[Crossref]

S. Kruk, B. Hopkins, I. I. Kravchenko, A. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Invited Article: Broadband highly efficient dielectric metadevices for polarization control,” APL Photonics 1(3), 030801 (2016).
[Crossref]

Z. Li, Y. Chen, X. Zhu, M. Zheng, F. Dong, P. Chen, L. Xu, W. Chu, and H. Duan, “Fabrication of single-crystal silicon nanotubes with sub-10 nm walls using cryogenic inductively coupled plasma reactive ion etching,” Nanotechnology 27(36), 365302 (2016).
[Crossref] [PubMed]

2015 (4)

J. Proust, F. Bedu, S. Chenot, I. Soumahoro, I. Ozerov, B. Gallas, R. Abdeddaim, and N. Bonod, “Chemical alkaline etching of silicon Mie particles,” Adv. Opt. Mater. 3(9), 1280–1286 (2015).
[Crossref]

U. Zywietz, M. K. Schmidt, A. B. Evlyukhin, C. Reinhardt, J. Aizpurua, and B. N. Chichkov, “Electromagnetic resonances of silicon nanoparticle dimers in the visible,” ACS Photonics 2(7), 913–920 (2015).
[Crossref]

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

2014 (3)

J. Cheng, D. Ansari-Oghol-Beig, and H. Mosallaei, “Wave manipulation with designer dielectric metasurfaces,” Opt. Lett. 39(21), 6285–6288 (2014).
[Crossref] [PubMed]

Y. Cui, R. S. Hegde, I. Y. Phang, H. K. Lee, and X. Y. Ling, “Encoding molecular information in plasmonic nanostructures for anti-counterfeiting applications,” Nanoscale 6(1), 282–288 (2014).
[Crossref] [PubMed]

U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses,” Nat. Commun. 5, 3402 (2014).
[Crossref] [PubMed]

2013 (5)

S. Mubeen, J. Lee, N. Singh, S. Krämer, G. D. Stucky, and M. Moskovits, “An autonomous photosynthetic device in which all charge carriers derive from surface plasmons,” Nat. Nanotechnol. 8(4), 247–251 (2013).
[Crossref] [PubMed]

Y. Zheng, T. Thai, P. Reineck, L. Qiu, Y. Guo, and U. Bach, “DNA-directed self-assembly of core-satellite plasmonic nanostructures: a highly sensitive and reproducible near-IR SERS sensor,” Adv. Funct. Mater. 23(12), 1519–1526 (2013).
[Crossref]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

J. van de Groep and A. Polman, “Designing dielectric resonators on substrates: combining magnetic and electric resonances,” Opt. Express 21(22), 26285–26302 (2013).
[Crossref] [PubMed]

2012 (2)

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2(1), 492 (2012).
[Crossref] [PubMed]

2011 (4)

A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[Crossref] [PubMed]

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111(6), 3888–3912 (2011).
[Crossref] [PubMed]

Z. Liu, W. Hou, P. Pavaskar, M. Aykol, and S. B. Cronin, “Plasmon resonant enhancement of photocatalytic water splitting under visible illumination,” Nano Lett. 11(3), 1111–1116 (2011).
[Crossref] [PubMed]

A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B 84(23), 235429 (2011).
[Crossref]

2010 (2)

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

2009 (1)

J. K. Yang, B. Cord, H. Duan, K. K. Berggren, J. Klingfus, S.-W. Nam, K.-B. Kim, and M. J. Rooks, “Understanding of hydrogen silsesquioxane electron resist for sub-5-nm-half-pitch lithography,” J. Vac. Sci. Technol. B 27(6), 2622–2627 (2009).
[Crossref]

2008 (1)

J. Dai, F. Čajko, I. Tsukerman, and M. I. Stockman, “Electrodynamic effects in plasmonic nanolenses,” Phys. Rev. B 77(11), 115419 (2008).
[Crossref]

2003 (1)

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

Abdeddaim, R.

J. Proust, F. Bedu, S. Chenot, I. Soumahoro, I. Ozerov, B. Gallas, R. Abdeddaim, and N. Bonod, “Chemical alkaline etching of silicon Mie particles,” Adv. Opt. Mater. 3(9), 1280–1286 (2015).
[Crossref]

Accanto, N.

N. Accanto, L. Piatkowski, I. M. Hancu, J. Renger, and N. F. van Hulst, “Resonant plasmonic nanoparticles for multicolor second harmonic imaging,” Appl. Phys. Lett. 108(8), 083115 (2016).
[Crossref]

Aieta, F.

Aizpurua, J.

U. Zywietz, M. K. Schmidt, A. B. Evlyukhin, C. Reinhardt, J. Aizpurua, and B. N. Chichkov, “Electromagnetic resonances of silicon nanoparticle dimers in the visible,” ACS Photonics 2(7), 913–920 (2015).
[Crossref]

Andres-Arroyo, A.

A. Andres-Arroyo, B. Gupta, F. Wang, J. J. Gooding, and P. J. Reece, “Optical manipulation and spectroscopy of silicon nanoparticles exhibiting dielectric resonances,” Nano Lett. 16(3), 1903–1910 (2016).
[Crossref] [PubMed]

Ansari-Oghol-Beig, D.

Arbabi, A.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

Atwater, H. A.

A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[Crossref] [PubMed]

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

Aykol, M.

Z. Liu, W. Hou, P. Pavaskar, M. Aykol, and S. B. Cronin, “Plasmon resonant enhancement of photocatalytic water splitting under visible illumination,” Nano Lett. 11(3), 1111–1116 (2011).
[Crossref] [PubMed]

Bach, U.

Y. Zheng, T. Thai, P. Reineck, L. Qiu, Y. Guo, and U. Bach, “DNA-directed self-assembly of core-satellite plasmonic nanostructures: a highly sensitive and reproducible near-IR SERS sensor,” Adv. Funct. Mater. 23(12), 1519–1526 (2013).
[Crossref]

Bagheri, M.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

Bedu, F.

J. Proust, F. Bedu, S. Chenot, I. Soumahoro, I. Ozerov, B. Gallas, R. Abdeddaim, and N. Bonod, “Chemical alkaline etching of silicon Mie particles,” Adv. Opt. Mater. 3(9), 1280–1286 (2015).
[Crossref]

Berggren, K. K.

J. K. Yang, B. Cord, H. Duan, K. K. Berggren, J. Klingfus, S.-W. Nam, K.-B. Kim, and M. J. Rooks, “Understanding of hydrogen silsesquioxane electron resist for sub-5-nm-half-pitch lithography,” J. Vac. Sci. Technol. B 27(6), 2622–2627 (2009).
[Crossref]

Boltasseva, A.

A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[Crossref] [PubMed]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Bonod, N.

J. Proust, F. Bedu, S. Chenot, I. Soumahoro, I. Ozerov, B. Gallas, R. Abdeddaim, and N. Bonod, “Chemical alkaline etching of silicon Mie particles,” Adv. Opt. Mater. 3(9), 1280–1286 (2015).
[Crossref]

Bozhevolnyi, S. I.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref] [PubMed]

Brener, I.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

Cajko, F.

J. Dai, F. Čajko, I. Tsukerman, and M. I. Stockman, “Electrodynamic effects in plasmonic nanolenses,” Phys. Rev. B 77(11), 115419 (2008).
[Crossref]

Capasso, F.

Chen, P.

Z. Li, Y. Chen, X. Zhu, M. Zheng, F. Dong, P. Chen, L. Xu, W. Chu, and H. Duan, “Fabrication of single-crystal silicon nanotubes with sub-10 nm walls using cryogenic inductively coupled plasma reactive ion etching,” Nanotechnology 27(36), 365302 (2016).
[Crossref] [PubMed]

Chen, Y.

Z. Li, Y. Chen, X. Zhu, M. Zheng, F. Dong, P. Chen, L. Xu, W. Chu, and H. Duan, “Fabrication of single-crystal silicon nanotubes with sub-10 nm walls using cryogenic inductively coupled plasma reactive ion etching,” Nanotechnology 27(36), 365302 (2016).
[Crossref] [PubMed]

Cheng, J.

Chenot, S.

J. Proust, F. Bedu, S. Chenot, I. Soumahoro, I. Ozerov, B. Gallas, R. Abdeddaim, and N. Bonod, “Chemical alkaline etching of silicon Mie particles,” Adv. Opt. Mater. 3(9), 1280–1286 (2015).
[Crossref]

Chichkov, B. N.

U. Zywietz, M. K. Schmidt, A. B. Evlyukhin, C. Reinhardt, J. Aizpurua, and B. N. Chichkov, “Electromagnetic resonances of silicon nanoparticle dimers in the visible,” ACS Photonics 2(7), 913–920 (2015).
[Crossref]

U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses,” Nat. Commun. 5, 3402 (2014).
[Crossref] [PubMed]

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref] [PubMed]

A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B 84(23), 235429 (2011).
[Crossref]

Chu, W.

Z. Li, Y. Chen, X. Zhu, M. Zheng, F. Dong, P. Chen, L. Xu, W. Chu, and H. Duan, “Fabrication of single-crystal silicon nanotubes with sub-10 nm walls using cryogenic inductively coupled plasma reactive ion etching,” Nanotechnology 27(36), 365302 (2016).
[Crossref] [PubMed]

Clark, A. W.

Z. Li, A. W. Clark, and J. M. Cooper, “Dual Color Plasmonic Pixels Create a Polarization Controlled Nano Color Palette,” ACS Nano 10(1), 492–498 (2016).
[Crossref] [PubMed]

Cooper, J. M.

Z. Li, A. W. Clark, and J. M. Cooper, “Dual Color Plasmonic Pixels Create a Polarization Controlled Nano Color Palette,” ACS Nano 10(1), 492–498 (2016).
[Crossref] [PubMed]

Cord, B.

J. K. Yang, B. Cord, H. Duan, K. K. Berggren, J. Klingfus, S.-W. Nam, K.-B. Kim, and M. J. Rooks, “Understanding of hydrogen silsesquioxane electron resist for sub-5-nm-half-pitch lithography,” J. Vac. Sci. Technol. B 27(6), 2622–2627 (2009).
[Crossref]

Cronin, S. B.

Z. Liu, W. Hou, P. Pavaskar, M. Aykol, and S. B. Cronin, “Plasmon resonant enhancement of photocatalytic water splitting under visible illumination,” Nano Lett. 11(3), 1111–1116 (2011).
[Crossref] [PubMed]

Cui, Y.

Y. Cui, R. S. Hegde, I. Y. Phang, H. K. Lee, and X. Y. Ling, “Encoding molecular information in plasmonic nanostructures for anti-counterfeiting applications,” Nanoscale 6(1), 282–288 (2014).
[Crossref] [PubMed]

Dai, J.

J. Dai, F. Čajko, I. Tsukerman, and M. I. Stockman, “Electrodynamic effects in plasmonic nanolenses,” Phys. Rev. B 77(11), 115419 (2008).
[Crossref]

Decker, M.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

Devlin, R.

Ding, Y.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Dominguez, J.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

Dong, F.

Z. Li, Y. Chen, X. Zhu, M. Zheng, F. Dong, P. Chen, L. Xu, W. Chu, and H. Duan, “Fabrication of single-crystal silicon nanotubes with sub-10 nm walls using cryogenic inductively coupled plasma reactive ion etching,” Nanotechnology 27(36), 365302 (2016).
[Crossref] [PubMed]

Duan, H.

Z. Li, Y. Chen, X. Zhu, M. Zheng, F. Dong, P. Chen, L. Xu, W. Chu, and H. Duan, “Fabrication of single-crystal silicon nanotubes with sub-10 nm walls using cryogenic inductively coupled plasma reactive ion etching,” Nanotechnology 27(36), 365302 (2016).
[Crossref] [PubMed]

J. K. Yang, B. Cord, H. Duan, K. K. Berggren, J. Klingfus, S.-W. Nam, K.-B. Kim, and M. J. Rooks, “Understanding of hydrogen silsesquioxane electron resist for sub-5-nm-half-pitch lithography,” J. Vac. Sci. Technol. B 27(6), 2622–2627 (2009).
[Crossref]

Emani, N. K.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Eriksen, R. L.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref] [PubMed]

Evlyukhin, A. B.

U. Zywietz, M. K. Schmidt, A. B. Evlyukhin, C. Reinhardt, J. Aizpurua, and B. N. Chichkov, “Electromagnetic resonances of silicon nanoparticle dimers in the visible,” ACS Photonics 2(7), 913–920 (2015).
[Crossref]

U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses,” Nat. Commun. 5, 3402 (2014).
[Crossref] [PubMed]

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref] [PubMed]

A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B 84(23), 235429 (2011).
[Crossref]

Falkner, M.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

Fan, F. R.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Faraon, A.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

Fernández-Domínguez, A. I.

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111(6), 3888–3912 (2011).
[Crossref] [PubMed]

Fofang, N. T.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

Fu, Y. H.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2(1), 492 (2012).
[Crossref] [PubMed]

Gallas, B.

J. Proust, F. Bedu, S. Chenot, I. Soumahoro, I. Ozerov, B. Gallas, R. Abdeddaim, and N. Bonod, “Chemical alkaline etching of silicon Mie particles,” Adv. Opt. Mater. 3(9), 1280–1286 (2015).
[Crossref]

Genevet, P.

Giannini, V.

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111(6), 3888–3912 (2011).
[Crossref] [PubMed]

Gonzales, E.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

Gooding, J. J.

A. Andres-Arroyo, B. Gupta, F. Wang, J. J. Gooding, and P. J. Reece, “Optical manipulation and spectroscopy of silicon nanoparticles exhibiting dielectric resonances,” Nano Lett. 16(3), 1903–1910 (2016).
[Crossref] [PubMed]

Guo, Y.

