Abstract

A high gain antenna with controlling electromagnetic surface propagation and radiation for terahertz application is proposed based on a holographic artificial impedance surface. The artificial impedance surface is composed of sub wavelength square metallic patches on a grounded dielectric slab. The effective surface impedance depends on the size of the patches and can be varied as a function of position and direction. Using the holographic technique enables the desired direction radiation and high gain to be achieved. The detailed design procedure of impedance modulation and the simulation results are presented.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Compact and broadband antenna based on a step-shaped metasurface

Ximing Li, Jingjing Yang, Yun Feng, Meixia Yang, and Ming Huang
Opt. Express 25(16) 19023-19033 (2017)

Experimental validation of active holographic metasurface for electrically beam steering

Kuang Zhang, Hao Yu, Xumin Ding, and Qun Wu
Opt. Express 26(5) 6316-6324 (2018)

Experimental demonstration of reflectarray antennas at terahertz frequencies

Tiaoming Niu, Withawat Withayachumnankul, Benjamin S.-Y. Ung, Hakan Menekse, Madhu Bhaskaran, Sharath Sriram, and Christophe Fumeaux
Opt. Express 21(3) 2875-2889 (2013)

References

  • View by:
  • |
  • |
  • |

  1. P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002).
    [Crossref]
  2. J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107(11), 111101 (2010).
    [Crossref]
  3. N. Chimot, J. Mangeney, L. Joulaud, P. Crozat, H. Bernas, K. Blary, and J. F. Lampin, “Terahertz radiation from heavy-ion-irradiated In0.53Ga0.47As photoconductive antenna excited at 1.55 um,” Appl. Phys. Lett. 87(19), 193510 (2005).
    [Crossref]
  4. S. G. Park, A. M. Weiner, M. R. Melloch, C. W. Sider, J. L. Sider, and A. J. Taylor, “High-power narrow-band terahertz generation using large-aperture photoconductors,” IEEE J. Quantum Electron. 35(8), 1257–1268 (2002).
    [Crossref]
  5. S. Cao, W. Yu, T. Wang, H. Shen, X. Han, W. Xu, and X. Zhang, “Meta-microwindmill structure with multiple absorption peaks for the detection of ketamine and amphetamine type stimulants in terahertz domain,” Opt. Mater. Express 4(9), 1876–1884 (2014).
    [Crossref]
  6. W. Lai, N. Born, L. M. Schneider, A. Rahimi-Iman, J. C. Balzer, and M. Koch, “Broadband antireflection coating for optimized terahertz beam splitters,” Opt. Mater. Express 5(12), 2812–2819 (2015).
    [Crossref]
  7. M. Shalaby, H. Merbold, M. Peccianti, L. Razzari, G. Sharma, T. Ozaki, R. Morandotti, T. Feurer, A. Weber, L. Heyderman, B. Patterson, and H. Sigg, “Concurrent field enhancement and high transmission of THz radiation in nanoslit arrays,” Appl. Phys. Lett. 96(4), 041110 (2011).
    [Crossref]
  8. S.-G. Park, K. H. Jin, M. Yi, J. C. Ye, J. Ahn, and K.-H. Jeong, “Enhancement of terahertz pulse emission by optical nanoantenna,” ACS Nano 6(3), 2026–2031 (2012).
    [Crossref] [PubMed]
  9. H. Tanoto, J. Teng, Q. Wu, M. Sun, Z. Chen, S. Maier, B. Wang, C. Chum, G. Si, A. Danner, and S. J. Chua, “Greatly enhanced continuous-wave terahertz emission by nano-electrodes in a photoconductive photomixer,” Nat. Photonics 6(2), 121–126 (2012).
    [Crossref]
  10. S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Detection of microorganisms using terahertz metamaterials,” Sci. Rep. 4(1), 4988 (2014).
    [Crossref] [PubMed]
  11. D. Headland, P. Thurgood, D. Stavrevski, W. Withayachumnankul, D. Abbott, M. Bhaskaran, and S. Sriram, “Doped polymer for low-loss dielectric material in the terahertz rang,” Opt. Mater. Express 5(6), 1373–1380 (2015).
    [Crossref]
  12. J. T. Hong, S. J. Park, J.-Y. Park, S. Lee, and Y. H. Ahn, “Terahertz slot antenna devices fabricated on silver nanowire network films,” Opt. Mater. Express 7(5), 1679–1685 (2017).
    [Crossref]
  13. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
    [Crossref] [PubMed]
  14. M. I. Amanti, M. Fischer, C. Walther, G. Scalari, and J. Faist, “Horn antennas for terahertz quantum cascade lasers,” Electron. Lett. 43(10), 573–574 (2007).
    [Crossref]
  15. H. R. Park, S. M. Koo, O. K. Suwal, Y. M. Park, J. S. Kyoung, M. A. Seo, S. S. Choi, N. K. Park, D. S. Kim, and K. J. Ahn, “Resonance behavior of single ultrathin slot antennas on finite dielectric substrate in terahertz regime,” Appl. Phys. Lett. 96(21), 211109 (2010).
    [Crossref]
  16. H. Galal and M. Agio, “High efficient light extraction and directional emission from large refractive-index materials with a planar Yagi-Uda antenna,” Opt. Mater. Express 7(5), 1634–1646 (2017).
    [Crossref]
  17. T. K. Nguyen, S. Kim, F. Rotermund, and I. Park, “Design of a wideband continuous-wave photomixer antenna for terahertz wireless communication systems,” J. Electromagn. Waves Appl. 28(8), 976–988 (2014).
    [Crossref]
  18. G. Kaplan, K. Aydin, and J. Scheuer, “Dynamically controlled plasmonic nanoantenna phased array utilizing vanadium dioxide,” Opt. Mater. Express 5(11), 2513–2524 (2015).
    [Crossref]
  19. S. Abdellatif, K. Kirah, H. Ghali, and W. Anis, “Spectral and spatial distribution effects on nanowires inside nanoring optical antennas for photovoltaic arrays,” Opt. Mater. Express 2(10), 1432–1436 (2012).
    [Crossref]
  20. Z. Yi, J. Luo, Y. Yi, X. Kang, X. Ye, P. Bi, P. Wu, X. Jiang, Y. Yi, and Y. Tang, “Study of strong dipole and quadrupole plasmon resonance in Ag nanorings antenna,” Opt. Mater. Express 5(2), 210–217 (2015).
    [Crossref]
  21. Y. G. Liu, W. C. H. Choy, W. E. I. Sha, and W. C. Chew, “Unidirectional and wavelength-selective photonic sphere-array nanoantennas,” Opt. Lett. 37(11), 2112–2114 (2012).
    [Crossref] [PubMed]
  22. J. Lloyd-Hughes, G. Scalari, A. van Kolck, M. Fischer, M. Beck, and J. Faist, “Coupling terahertz radiation between sub-wavelength metal-metal waveguides and free space using monolithically integrated horn antennae,” Opt. Express 17(20), 18387–18393 (2009).
    [Crossref] [PubMed]
  23. R. Singh, C. Rockstuhl, C. Menzel, T. P. Meyrath, M. He, H. Giessen, F. Lederer, and W. Zhang, “Spiral-type terahertz antennas and the manifestation of the Mushiake principle,” Opt. Express 17(12), 9971–9980 (2009).
    [Crossref] [PubMed]
  24. S.-G. Park, Y. Choi, Y.-J. Oh, and K.-H. Jeong, “Terahertz photoconductive antenna with metal nanoislands,” Opt. Express 20(23), 25530–25535 (2012).
    [Crossref] [PubMed]
  25. S. J. Park, B. H. Son, S. J. Choi, H. S. Kim, and Y. H. Ahn, “Sensitive detection of yeast using terahertz slot antennas,” Opt. Express 22(25), 30467–30472 (2014).
    [Crossref] [PubMed]
  26. J. Xu, L. Tao, R. Zhang, Y. Hao, S. Huang, and K. Bi, “Broadband complementary ring-resonator based terahertz antenna,” Opt. Express 25(15), 17099–17104 (2017).
    [Crossref] [PubMed]
  27. B. H. Fong, J. S. Colburn, J. J. Ottusch, J. L. Visher, and D. F. Sievenpiper, “Scalar and tensor holographic artificial impedance surfaces,” IEEE Trans. Antenn. Propag. 58(10), 3212–3221 (2010).
    [Crossref]
  28. S. Pandi, C. A. Balanis, and C. R. Birtcher, “Design of scalar impedance holographic metasurfaces for antenna beam formation with desired polarization,” IEEE Trans. Antenn. Propag. 63(7), 3016–3024 (2015).
    [Crossref]
  29. T. Quach, D. A. Mcnamara, and A. Petosa, “Holographic antenna realized using interference patterns determined in presence of dielectric substrate,” IET Electron Lett. 41(13), 724–725 (2005).
    [Crossref]
  30. P. Li, Y. Shi, H. Bagci, and L. J. Jiang, “A hybrid time-domain discontinuous Galerkin-boundary integral algorithm for 3-D electromagnetic scattering analysis,” IEEE Trans. Antenn. Propag. 62(5), 2841–2846 (2014).
    [Crossref]
  31. P. Li and L. J. Jiang, “Integration of arbitrary lumped multiport circuit networks into the discontinuous Galerkin time-domain analysis,” IEEE Trans. Microw. Theory Tech. 61(7), 2525–2534 (2013).
    [Crossref]
  32. P. Li and L. J. Jiang, “A hybrid electromagnetics-circuit simulation method exploiting discontinuous Galerkin finite element time domain method,” IEEE Microw. Wirel. Compon. Lett. 23(3), 113–115 (2013).
    [Crossref]

