Abstract

Integration of an InGaAs/InP quantum well infrared photodetector (QWIP) onto a Si substrate was successfully demonstrated via a metal-assisted wafer bonding (MWB) using a Mo/Au metal scheme. The Mo/Au/Mo layer, situated between the QWIP structure and the Si, has shown a well-ordered lamination. It provides a smooth surface with a roughness of about 0.8 nm, as measured by a scanning electron microscope (SEM) and atomic force microscopy (AFM). The results on crystalline quality evaluated by Raman spectroscopy and X-ray diffraction (XRD) imply that the MWB could be achieved without any measurable material degradation and residual strain. Temperature dependence of dark current revealed that there is no noticeable change in the dark current properties of the QWIP after bonding on Si, despite that the quantum wells are only 200 nm away from the bonding interface.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
InAs/GaAs quantum dot infrared photodetector on a Si substrate by means of metal wafer bonding and epitaxial lift-off

HoSung Kim, Seung-Yeop Ahn, SangHyeon Kim, GeunHwan Ryu, Ji Hoon Kyhm, Kyung Woon Lee, Jung Ho Park, and Won Jun Choi
Opt. Express 25(15) 17562-17570 (2017)

InGaP/GaAs heterojunction phototransistors transferred to a Si substrate by metal wafer bonding combined with epitaxial lift-off

Min-Su Park, Dae-Myeong Geum, Ji Hoon Kyhm, Jin Dong Song, SangHyeon Kim, and Won Jun Choi
Opt. Express 23(21) 26888-26894 (2015)

Monolithically integrated InAs/InGaAs quantum dot photodetectors on silicon substrates

Yating Wan, Zeyu Zhang, Ruilin Chao, Justin Norman, Daehwan Jung, Chen Shang, Qiang Li, MJ Kennedy, Di Liang, Chong Zhang, Jin-Wei Shi, Arthur C. Gossard, Kei May Lau, and John E. Bowers
Opt. Express 25(22) 27715-27723 (2017)

References

  • View by:
  • |
  • |
  • |

  1. B. F. Levine, “Quantum‐well infrared photodetectors,” J. Appl. Phys. 74(8), R1–R81 (1993).
    [Crossref]
  2. A. Rogalski, “Quantum well photoconductors in infrared detector technology,” J. Appl. Phys. 93(8), 4355–4391 (2003).
    [Crossref]
  3. S. D. Gunapala, S. V. Bandara, J. K. Liu, C. J. Hill, S. B. Rafol, J. M. Mumolo, J. T. Trinh, M. Z. Tidrow, and P. D. LeVan, “1024 × 1024 pixel mid-wavelength and long-wavelength infrared QWIP focal plane arrays for imaging applications,” Semicond. Sci. Technol. 20(5), 473–480 (2005).
    [Crossref]
  4. Q. Huang, G. Xu, Y. Yuan, X. Cheng, and L. Luo, “Development of indium bumping technology through AZ9260 resist electroplating,” J. Micromech. Microeng. 20(5), 055035 (2010).
    [Crossref]
  5. J. Jiang, S. Tsao, T. O’Sullivan, M. Razeghi, and G. J. Brown, “Fabrication of indium bumps for hybrid infrared focal plane array applications,” Infrared Phys. Technol. 45(2), 143–151 (2004).
    [Crossref]
  6. J. Wu, Q. Jiang, S. Chen, M. Tang, Y. I. Mazur, Y. Maidaniuk, M. Benamara, M. P. Semtsiv, W. T. Masselink, K. A. Sablon, G. J. Salamo, and H. Liu, “Monolithically Integrated InAs/GaAs Quantum Dot Mid-Infrared Photodetectors on Silicon Substrates,” ACS Photonics 3(5), 749–753 (2016).
    [Crossref]
  7. S. Chen, M. Tang, Q. Jiang, J. Wu, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, P. Smowton, A. Seeds, and H. Liu, “InAs/GaAs Quantum-Dot Superluminescent Light-Emitting Diode Monolithically Grown on a Si substrate,’,” ACS Photonics 1(7), 638–642 (2014).
    [Crossref]
  8. J. Yua, Y. Wang, J. Q. Lu, and R. J. Gutmann, “Low-temperature silicon wafer bonding based on Ti/Si solid-state amorphization,” Appl. Phys. Lett. 89(9), 092104 (2006).
    [Crossref]
  9. R. H. Horng, S. H. Huang, D. S. Wuu, and C. Y. Chiu, “AlGaInP/mirror/Si light-emitting diodes with vertical electrodes by wafer bonding,” Appl. Phys. Lett. 82(23), 4011–4013 (2003).
    [Crossref]
  10. M. S. Park, D. M. Geum, J. H. Kyhm, J. D. Song, S. Kim, and W. J. Choi, “InGaP/GaAs heterojunction phototransistors transferred to a Si substrate by metal wafer bonding combined with epitaxial lift-off,” Opt. Express 23(21), 26888–26894 (2015).
    [Crossref] [PubMed]
  11. D. M. Geum, M. S. Park, J. Y. Lim, H. D. Yang, J. D. Song, C. Z. Kim, E. Yoon, S. Kim, and W. J. Choi, “Ultra-high-throughput Production of III-V/Si Wafer for Electronic and Photonic Applications,” Sci. Rep. 6(1), 20610 (2016).
    [Crossref] [PubMed]
  12. E. Higurashi, D. Chino, T. Suga, and R. Sawada, “Au–Au Surface-Activated Bonding and Its Application to Optical Microsensors With 3-D Structure,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1500–1505 (2009).
    [Crossref]
  13. E. Jing, B. Xiong, and Y. Wang, “Low-temperature Au–Si wafer bonding,” J. Micromech. Microeng. 20(9), 095014 (2010).
    [Crossref]
  14. A.G. Bacaa, F. Renb, J.C. Zolper, R.D. Briggsa and S.J. Peartonc, “A survey of ohmic contacts to III-V compound semiconductors,” Thin Solid Films 308−309, 599−606 (1997).
    [Crossref]
  15. A. K. Baraskar, M. A. Wistey, V. Jain, U. Singisetti, G. Burek, B. J. Thibeault, Y. J. Lee, A. C. Gossard, and M. J. W. Rodwell, “Ultralow resistance, nonalloyed Ohmic contacts to n-InGaAs,” J. Vac. Sci. Technol. B 27(4), 2036–2039 (2009).
    [Crossref]
  16. G. Liu, G. J. Zhang, F. Jiang, X. D. Ding, Y. J. Sun, J. Sun, and E. Ma, “Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility,” Nat. Mater. 12(4), 344–350 (2013).
    [Crossref] [PubMed]
  17. P. Fay, K. Stevens, J. Elliot, and N. Pan, “Performance Dependence of InGaP/InGaAs/GaAs pHEMT’s on Gate Metallization,” IEEE Electron Device Lett. 20(11), 554–556 (1999).
    [Crossref]
  18. Y. Kitaura, T. Hashimoto, T. Inoue, K. Ishida, N. Uchitomi, and R. Nii, “Long-term reliability of Pt and Mo diffusion barriers in Ti-Pt-Au and Ti-Mo-Au metallization systems for GaAs digital integrated circuits,” J. Vac. Sci. Technol. 12(5), 2985–2991 (1994).
    [Crossref]
  19. A. Gupta, D. Paramanik, S. Varma, and C. Jacob, “CVD growth and characterization of 3C-SiC thin films,” Bull. Mater. Sci. 27(5), 445–451 (2004).
    [Crossref]
  20. M. S. Park, V. Jain, E. H. Lee, S. H. Kim, H. Pettersson, Q. Wang, J. D. Song, and W. J. Choi, “InAs/GaAs p–i–p quantum dots-in-a-well infrared photodetectors operating beyond 200 K,” Electron. Lett. 50(23), 1731–1733 (2014).
    [Crossref]
  21. E. Altin, M. Hostut, and Y. Ergun, “Barrier lowering effect and dark current characteristics in asymmetric GaAs/AlGaAs multi quantum well structure,” Appl. Phys., A Mater. Sci. Process. 105(4), 833–839 (2011).
    [Crossref]

2016 (2)

J. Wu, Q. Jiang, S. Chen, M. Tang, Y. I. Mazur, Y. Maidaniuk, M. Benamara, M. P. Semtsiv, W. T. Masselink, K. A. Sablon, G. J. Salamo, and H. Liu, “Monolithically Integrated InAs/GaAs Quantum Dot Mid-Infrared Photodetectors on Silicon Substrates,” ACS Photonics 3(5), 749–753 (2016).
[Crossref]

D. M. Geum, M. S. Park, J. Y. Lim, H. D. Yang, J. D. Song, C. Z. Kim, E. Yoon, S. Kim, and W. J. Choi, “Ultra-high-throughput Production of III-V/Si Wafer for Electronic and Photonic Applications,” Sci. Rep. 6(1), 20610 (2016).
[Crossref] [PubMed]

2015 (1)

2014 (2)

M. S. Park, V. Jain, E. H. Lee, S. H. Kim, H. Pettersson, Q. Wang, J. D. Song, and W. J. Choi, “InAs/GaAs p–i–p quantum dots-in-a-well infrared photodetectors operating beyond 200 K,” Electron. Lett. 50(23), 1731–1733 (2014).
[Crossref]

S. Chen, M. Tang, Q. Jiang, J. Wu, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, P. Smowton, A. Seeds, and H. Liu, “InAs/GaAs Quantum-Dot Superluminescent Light-Emitting Diode Monolithically Grown on a Si substrate,’,” ACS Photonics 1(7), 638–642 (2014).
[Crossref]

2013 (1)

G. Liu, G. J. Zhang, F. Jiang, X. D. Ding, Y. J. Sun, J. Sun, and E. Ma, “Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility,” Nat. Mater. 12(4), 344–350 (2013).
[Crossref] [PubMed]

2011 (1)

E. Altin, M. Hostut, and Y. Ergun, “Barrier lowering effect and dark current characteristics in asymmetric GaAs/AlGaAs multi quantum well structure,” Appl. Phys., A Mater. Sci. Process. 105(4), 833–839 (2011).
[Crossref]

2010 (2)

E. Jing, B. Xiong, and Y. Wang, “Low-temperature Au–Si wafer bonding,” J. Micromech. Microeng. 20(9), 095014 (2010).
[Crossref]

Q. Huang, G. Xu, Y. Yuan, X. Cheng, and L. Luo, “Development of indium bumping technology through AZ9260 resist electroplating,” J. Micromech. Microeng. 20(5), 055035 (2010).
[Crossref]

2009 (2)

A. K. Baraskar, M. A. Wistey, V. Jain, U. Singisetti, G. Burek, B. J. Thibeault, Y. J. Lee, A. C. Gossard, and M. J. W. Rodwell, “Ultralow resistance, nonalloyed Ohmic contacts to n-InGaAs,” J. Vac. Sci. Technol. B 27(4), 2036–2039 (2009).
[Crossref]

E. Higurashi, D. Chino, T. Suga, and R. Sawada, “Au–Au Surface-Activated Bonding and Its Application to Optical Microsensors With 3-D Structure,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1500–1505 (2009).
[Crossref]

2006 (1)

J. Yua, Y. Wang, J. Q. Lu, and R. J. Gutmann, “Low-temperature silicon wafer bonding based on Ti/Si solid-state amorphization,” Appl. Phys. Lett. 89(9), 092104 (2006).
[Crossref]

2005 (1)

S. D. Gunapala, S. V. Bandara, J. K. Liu, C. J. Hill, S. B. Rafol, J. M. Mumolo, J. T. Trinh, M. Z. Tidrow, and P. D. LeVan, “1024 × 1024 pixel mid-wavelength and long-wavelength infrared QWIP focal plane arrays for imaging applications,” Semicond. Sci. Technol. 20(5), 473–480 (2005).
[Crossref]

2004 (2)

A. Gupta, D. Paramanik, S. Varma, and C. Jacob, “CVD growth and characterization of 3C-SiC thin films,” Bull. Mater. Sci. 27(5), 445–451 (2004).
[Crossref]

J. Jiang, S. Tsao, T. O’Sullivan, M. Razeghi, and G. J. Brown, “Fabrication of indium bumps for hybrid infrared focal plane array applications,” Infrared Phys. Technol. 45(2), 143–151 (2004).
[Crossref]

2003 (2)

A. Rogalski, “Quantum well photoconductors in infrared detector technology,” J. Appl. Phys. 93(8), 4355–4391 (2003).
[Crossref]

R. H. Horng, S. H. Huang, D. S. Wuu, and C. Y. Chiu, “AlGaInP/mirror/Si light-emitting diodes with vertical electrodes by wafer bonding,” Appl. Phys. Lett. 82(23), 4011–4013 (2003).
[Crossref]

1999 (1)

P. Fay, K. Stevens, J. Elliot, and N. Pan, “Performance Dependence of InGaP/InGaAs/GaAs pHEMT’s on Gate Metallization,” IEEE Electron Device Lett. 20(11), 554–556 (1999).
[Crossref]

1994 (1)

Y. Kitaura, T. Hashimoto, T. Inoue, K. Ishida, N. Uchitomi, and R. Nii, “Long-term reliability of Pt and Mo diffusion barriers in Ti-Pt-Au and Ti-Mo-Au metallization systems for GaAs digital integrated circuits,” J. Vac. Sci. Technol. 12(5), 2985–2991 (1994).
[Crossref]

1993 (1)

B. F. Levine, “Quantum‐well infrared photodetectors,” J. Appl. Phys. 74(8), R1–R81 (1993).
[Crossref]

Altin, E.

E. Altin, M. Hostut, and Y. Ergun, “Barrier lowering effect and dark current characteristics in asymmetric GaAs/AlGaAs multi quantum well structure,” Appl. Phys., A Mater. Sci. Process. 105(4), 833–839 (2011).
[Crossref]

Bandara, S. V.

S. D. Gunapala, S. V. Bandara, J. K. Liu, C. J. Hill, S. B. Rafol, J. M. Mumolo, J. T. Trinh, M. Z. Tidrow, and P. D. LeVan, “1024 × 1024 pixel mid-wavelength and long-wavelength infrared QWIP focal plane arrays for imaging applications,” Semicond. Sci. Technol. 20(5), 473–480 (2005).
[Crossref]

Baraskar, A. K.

A. K. Baraskar, M. A. Wistey, V. Jain, U. Singisetti, G. Burek, B. J. Thibeault, Y. J. Lee, A. C. Gossard, and M. J. W. Rodwell, “Ultralow resistance, nonalloyed Ohmic contacts to n-InGaAs,” J. Vac. Sci. Technol. B 27(4), 2036–2039 (2009).
[Crossref]

Benamara, M.

J. Wu, Q. Jiang, S. Chen, M. Tang, Y. I. Mazur, Y. Maidaniuk, M. Benamara, M. P. Semtsiv, W. T. Masselink, K. A. Sablon, G. J. Salamo, and H. Liu, “Monolithically Integrated InAs/GaAs Quantum Dot Mid-Infrared Photodetectors on Silicon Substrates,” ACS Photonics 3(5), 749–753 (2016).
[Crossref]

S. Chen, M. Tang, Q. Jiang, J. Wu, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, P. Smowton, A. Seeds, and H. Liu, “InAs/GaAs Quantum-Dot Superluminescent Light-Emitting Diode Monolithically Grown on a Si substrate,’,” ACS Photonics 1(7), 638–642 (2014).
[Crossref]

Brown, G. J.

J. Jiang, S. Tsao, T. O’Sullivan, M. Razeghi, and G. J. Brown, “Fabrication of indium bumps for hybrid infrared focal plane array applications,” Infrared Phys. Technol. 45(2), 143–151 (2004).
[Crossref]

Burek, G.

A. K. Baraskar, M. A. Wistey, V. Jain, U. Singisetti, G. Burek, B. J. Thibeault, Y. J. Lee, A. C. Gossard, and M. J. W. Rodwell, “Ultralow resistance, nonalloyed Ohmic contacts to n-InGaAs,” J. Vac. Sci. Technol. B 27(4), 2036–2039 (2009).
[Crossref]

Chen, S.

J. Wu, Q. Jiang, S. Chen, M. Tang, Y. I. Mazur, Y. Maidaniuk, M. Benamara, M. P. Semtsiv, W. T. Masselink, K. A. Sablon, G. J. Salamo, and H. Liu, “Monolithically Integrated InAs/GaAs Quantum Dot Mid-Infrared Photodetectors on Silicon Substrates,” ACS Photonics 3(5), 749–753 (2016).
[Crossref]

S. Chen, M. Tang, Q. Jiang, J. Wu, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, P. Smowton, A. Seeds, and H. Liu, “InAs/GaAs Quantum-Dot Superluminescent Light-Emitting Diode Monolithically Grown on a Si substrate,’,” ACS Photonics 1(7), 638–642 (2014).
[Crossref]

Cheng, X.

Q. Huang, G. Xu, Y. Yuan, X. Cheng, and L. Luo, “Development of indium bumping technology through AZ9260 resist electroplating,” J. Micromech. Microeng. 20(5), 055035 (2010).
[Crossref]

Chino, D.

E. Higurashi, D. Chino, T. Suga, and R. Sawada, “Au–Au Surface-Activated Bonding and Its Application to Optical Microsensors With 3-D Structure,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1500–1505 (2009).
[Crossref]

Chiu, C. Y.

R. H. Horng, S. H. Huang, D. S. Wuu, and C. Y. Chiu, “AlGaInP/mirror/Si light-emitting diodes with vertical electrodes by wafer bonding,” Appl. Phys. Lett. 82(23), 4011–4013 (2003).
[Crossref]

Choi, W. J.

D. M. Geum, M. S. Park, J. Y. Lim, H. D. Yang, J. D. Song, C. Z. Kim, E. Yoon, S. Kim, and W. J. Choi, “Ultra-high-throughput Production of III-V/Si Wafer for Electronic and Photonic Applications,” Sci. Rep. 6(1), 20610 (2016).
[Crossref] [PubMed]

M. S. Park, D. M. Geum, J. H. Kyhm, J. D. Song, S. Kim, and W. J. Choi, “InGaP/GaAs heterojunction phototransistors transferred to a Si substrate by metal wafer bonding combined with epitaxial lift-off,” Opt. Express 23(21), 26888–26894 (2015).
[Crossref] [PubMed]

M. S. Park, V. Jain, E. H. Lee, S. H. Kim, H. Pettersson, Q. Wang, J. D. Song, and W. J. Choi, “InAs/GaAs p–i–p quantum dots-in-a-well infrared photodetectors operating beyond 200 K,” Electron. Lett. 50(23), 1731–1733 (2014).
[Crossref]

Ding, X. D.

G. Liu, G. J. Zhang, F. Jiang, X. D. Ding, Y. J. Sun, J. Sun, and E. Ma, “Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility,” Nat. Mater. 12(4), 344–350 (2013).
[Crossref] [PubMed]

Dorogan, V. G.

S. Chen, M. Tang, Q. Jiang, J. Wu, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, P. Smowton, A. Seeds, and H. Liu, “InAs/GaAs Quantum-Dot Superluminescent Light-Emitting Diode Monolithically Grown on a Si substrate,’,” ACS Photonics 1(7), 638–642 (2014).
[Crossref]

Elliot, J.

P. Fay, K. Stevens, J. Elliot, and N. Pan, “Performance Dependence of InGaP/InGaAs/GaAs pHEMT’s on Gate Metallization,” IEEE Electron Device Lett. 20(11), 554–556 (1999).
[Crossref]

Ergun, Y.

E. Altin, M. Hostut, and Y. Ergun, “Barrier lowering effect and dark current characteristics in asymmetric GaAs/AlGaAs multi quantum well structure,” Appl. Phys., A Mater. Sci. Process. 105(4), 833–839 (2011).
[Crossref]

Fay, P.

P. Fay, K. Stevens, J. Elliot, and N. Pan, “Performance Dependence of InGaP/InGaAs/GaAs pHEMT’s on Gate Metallization,” IEEE Electron Device Lett. 20(11), 554–556 (1999).
[Crossref]

Geum, D. M.

D. M. Geum, M. S. Park, J. Y. Lim, H. D. Yang, J. D. Song, C. Z. Kim, E. Yoon, S. Kim, and W. J. Choi, “Ultra-high-throughput Production of III-V/Si Wafer for Electronic and Photonic Applications,” Sci. Rep. 6(1), 20610 (2016).
[Crossref] [PubMed]

M. S. Park, D. M. Geum, J. H. Kyhm, J. D. Song, S. Kim, and W. J. Choi, “InGaP/GaAs heterojunction phototransistors transferred to a Si substrate by metal wafer bonding combined with epitaxial lift-off,” Opt. Express 23(21), 26888–26894 (2015).
[Crossref] [PubMed]

Gossard, A. C.

A. K. Baraskar, M. A. Wistey, V. Jain, U. Singisetti, G. Burek, B. J. Thibeault, Y. J. Lee, A. C. Gossard, and M. J. W. Rodwell, “Ultralow resistance, nonalloyed Ohmic contacts to n-InGaAs,” J. Vac. Sci. Technol. B 27(4), 2036–2039 (2009).
[Crossref]

Gunapala, S. D.

S. D. Gunapala, S. V. Bandara, J. K. Liu, C. J. Hill, S. B. Rafol, J. M. Mumolo, J. T. Trinh, M. Z. Tidrow, and P. D. LeVan, “1024 × 1024 pixel mid-wavelength and long-wavelength infrared QWIP focal plane arrays for imaging applications,” Semicond. Sci. Technol. 20(5), 473–480 (2005).
[Crossref]

Gupta, A.

A. Gupta, D. Paramanik, S. Varma, and C. Jacob, “CVD growth and characterization of 3C-SiC thin films,” Bull. Mater. Sci. 27(5), 445–451 (2004).
[Crossref]

Gutmann, R. J.

J. Yua, Y. Wang, J. Q. Lu, and R. J. Gutmann, “Low-temperature silicon wafer bonding based on Ti/Si solid-state amorphization,” Appl. Phys. Lett. 89(9), 092104 (2006).
[Crossref]

Hashimoto, T.

Y. Kitaura, T. Hashimoto, T. Inoue, K. Ishida, N. Uchitomi, and R. Nii, “Long-term reliability of Pt and Mo diffusion barriers in Ti-Pt-Au and Ti-Mo-Au metallization systems for GaAs digital integrated circuits,” J. Vac. Sci. Technol. 12(5), 2985–2991 (1994).
[Crossref]

Higurashi, E.

E. Higurashi, D. Chino, T. Suga, and R. Sawada, “Au–Au Surface-Activated Bonding and Its Application to Optical Microsensors With 3-D Structure,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1500–1505 (2009).
[Crossref]

Hill, C. J.

S. D. Gunapala, S. V. Bandara, J. K. Liu, C. J. Hill, S. B. Rafol, J. M. Mumolo, J. T. Trinh, M. Z. Tidrow, and P. D. LeVan, “1024 × 1024 pixel mid-wavelength and long-wavelength infrared QWIP focal plane arrays for imaging applications,” Semicond. Sci. Technol. 20(5), 473–480 (2005).
[Crossref]

Horng, R. H.

R. H. Horng, S. H. Huang, D. S. Wuu, and C. Y. Chiu, “AlGaInP/mirror/Si light-emitting diodes with vertical electrodes by wafer bonding,” Appl. Phys. Lett. 82(23), 4011–4013 (2003).
[Crossref]

Hostut, M.

E. Altin, M. Hostut, and Y. Ergun, “Barrier lowering effect and dark current characteristics in asymmetric GaAs/AlGaAs multi quantum well structure,” Appl. Phys., A Mater. Sci. Process. 105(4), 833–839 (2011).
[Crossref]

Huang, Q.

Q. Huang, G. Xu, Y. Yuan, X. Cheng, and L. Luo, “Development of indium bumping technology through AZ9260 resist electroplating,” J. Micromech. Microeng. 20(5), 055035 (2010).
[Crossref]

Huang, S. H.

R. H. Horng, S. H. Huang, D. S. