Abstract

We present the design, fabrication and characterization of long-range surface plasmon polariton waveguide arrays with materials, mainly silicones, carefully selected with the aim to be used as mechanically flexible single-mode optical interconnections, the so-called “plasmonic arc” working at 1.55µm. The fabricated plasmonic arcs show a TM/TE polarization ratio of ~25 dB. By using the cut-back method, the straight propagation loss at 1.55µm is estimated to 0.5-1 dB/mm and coupling loss to ~1-2 dB/facet after dicing. In the free-standing S-curved configuration, the bending loss of single cladding plasmonic arc is 2.2-2.8 dB/90° at bending radius 2.5 mm. For double cladding plasmonic arcs, it is decreased to 0.7-1.7 dB/90° for the same radius. The coupling loss with single-mode glass PCB waveguides is estimated to be 1.7 dB/interface in the best condition.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Low bending loss characteristics of hybrid plasmonic waveguide for flexible optical interconnect

Jin Tae Kim, Suntak Park, Jung Jin Ju, Sangjun Lee, and Sangin Kim
Opt. Express 18(23) 24213-24220 (2010)

Chip-to-chip optical interconnect using gold long-range surface plasmon polariton waveguides

Jin Tae Kim, Jung Jin Ju, Suntak Park, Min-su Kim, Seung Koo Park, and Myung-Hyun Lee
Opt. Express 16(17) 13133-13138 (2008)

Low bending loss metal waveguide embedded in a free-standing multilayered polymer film

Jong-Moo Lee, Suntak Park, Min-su Kim, Seung Koo Park, Jin Tae Kim, Joong-Seon Choe, Wook-Jae Lee, Myung-Hyun Lee, and Jung Jin Ju
Opt. Express 17(1) 228-234 (2009)

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref]
  2. R. Charbonneau, P. Berini, E. Berolo, and E. Lisicka-Shrzek, “Experimental observation of plasmon polariton waves supported by a thin metal film of finite width,” Opt. Lett. 25(11), 844–846 (2000).
    [Crossref]
  3. P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photonics 1(3), 484–588 (2009).
    [Crossref]
  4. S. I. Bozhevolnyi, Plasmonic: Nanoguides and Circuits (World Scientific Pub, 2009).
  5. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
    [Crossref]
  6. D. Kalavrouziotis, S. Papaioannou, G. Giannoulis, D. Apostolopoulos, K. Hassan, L. Markey, J.-C. Weeber, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. Pitilakis, E. E. Kriezis, H. Avramopoulos, K. Vyrsokinos, and N. Pleros, “0.48Tb/s (12x40Gb/s) WDM transmission and high-quality thermo-optic switching in dielectric loaded plasmonics,” Opt. Express 20(7), 7655–7662 (2012).
    [Crossref]
  7. C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high- speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
    [Crossref]
  8. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “In-line extinction modulator based on long-range surface plasmon polaritons,” Opt. Commun. 244(1–6), 455–459 (2005).
    [Crossref]
  9. J. T. Kim, K. H. Chung, and C. G. Choi, “Thermo-optic mode extinction modulator based on graphene plasmonic waveguide,” Opt. Express 21(13), 15280–15286 (2013).
    [Crossref]
  10. R. Dangel, J. Hofrichter, F. Horst, D. Jubin, A. La Porta, N. Meier, I. M. Soganci, J. Weiss, and B. J. Offrein, “Polymer waveguides for electro-optical integration in data centers and high-performance computers,” Opt. Express 23(4), 4736–4750 (2015).
    [Crossref]
  11. M. A. Taubenblatt, “Optical Interconnects for High-Performance Computing,” J. Lightwave Technol. 30(4), 448–457 (2012).
    [Crossref]
  12. S. I. Bozhevolnyi, V. S. Volkov, K. Leosson, and A. Boltasseva, “Surface Plasmon polariton waveguiding in random surface nanostructures,” J. Microsc. 209(3), 209–213 (2003).
    [Crossref]
  13. A. Degiron, S.-Y. Cho, C. Harrison, N. M. Jokerst, C. Dellagiacoma, O. Martin, and D. R. Smith, “Experimental comparison between conventional and hybrid long-range surface plasmon waveguide bends,” Phys. Rev. A 77(2), 021804 (2008).
    [Crossref]
  14. J. T. Kim, S. Park, J. J. Ju, S. K. Park, M.-S. Kim, and M.-H. Lee, “Low-Loss Polymer-Based Long-Range Surface Plasmon-Polariton Waveguide,” IEEE Phot. Tech. Letters 19(18), 1374–1376 (2007).
    [Crossref]
  15. J.-M. Lee, S. Park, M.-S. Kim, S. K. Park, J. T. Kim, J.-S. Choe, W.-J. Lee, M.-H. Lee, and J. J. Ju, “Low Bending Loss Metal Waveguide Embedded in a Free-Standing Multilayered Polymer Film,” Opt. Express 17(1), 228–234 (2009).
    [Crossref]
  16. S. Park, J. J. Ju, J. T. Kim, M.-S. Kim, S. K. Park, J.-M. Lee, W.-J. Lee, and M.-H. Lee, “Sub-dB/cm propagation loss in silver stripe waveguides,” Opt. Express 17(2), 697–702 (2009).
    [Crossref]
  17. J. T. Kim, S. Park, S. K. Park, M.-S. Kim, M.-H. Lee, and J. J. Ju, “Gold stripe optical waveguides fabricated by a novel double-layered liftoff process,” ETRI J. 31(6), 778–783 (2009).
    [Crossref]
  18. J. T. Kim, J. J. Ju, S. Park, M.-S. Kim, S. K. Park, and S. Y. Shin, “Hybrid plasmonic waveguide for low-loss lightwave guiding,” Opt. Express 18(3), 2808–2813 (2010).
    [Crossref]
  19. J. T. Kim, S. Park, J. J. Ju, S. Lee, and S. Kim, “Low bending loss characteristics of hybrid plasmonic waveguide for flexible optical interconnect,” Opt. Express 18(23), 24213–24220 (2010).
    [Crossref]
  20. J. T. Kim, J. J. Ju, S. Park, M.-S. Kim, S. K. Park, and M.-H. Lee, “Chip-to-chip optical interconnect using gold long-range surface plasmon polariton waveguides,” Opt. Express 16(17), 13133–13138 (2008).
    [Crossref]
  21. M. Walther, D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman, and F. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B 76(12), 1–9 (2007).
    [Crossref]
  22. I. Slovinsky, G. K. Stefansson, A. Kossoy, and K. Leosson, “Propagation loss of long-range surface plasmon polariton gold stripe waveguides in the thin-film limit,” Plasmonics 8(4), 1613–1619 (2013).
    [Crossref]
  23. J. Guo and R. Adato, “Extended long range plasmon waves in finite thickness metal film and layered dielectric materials,” Opt. Express 14(25), 12409–12418 (2006).
    [Crossref]
  24. C. G. Durfee, T. E. Furtak, R. T. Collins, and R. E. Hollingsworth, “Metal-oxide-semiconductor-compatible ultra-long-range surface plasmon modes,” J. Appl. Phys. 103(11), 113106 (2008).
    [Crossref]
  25. H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-Based Optical Waveguides: Materials, Processing, and Devices,” Adv. Mater. 14(19), 1339–1365 (2002).
    [Crossref]
  26. S. K. Park, J.-M. Lee, S. Park, J. T. Kim, M.-S. Kim, M.-H. Lee, and J. J. Ju, “Highly fluorinated and photocrosslinkable liquid prepolymers for flexible optical waveguides,” J. Mater. Chem. 21(6), 1755–1761 (2011).
    [Crossref]
  27. A. Elmogi, E. Bosman, J. Missinne, and G. Van Steenberge, “Comparison of epoxy- and siloxane-based single-mode optical waveguides defined by direct-write lithography,” Opt. Mater. 52, 26–31 (2016).
    [Crossref]
  28. ChemOptics website, http://www.chemoptics.co.kr/eng/main/main.php .
  29. B. L. Booth, J. E. Marchegiano, C. T. Chang, R. J. Furmanak, D. M. Graham, and R. G. Wagner, “Polyguide polymeric technology for optical interconnect circuits and components,” Proc. SPIE 3005, 238–251 (1997).
    [Crossref]
  30. M. U. Khan, J. Justice, J. Petäjä, T. Korhonen, A. Boersma, S. Wiegersma, M. Karppinen, and B. Corbett, “Multi-level single mode 2D polymer waveguide optical interconnects using nano-imprint lithography,” Opt. Express 23(11), 14630–14639 (2015).
    [Crossref]
  31. R. Buestrich, F. Kahlenberg, M. Popall, P. Dannberg, R. Müller-Fiedler, and O. Rösch, “ORMOCERs for Optical Interconnection Technology,” J. Sol-Gel Sci. Technol. 20(2), 181–186 (2001).
    [Crossref]
  32. W. H. Wong, J. Zhou, and E. Y. B. Pun, “Low-loss polymeric optical waveguides using electron-beam direct writing,” Appl. Phys. Lett. 78(15), 2110–2112 (2001).
    [Crossref]
  33. T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82(5), 668–670 (2003).
    [Crossref]
  34. S. Park, M.-S. Kim, J. T. Kim, S. K. Park, J. J. Ju, and M.-H. Lee, “Long range surface plasmon polariton waveguides at 1.31 and 1.55 μm wavelengths,” Opt. Commun. 281(8), 2057–2061 (2008).
    [Crossref]
  35. D. K. Cai, A. Neyer, R. Kuckuk, and H. M. Heise, “Optical absorption in transparent PDMS materials applied for multimode waveguides fabrication,” Opt. Mater. 30(7), 1157–1161 (2008).
    [Crossref]
  36. M. P. Nezhad, S. Zamek, L. Pang, and Y. Fainman, ““Fabrication approaches for metallo-dielectric plasmonic waveguides,” in Advanced Fabrication Technologies for Micro/Nano Optics and Photonics,” Proc. SPIE 6883, 68830S (2008).
    [Crossref]
  37. B. Chan, H. Lin, C. Carver, J. Huang, and J. Berry, “Organic Optical Waveguide Fabrication in a Manufacturing Environment” in Electronic Components and Technology Conference (ECTC), Proceedings 60th (IEEE, 2010)
    [Crossref]
  38. C. De Bernardi, A. Küng, and O. Leminger, in Photonic Devices for Telecommunications, Guekos, ed. (Springer, 1999), pp 127–128.
  39. L. Brusberg, H. Schröder, M. Queisser, and K.-D. Lang, “Single-mode Glass Waveguide Platform for DWDM Chip-to-Chip Interconnects” in Proceedings of IEEE 62nd Electronic Components and Technology Conference (ECTC), (IEEE 2012).
  40. L. Brusberg, M. Neitz, and H. Schröder, ““Single-mode glass waveguide technology for optical interchip communication on board level,” in Proc. SPIE 8267,” Optoelectronic Interconnects XII, 82670M (2012).
    [Crossref]

2016 (1)

A. Elmogi, E. Bosman, J. Missinne, and G. Van Steenberge, “Comparison of epoxy- and siloxane-based single-mode optical waveguides defined by direct-write lithography,” Opt. Mater. 52, 26–31 (2016).
[Crossref]

2015 (3)

M. U. Khan, J. Justice, J. Petäjä, T. Korhonen, A. Boersma, S. Wiegersma, M. Karppinen, and B. Corbett, “Multi-level single mode 2D polymer waveguide optical interconnects using nano-imprint lithography,” Opt. Express 23(11), 14630–14639 (2015).
[Crossref]

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high- speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

R. Dangel, J. Hofrichter, F. Horst, D. Jubin, A. La Porta, N. Meier, I. M. Soganci, J. Weiss, and B. J. Offrein, “Polymer waveguides for electro-optical integration in data centers and high-performance computers,” Opt. Express 23(4), 4736–4750 (2015).
[Crossref]

2013 (2)

J. T. Kim, K. H. Chung, and C. G. Choi, “Thermo-optic mode extinction modulator based on graphene plasmonic waveguide,” Opt. Express 21(13), 15280–15286 (2013).
[Crossref]

I. Slovinsky, G. K. Stefansson, A. Kossoy, and K. Leosson, “Propagation loss of long-range surface plasmon polariton gold stripe waveguides in the thin-film limit,” Plasmonics 8(4), 1613–1619 (2013).
[Crossref]

2012 (3)

2011 (1)

S. K. Park, J.-M. Lee, S. Park, J. T. Kim, M.-S. Kim, M.-H. Lee, and J. J. Ju, “Highly fluorinated and photocrosslinkable liquid prepolymers for flexible optical waveguides,” J. Mater. Chem. 21(6), 1755–1761 (2011).
[Crossref]

2010 (3)

2009 (4)

2008 (6)

C. G. Durfee, T. E. Furtak, R. T. Collins, and R. E. Hollingsworth, “Metal-oxide-semiconductor-compatible ultra-long-range surface plasmon modes,” J. Appl. Phys. 103(11), 113106 (2008).
[Crossref]

S. Park, M.-S. Kim, J. T. Kim, S. K. Park, J. J. Ju, and M.-H. Lee, “Long range surface plasmon polariton waveguides at 1.31 and 1.55 μm wavelengths,” Opt. Commun. 281(8), 2057–2061 (2008).
[Crossref]

D. K. Cai, A. Neyer, R. Kuckuk, and H. M. Heise, “Optical absorption in transparent PDMS materials applied for multimode waveguides fabrication,” Opt. Mater. 30(7), 1157–1161 (2008).
[Crossref]

M. P. Nezhad, S. Zamek, L. Pang, and Y. Fainman, ““Fabrication approaches for metallo-dielectric plasmonic waveguides,” in Advanced Fabrication Technologies for Micro/Nano Optics and Photonics,” Proc. SPIE 6883, 68830S (2008).
[Crossref]

J. T. Kim, J. J. Ju, S. Park, M.-S. Kim, S. K. Park, and M.-H. Lee, “Chip-to-chip optical interconnect using gold long-range surface plasmon polariton waveguides,” Opt. Express 16(17), 13133–13138 (2008).
[Crossref]

A. Degiron, S.-Y. Cho, C. Harrison, N. M. Jokerst, C. Dellagiacoma, O. Martin, and D. R. Smith, “Experimental comparison between conventional and hybrid long-range surface plasmon waveguide bends,” Phys. Rev. A 77(2), 021804 (2008).
[Crossref]

2007 (2)

J. T. Kim, S. Park, J. J. Ju, S. K. Park, M.-S. Kim, and M.-H. Lee, “Low-Loss Polymer-Based Long-Range Surface Plasmon-Polariton Waveguide,” IEEE Phot. Tech. Letters 19(18), 1374–1376 (2007).
[Crossref]

M. Walther, D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman, and F. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B 76(12), 1–9 (2007).
[Crossref]

2006 (1)

2005 (1)

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “In-line extinction modulator based on long-range surface plasmon polaritons,” Opt. Commun. 244(1–6), 455–459 (2005).
[Crossref]

2003 (3)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref]

S. I. Bozhevolnyi, V. S. Volkov, K. Leosson, and A. Boltasseva, “Surface Plasmon polariton waveguiding in random surface nanostructures,” J. Microsc. 209(3), 209–213 (2003).
[Crossref]

T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82(5), 668–670 (2003).
[Crossref]

2002 (1)

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-Based Optical Waveguides: Materials, Processing, and Devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[Crossref]

2001 (2)

R. Buestrich, F. Kahlenberg, M. Popall, P. Dannberg, R. Müller-Fiedler, and O. Rösch, “ORMOCERs for Optical Interconnection Technology,” J. Sol-Gel Sci. Technol. 20(2), 181–186 (2001).
[Crossref]

W. H. Wong, J. Zhou, and E. Y. B. Pun, “Low-loss polymeric optical waveguides using electron-beam direct writing,” Appl. Phys. Lett. 78(15), 2110–2112 (2001).
[Crossref]

2000 (1)

1997 (1)

B. L. Booth, J. E. Marchegiano, C. T. Chang, R. J. Furmanak, D. M. Graham, and R. G. Wagner, “Polyguide polymeric technology for optical interconnect circuits and components,” Proc. SPIE 3005, 238–251 (1997).
[Crossref]

Adato, R.

Apostolopoulos, D.

Avramopoulos, H.

Baeuerle, B.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high- speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref]

Baus, M.

Berini, P.

Berolo, E.

Boersma, A.

Boltasseva, A.

S. I. Bozhevolnyi, V. S. Volkov, K. Leosson, and A. Boltasseva, “Surface Plasmon polariton waveguiding in random surface nanostructures,” J. Microsc. 209(3), 209–213 (2003).
[Crossref]

Booth, B. L.

B. L. Booth, J. E. Marchegiano, C. T. Chang, R. J. Furmanak, D. M. Graham, and R. G. Wagner, “Polyguide polymeric technology for optical interconnect circuits and components,” Proc. SPIE 3005, 238–251 (1997).
[Crossref]

Bosman, E.

A. Elmogi, E. Bosman, J. Missinne, and G. Van Steenberge, “Comparison of epoxy- and siloxane-based single-mode optical waveguides defined by direct-write lithography,” Opt. Mater. 52, 26–31 (2016).
[Crossref]

Bozhevolnyi, S. I.

D. Kalavrouziotis, S. Papaioannou, G. Giannoulis, D. Apostolopoulos, K. Hassan, L. Markey, J.-C. Weeber, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. Pitilakis, E. E. Kriezis, H. Avramopoulos, K. Vyrsokinos, and N. Pleros, “0.48Tb/s (12x40Gb/s) WDM transmission and high-quality thermo-optic switching in dielectric loaded plasmonics,” Opt. Express 20(7), 7655–7662 (2012).
[Crossref]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “In-line extinction modulator based on long-range surface plasmon polaritons,” Opt. Commun. 244(1–6), 455–459 (2005).
[Crossref]

S. I. Bozhevolnyi, V. S. Volkov, K. Leosson, and A. Boltasseva, “Surface Plasmon polariton waveguiding in random surface nanostructures,” J. Microsc. 209(3), 209–213 (2003).
[Crossref]

T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82(5), 668–670 (2003).
[Crossref]

Brusberg, L.

L. Brusberg, M. Neitz, and H. Schröder, ““Single-mode glass waveguide technology for optical interchip communication on board level,” in Proc. SPIE 8267,” Optoelectronic Interconnects XII, 82670M (2012).
[Crossref]

Buestrich, R.

R. Buestrich, F. Kahlenberg, M. Popall, P. Dannberg, R. Müller-Fiedler, and O. Rösch, “ORMOCERs for Optical Interconnection Technology,” J. Sol-Gel Sci. Technol. 20(2), 181–186 (2001).
[Crossref]

Cai, D. K.

D. K. Cai, A. Neyer, R. Kuckuk, and H. M. Heise, “Optical absorption in transparent PDMS materials applied for multimode waveguides fabrication,” Opt. Mater. 30(7), 1157–1161 (2008).
[Crossref]

Chang, C. T.

B. L. Booth, J. E. Marchegiano, C. T. Chang, R. J. Furmanak, D. M. Graham, and R. G. Wagner, “Polyguide polymeric technology for optical interconnect circuits and components,” Proc. SPIE 3005, 238–251 (1997).
[Crossref]

Charbonneau, R.

Cho, S.-Y.

A. Degiron, S.-Y. Cho, C. Harrison, N. M. Jokerst, C. Dellagiacoma, O. Martin, and D. R. Smith, “Experimental comparison between conventional and hybrid long-range surface plasmon waveguide bends,” Phys. Rev. A 77(2), 021804 (2008).
[Crossref]

Choe, J.-S.

Choi, C. G.

Chung, K. H.

Collins, R. T.

C. G. Durfee, T. E. Furtak, R. T. Collins, and R. E. Hollingsworth, “Metal-oxide-semiconductor-compatible ultra-long-range surface plasmon modes,” J. Appl. Phys. 103(11), 113106 (2008).
[Crossref]

Cooke, D. G.

M. Walther, D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman, and F. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B 76(12), 1–9 (2007).
[Crossref]

Corbett, B.

Dalton, L. R.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high- speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-Based Optical Waveguides: Materials, Processing, and Devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[Crossref]

Dangel, R.

Dannberg, P.

R. Buestrich, F. Kahlenberg, M. Popall, P. Dannberg, R. Müller-Fiedler, and O. Rösch, “ORMOCERs for Optical Interconnection Technology,” J. Sol-Gel Sci. Technol. 20(2), 181–186 (2001).
[Crossref]

Degiron, A.

A. Degiron, S.-Y. Cho, C. Harrison, N. M. Jokerst, C. Dellagiacoma, O. Martin, and D. R. Smith, “Experimental comparison between conventional and hybrid long-range surface plasmon waveguide bends,” Phys. Rev. A 77(2), 021804 (2008).
[Crossref]

Dellagiacoma, C.

A. Degiron, S.-Y. Cho, C. Harrison, N. M. Jokerst, C. Dellagiacoma, O. Martin, and D. R. Smith, “Experimental comparison between conventional and hybrid long-range surface plasmon waveguide bends,” Phys. Rev. A 77(2), 021804 (2008).
[Crossref]

Dereux, A.

Ducry, F.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high- speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Durfee, C. G.

C. G. Durfee, T. E. Furtak, R. T. Collins, and R. E. Hollingsworth, “Metal-oxide-semiconductor-compatible ultra-long-range surface plasmon modes,” J. Appl. Phys. 103(11), 113106 (2008).
[Crossref]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref]

Elder, D. L.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high- speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Elmogi, A.

A. Elmogi, E. Bosman, J. Missinne, and G. Van Steenberge, “Comparison of epoxy- and siloxane-based single-mode optical waveguides defined by direct-write lithography,” Opt. Mater. 52, 26–31 (2016).
[Crossref]

Emboras, A.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high- speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Fainman, Y.

M. P. Nezhad, S. Zamek, L. Pang, and Y. Fainman, ““Fabrication approaches for metallo-dielectric plasmonic waveguides,” in Advanced Fabrication Technologies for Micro/Nano Optics and Photonics,” Proc. SPIE 6883, 68830S (2008).
[Crossref]

Fedoryshyn, Y.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high- speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Freeman, M. R.

M. Walther, D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman, and F. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B 76(12), 1–9 (2007).
[Crossref]

Furmanak, R. J.

B. L. Booth, J. E. Marchegiano, C. T. Chang, R. J. Furmanak, D. M. Graham, and R. G. Wagner, “Polyguide polymeric technology for optical interconnect circuits and components,” Proc. SPIE 3005, 238–251 (1997).
[Crossref]

Furtak, T. E.

C. G. Durfee, T. E. Furtak, R. T. Collins, and R. E. Hollingsworth, “Metal-oxide-semiconductor-compatible ultra-long-range surface plasmon modes,” J. Appl. Phys. 103(11), 113106 (2008).
[Crossref]

Giannoulis, G.

Graham, D. M.

B. L. Booth, J. E. Marchegiano, C. T. Chang, R. J. Furmanak, D. M. Graham, and R. G. Wagner, “Polyguide polymeric technology for optical interconnect circuits and components,” Proc. SPIE 3005, 238–251 (1997).
[Crossref]

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

Guo, J.

Haffner, C.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high- speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Hafner, C.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high- speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Hajar, M.

M. Walther, D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman, and F. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B 76(12), 1–9 (2007).
[Crossref]

Harrison, C.

A. Degiron, S.-Y. Cho, C. Harrison, N. M. Jokerst, C. Dellagiacoma, O. Martin, and D. R. Smith, “Experimental comparison between conventional and hybrid long-range surface plasmon waveguide bends,” Phys. Rev. A 77(2), 021804 (2008).
[Crossref]

Hassan, K.

Hegmann, F.

M. Walther, D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman, and F. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B 76(12), 1–9 (2007).
[Crossref]

Heise, H. M.

D. K. Cai, A. Neyer, R. Kuckuk, and H. M. Heise, “Optical absorption in transparent PDMS materials applied for multimode waveguides fabrication,” Opt. Mater. 30(7), 1157–1161 (2008).
[Crossref]

Heni, W.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high- speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Hillerkuss, D.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high- speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Hoessbacher, C.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high- speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Hofrichter, J.

Hollingsworth, R. E.

C. G. Durfee, T. E. Furtak, R. T. Collins, and R. E. Hollingsworth, “Metal-oxide-semiconductor-compatible ultra-long-range surface plasmon modes,” J. Appl. Phys. 103(11), 113106 (2008).
[Crossref]

Horst, F.

Jen, A. K.-Y.

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-Based Optical Waveguides: Materials, Processing, and Devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[Crossref]

Jokerst, N. M.

A. Degiron, S.-Y. Cho, C. Harrison, N. M. Jokerst, C. Dellagiacoma, O. Martin, and D. R. Smith, “Experimental comparison between conventional and hybrid long-range surface plasmon waveguide bends,” Phys. Rev. A 77(2), 021804 (2008).
[Crossref]

Josten, A.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high- speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Ju, J. J.

S. K. Park, J.-M. Lee, S. Park, J. T. Kim, M.-S. Kim, M.-H. Lee, and J. J. Ju, “Highly fluorinated and photocrosslinkable liquid prepolymers for flexible optical waveguides,” J. Mater. Chem. 21(6), 1755–1761 (2011).
[Crossref]

J. T. Kim, J. J. Ju, S. Park, M.-S. Kim, S. K. Park, and S. Y. Shin, “Hybrid plasmonic waveguide for low-loss lightwave guiding,” Opt. Express 18(3), 2808–2813 (2010).
[Crossref]

J. T. Kim, S. Park, J. J. Ju, S. Lee, and S. Kim, “Low bending loss characteristics of hybrid plasmonic waveguide for flexible optical interconnect,” Opt. Express 18(23), 24213–24220 (2010).
[Crossref]

J.-M. Lee, S. Park, M.-S. Kim, S. K. Park, J. T. Kim, J.-S. Choe, W.-J. Lee, M.-H. Lee, and J. J. Ju, “Low Bending Loss Metal Waveguide Embedded in a Free-Standing Multilayered Polymer Film,” Opt. Express 17(1), 228–234 (2009).
[Crossref]

S. Park, J. J. Ju, J. T. Kim, M.-S. Kim, S. K. Park, J.-M. Lee, W.-J. Lee, and M.-H. Lee, “Sub-dB/cm propagation loss in silver stripe waveguides,” Opt. Express 17(2), 697–702 (2009).
[Crossref]

J. T. Kim, S. Park, S. K. Park, M.-S. Kim, M.-H. Lee, and J. J. Ju, “Gold stripe optical waveguides fabricated by a novel double-layered liftoff process,” ETRI J. 31(6), 778–783 (2009).
[Crossref]

J. T. Kim, J. J. Ju, S. Park, M.-S. Kim, S. K. Park, and M.-H. Lee, “Chip-to-chip optical interconnect using gold long-range surface plasmon polariton waveguides,” Opt. Express 16(17), 13133–13138 (2008).
[Crossref]

S. Park, M.-S. Kim, J. T. Kim, S. K. Park, J. J. Ju, and M.-H. Lee, “Long range surface plasmon polariton waveguides at 1.31 and 1.55 μm wavelengths,” Opt. Commun. 281(8), 2057–2061 (2008).
[Crossref]

J. T. Kim, S. Park, J. J. Ju, S. K. Park, M.-S. Kim, and M.-H. Lee, “Low-Loss Polymer-Based Long-Range Surface Plasmon-Polariton Waveguide,” IEEE Phot. Tech. Letters 19(18), 1374–1376 (2007).
[Crossref]

Jubin, D.

Juchli, L.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high- speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Justice, J.

Kahlenberg, F.

R. Buestrich, F. Kahlenberg, M. Popall, P. Dannberg, R. Müller-Fiedler, and O. Rösch, “ORMOCERs for Optical Interconnection Technology,” J. Sol-Gel Sci. Technol. 20(2), 181–186 (2001).
[Crossref]

Kalavrouziotis, D.

Karl, M.

Karppinen, M.

Khan, M. U.

Kim, J. T.

J. T. Kim, K. H. Chung, and C. G. Choi, “Thermo-optic mode extinction modulator based on graphene plasmonic waveguide,” Opt. Express 21(13), 15280–15286 (2013).
[Crossref]

S. K. Park, J.-M. Lee, S. Park, J. T. Kim, M.-S. Kim, M.-H. Lee, and J. J. Ju, “Highly fluorinated and photocrosslinkable liquid prepolymers for flexible optical waveguides,” J. Mater. Chem. 21(6), 1755–1761 (2011).
[Crossref]

J. T. Kim, J. J. Ju, S. Park, M.-S. Kim, S. K. Park, and S. Y. Shin, “Hybrid plasmonic waveguide for low-loss lightwave guiding,” Opt. Express 18(3), 2808–2813 (2010).
[Crossref]

J. T. Kim, S. Park, J. J. Ju, S. Lee, and S. Kim, “Low bending loss characteristics of hybrid plasmonic waveguide for flexible optical interconnect,” Opt. Express 18(23), 24213–24220 (2010).
[Crossref]

J. T. Kim, S. Park, S. K. Park, M.-S. Kim, M.-H. Lee, and J. J. Ju, “Gold stripe optical waveguides fabricated by a novel double-layered liftoff process,” ETRI J. 31(6), 778–783 (2009).
[Crossref]

S. Park, J. J. Ju, J. T. Kim, M.-S. Kim, S. K. Park, J.-M. Lee, W.-J. Lee, and M.-H. Lee, “Sub-dB/cm propagation loss in silver stripe waveguides,” Opt. Express 17(2), 697–702 (2009).
[Crossref]

J.-M. Lee, S. Park, M.-S. Kim, S. K. Park, J. T. Kim, J.-S. Choe, W.-J. Lee, M.-H. Lee, and J. J. Ju, “Low Bending Loss Metal Waveguide Embedded in a Free-Standing Multilayered Polymer Film,” Opt. Express 17(1), 228–234 (2009).
[Crossref]

J. T. Kim, J. J. Ju, S. Park, M.-S. Kim, S. K. Park, and M.-H. Lee, “Chip-to-chip optical interconnect using gold long-range surface plasmon polariton waveguides,” Opt. Express 16(17), 13133–13138 (2008).
[Crossref]

S. Park, M.-S. Kim, J. T. Kim, S. K. Park, J. J. Ju, and M.-H. Lee, “Long range surface plasmon polariton waveguides at 1.31 and 1.55 μm wavelengths,” Opt. Commun. 281(8), 2057–2061 (2008).
[Crossref]

J. T. Kim, S. Park, J. J. Ju, S. K. Park, M.-S. Kim, and M.-H. Lee, “Low-Loss Polymer-Based Long-Range Surface Plasmon-Polariton Waveguide,” IEEE Phot. Tech. Letters 19(18), 1374–1376 (2007).
[Crossref]

Kim, M.-S.

S. K. Park, J.-M. Lee, S. Park, J. T. Kim, M.-S. Kim, M.-H. Lee, and J. J. Ju, “Highly fluorinated and photocrosslinkable liquid prepolymers for flexible optical waveguides,” J. Mater. Chem. 21(6), 1755–1761 (2011).
[Crossref]

J. T. Kim, J. J. Ju, S. Park, M.-S. Kim, S. K. Park, and S. Y. Shin, “Hybrid plasmonic waveguide for low-loss lightwave guiding,” Opt. Express 18(3), 2808–2813 (2010).
[Crossref]

J.-M. Lee, S. Park, M.-S. Kim, S. K. Park, J. T. Kim, J.-S. Choe, W.-J. Lee, M.-H. Lee, and J. J. Ju, “Low Bending Loss Metal Waveguide Embedded in a Free-Standing Multilayered Polymer Film,” Opt. Express 17(1), 228–234 (2009).
[Crossref]

S. Park, J. J. Ju, J. T. Kim, M.-S. Kim, S. K. Park, J.-M. Lee, W.-J. Lee, and M.-H. Lee, “Sub-dB/cm propagation loss in silver stripe waveguides,” Opt. Express 17(2), 697–702 (2009).
[Crossref]

J. T. Kim, S. Park, S. K. Park, M.-S. Kim, M.-H. Lee, and J. J. Ju, “Gold stripe optical waveguides fabricated by a novel double-layered liftoff process,” ETRI J. 31(6), 778–783 (2009).
[Crossref]

J. T. Kim, J. J. Ju, S. Park, M.-S. Kim, S. K. Park, and M.-H. Lee, “Chip-to-chip optical interconnect using gold long-range surface plasmon polariton waveguides,” Opt. Express 16(17), 13133–13138 (2008).
[Crossref]

S. Park, M.-S. Kim, J. T. Kim, S. K. Park, J. J. Ju, and M.-H. Lee, “Long range surface plasmon polariton waveguides at 1.31 and 1.55 μm wavelengths,” Opt. Commun. 281(8), 2057–2061 (2008).
[Crossref]

J. T. Kim, S. Park, J. J. Ju, S. K. Park, M.-S. Kim, and M.-H. Lee, “Low-Loss Polymer-Based Long-Range Surface Plasmon-Polariton Waveguide,” IEEE Phot. Tech. Letters 19(18), 1374–1376 (2007).
[Crossref]

Kim, S.

Koch, U.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high- speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Kohl, M.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high- speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Korhonen, T.

Kossoy, A.

I. Slovinsky, G. K. Stefansson, A. Kossoy, and K. Leosson, “Propagation loss of long-range surface plasmon polariton gold stripe waveguides in the thin-film limit,” Plasmonics 8(4), 1613–1619 (2013).
[Crossref]

Kriezis, E. E.

Kuckuk, R.

D. K. Cai, A. Neyer, R. Kuckuk, and H. M. Heise, “Optical absorption in transparent PDMS materials applied for multimode waveguides fabrication,” Opt. Mater. 30(7), 1157–1161 (2008).
[Crossref]

Kumar, A.

La Porta, A.

Lee, J.-M.

Lee, M.-H.

S. K. Park, J.-M. Lee, S. Park, J. T. Kim, M.-S. Kim, M.-H. Lee, and J. J. Ju, “Highly fluorinated and photocrosslinkable liquid prepolymers for flexible optical waveguides,” J. Mater. Chem. 21(6), 1755–1761 (2011).
[Crossref]

J. T. Kim, S. Park, S. K. Park, M.-S. Kim, M.-H. Lee, and J. J. Ju, “Gold stripe optical waveguides fabricated by a novel double-layered liftoff process,” ETRI J. 31(6), 778–783 (2009).
[Crossref]

J.-M. Lee, S. Park, M.-S. Kim, S. K. Park, J. T. Kim, J.-S. Choe, W.-J. Lee, M.-H. Lee, and J. J. Ju, “Low Bending Loss Metal Waveguide Embedded in a Free-Standing Multilayered Polymer Film,” Opt. Express 17(1), 228–234 (2009).
[Crossref]

S. Park, J. J. Ju, J. T. Kim, M.-S. Kim, S. K. Park, J.-M. Lee, W.-J. Lee, and M.-H. Lee, “Sub-dB/cm propagation loss in silver stripe waveguides,” Opt. Express 17(2), 697–702 (2009).
[Crossref]

J. T. Kim, J. J. Ju, S. Park, M.-S. Kim, S. K. Park, and M.-H. Lee, “Chip-to-chip optical interconnect using gold long-range surface plasmon polariton waveguides,” Opt. Express 16(17), 13133–13138 (2008).
[Crossref]

S. Park, M.-S. Kim, J. T. Kim, S. K. Park, J. J. Ju, and M.-H. Lee, “Long range surface plasmon polariton waveguides at 1.31 and 1.55 μm wavelengths,” Opt. Commun. 281(8), 2057–2061 (2008).
[Crossref]

J. T. Kim, S. Park, J. J. Ju, S. K. Park, M.-S. Kim, and M.-H. Lee, “Low-Loss Polymer-Based Long-Range Surface Plasmon-Polariton Waveguide,” IEEE Phot. Tech. Letters 19(18), 1374–1376 (2007).
[Crossref]

Lee, S.

Lee, W.-J.

Leosson, K.

I. Slovinsky, G. K. Stefansson, A. Kossoy, and K. Leosson, “Propagation loss of long-range surface plasmon polariton gold stripe waveguides in the thin-film limit,” Plasmonics 8(4), 1613–1619 (2013).
[Crossref]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “In-line extinction modulator based on long-range surface plasmon polaritons,” Opt. Commun. 244(1–6), 455–459 (2005).
[Crossref]

S. I. Bozhevolnyi, V. S. Volkov, K. Leosson, and A. Boltasseva, “Surface Plasmon polariton waveguiding in random surface nanostructures,” J. Microsc. 209(3), 209–213 (2003).
[Crossref]

T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82(5), 668–670 (2003).
[Crossref]

Leuthold, J.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high- speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Lisicka-Shrzek, E.

Ma, H.

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-Based Optical Waveguides: Materials, Processing, and Devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[Crossref]

Marchegiano, J. E.

B. L. Booth, J. E. Marchegiano, C. T. Chang, R. J. Furmanak, D. M. Graham, and R. G. Wagner, “Polyguide polymeric technology for optical interconnect circuits and components,” Proc. SPIE 3005, 238–251 (1997).
[Crossref]

Markey, L.

Martin, O.

A. Degiron, S.-Y. Cho, C. Harrison, N. M. Jokerst, C. Dellagiacoma, O. Martin, and D. R. Smith, “Experimental comparison between conventional and hybrid long-range surface plasmon waveguide bends,” Phys. Rev. A 77(2), 021804 (2008).
[Crossref]

Meier, N.

Melikyan, A.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high- speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Missinne, J.

A. Elmogi, E. Bosman, J. Missinne, and G. Van Steenberge, “Comparison of epoxy- and siloxane-based single-mode optical waveguides defined by direct-write lithography,” Opt. Mater. 52, 26–31 (2016).
[Crossref]

Müller-Fiedler, R.

R. Buestrich, F. Kahlenberg, M. Popall, P. Dannberg, R. Müller-Fiedler, and O. Rösch, “ORMOCERs for Optical Interconnection Technology,” J. Sol-Gel Sci. Technol. 20(2), 181–186 (2001).
[Crossref]

Neitz, M.

L. Brusberg, M. Neitz, and H. Schröder, ““Single-mode glass waveguide technology for optical interchip communication on board level,” in Proc. SPIE 8267,” Optoelectronic Interconnects XII, 82670M (2012).
[Crossref]

Neyer, A.

D. K. Cai, A. Neyer, R. Kuckuk, and H. M. Heise, “Optical absorption in transparent PDMS materials applied for multimode waveguides fabrication,” Opt. Mater. 30(7), 1157–1161 (2008).
[Crossref]

Nezhad, M. P.

M. P. Nezhad, S. Zamek, L. Pang, and Y. Fainman, ““Fabrication approaches for metallo-dielectric plasmonic waveguides,” in Advanced Fabrication Technologies for Micro/Nano Optics and Photonics,” Proc. SPIE 6883, 68830S (2008).
[Crossref]

Niegemann, J.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high- speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Nikolajsen, T.

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “In-line extinction modulator based on long-range surface plasmon polaritons,” Opt. Commun. 244(1–6), 455–459 (2005).
[Crossref]

T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82(5), 668–670 (2003).
[Crossref]

Offrein, B. J.

Pang, L.

M. P. Nezhad, S. Zamek, L. Pang, and Y. Fainman, ““Fabrication approaches for metallo-dielectric plasmonic waveguides,” in Advanced Fabrication Technologies for Micro/Nano Optics and Photonics,” Proc. SPIE 6883, 68830S (2008).
[Crossref]

Papaioannou, S.

Park, S.

S. K. Park, J.-M. Lee, S. Park, J. T. Kim, M.-S. Kim, M.-H. Lee, and J. J. Ju, “Highly fluorinated and photocrosslinkable liquid prepolymers for flexible optical waveguides,” J. Mater. Chem. 21(6), 1755–1761 (2011).
[Crossref]

J. T. Kim, S. Park, J. J. Ju, S. Lee, and S. Kim, “Low bending loss characteristics of hybrid plasmonic waveguide for flexible optical interconnect,” Opt. Express 18(23), 24213–24220 (2010).
[Crossref]

J. T. Kim, J. J. Ju, S. Park, M.-S. Kim, S. K. Park, and S. Y. Shin, “Hybrid plasmonic waveguide for low-loss lightwave guiding,” Opt. Express 18(3), 2808–2813 (2010).
[Crossref]

J.-M. Lee, S. Park, M.-S. Kim, S. K. Park, J. T. Kim, J.-S. Choe, W.-J. Lee, M.-H. Lee, and J. J. Ju, “Low Bending Loss Metal Waveguide Embedded in a Free-Standing Multilayered Polymer Film,” Opt. Express 17(1), 228–234 (2009).
[Crossref]

J. T. Kim, S. Park, S. K. Park, M.-S. Kim, M.-H. Lee, and J. J. Ju, “Gold stripe optical waveguides fabricated by a novel double-layered liftoff process,” ETRI J. 31(6), 778–783 (2009).
[Crossref]

S. Park, J. J. Ju, J. T. Kim, M.-S. Kim, S. K. Park, J.-M. Lee, W.-J. Lee, and M.-H. Lee, “Sub-dB/cm propagation loss in silver stripe waveguides,” Opt. Express 17(2), 697–702 (2009).
[Crossref]

J. T. Kim, J. J. Ju, S. Park, M.-S. Kim, S. K. Park, and M.-H. Lee, “Chip-to-chip optical interconnect using gold long-range surface plasmon polariton waveguides,” Opt. Express 16(17), 13133–13138 (2008).
[Crossref]

S. Park, M.-S. Kim, J. T. Kim, S. K. Park, J. J. Ju, and M.-H. Lee, “Long range surface plasmon polariton waveguides at 1.31 and 1.55 μm wavelengths,” Opt. Commun. 281(8), 2057–2061 (2008).
[Crossref]

J. T. Kim, S. Park, J. J. Ju, S. K. Park, M.-S. Kim, and M.-H. Lee, “Low-Loss Polymer-Based Long-Range Surface Plasmon-Polariton Waveguide,” IEEE Phot. Tech. Letters 19(18), 1374–1376 (2007).
[Crossref]

Park, S. K.

S. K. Park, J.-M. Lee, S. Park, J. T. Kim, M.-S. Kim, M.-H. Lee, and J. J. Ju, “Highly fluorinated and photocrosslinkable liquid prepolymers for flexible optical waveguides,” J. Mater. Chem. 21(6), 1755–1761 (2011).
[Crossref]

J. T. Kim, J. J. Ju, S. Park, M.-S. Kim, S. K. Park, and S. Y. Shin, “Hybrid plasmonic waveguide for low-loss lightwave guiding,” Opt. Express 18(3), 2808–2813 (2010).
[Crossref]

J.-M. Lee, S. Park, M.-S. Kim, S. K. Park, J. T. Kim, J.-S. Choe, W.-J. Lee, M.-H. Lee, and J. J. Ju, “Low Bending Loss Metal Waveguide Embedded in a Free-Standing Multilayered Polymer Film,” Opt. Express 17(1), 228–234 (2009).
[Crossref]

S. Park, J. J. Ju, J. T. Kim, M.-S. Kim, S. K. Park, J.-M. Lee, W.-J. Lee, and M.-H. Lee, “Sub-dB/cm propagation loss in silver stripe waveguides,” Opt. Express 17(2), 697–702 (2009).
[Crossref]

J. T. Kim, S. Park, S. K. Park, M.-S. Kim, M.-H. Lee, and J. J. Ju, “Gold stripe optical waveguides fabricated by a novel double-layered liftoff process,” ETRI J. 31(6), 778–783 (2009).
[Crossref]

J. T. Kim, J. J. Ju, S. Park, M.-S. Kim, S. K. Park, and M.-H. Lee, “Chip-to-chip optical interconnect using gold long-range surface plasmon polariton waveguides,” Opt. Express 16(17), 13133–13138 (2008).
[Crossref]

S. Park, M.-S. Kim, J. T. Kim, S. K. Park, J. J. Ju, and M.-H. Lee, “Long range surface plasmon polariton waveguides at 1.31 and 1.55 μm wavelengths,” Opt. Commun. 281(8), 2057–2061 (2008).
[Crossref]

J. T. Kim, S. Park, J. J. Ju, S. K. Park, M.-S. Kim, and M.-H. Lee, “Low-Loss Polymer-Based Long-Range Surface Plasmon-Polariton Waveguide,” IEEE Phot. Tech. Letters 19(18), 1374–1376 (2007).
[Crossref]

Petäjä, J.

Pitilakis, A.

Pleros, N.

Popall, M.

R. Buestrich, F. Kahlenberg, M. Popall, P. Dannberg, R. Müller-Fiedler, and O. Rösch, “ORMOCERs for Optical Interconnection Technology,” J. Sol-Gel Sci. Technol. 20(2), 181–186 (2001).
[Crossref]

Pun, E. Y. B.

W. H. Wong, J. Zhou, and E. Y. B. Pun, “Low-loss polymeric optical waveguides using electron-beam direct writing,” Appl. Phys. Lett. 78(15), 2110–2112 (2001).
[Crossref]

Rösch, O.

R. Buestrich, F. Kahlenberg, M. Popall, P. Dannberg, R. Müller-Fiedler, and O. Rösch, “ORMOCERs for Optical Interconnection Technology,” J. Sol-Gel Sci. Technol. 20(2), 181–186 (2001).
[Crossref]

Salakhutdinov, I.

T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82(5), 668–670 (2003).
[Crossref]

Salamin, Y.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high- speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Schröder, H.

L. Brusberg, M. Neitz, and H. Schröder, ““Single-mode glass waveguide technology for optical interchip communication on board level,” in Proc. SPIE 8267,” Optoelectronic Interconnects XII, 82670M (2012).
[Crossref]

Sherstan, C.

M. Walther, D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman, and F. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B 76(12), 1–9 (2007).
[Crossref]

Shin, S. Y.

Slovinsky, I.

I. Slovinsky, G. K. Stefansson, A. Kossoy, and K. Leosson, “Propagation loss of long-range surface plasmon polariton gold stripe waveguides in the thin-film limit,” Plasmonics 8(4), 1613–1619 (2013).
[Crossref]

Smith, D. R.

A. Degiron, S.-Y. Cho, C. Harrison, N. M. Jokerst, C. Dellagiacoma, O. Martin, and D. R. Smith, “Experimental comparison between conventional and hybrid long-range surface plasmon waveguide bends,” Phys. Rev. A 77(2), 021804 (2008).
[Crossref]

Soganci, I. M.

Stefansson, G. K.

I. Slovinsky, G. K. Stefansson, A. Kossoy, and K. Leosson, “Propagation loss of long-range surface plasmon polariton gold stripe waveguides in the thin-film limit,” Plasmonics 8(4), 1613–1619 (2013).
[Crossref]

Taubenblatt, M. A.

Tekin, T.

Tsilipakos, O.

Van Steenberge, G.

A. Elmogi, E. Bosman, J. Missinne, and G. Van Steenberge, “Comparison of epoxy- and siloxane-based single-mode optical waveguides defined by direct-write lithography,” Opt. Mater. 52, 26–31 (2016).
[Crossref]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, K. Leosson, and A. Boltasseva, “Surface Plasmon polariton waveguiding in random surface nanostructures,” J. Microsc. 209(3), 209–213 (2003).
[Crossref]

Vyrsokinos, K.

Wagner, R. G.

B. L. Booth, J. E. Marchegiano, C. T. Chang, R. J. Furmanak, D. M. Graham, and R. G. Wagner, “Polyguide polymeric technology for optical interconnect circuits and components,” Proc. SPIE 3005, 238–251 (1997).
[Crossref]

Walther, M.

M. Walther, D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman, and F. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B 76(12), 1–9 (2007).
[Crossref]

Weeber, J.-C.

Weiss, J.

Wiegersma, S.

Wong, W. H.

W. H. Wong, J. Zhou, and E. Y. B. Pun, “Low-loss polymeric optical waveguides using electron-beam direct writing,” Appl. Phys. Lett. 78(15), 2110–2112 (2001).
[Crossref]

Zamek, S.

M. P. Nezhad, S. Zamek, L. Pang, and Y. Fainman, ““Fabrication approaches for metallo-dielectric plasmonic waveguides,” in Advanced Fabrication Technologies for Micro/Nano Optics and Photonics,” Proc. SPIE 6883, 68830S (2008).
[Crossref]

Zhou, J.

W. H. Wong, J. Zhou, and E. Y. B. Pun, “Low-loss polymeric optical waveguides using electron-beam direct writing,” Appl. Phys. Lett. 78(15), 2110–2112 (2001).
[Crossref]

Adv. Mater. (1)

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-Based Optical Waveguides: Materials, Processing, and Devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[Crossref]

Adv. Opt. Photonics (1)

P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photonics 1(3), 484–588 (2009).
[Crossref]

Appl. Phys. Lett. (2)

W. H. Wong, J. Zhou, and E. Y. B. Pun, “Low-loss polymeric optical waveguides using electron-beam direct writing,” Appl. Phys. Lett. 78(15), 2110–2112 (2001).
[Crossref]

T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82(5), 668–670 (2003).
[Crossref]

ETRI J. (1)

J. T. Kim, S. Park, S. K. Park, M.-S. Kim, M.-H. Lee, and J. J. Ju, “Gold stripe optical waveguides fabricated by a novel double-layered liftoff process,” ETRI J. 31(6), 778–783 (2009).
[Crossref]

IEEE Phot. Tech. Letters (1)

J. T. Kim, S. Park, J. J. Ju, S. K. Park, M.-S. Kim, and M.-H. Lee, “Low-Loss Polymer-Based Long-Range Surface Plasmon-Polariton Waveguide,” IEEE Phot. Tech. Letters 19(18), 1374–1376 (2007).
[Crossref]

J. Appl. Phys. (1)

C. G. Durfee, T. E. Furtak, R. T. Collins, and R. E. Hollingsworth, “Metal-oxide-semiconductor-compatible ultra-long-range surface plasmon modes,” J. Appl. Phys. 103(11), 113106 (2008).
[Crossref]

J. Lightwave Technol. (1)

J. Mater. Chem. (1)

S. K. Park, J.-M. Lee, S. Park, J. T. Kim, M.-S. Kim, M.-H. Lee, and J. J. Ju, “Highly fluorinated and photocrosslinkable liquid prepolymers for flexible optical waveguides,” J. Mater. Chem. 21(6), 1755–1761 (2011).
[Crossref]

J. Microsc. (1)

S. I. Bozhevolnyi, V. S. Volkov, K. Leosson, and A. Boltasseva, “Surface Plasmon polariton waveguiding in random surface nanostructures,” J. Microsc. 209(3), 209–213 (2003).
[Crossref]

J. Sol-Gel Sci. Technol. (1)

R. Buestrich, F. Kahlenberg, M. Popall, P. Dannberg, R. Müller-Fiedler, and O. Rösch, “ORMOCERs for Optical Interconnection Technology,” J. Sol-Gel Sci. Technol. 20(2), 181–186 (2001).
[Crossref]

Nat. Photonics (2)

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high- speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref]

Opt. Commun. (2)

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “In-line extinction modulator based on long-range surface plasmon polaritons,” Opt. Commun. 244(1–6), 455–459 (2005).
[Crossref]

S. Park, M.-S. Kim, J. T. Kim, S. K. Park, J. J. Ju, and M.-H. Lee, “Long range surface plasmon polariton waveguides at 1.31 and 1.55 μm wavelengths,” Opt. Commun. 281(8), 2057–2061 (2008).
[Crossref]

Opt. Express (10)

J. Guo and R. Adato, “Extended long range plasmon waves in finite thickness metal film and layered dielectric materials,” Opt. Express 14(25), 12409–12418 (2006).
[Crossref]

J.-M. Lee, S. Park, M.-S. Kim, S. K. Park, J. T. Kim, J.-S. Choe, W.-J. Lee, M.-H. Lee, and J. J. Ju, “Low Bending Loss Metal Waveguide Embedded in a Free-Standing Multilayered Polymer Film,” Opt. Express 17(1), 228–234 (2009).
[Crossref]

S. Park, J. J. Ju, J. T. Kim, M.-S. Kim, S. K. Park, J.-M. Lee, W.-J. Lee, and M.-H. Lee, “Sub-dB/cm propagation loss in silver stripe waveguides,” Opt. Express 17(2), 697–702 (2009).
[Crossref]

J. T. Kim, K. H. Chung, and C. G. Choi, “Thermo-optic mode extinction modulator based on graphene plasmonic waveguide,” Opt. Express 21(13), 15280–15286 (2013).
[Crossref]

R. Dangel, J. Hofrichter, F. Horst, D. Jubin, A. La Porta, N. Meier, I. M. Soganci, J. Weiss, and B. J. Offrein, “Polymer waveguides for electro-optical integration in data centers and high-performance computers,” Opt. Express 23(4), 4736–4750 (2015).
[Crossref]

D. Kalavrouziotis, S. Papaioannou, G. Giannoulis, D. Apostolopoulos, K. Hassan, L. Markey, J.-C. Weeber, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. Pitilakis, E. E. Kriezis, H. Avramopoulos, K. Vyrsokinos, and N. Pleros, “0.48Tb/s (12x40Gb/s) WDM transmission and high-quality thermo-optic switching in dielectric loaded plasmonics,” Opt. Express 20(7), 7655–7662 (2012).
[Crossref]

J. T. Kim, J. J. Ju, S. Park, M.-S. Kim, S. K. Park, and S. Y. Shin, “Hybrid plasmonic waveguide for low-loss lightwave guiding,” Opt. Express 18(3), 2808–2813 (2010).
[Crossref]

J. T. Kim, S. Park, J. J. Ju, S. Lee, and S. Kim, “Low bending loss characteristics of hybrid plasmonic waveguide for flexible optical interconnect,” Opt. Express 18(23), 24213–24220 (2010).
[Crossref]

J. T. Kim, J. J. Ju, S. Park, M.-S. Kim, S. K. Park, and M.-H. Lee, “Chip-to-chip optical interconnect using gold long-range surface plasmon polariton waveguides,” Opt. Express 16(17), 13133–13138 (2008).
[Crossref]

M. U. Khan, J. Justice, J. Petäjä, T. Korhonen, A. Boersma, S. Wiegersma, M. Karppinen, and B. Corbett, “Multi-level single mode 2D polymer waveguide optical interconnects using nano-imprint lithography,” Opt. Express 23(11), 14630–14639 (2015).
[Crossref]

Opt. Lett. (1)

Opt. Mater. (2)

A. Elmogi, E. Bosman, J. Missinne, and G. Van Steenberge, “Comparison of epoxy- and siloxane-based single-mode optical waveguides defined by direct-write lithography,” Opt. Mater. 52, 26–31 (2016).
[Crossref]

D. K. Cai, A. Neyer, R. Kuckuk, and H. M. Heise, “Optical absorption in transparent PDMS materials applied for multimode waveguides fabrication,” Opt. Mater. 30(7), 1157–1161 (2008).
[Crossref]

Optoelectronic Interconnects (1)

L. Brusberg, M. Neitz, and H. Schröder, ““Single-mode glass waveguide technology for optical interchip communication on board level,” in Proc. SPIE 8267,” Optoelectronic Interconnects XII, 82670M (2012).
[Crossref]

Phys. Rev. A (1)

A. Degiron, S.-Y. Cho, C. Harrison, N. M. Jokerst, C. Dellagiacoma, O. Martin, and D. R. Smith, “Experimental comparison between conventional and hybrid long-range surface plasmon waveguide bends,” Phys. Rev. A 77(2), 021804 (2008).
[Crossref]

Phys. Rev. B (1)

M. Walther, D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman, and F. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B 76(12), 1–9 (2007).
[Crossref]

Plasmonics (1)

I. Slovinsky, G. K. Stefansson, A. Kossoy, and K. Leosson, “Propagation loss of long-range surface plasmon polariton gold stripe waveguides in the thin-film limit,” Plasmonics 8(4), 1613–1619 (2013).
[Crossref]

Proc. SPIE (2)

M. P. Nezhad, S. Zamek, L. Pang, and Y. Fainman, ““Fabrication approaches for metallo-dielectric plasmonic waveguides,” in Advanced Fabrication Technologies for Micro/Nano Optics and Photonics,” Proc. SPIE 6883, 68830S (2008).
[Crossref]

B. L. Booth, J. E. Marchegiano, C. T. Chang, R. J. Furmanak, D. M. Graham, and R. G. Wagner, “Polyguide polymeric technology for optical interconnect circuits and components,” Proc. SPIE 3005, 238–251 (1997).
[Crossref]

Other (5)

B. Chan, H. Lin, C. Carver, J. Huang, and J. Berry, “Organic Optical Waveguide Fabrication in a Manufacturing Environment” in Electronic Components and Technology Conference (ECTC), Proceedings 60th (IEEE, 2010)
[Crossref]

C. De Bernardi, A. Küng, and O. Leminger, in Photonic Devices for Telecommunications, Guekos, ed. (Springer, 1999), pp 127–128.

L. Brusberg, H. Schröder, M. Queisser, and K.-D. Lang, “Single-mode Glass Waveguide Platform for DWDM Chip-to-Chip Interconnects” in Proceedings of IEEE 62nd Electronic Components and Technology Conference (ECTC), (IEEE 2012).

ChemOptics website, http://www.chemoptics.co.kr/eng/main/main.php .

S. I. Bozhevolnyi, Plasmonic: Nanoguides and Circuits (World Scientific Pub, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Single-cladding LRSPPW configuration. (a) Schematic structure. (b) Electric field distribution of the fundamental TM mode. (c) Representation of the LRSPPW coupled with SM-fiber. Samples contain arrays of identical waveguides with 100µm pitch.
Fig. 2
Fig. 2 Fabrication process flow based on gold etching with drawing of the silane-thiol link on gold and cladding material (silicone).
Fig. 3
Fig. 3 (a) SEM image of the cleaved facet of the Plasmonic Arc (Momentive cladding material and 15 nm thick gold strip). (b) Enlarged SEM image. The edge of the cut strip appears irregular as a result of tearing during cleaving.
Fig. 4
Fig. 4 (a) Images of calculated electric field distributions (top row) and captured IR images (middle row) of the Au-MPM526A&B LRSPPW modes at the output end of the waveguide for varied strip widths. (b) Optical setup used to acquire the field distributions.
Fig. 5
Fig. 5 Loss measurements in TM and TE polarization (Au-Lightlink LRSPPW)
Fig. 6
Fig. 6 Measured insertion loss of the Au-MPM526A&B plasmonic arcs versus waveguide length for gold strip widths 5, 7.5, 10, 12.5 and 15 µm. The coupling facets were obtained by cleaving. Straight lines are linear fits of the measurements. (b) Calculated coupling loss and propagation loss with error bar by cutting-back method with the data from (a)
Fig. 7
Fig. 7 Measured insertion loss of the Au Lightlink plasmonic arcs versus waveguide length for gold strip widths 5, 7.5, 10, 12.5 and 15 µm. The coupling facets were obtained by dicing. Straight lines are linear fits of the measurements. (b) Calculated coupling loss and propagation loss with error bar by cutting-back method with the data from (a).
Fig. 8
Fig. 8 (a) Photograph of the bended plasmonic arc with both ends attached to narrow silicon stripes. (b) Curve model for the calculation of the bending radius. (c) Measured bending loss and polarization ratio versus bending radius for wstrip = 7.5 µm.
Fig. 9
Fig. 9 (a) Structure layout of the double-cladding plasmonic arc. (b) Calculated electric field distribution of the fundamental TM mode with gold w = 10 µm and t = 15 nm. Optical microscope images from side view in bright (b) and dark (c) field.
Fig. 10
Fig. 10 Double-cladding plasmonic arc: measured bending loss of the LRSPP mode by dB/cm (a) by dB/90°, (b) and polarization ratio (c) versus bending radius of arc with the gold strip width of 5, 10, and 12.5 µm respectively. “12.5 µm B” indicates another waveguide with gold stripe width of 12.5 µm but different length in the same sample.
Fig. 11
Fig. 11 Optical losses of the OPCB-Plasmonic Arc assembly. The lengths of the OPCB waveguide and plasmonic waveguide are 61 mm and 8 mm, respectively.

Tables (5)

Tables Icon

Table 1 Possible commercial materials and important parameters for the flexible plasmonic Arc. Colored blocks refer to the results obtained in this work.

Tables Icon

Table 2 Effective indices and SPP propagation length obtained from simulation. Comparison of longitudinal and transversal mode sizes (Full width at half maximum) between simulations and experiments with Au-MPM526A&B LRSPPW.

Tables Icon

Table 3 Experimental plasmon mode size (FWHM) at waveguide output end on 12mm long Au-MPM526A&B LRSPPW sample.

Tables Icon

Table 4 Comparison of insertion loss and polarization ratio of the straight double-cladding plasmonic arc of different gold strip widths before and after being peeled off from the silicon wafer.

Tables Icon

Table 5 Coupled OPCB / Plasmonic Arc insertion losses (TM polarization)

Metrics