2017 (3)

2015 (5)

2014 (5)

S. Cao, W. Yu, T. Wang, H. Shen, X. Han, W. Xu, and X. Zhang, “Meta-microwindmill structure with multiple absorption peaks for the detection of ketamine and amphetamine type stimulants in terahertz domain,” Opt. Mater. Express 4(9), 1876–1884 (2014).
[Crossref]

S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Detection of microorganisms using terahertz metamaterials,” Sci. Rep. 4(1), 4988 (2014).
[Crossref] [PubMed]

T. K. Nguyen, S. Kim, F. Rotermund, and I. Park, “Design of a wideband continuous-wave photomixer antenna for terahertz wireless communication systems,” J. Electromagn. Waves Appl. 28(8), 976–988 (2014).
[Crossref]

S. J. Park, B. H. Son, S. J. Choi, H. S. Kim, and Y. H. Ahn, “Sensitive detection of yeast using terahertz slot antennas,” Opt. Express 22(25), 30467–30472 (2014).
[Crossref] [PubMed]

P. Li, Y. Shi, H. Bagci, and L. J. Jiang, “A hybrid time-domain discontinuous Galerkin-boundary integral algorithm for 3-D electromagnetic scattering analysis,” IEEE Trans. Antenn. Propag. 62(5), 2841–2846 (2014).
[Crossref]

2013 (2)

P. Li and L. J. Jiang, “Integration of arbitrary lumped multiport circuit networks into the discontinuous Galerkin time-domain analysis,” IEEE Trans. Microw. Theory Tech. 61(7), 2525–2534 (2013).
[Crossref]

P. Li and L. J. Jiang, “A hybrid electromagnetics-circuit simulation method exploiting discontinuous Galerkin finite element time domain method,” IEEE Microw. Wirel. Compon. Lett. 23(3), 113–115 (2013).
[Crossref]

2012 (5)

S.-G. Park, Y. Choi, Y.-J. Oh, and K.-H. Jeong, “Terahertz photoconductive antenna with metal nanoislands,” Opt. Express 20(23), 25530–25535 (2012).
[Crossref] [PubMed]

S. Abdellatif, K. Kirah, H. Ghali, and W. Anis, “Spectral and spatial distribution effects on nanowires inside nanoring optical antennas for photovoltaic arrays,” Opt. Mater. Express 2(10), 1432–1436 (2012).
[Crossref]

Y. G. Liu, W. C. H. Choy, W. E. I. Sha, and W. C. Chew, “Unidirectional and wavelength-selective photonic sphere-array nanoantennas,” Opt. Lett. 37(11), 2112–2114 (2012).
[Crossref] [PubMed]

S.-G. Park, K. H. Jin, M. Yi, J. C. Ye, J. Ahn, and K.-H. Jeong, “Enhancement of terahertz pulse emission by optical nanoantenna,” ACS Nano 6(3), 2026–2031 (2012).
[Crossref] [PubMed]

H. Tanoto, J. Teng, Q. Wu, M. Sun, Z. Chen, S. Maier, B. Wang, C. Chum, G. Si, A. Danner, and S. J. Chua, “Greatly enhanced continuous-wave terahertz emission by nano-electrodes in a photoconductive photomixer,” Nat. Photonics 6(2), 121–126 (2012).
[Crossref]

2011 (1)

M. Shalaby, H. Merbold, M. Peccianti, L. Razzari, G. Sharma, T. Ozaki, R. Morandotti, T. Feurer, A. Weber, L. Heyderman, B. Patterson, and H. Sigg, “Concurrent field enhancement and high transmission of THz radiation in nanoslit arrays,” Appl. Phys. Lett. 96(4), 041110 (2011).
[Crossref]

2010 (3)

J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107(11), 111101 (2010).
[Crossref]

H. R. Park, S. M. Koo, O. K. Suwal, Y. M. Park, J. S. Kyoung, M. A. Seo, S. S. Choi, N. K. Park, D. S. Kim, and K. J. Ahn, “Resonance behavior of single ultrathin slot antennas on finite dielectric substrate in terahertz regime,” Appl. Phys. Lett. 96(21), 211109 (2010).
[Crossref]

B. H. Fong, J. S. Colburn, J. J. Ottusch, J. L. Visher, and D. F. Sievenpiper, “Scalar and tensor holographic artificial impedance surfaces,” IEEE Trans. Antenn. Propag. 58(10), 3212–3221 (2010).
[Crossref]

2009 (2)

2007 (1)

M. I. Amanti, M. Fischer, C. Walther, G. Scalari, and J. Faist, “Horn antennas for terahertz quantum cascade lasers,” Electron. Lett. 43(10), 573–574 (2007).
[Crossref]

2005 (3)

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

N. Chimot, J. Mangeney, L. Joulaud, P. Crozat, H. Bernas, K. Blary, and J. F. Lampin, “Terahertz radiation from heavy-ion-irradiated In0.53Ga0.47As photoconductive antenna excited at 1.55 um,” Appl. Phys. Lett. 87(19), 193510 (2005).
[Crossref]

T. Quach, D. A. Mcnamara, and A. Petosa, “Holographic antenna realized using interference patterns determined in presence of dielectric substrate,” IET Electron Lett. 41(13), 724–725 (2005).
[Crossref]

2002 (2)

S. G. Park, A. M. Weiner, M. R. Melloch, C. W. Sider, J. L. Sider, and A. J. Taylor, “High-power narrow-band terahertz generation using large-aperture photoconductors,” IEEE J. Quantum Electron. 35(8), 1257–1268 (2002).
[Crossref]

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002).
[Crossref]

Abbott, D.

Abdellatif, S.

Agio, M.

Ahn, J.

S.-G. Park, K. H. Jin, M. Yi, J. C. Ye, J. Ahn, and K.-H. Jeong, “Enhancement of terahertz pulse emission by optical nanoantenna,” ACS Nano 6(3), 2026–2031 (2012).
[Crossref] [PubMed]

Ahn, K. J.

H. R. Park, S. M. Koo, O. K. Suwal, Y. M. Park, J. S. Kyoung, M. A. Seo, S. S. Choi, N. K. Park, D. S. Kim, and K. J. Ahn, “Resonance behavior of single ultrathin slot antennas on finite dielectric substrate in terahertz regime,” Appl. Phys. Lett. 96(21), 211109 (2010).
[Crossref]

Ahn, Y. H.

Amanti, M. I.

M. I. Amanti, M. Fischer, C. Walther, G. Scalari, and J. Faist, “Horn antennas for terahertz quantum cascade lasers,” Electron. Lett. 43(10), 573–574 (2007).
[Crossref]

Anis, W.

Aydin, K.

Bagci, H.

P. Li, Y. Shi, H. Bagci, and L. J. Jiang, “A hybrid time-domain discontinuous Galerkin-boundary integral algorithm for 3-D electromagnetic scattering analysis,” IEEE Trans. Antenn. Propag. 62(5), 2841–2846 (2014).
[Crossref]

Balanis, C. A.

S. Pandi, C. A. Balanis, and C. R. Birtcher, “Design of scalar impedance holographic metasurfaces for antenna beam formation with desired polarization,” IEEE Trans. Antenn. Propag. 63(7), 3016–3024 (2015).
[Crossref]

Balzer, J. C.

Beck, M.

Bernas, H.

N. Chimot, J. Mangeney, L. Joulaud, P. Crozat, H. Bernas, K. Blary, and J. F. Lampin, “Terahertz radiation from heavy-ion-irradiated In0.53Ga0.47As photoconductive antenna excited at 1.55 um,” Appl. Phys. Lett. 87(19), 193510 (2005).
[Crossref]

Bhaskaran, M.

Bi, K.

Bi, P.

Birtcher, C. R.

S. Pandi, C. A. Balanis, and C. R. Birtcher, “Design of scalar impedance holographic metasurfaces for antenna beam formation with desired polarization,” IEEE Trans. Antenn. Propag. 63(7), 3016–3024 (2015).
[Crossref]

Blary, K.

N. Chimot, J. Mangeney, L. Joulaud, P. Crozat, H. Bernas, K. Blary, and J. F. Lampin, “Terahertz radiation from heavy-ion-irradiated In0.53Ga0.47As photoconductive antenna excited at 1.55 um,” Appl. Phys. Lett. 87(19), 193510 (2005).
[Crossref]

Born, N.

Cao, S.

Chen, Z.

H. Tanoto, J. Teng, Q. Wu, M. Sun, Z. Chen, S. Maier, B. Wang, C. Chum, G. Si, A. Danner, and S. J. Chua, “Greatly enhanced continuous-wave terahertz emission by nano-electrodes in a photoconductive photomixer,” Nat. Photonics 6(2), 121–126 (2012).
[Crossref]

Chew, W. C.

Chimot, N.

N. Chimot, J. Mangeney, L. Joulaud, P. Crozat, H. Bernas, K. Blary, and J. F. Lampin, “Terahertz radiation from heavy-ion-irradiated In0.53Ga0.47As photoconductive antenna excited at 1.55 um,” Appl. Phys. Lett. 87(19), 193510 (2005).
[Crossref]

Choi, S. J.

S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Detection of microorganisms using terahertz metamaterials,” Sci. Rep. 4(1), 4988 (2014).
[Crossref] [PubMed]

S. J. Park, B. H. Son, S. J. Choi, H. S. Kim, and Y. H. Ahn, “Sensitive detection of yeast using terahertz slot antennas,” Opt. Express 22(25), 30467–30472 (2014).
[Crossref] [PubMed]

Choi, S. S.

H. R. Park, S. M. Koo, O. K. Suwal, Y. M. Park, J. S. Kyoung, M. A. Seo, S. S. Choi, N. K. Park, D. S. Kim, and K. J. Ahn, “Resonance behavior of single ultrathin slot antennas on finite dielectric substrate in terahertz regime,” Appl. Phys. Lett. 96(21), 211109 (2010).
[Crossref]

Choi, Y.

Choy, W. C. H.

Chua, S. J.

H. Tanoto, J. Teng, Q. Wu, M. Sun, Z. Chen, S. Maier, B. Wang, C. Chum, G. Si, A. Danner, and S. J. Chua, “Greatly enhanced continuous-wave terahertz emission by nano-electrodes in a photoconductive photomixer,” Nat. Photonics 6(2), 121–126 (2012).
[Crossref]

Chum, C.

H. Tanoto, J. Teng, Q. Wu, M. Sun, Z. Chen, S. Maier, B. Wang, C. Chum, G. Si, A. Danner, and S. J. Chua, “Greatly enhanced continuous-wave terahertz emission by nano-electrodes in a photoconductive photomixer,” Nat. Photonics 6(2), 121–126 (2012).
[Crossref]

Colburn, J. S.

B. H. Fong, J. S. Colburn, J. J. Ottusch, J. L. Visher, and D. F. Sievenpiper, “Scalar and tensor holographic artificial impedance surfaces,” IEEE Trans. Antenn. Propag. 58(10), 3212–3221 (2010).
[Crossref]

Crozat, P.

N. Chimot, J. Mangeney, L. Joulaud, P. Crozat, H. Bernas, K. Blary, and J. F. Lampin, “Terahertz radiation from heavy-ion-irradiated In0.53Ga0.47As photoconductive antenna excited at 1.55 um,” Appl. Phys. Lett. 87(19), 193510 (2005).
[Crossref]

Danner, A.

H. Tanoto, J. Teng, Q. Wu, M. Sun, Z. Chen, S. Maier, B. Wang, C. Chum, G. Si, A. Danner, and S. J. Chua, “Greatly enhanced continuous-wave terahertz emission by nano-electrodes in a photoconductive photomixer,” Nat. Photonics 6(2), 121–126 (2012).
[Crossref]

Eisler, H.-J.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Faist, J.

Federici, J.

J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107(11), 111101 (2010).
[Crossref]

Feurer, T.

M. Shalaby, H. Merbold, M. Peccianti, L. Razzari, G. Sharma, T. Ozaki, R. Morandotti, T. Feurer, A. Weber, L. Heyderman, B. Patterson, and H. Sigg, “Concurrent field enhancement and high transmission of THz radiation in nanoslit arrays,” Appl. Phys. Lett. 96(4), 041110 (2011).
[Crossref]

Fischer, M.

Fong, B. H.

B. H. Fong, J. S. Colburn, J. J. Ottusch, J. L. Visher, and D. F. Sievenpiper, “Scalar and tensor holographic artificial impedance surfaces,” IEEE Trans. Antenn. Propag. 58(10), 3212–3221 (2010).
[Crossref]

Galal, H.

Ghali, H.

Giessen, H.

Han, S. T.

S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Detection of microorganisms using terahertz metamaterials,” Sci. Rep. 4(1), 4988 (2014).
[Crossref] [PubMed]

Han, X.

Hao, Y.

He, M.

Headland, D.

Hecht, B.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Heyderman, L.

M. Shalaby, H. Merbold, M. Peccianti, L. Razzari, G. Sharma, T. Ozaki, R. Morandotti, T. Feurer, A. Weber, L. Heyderman, B. Patterson, and H. Sigg, “Concurrent field enhancement and high transmission of THz radiation in nanoslit arrays,” Appl. Phys. Lett. 96(4), 041110 (2011).
[Crossref]

Hong, J. T.

J. T. Hong, S. J. Park, J.-Y. Park, S. Lee, and Y. H. Ahn, “Terahertz slot antenna devices fabricated on silver nanowire network films,” Opt. Mater. Express 7(5), 1679–1685 (2017).
[Crossref]

S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Detection of microorganisms using terahertz metamaterials,” Sci. Rep. 4(1), 4988 (2014).
[Crossref] [PubMed]

Huang, S.

Jeong, K.-H.

S.-G. Park, K. H. Jin, M. Yi, J. C. Ye, J. Ahn, and K.-H. Jeong, “Enhancement of terahertz pulse emission by optical nanoantenna,” ACS Nano 6(3), 2026–2031 (2012).
[Crossref] [PubMed]

S.-G. Park, Y. Choi, Y.-J. Oh, and K.-H. Jeong, “Terahertz photoconductive antenna with metal nanoislands,” Opt. Express 20(23), 25530–25535 (2012).
[Crossref] [PubMed]

Jiang, L. J.

P. Li, Y. Shi, H. Bagci, and L. J. Jiang, “A hybrid time-domain discontinuous Galerkin-boundary integral algorithm for 3-D electromagnetic scattering analysis,” IEEE Trans. Antenn. Propag. 62(5), 2841–2846 (2014).
[Crossref]

P. Li and L. J. Jiang, “Integration of arbitrary lumped multiport circuit networks into the discontinuous Galerkin time-domain analysis,” IEEE Trans. Microw. Theory Tech. 61(7), 2525–2534 (2013).
[Crossref]

P. Li and L. J. Jiang, “A hybrid electromagnetics-circuit simulation method exploiting discontinuous Galerkin finite element time domain method,” IEEE Microw. Wirel. Compon. Lett. 23(3), 113–115 (2013).
[Crossref]

Jiang, X.

Jin, K. H.

S.-G. Park, K. H. Jin, M. Yi, J. C. Ye, J. Ahn, and K.-H. Jeong, “Enhancement of terahertz pulse emission by optical nanoantenna,” ACS Nano 6(3), 2026–2031 (2012).
[Crossref] [PubMed]

Joulaud, L.

N. Chimot, J. Mangeney, L. Joulaud, P. Crozat, H. Bernas, K. Blary, and J. F. Lampin, “Terahertz radiation from heavy-ion-irradiated In0.53Ga0.47As photoconductive antenna excited at 1.55 um,” Appl. Phys. Lett. 87(19), 193510 (2005).
[Crossref]

Kang, X.

Kaplan, G.

Kim, D. S.

S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Detection of microorganisms using terahertz metamaterials,” Sci. Rep. 4(1), 4988 (2014).
[Crossref] [PubMed]

H. R. Park, S. M. Koo, O. K. Suwal, Y. M. Park, J. S. Kyoung, M. A. Seo, S. S. Choi, N. K. Park, D. S. Kim, and K. J. Ahn, “Resonance behavior of single ultrathin slot antennas on finite dielectric substrate in terahertz regime,” Appl. Phys. Lett. 96(21), 211109 (2010).
[Crossref]

Kim, H. S.

S. J. Park, B. H. Son, S. J. Choi, H. S. Kim, and Y. H. Ahn, “Sensitive detection of yeast using terahertz slot antennas,” Opt. Express 22(25), 30467–30472 (2014).
[Crossref] [PubMed]

S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Detection of microorganisms using terahertz metamaterials,” Sci. Rep. 4(1), 4988 (2014).
[Crossref] [PubMed]

Kim, S.

T. K. Nguyen, S. Kim, F. Rotermund, and I. Park, “Design of a wideband continuous-wave photomixer antenna for terahertz wireless communication systems,” J. Electromagn. Waves Appl. 28(8), 976–988 (2014).
[Crossref]

Kirah, K.

Koch, M.

Koo, S. M.

H. R. Park, S. M. Koo, O. K. Suwal, Y. M. Park, J. S. Kyoung, M. A. Seo, S. S. Choi, N. K. Park, D. S. Kim, and K. J. Ahn, “Resonance behavior of single ultrathin slot antennas on finite dielectric substrate in terahertz regime,” Appl. Phys. Lett. 96(21), 211109 (2010).
[Crossref]

Kyoung, J. S.