Y. Zheng, T. Thai, P. Reineck, L. Qiu, Y. Guo, and U. Bach, “DNA-directed self-assembly of core-satellite plasmonic nanostructures: a highly sensitive and reproducible near-IR SERS sensor,” Adv. Funct. Mater. 23(12), 1519–1526 (2013).
[Crossref]

Gupta, B.

A. Andres-Arroyo, B. Gupta, F. Wang, J. J. Gooding, and P. J. Reece, “Optical manipulation and spectroscopy of silicon nanoparticles exhibiting dielectric resonances,” Nano Lett. 16(3), 1903–1910 (2016).
[Crossref] [PubMed]

Hancu, I. M.

N. Accanto, L. Piatkowski, I. M. Hancu, J. Renger, and N. F. van Hulst, “Resonant plasmonic nanoparticles for multicolor second harmonic imaging,” Appl. Phys. Lett. 108(8), 083115 (2016).
[Crossref]

Harel, E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

Heck, S. C.

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111(6), 3888–3912 (2011).
[Crossref] [PubMed]

Hegde, R. S.

Y. Cui, R. S. Hegde, I. Y. Phang, H. K. Lee, and X. Y. Ling, “Encoding molecular information in plasmonic nanostructures for anti-counterfeiting applications,” Nanoscale 6(1), 282–288 (2014).
[Crossref] [PubMed]

Hopkins, B.

S. Kruk, B. Hopkins, I. I. Kravchenko, A. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Invited Article: Broadband highly efficient dielectric metadevices for polarization control,” APL Photonics 1(3), 030801 (2016).
[Crossref]

Horie, Y.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

Hou, W.

Z. Liu, W. Hou, P. Pavaskar, M. Aykol, and S. B. Cronin, “Plasmon resonant enhancement of photocatalytic water splitting under visible illumination,” Nano Lett. 11(3), 1111–1116 (2011).
[Crossref] [PubMed]

Huang, Y. F.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Ishii, S.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Khorasaninejad, M.

Kik, P. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

Kim, K.-B.

J. K. Yang, B. Cord, H. Duan, K. K. Berggren, J. Klingfus, S.-W. Nam, K.-B. Kim, and M. J. Rooks, “Understanding of hydrogen silsesquioxane electron resist for sub-5-nm-half-pitch lithography,” J. Vac. Sci. Technol. B 27(6), 2622–2627 (2009).
[Crossref]

Kivshar, Y.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

Kivshar, Y. S.

S. Kruk, B. Hopkins, I. I. Kravchenko, A. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Invited Article: Broadband highly efficient dielectric metadevices for polarization control,” APL Photonics 1(3), 030801 (2016).
[Crossref]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

Klingfus, J.

J. K. Yang, B. Cord, H. Duan, K. K. Berggren, J. Klingfus, S.-W. Nam, K.-B. Kim, and M. J. Rooks, “Understanding of hydrogen silsesquioxane electron resist for sub-5-nm-half-pitch lithography,” J. Vac. Sci. Technol. B 27(6), 2622–2627 (2009).
[Crossref]

Koel, B. E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

Krämer, S.

S. Mubeen, J. Lee, N. Singh, S. Krämer, G. D. Stucky, and M. Moskovits, “An autonomous photosynthetic device in which all charge carriers derive from surface plasmons,” Nat. Nanotechnol. 8(4), 247–251 (2013).
[Crossref] [PubMed]

Kravchenko, I. I.

S. Kruk, B. Hopkins, I. I. Kravchenko, A. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Invited Article: Broadband highly efficient dielectric metadevices for polarization control,” APL Photonics 1(3), 030801 (2016).
[Crossref]

Kruk, S.

S. Kruk, B. Hopkins, I. I. Kravchenko, A. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Invited Article: Broadband highly efficient dielectric metadevices for polarization control,” APL Photonics 1(3), 030801 (2016).
[Crossref]

Kuznetsov, A. I.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2(1), 492 (2012).
[Crossref] [PubMed]

Lee, H. K.

Y. Cui, R. S. Hegde, I. Y. Phang, H. K. Lee, and X. Y. Ling, “Encoding molecular information in plasmonic nanostructures for anti-counterfeiting applications,” Nanoscale 6(1), 282–288 (2014).
[Crossref] [PubMed]

Lee, J.

S. Mubeen, J. Lee, N. Singh, S. Krämer, G. D. Stucky, and M. Moskovits, “An autonomous photosynthetic device in which all charge carriers derive from surface plasmons,” Nat. Nanotechnol. 8(4), 247–251 (2013).
[Crossref] [PubMed]

Li, J. F.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Li, S. B.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Li, Z.

Z. Li, A. W. Clark, and J. M. Cooper, “Dual Color Plasmonic Pixels Create a Polarization Controlled Nano Color Palette,” ACS Nano 10(1), 492–498 (2016).
[Crossref] [PubMed]

Z. Li, Y. Chen, X. Zhu, M. Zheng, F. Dong, P. Chen, L. Xu, W. Chu, and H. Duan, “Fabrication of single-crystal silicon nanotubes with sub-10 nm walls using cryogenic inductively coupled plasma reactive ion etching,” Nanotechnology 27(36), 365302 (2016).
[Crossref] [PubMed]

Ling, X. Y.

Y. Cui, R. S. Hegde, I. Y. Phang, H. K. Lee, and X. Y. Ling, “Encoding molecular information in plasmonic nanostructures for anti-counterfeiting applications,” Nanoscale 6(1), 282–288 (2014).
[Crossref] [PubMed]

Liu, S.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

Liu, Z.

Z. Liu, W. Hou, P. Pavaskar, M. Aykol, and S. B. Cronin, “Plasmon resonant enhancement of photocatalytic water splitting under visible illumination,” Nano Lett. 11(3), 1111–1116 (2011).
[Crossref] [PubMed]

Luk, T. S.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

Luk’yanchuk, B.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2(1), 492 (2012).
[Crossref] [PubMed]

Maier, S. A.

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111(6), 3888–3912 (2011).
[Crossref] [PubMed]

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

Meltzer, S.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

Miroshnichenko, A.

S. Kruk, B. Hopkins, I. I. Kravchenko, A. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Invited Article: Broadband highly efficient dielectric metadevices for polarization control,” APL Photonics 1(3), 030801 (2016).
[Crossref]

Miroshnichenko, A. E.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2(1), 492 (2012).
[Crossref] [PubMed]

Mosallaei, H.

Moskovits, M.

S. Mubeen, J. Lee, N. Singh, S. Krämer, G. D. Stucky, and M. Moskovits, “An autonomous photosynthetic device in which all charge carriers derive from surface plasmons,” Nat. Nanotechnol. 8(4), 247–251 (2013).
[Crossref] [PubMed]

Mubeen, S.

S. Mubeen, J. Lee, N. Singh, S. Krämer, G. D. Stucky, and M. Moskovits, “An autonomous photosynthetic device in which all charge carriers derive from surface plasmons,” Nat. Nanotechnol. 8(4), 247–251 (2013).
[Crossref] [PubMed]

Naik, G. V.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Nam, S.-W.

J. K. Yang, B. Cord, H. Duan, K. K. Berggren, J. Klingfus, S.-W. Nam, K.-B. Kim, and M. J. Rooks, “Understanding of hydrogen silsesquioxane electron resist for sub-5-nm-half-pitch lithography,” J. Vac. Sci. Technol. B 27(6), 2622–2627 (2009).
[Crossref]

Neshev, D. N.

S. Kruk, B. Hopkins, I. I. Kravchenko, A. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Invited Article: Broadband highly efficient dielectric metadevices for polarization control,” APL Photonics 1(3), 030801 (2016).
[Crossref]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

Novikov, S. M.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref] [PubMed]

Ozerov, I.

J. Proust, F. Bedu, S. Chenot, I. Soumahoro, I. Ozerov, B. Gallas, R. Abdeddaim, and N. Bonod, “Chemical alkaline etching of silicon Mie particles,” Adv. Opt. Mater. 3(9), 1280–1286 (2015).
[Crossref]

Pavaskar, P.

Z. Liu, W. Hou, P. Pavaskar, M. Aykol, and S. B. Cronin, “Plasmon resonant enhancement of photocatalytic water splitting under visible illumination,” Nano Lett. 11(3), 1111–1116 (2011).
[Crossref] [PubMed]

Pertsch, T.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

Phang, I. Y.

Y. Cui, R. S. Hegde, I. Y. Phang, H. K. Lee, and X. Y. Ling, “Encoding molecular information in plasmonic nanostructures for anti-counterfeiting applications,” Nanoscale 6(1), 282–288 (2014).
[Crossref] [PubMed]

Piatkowski, L.

N. Accanto, L. Piatkowski, I. M. Hancu, J. Renger, and N. F. van Hulst, “Resonant plasmonic nanoparticles for multicolor second harmonic imaging,” Appl. Phys. Lett. 108(8), 083115 (2016).
[Crossref]

Polman, A.

Proust, J.

J. Proust, F. Bedu, S. Chenot, I. Soumahoro, I. Ozerov, B. Gallas, R. Abdeddaim, and N. Bonod, “Chemical alkaline etching of silicon Mie particles,” Adv. Opt. Mater. 3(9), 1280–1286 (2015).
[Crossref]

Qiu, L.

Y. Zheng, T. Thai, P. Reineck, L. Qiu, Y. Guo, and U. Bach, “DNA-directed self-assembly of core-satellite plasmonic nanostructures: a highly sensitive and reproducible near-IR SERS sensor,” Adv. Funct. Mater. 23(12), 1519–1526 (2013).
[Crossref]

Reece, P. J.

A. Andres-Arroyo, B. Gupta, F. Wang, J. J. Gooding, and P. J. Reece, “Optical manipulation and spectroscopy of silicon nanoparticles exhibiting dielectric resonances,” Nano Lett. 16(3), 1903–1910 (2016).
[Crossref] [PubMed]

Reineck, P.

Y. Zheng, T. Thai, P. Reineck, L. Qiu, Y. Guo, and U. Bach, “DNA-directed self-assembly of core-satellite plasmonic nanostructures: a highly sensitive and reproducible near-IR SERS sensor,” Adv. Funct. Mater. 23(12), 1519–1526 (2013).
[Crossref]

Reinhardt, C.

U. Zywietz, M. K. Schmidt, A. B. Evlyukhin, C. Reinhardt, J. Aizpurua, and B. N. Chichkov, “Electromagnetic resonances of silicon nanoparticle dimers in the visible,” ACS Photonics 2(7), 913–920 (2015).
[Crossref]

U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses,” Nat. Commun. 5, 3402 (2014).
[Crossref] [PubMed]

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref] [PubMed]

A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B 84(23), 235429 (2011).
[Crossref]

Ren, B.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Renger, J.

N. Accanto, L. Piatkowski, I. M. Hancu, J. Renger, and N. F. van Hulst, “Resonant plasmonic nanoparticles for multicolor second harmonic imaging,” Appl. Phys. Lett. 108(8), 083115 (2016).
[Crossref]

Requicha, A. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

Rooks, M. J.

J. K. Yang, B. Cord, H. Duan, K. K. Berggren, J. Klingfus, S.-W. Nam, K.-B. Kim, and M. J. Rooks, “Understanding of hydrogen silsesquioxane electron resist for sub-5-nm-half-pitch lithography,” J. Vac. Sci. Technol. B 27(6), 2622–2627 (2009).
[Crossref]

Schmidt, M. K.

U. Zywietz, M. K. Schmidt, A. B. Evlyukhin, C. Reinhardt, J. Aizpurua, and B. N. Chichkov, “Electromagnetic resonances of silicon nanoparticle dimers in the visible,” ACS Photonics 2(7), 913–920 (2015).
[Crossref]

Shalaev, V. M.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Singh, N.

S. Mubeen, J. Lee, N. Singh, S. Krämer, G. D. Stucky, and M. Moskovits, “An autonomous photosynthetic device in which all charge carriers derive from surface plasmons,” Nat. Nanotechnol. 8(4), 247–251 (2013).
[Crossref] [PubMed]

Soumahoro, I.

J. Proust, F. Bedu, S. Chenot, I. Soumahoro, I. Ozerov, B. Gallas, R. Abdeddaim, and N. Bonod, “Chemical alkaline etching of silicon Mie particles,” Adv. Opt. Mater. 3(9), 1280–1286 (2015).
[Crossref]

Staude, I.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

Stockman, M. I.

J. Dai, F. Čajko, I. Tsukerman, and M. I. Stockman, “Electrodynamic effects in plasmonic nanolenses,” Phys. Rev. B 77(11), 115419 (2008).
[Crossref]

Stucky, G. D.

S. Mubeen, J. Lee, N. Singh, S. Krämer, G. D. Stucky, and M. Moskovits, “An autonomous photosynthetic device in which all charge carriers derive from surface plasmons,” Nat. Nanotechnol. 8(4), 247–251 (2013).
[Crossref] [PubMed]

Thai, T.

Y. Zheng, T. Thai, P. Reineck, L. Qiu, Y. Guo, and U. Bach, “DNA-directed self-assembly of core-satellite plasmonic nanostructures: a highly sensitive and reproducible near-IR SERS sensor,” Adv. Funct. Mater. 23(12), 1519–1526 (2013).
[Crossref]

Tian, Z. Q.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Tsukerman, I.

J. Dai, F. Čajko, I. Tsukerman, and M. I. Stockman, “Electrodynamic effects in plasmonic nanolenses,” Phys. Rev. B 77(11), 115419 (2008).
[Crossref]

van de Groep, J.

van Hulst, N. F.

N. Accanto, L. Piatkowski, I. M. Hancu, J. Renger, and N. F. van Hulst, “Resonant plasmonic nanoparticles for multicolor second harmonic imaging,” Appl. Phys. Lett. 108(8), 083115 (2016).
[Crossref]

Wang, F.

A. Andres-Arroyo, B. Gupta, F. Wang, J. J. Gooding, and P. J. Reece, “Optical manipulation and spectroscopy of silicon nanoparticles exhibiting dielectric resonances,” Nano Lett. 16(3), 1903–1910 (2016).
[Crossref] [PubMed]

Wang, Z. L.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

West, P. R.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Wu, D. Y.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Xu, L.

Z. Li, Y. Chen, X. Zhu, M. Zheng, F. Dong, P. Chen, L. Xu, W. Chu, and H. Duan, “Fabrication of single-crystal silicon nanotubes with sub-10 nm walls using cryogenic inductively coupled plasma reactive ion etching,” Nanotechnology 27(36), 365302 (2016).
[Crossref] [PubMed]

Yang, J. K.

J. K. Yang, B. Cord, H. Duan, K. K. Berggren, J. Klingfus, S.-W. Nam, K.-B. Kim, and M. J. Rooks, “Understanding of hydrogen silsesquioxane electron resist for sub-5-nm-half-pitch lithography,” J. Vac. Sci. Technol. B 27(6), 2622–2627 (2009).
[Crossref]

Yang, Z. L.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Yu, Y. F.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

Zhang, J.

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2(1), 492 (2012).
[Crossref] [PubMed]

Zhang, W.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Zheng, M.

Z. Li, Y. Chen, X. Zhu, M. Zheng, F. Dong, P. Chen, L. Xu, W. Chu, and H. Duan, “Fabrication of single-crystal silicon nanotubes with sub-10 nm walls using cryogenic inductively coupled plasma reactive ion etching,” Nanotechnology 27(36), 365302 (2016).
[Crossref] [PubMed]

Zheng, Y.

Y. Zheng, T. Thai, P. Reineck, L. Qiu, Y. Guo, and U. Bach, “DNA-directed self-assembly of core-satellite plasmonic nanostructures: a highly sensitive and reproducible near-IR SERS sensor,” Adv. Funct. Mater. 23(12), 1519–1526 (2013).
[Crossref]

Zhou, X. S.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Zhou, Z. Y.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Zhu, X.

Z. Li, Y. Chen, X. Zhu, M. Zheng, F. Dong, P. Chen, L. Xu, W. Chu, and H. Duan, “Fabrication of single-crystal silicon nanotubes with sub-10 nm walls using cryogenic inductively coupled plasma reactive ion etching,” Nanotechnology 27(36), 365302 (2016).
[Crossref] [PubMed]

Zywietz, U.

U. Zywietz, M. K. Schmidt, A. B. Evlyukhin, C. Reinhardt, J. Aizpurua, and B. N. Chichkov, “Electromagnetic resonances of silicon nanoparticle dimers in the visible,” ACS Photonics 2(7), 913–920 (2015).
[Crossref]

U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses,” Nat. Commun. 5, 3402 (2014).
[Crossref] [PubMed]

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref] [PubMed]

ACS Nano (2)

Z. Li, A. W. Clark, and J. M. Cooper, “Dual Color Plasmonic Pixels Create a Polarization Controlled Nano Color Palette,” ACS Nano 10(1), 492–498 (2016).
[Crossref] [PubMed]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

ACS Photonics (1)

U. Zywietz, M. K. Schmidt, A. B. Evlyukhin, C. Reinhardt, J. Aizpurua, and B. N. Chichkov, “Electromagnetic resonances of silicon nanoparticle dimers in the visible,” ACS Photonics 2(7), 913–920 (2015).
[Crossref]

Adv. Funct. Mater. (1)

Y. Zheng, T. Thai, P. Reineck, L. Qiu, Y. Guo, and U. Bach, “DNA-directed self-assembly of core-satellite plasmonic nanostructures: a highly sensitive and reproducible near-IR SERS sensor,” Adv. Funct. Mater. 23(12), 1519–1526 (2013).
[Crossref]

Adv. Opt. Mater. (2)

J. Proust, F. Bedu, S. Chenot, I. Soumahoro, I. Ozerov, B. Gallas, R. Abdeddaim, and N. Bonod, “Chemical alkaline etching of silicon Mie particles,” Adv. Opt. Mater. 3(9), 1280–1286 (2015).
[Crossref]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

APL Photonics (1)

S. Kruk, B. Hopkins, I. I. Kravchenko, A. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Invited Article: Broadband highly efficient dielectric metadevices for polarization control,” APL Photonics 1(3), 030801 (2016).
[Crossref]

Appl. Phys. Lett. (1)

N. Accanto, L. Piatkowski, I. M. Hancu, J. Renger, and N. F. van Hulst, “Resonant plasmonic nanoparticles for multicolor second harmonic imaging,” Appl. Phys. Lett. 108(8), 083115 (2016).
[Crossref]

Chem. Rev. (1)

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111(6), 3888–3912 (2011).
[Crossref] [PubMed]

J. Vac. Sci. Technol. B (1)

J. K. Yang, B. Cord, H. Duan, K. K. Berggren, J. Klingfus, S.-W. Nam, K.-B. Kim, and M. J. Rooks, “Understanding of hydrogen silsesquioxane electron resist for sub-5-nm-half-pitch lithography,” J. Vac. Sci. Technol. B 27(6), 2622–2627 (2009).
[Crossref]

Laser Photonics Rev. (1)

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Nano Lett. (3)

Z. Liu, W. Hou, P. Pavaskar, M. Aykol, and S. B. Cronin, “Plasmon resonant enhancement of photocatalytic water splitting under visible illumination,” Nano Lett. 11(3), 1111–1116 (2011).
[Crossref] [PubMed]

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref] [PubMed]

A. Andres-Arroyo, B. Gupta, F. Wang, J. J. Gooding, and P. J. Reece, “Optical manipulation and spectroscopy of silicon nanoparticles exhibiting dielectric resonances,” Nano Lett. 16(3), 1903–1910 (2016).
[Crossref] [PubMed]

Nanoscale (1)

Y. Cui, R. S. Hegde, I. Y. Phang, H. K. Lee, and X. Y. Ling, “Encoding molecular information in plasmonic nanostructures for anti-counterfeiting applications,” Nanoscale 6(1), 282–288 (2014).
[Crossref] [PubMed]

Nanotechnology (1)

Z. Li, Y. Chen, X. Zhu, M. Zheng, F. Dong, P. Chen, L. Xu, W. Chu, and H. Duan, “Fabrication of single-crystal silicon nanotubes with sub-10 nm walls using cryogenic inductively coupled plasma reactive ion etching,” Nanotechnology 27(36), 365302 (2016).
[Crossref] [PubMed]

Nat. Commun. (2)

U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses,” Nat. Commun. 5, 3402 (2014).
[Crossref] [PubMed]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

Nat. Mater. (1)

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

Nat. Nanotechnol. (2)

S. Mubeen, J. Lee, N. Singh, S. Krämer, G. D. Stucky, and M. Moskovits, “An autonomous photosynthetic device in which all charge carriers derive from surface plasmons,” Nat. Nanotechnol. 8(4), 247–251 (2013).
[Crossref] [PubMed]

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

Nature (1)

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Optica (1)

Phys. Rev. B (2)

J. Dai, F. Čajko, I. Tsukerman, and M. I. Stockman, “Electrodynamic effects in plasmonic nanolenses,” Phys. Rev. B 77(11), 115419 (2008).
[Crossref]

A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B 84(23), 235429 (2011).
[Crossref]

Sci. Rep. (1)

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2(1), 492 (2012).
[Crossref] [PubMed]

Science (1)

A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Fabrication process and dark-field scattering of the single-crystalline Si nanocylindroids. (a) Fabrication process of the Si nanostructures. (b) The experimental configuration for scattering measurements. (c) SEM images of an array of representative Si cylindroids, in which (lx, ly) = (200, 80) nm. (d) Experimental dark-field optical image of the corresponding array in (c) illuminated by unpolarized incident light.
Fig. 2
Fig. 2 Experimental results of the polarization response of individual Si nanocylindroids with varied value of lx from 80 to 200 nm. The parameter ly was set to 80 nm. (a) Scattering spectra of Si nanocylindroids excited by x-polarized excitation. (b) SEM images of the corresponding Si nanocylinders measured. (c) Scattering spectra of Si nanocylindroids with y-polarized excitation.
Fig. 3
Fig. 3 FDTD simulations of the polarization-dependent scattering spectra of the corresponding Si nanocylinders in Fig. 2 under (a) x-polarized and (b) y-polarized excitations.
Fig. 4
Fig. 4 Absorption mapping of a typical Si nanocylindroids (lx = 140 nm, ly = 80 nm) as a function of height under various incident condition: (a, d) normal incidence, (b, e) oblique incidence (48°), and (c, f) horizontal incidence. Top row shows the simulation results under x-polarized excitation and bottom row displays the corresponding results under y-polarized excitation of the same structures. Two insets in panel (a) illustrate the electric-field distributions in the x-z plane at the marked dots. The slice in mapping denoted by two dashed lines in (b) and (e) are the corresponding spectra of the Si nanocylindroids with 350-nm height used in the experiment. The inset drawings in each figure show the geometry of structure, incident angle, and polarization feature of the light wave.

Metrics