H. R. Park, S. M. Koo, O. K. Suwal, Y. M. Park, J. S. Kyoung, M. A. Seo, S. S. Choi, N. K. Park, D. S. Kim, and K. J. Ahn, “Resonance behavior of single ultrathin slot antennas on finite dielectric substrate in terahertz regime,” Appl. Phys. Lett. 96(21), 211109 (2010).
[Crossref]

Lai, W.

Lampin, J. F.

N. Chimot, J. Mangeney, L. Joulaud, P. Crozat, H. Bernas, K. Blary, and J. F. Lampin, “Terahertz radiation from heavy-ion-irradiated In0.53Ga0.47As photoconductive antenna excited at 1.55 um,” Appl. Phys. Lett. 87(19), 193510 (2005).
[Crossref]

Lederer, F.

Lee, S.

J. T. Hong, S. J. Park, J.-Y. Park, S. Lee, and Y. H. Ahn, “Terahertz slot antenna devices fabricated on silver nanowire network films,” Opt. Mater. Express 7(5), 1679–1685 (2017).
[Crossref]

S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Detection of microorganisms using terahertz metamaterials,” Sci. Rep. 4(1), 4988 (2014).
[Crossref] [PubMed]

Li, P.

P. Li, Y. Shi, H. Bagci, and L. J. Jiang, “A hybrid time-domain discontinuous Galerkin-boundary integral algorithm for 3-D electromagnetic scattering analysis,” IEEE Trans. Antenn. Propag. 62(5), 2841–2846 (2014).
[Crossref]

P. Li and L. J. Jiang, “A hybrid electromagnetics-circuit simulation method exploiting discontinuous Galerkin finite element time domain method,” IEEE Microw. Wirel. Compon. Lett. 23(3), 113–115 (2013).
[Crossref]

P. Li and L. J. Jiang, “Integration of arbitrary lumped multiport circuit networks into the discontinuous Galerkin time-domain analysis,” IEEE Trans. Microw. Theory Tech. 61(7), 2525–2534 (2013).
[Crossref]

Liu, Y. G.

Lloyd-Hughes, J.

Luo, J.

Maier, S.

H. Tanoto, J. Teng, Q. Wu, M. Sun, Z. Chen, S. Maier, B. Wang, C. Chum, G. Si, A. Danner, and S. J. Chua, “Greatly enhanced continuous-wave terahertz emission by nano-electrodes in a photoconductive photomixer,” Nat. Photonics 6(2), 121–126 (2012).
[Crossref]

Mangeney, J.

N. Chimot, J. Mangeney, L. Joulaud, P. Crozat, H. Bernas, K. Blary, and J. F. Lampin, “Terahertz radiation from heavy-ion-irradiated In0.53Ga0.47As photoconductive antenna excited at 1.55 um,” Appl. Phys. Lett. 87(19), 193510 (2005).
[Crossref]

Martin, O. J. F.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Mcnamara, D. A.

T. Quach, D. A. Mcnamara, and A. Petosa, “Holographic antenna realized using interference patterns determined in presence of dielectric substrate,” IET Electron Lett. 41(13), 724–725 (2005).
[Crossref]

Melloch, M. R.

S. G. Park, A. M. Weiner, M. R. Melloch, C. W. Sider, J. L. Sider, and A. J. Taylor, “High-power narrow-band terahertz generation using large-aperture photoconductors,” IEEE J. Quantum Electron. 35(8), 1257–1268 (2002).
[Crossref]

Menzel, C.

Merbold, H.

M. Shalaby, H. Merbold, M. Peccianti, L. Razzari, G. Sharma, T. Ozaki, R. Morandotti, T. Feurer, A. Weber, L. Heyderman, B. Patterson, and H. Sigg, “Concurrent field enhancement and high transmission of THz radiation in nanoslit arrays,” Appl. Phys. Lett. 96(4), 041110 (2011).
[Crossref]

Meyrath, T. P.

Moeller, L.

J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107(11), 111101 (2010).
[Crossref]

Morandotti, R.

M. Shalaby, H. Merbold, M. Peccianti, L. Razzari, G. Sharma, T. Ozaki, R. Morandotti, T. Feurer, A. Weber, L. Heyderman, B. Patterson, and H. Sigg, “Concurrent field enhancement and high transmission of THz radiation in nanoslit arrays,” Appl. Phys. Lett. 96(4), 041110 (2011).
[Crossref]

Mühlschlegel, P.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Nguyen, T. K.

T. K. Nguyen, S. Kim, F. Rotermund, and I. Park, “Design of a wideband continuous-wave photomixer antenna for terahertz wireless communication systems,” J. Electromagn. Waves Appl. 28(8), 976–988 (2014).
[Crossref]

Oh, Y.-J.

Ottusch, J. J.

B. H. Fong, J. S. Colburn, J. J. Ottusch, J. L. Visher, and D. F. Sievenpiper, “Scalar and tensor holographic artificial impedance surfaces,” IEEE Trans. Antenn. Propag. 58(10), 3212–3221 (2010).
[Crossref]

Ozaki, T.

M. Shalaby, H. Merbold, M. Peccianti, L. Razzari, G. Sharma, T. Ozaki, R. Morandotti, T. Feurer, A. Weber, L. Heyderman, B. Patterson, and H. Sigg, “Concurrent field enhancement and high transmission of THz radiation in nanoslit arrays,” Appl. Phys. Lett. 96(4), 041110 (2011).
[Crossref]

Pandi, S.

S. Pandi, C. A. Balanis, and C. R. Birtcher, “Design of scalar impedance holographic metasurfaces for antenna beam formation with desired polarization,” IEEE Trans. Antenn. Propag. 63(7), 3016–3024 (2015).
[Crossref]

Park, H. R.

H. R. Park, S. M. Koo, O. K. Suwal, Y. M. Park, J. S. Kyoung, M. A. Seo, S. S. Choi, N. K. Park, D. S. Kim, and K. J. Ahn, “Resonance behavior of single ultrathin slot antennas on finite dielectric substrate in terahertz regime,” Appl. Phys. Lett. 96(21), 211109 (2010).
[Crossref]

Park, I.

T. K. Nguyen, S. Kim, F. Rotermund, and I. Park, “Design of a wideband continuous-wave photomixer antenna for terahertz wireless communication systems,” J. Electromagn. Waves Appl. 28(8), 976–988 (2014).
[Crossref]

Park, J. Y.

S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Detection of microorganisms using terahertz metamaterials,” Sci. Rep. 4(1), 4988 (2014).
[Crossref] [PubMed]

Park, J.-Y.

Park, N. K.

H. R. Park, S. M. Koo, O. K. Suwal, Y. M. Park, J. S. Kyoung, M. A. Seo, S. S. Choi, N. K. Park, D. S. Kim, and K. J. Ahn, “Resonance behavior of single ultrathin slot antennas on finite dielectric substrate in terahertz regime,” Appl. Phys. Lett. 96(21), 211109 (2010).
[Crossref]

Park, S. G.

S. G. Park, A. M. Weiner, M. R. Melloch, C. W. Sider, J. L. Sider, and A. J. Taylor, “High-power narrow-band terahertz generation using large-aperture photoconductors,” IEEE J. Quantum Electron. 35(8), 1257–1268 (2002).
[Crossref]

Park, S. J.

Park, S.-G.

S.-G. Park, Y. Choi, Y.-J. Oh, and K.-H. Jeong, “Terahertz photoconductive antenna with metal nanoislands,” Opt. Express 20(23), 25530–25535 (2012).
[Crossref] [PubMed]

S.-G. Park, K. H. Jin, M. Yi, J. C. Ye, J. Ahn, and K.-H. Jeong, “Enhancement of terahertz pulse emission by optical nanoantenna,” ACS Nano 6(3), 2026–2031 (2012).
[Crossref] [PubMed]

Park, W. K.

S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Detection of microorganisms using terahertz metamaterials,” Sci. Rep. 4(1), 4988 (2014).
[Crossref] [PubMed]

Park, Y. M.

H. R. Park, S. M. Koo, O. K. Suwal, Y. M. Park, J. S. Kyoung, M. A. Seo, S. S. Choi, N. K. Park, D. S. Kim, and K. J. Ahn, “Resonance behavior of single ultrathin slot antennas on finite dielectric substrate in terahertz regime,” Appl. Phys. Lett. 96(21), 211109 (2010).
[Crossref]

Patterson, B.

M. Shalaby, H. Merbold, M. Peccianti, L. Razzari, G. Sharma, T. Ozaki, R. Morandotti, T. Feurer, A. Weber, L. Heyderman, B. Patterson, and H. Sigg, “Concurrent field enhancement and high transmission of THz radiation in nanoslit arrays,” Appl. Phys. Lett. 96(4), 041110 (2011).
[Crossref]

Peccianti, M.

M. Shalaby, H. Merbold, M. Peccianti, L. Razzari, G. Sharma, T. Ozaki, R. Morandotti, T. Feurer, A. Weber, L. Heyderman, B. Patterson, and H. Sigg, “Concurrent field enhancement and high transmission of THz radiation in nanoslit arrays,” Appl. Phys. Lett. 96(4), 041110 (2011).
[Crossref]

Petosa, A.

T. Quach, D. A. Mcnamara, and A. Petosa, “Holographic antenna realized using interference patterns determined in presence of dielectric substrate,” IET Electron Lett. 41(13), 724–725 (2005).
[Crossref]

Pohl, D. W.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Quach, T.

T. Quach, D. A. Mcnamara, and A. Petosa, “Holographic antenna realized using interference patterns determined in presence of dielectric substrate,” IET Electron Lett. 41(13), 724–725 (2005).
[Crossref]

Rahimi-Iman, A.

Razzari, L.

M. Shalaby, H. Merbold, M. Peccianti, L. Razzari, G. Sharma, T. Ozaki, R. Morandotti, T. Feurer, A. Weber, L. Heyderman, B. Patterson, and H. Sigg, “Concurrent field enhancement and high transmission of THz radiation in nanoslit arrays,” Appl. Phys. Lett. 96(4), 041110 (2011).
[Crossref]

Rockstuhl, C.

Rotermund, F.

T. K. Nguyen, S. Kim, F. Rotermund, and I. Park, “Design of a wideband continuous-wave photomixer antenna for terahertz wireless communication systems,” J. Electromagn. Waves Appl. 28(8), 976–988 (2014).
[Crossref]

Scalari, G.

Scheuer, J.

Schneider, L. M.

Seo, M. A.

H. R. Park, S. M. Koo, O. K. Suwal, Y. M. Park, J. S. Kyoung, M. A. Seo, S. S. Choi, N. K. Park, D. S. Kim, and K. J. Ahn, “Resonance behavior of single ultrathin slot antennas on finite dielectric substrate in terahertz regime,” Appl. Phys. Lett. 96(21), 211109 (2010).
[Crossref]

Sha, W. E. I.

Shalaby, M.

M. Shalaby, H. Merbold, M. Peccianti, L. Razzari, G. Sharma, T. Ozaki, R. Morandotti, T. Feurer, A. Weber, L. Heyderman, B. Patterson, and H. Sigg, “Concurrent field enhancement and high transmission of THz radiation in nanoslit arrays,” Appl. Phys. Lett. 96(4), 041110 (2011).
[Crossref]

Sharma, G.

M. Shalaby, H. Merbold, M. Peccianti, L. Razzari, G. Sharma, T. Ozaki, R. Morandotti, T. Feurer, A. Weber, L. Heyderman, B. Patterson, and H. Sigg, “Concurrent field enhancement and high transmission of THz radiation in nanoslit arrays,” Appl. Phys. Lett. 96(4), 041110 (2011).
[Crossref]

Shen, H.

Shi, Y.

P. Li, Y. Shi, H. Bagci, and L. J. Jiang, “A hybrid time-domain discontinuous Galerkin-boundary integral algorithm for 3-D electromagnetic scattering analysis,” IEEE Trans. Antenn. Propag. 62(5), 2841–2846 (2014).
[Crossref]

Si, G.

H. Tanoto, J. Teng, Q. Wu, M. Sun, Z. Chen, S. Maier, B. Wang, C. Chum, G. Si, A. Danner, and S. J. Chua, “Greatly enhanced continuous-wave terahertz emission by nano-electrodes in a photoconductive photomixer,” Nat. Photonics 6(2), 121–126 (2012).
[Crossref]

Sider, C. W.

S. G. Park, A. M. Weiner, M. R. Melloch, C. W. Sider, J. L. Sider, and A. J. Taylor, “High-power narrow-band terahertz generation using large-aperture photoconductors,” IEEE J. Quantum Electron. 35(8), 1257–1268 (2002).
[Crossref]

Sider, J. L.

S. G. Park, A. M. Weiner, M. R. Melloch, C. W. Sider, J. L. Sider, and A. J. Taylor, “High-power narrow-band terahertz generation using large-aperture photoconductors,” IEEE J. Quantum Electron. 35(8), 1257–1268 (2002).
[Crossref]

Siegel, P. H.

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002).
[Crossref]

Sievenpiper, D. F.

B. H. Fong, J. S. Colburn, J. J. Ottusch, J. L. Visher, and D. F. Sievenpiper, “Scalar and tensor holographic artificial impedance surfaces,” IEEE Trans. Antenn. Propag. 58(10), 3212–3221 (2010).
[Crossref]

Sigg, H.

M. Shalaby, H. Merbold, M. Peccianti, L. Razzari, G. Sharma, T. Ozaki, R. Morandotti, T. Feurer, A. Weber, L. Heyderman, B. Patterson, and H. Sigg, “Concurrent field enhancement and high transmission of THz radiation in nanoslit arrays,” Appl. Phys. Lett. 96(4), 041110 (2011).
[Crossref]

Singh, R.

Son, B. H.

Sriram, S.

Stavrevski, D.

Sun, M.

H. Tanoto, J. Teng, Q. Wu, M. Sun, Z. Chen, S. Maier, B. Wang, C. Chum, G. Si, A. Danner, and S. J. Chua, “Greatly enhanced continuous-wave terahertz emission by nano-electrodes in a photoconductive photomixer,” Nat. Photonics 6(2), 121–126 (2012).
[Crossref]

Suwal, O. K.

H. R. Park, S. M. Koo, O. K. Suwal, Y. M. Park, J. S. Kyoung, M. A. Seo, S. S. Choi, N. K. Park, D. S. Kim, and K. J. Ahn, “Resonance behavior of single ultrathin slot antennas on finite dielectric substrate in terahertz regime,” Appl. Phys. Lett. 96(21), 211109 (2010).
[Crossref]

Tang, Y.

Tanoto, H.

H. Tanoto, J. Teng, Q. Wu, M. Sun, Z. Chen, S. Maier, B. Wang, C. Chum, G. Si, A. Danner, and S. J. Chua, “Greatly enhanced continuous-wave terahertz emission by nano-electrodes in a photoconductive photomixer,” Nat. Photonics 6(2), 121–126 (2012).
[Crossref]

Tao, L.

Taylor, A. J.

S. G. Park, A. M. Weiner, M. R. Melloch, C. W. Sider, J. L. Sider, and A. J. Taylor, “High-power narrow-band terahertz generation using large-aperture photoconductors,” IEEE J. Quantum Electron. 35(8), 1257–1268 (2002).
[Crossref]

Teng, J.

H. Tanoto, J. Teng, Q. Wu, M. Sun, Z. Chen, S. Maier, B. Wang, C. Chum, G. Si, A. Danner, and S. J. Chua, “Greatly enhanced continuous-wave terahertz emission by nano-electrodes in a photoconductive photomixer,” Nat. Photonics 6(2), 121–126 (2012).
[Crossref]

Thurgood, P.

van Kolck, A.

Visher, J. L.

B. H. Fong, J. S. Colburn, J. J. Ottusch, J. L. Visher, and D. F. Sievenpiper, “Scalar and tensor holographic artificial impedance surfaces,” IEEE Trans. Antenn. Propag. 58(10), 3212–3221 (2010).
[Crossref]

Walther, C.

M. I. Amanti, M. Fischer, C. Walther, G. Scalari, and J. Faist, “Horn antennas for terahertz quantum cascade lasers,” Electron. Lett. 43(10), 573–574 (2007).
[Crossref]

Wang, B.

H. Tanoto, J. Teng, Q. Wu, M. Sun, Z. Chen, S. Maier, B. Wang, C. Chum, G. Si, A. Danner, and S. J. Chua, “Greatly enhanced continuous-wave terahertz emission by nano-electrodes in a photoconductive photomixer,” Nat. Photonics 6(2), 121–126 (2012).
[Crossref]

Wang, T.

Weber, A.

M. Shalaby, H. Merbold, M. Peccianti, L. Razzari, G. Sharma, T. Ozaki, R. Morandotti, T. Feurer, A. Weber, L. Heyderman, B. Patterson, and H. Sigg, “Concurrent field enhancement and high transmission of THz radiation in nanoslit arrays,” Appl. Phys. Lett. 96(4), 041110 (2011).
[Crossref]

Weiner, A. M.

S. G. Park, A. M. Weiner, M. R. Melloch, C. W. Sider, J. L. Sider, and A. J. Taylor, “High-power narrow-band terahertz generation using large-aperture photoconductors,” IEEE J. Quantum Electron. 35(8), 1257–1268 (2002).
[Crossref]

Withayachumnankul, W.

Wu, P.

Wu, Q.

H. Tanoto, J. Teng, Q. Wu, M. Sun, Z. Chen, S. Maier, B. Wang, C. Chum, G. Si, A. Danner, and S. J. Chua, “Greatly enhanced continuous-wave terahertz emission by nano-electrodes in a photoconductive photomixer,” Nat. Photonics 6(2), 121–126 (2012).
[Crossref]

Xu, J.

Xu, W.

Ye, J. C.

S.-G. Park, K. H. Jin, M. Yi, J. C. Ye, J. Ahn, and K.-H. Jeong, “Enhancement of terahertz pulse emission by optical nanoantenna,” ACS Nano 6(3), 2026–2031 (2012).
[Crossref] [PubMed]

Ye, X.

Yi, M.

S.-G. Park, K. H. Jin, M. Yi, J. C. Ye, J. Ahn, and K.-H. Jeong, “Enhancement of terahertz pulse emission by optical nanoantenna,” ACS Nano 6(3), 2026–2031 (2012).
[Crossref] [PubMed]

Yi, Y.

Yi, Z.

Yu, W.

Zhang, R.

Zhang, W.

Zhang, X.

ACS Nano (1)

S.-G. Park, K. H. Jin, M. Yi, J. C. Ye, J. Ahn, and K.-H. Jeong, “Enhancement of terahertz pulse emission by optical nanoantenna,” ACS Nano 6(3), 2026–2031 (2012).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

N. Chimot, J. Mangeney, L. Joulaud, P. Crozat, H. Bernas, K. Blary, and J. F. Lampin, “Terahertz radiation from heavy-ion-irradiated In0.53Ga0.47As photoconductive antenna excited at 1.55 um,” Appl. Phys. Lett. 87(19), 193510 (2005).
[Crossref]

M. Shalaby, H. Merbold, M. Peccianti, L. Razzari, G. Sharma, T. Ozaki, R. Morandotti, T. Feurer, A. Weber, L. Heyderman, B. Patterson, and H. Sigg, “Concurrent field enhancement and high transmission of THz radiation in nanoslit arrays,” Appl. Phys. Lett. 96(4), 041110 (2011).
[Crossref]

H. R. Park, S. M. Koo, O. K. Suwal, Y. M. Park, J. S. Kyoung, M. A. Seo, S. S. Choi, N. K. Park, D. S. Kim, and K. J. Ahn, “Resonance behavior of single ultrathin slot antennas on finite dielectric substrate in terahertz regime,” Appl. Phys. Lett. 96(21), 211109 (2010).
[Crossref]

Electron. Lett. (1)

M. I. Amanti, M. Fischer, C. Walther, G. Scalari, and J. Faist, “Horn antennas for terahertz quantum cascade lasers,” Electron. Lett. 43(10), 573–574 (2007).
[Crossref]

IEEE J. Quantum Electron. (1)

S. G. Park, A. M. Weiner, M. R. Melloch, C. W. Sider, J. L. Sider, and A. J. Taylor, “High-power narrow-band terahertz generation using large-aperture photoconductors,” IEEE J. Quantum Electron. 35(8), 1257–1268 (2002).
[Crossref]

IEEE Microw. Wirel. Compon. Lett. (1)

P. Li and L. J. Jiang, “A hybrid electromagnetics-circuit simulation method exploiting discontinuous Galerkin finite element time domain method,” IEEE Microw. Wirel. Compon. Lett. 23(3), 113–115 (2013).
[Crossref]

IEEE Trans. Antenn. Propag. (3)

P. Li, Y. Shi, H. Bagci, and L. J. Jiang, “A hybrid time-domain discontinuous Galerkin-boundary integral algorithm for 3-D electromagnetic scattering analysis,” IEEE Trans. Antenn. Propag. 62(5), 2841–2846 (2014).
[Crossref]

B. H. Fong, J. S. Colburn, J. J. Ottusch, J. L. Visher, and D. F. Sievenpiper, “Scalar and tensor holographic artificial impedance surfaces,” IEEE Trans. Antenn. Propag. 58(10), 3212–3221 (2010).
[Crossref]

S. Pandi, C. A. Balanis, and C. R. Birtcher, “Design of scalar impedance holographic metasurfaces for antenna beam formation with desired polarization,” IEEE Trans. Antenn. Propag. 63(7), 3016–3024 (2015).
[Crossref]

IEEE Trans. Microw. Theory Tech. (2)

P. Li and L. J. Jiang, “Integration of arbitrary lumped multiport circuit networks into the discontinuous Galerkin time-domain analysis,” IEEE Trans. Microw. Theory Tech. 61(7), 2525–2534 (2013).
[Crossref]

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002).
[Crossref]

IET Electron Lett. (1)

T. Quach, D. A. Mcnamara, and A. Petosa, “Holographic antenna realized using interference patterns determined in presence of dielectric substrate,” IET Electron Lett. 41(13), 724–725 (2005).
[Crossref]

J. Appl. Phys. (1)

J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107(11), 111101 (2010).
[Crossref]

J. Electromagn. Waves Appl. (1)

T. K. Nguyen, S. Kim, F. Rotermund, and I. Park, “Design of a wideband continuous-wave photomixer antenna for terahertz wireless communication systems,” J. Electromagn. Waves Appl. 28(8), 976–988 (2014).
[Crossref]

Nat. Photonics (1)

H. Tanoto, J. Teng, Q. Wu, M. Sun, Z. Chen, S. Maier, B. Wang, C. Chum, G. Si, A. Danner, and S. J. Chua, “Greatly enhanced continuous-wave terahertz emission by nano-electrodes in a photoconductive photomixer,” Nat. Photonics 6(2), 121–126 (2012).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Opt. Mater. Express (8)

H. Galal and M. Agio, “High efficient light extraction and directional emission from large refractive-index materials with a planar Yagi-Uda antenna,” Opt. Mater. Express 7(5), 1634–1646 (2017).
[Crossref]

S. Cao, W. Yu, T. Wang, H. Shen, X. Han, W. Xu, and X. Zhang, “Meta-microwindmill structure with multiple absorption peaks for the detection of ketamine and amphetamine type stimulants in terahertz domain,” Opt. Mater. Express 4(9), 1876–1884 (2014).
[Crossref]

W. Lai, N. Born, L. M. Schneider, A. Rahimi-Iman, J. C. Balzer, and M. Koch, “Broadband antireflection coating for optimized terahertz beam splitters,” Opt. Mater. Express 5(12), 2812–2819 (2015).
[Crossref]

G. Kaplan, K. Aydin, and J. Scheuer, “Dynamically controlled plasmonic nanoantenna phased array utilizing vanadium dioxide,” Opt. Mater. Express 5(11), 2513–2524 (2015).
[Crossref]

S. Abdellatif, K. Kirah, H. Ghali, and W. Anis, “Spectral and spatial distribution effects on nanowires inside nanoring optical antennas for photovoltaic arrays,” Opt. Mater. Express 2(10), 1432–1436 (2012).
[Crossref]

Z. Yi, J. Luo, Y. Yi, X. Kang, X. Ye, P. Bi, P. Wu, X. Jiang, Y. Yi, and Y. Tang, “Study of strong dipole and quadrupole plasmon resonance in Ag nanorings antenna,” Opt. Mater. Express 5(2), 210–217 (2015).
[Crossref]

D. Headland, P. Thurgood, D. Stavrevski, W. Withayachumnankul, D. Abbott, M. Bhaskaran, and S. Sriram, “Doped polymer for low-loss dielectric material in the terahertz rang,” Opt. Mater. Express 5(6), 1373–1380 (2015).
[Crossref]

J. T. Hong, S. J. Park, J.-Y. Park, S. Lee, and Y. H. Ahn, “Terahertz slot antenna devices fabricated on silver nanowire network films,” Opt. Mater. Express 7(5), 1679–1685 (2017).
[Crossref]

Sci. Rep. (1)

S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Detection of microorganisms using terahertz metamaterials,” Sci. Rep. 4(1), 4988 (2014).
[Crossref] [PubMed]

Science (1)

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 The layout of the holographic antenna.
Fig. 2
Fig. 2 Unit cell of impedance surface.
Fig. 3
Fig. 3 Frequencies against phase difference.
Fig. 4
Fig. 4 Impedance versus gap at 1 THz for the square lattice.
Fig. 5
Fig. 5 The layout of holographic pattern.
Fig. 6
Fig. 6 The simulated frequency responses of the proposed antenna.
Fig. 7
Fig. 7 The simulated radiation pattern of the proposed antenna in X-Z plane at 1 THz.
Fig. 8
Fig. 8 The simulated radiation pattern of the proposed antenna at 1 THz.
Fig. 9
Fig. 9 (a)The simulated surface current. (b) The simulated surface electric field.

Tables (6)

Tables Icon

Table 1 Dimensions of The Square Metal Patches

Tables Icon

Table 2 Dimensions of The Square Metal Patches

Tables Icon

Table 3 Dimensions of The Square Metal Patches

Tables Icon

Table 4 Dimensions of The Square Metal Patches

Tables Icon

Table 5 Dimensions of The Square Metal Patches

Tables Icon

Table 6 Dimensions of The Square Metal Patches

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Z=j η 0 ( ϕ x 2 + ϕ y 2 c aω ) 2 1 .
Z=j( 102.8 e 0.106g + 69.76 e 0.002g ).
Ψ ref = e jknr .
Ψ rad = e jkxsin θ L .
Z surf ( x,y )=j[ X s +MRe( Ψ rad Ψ ref ) ].

Metrics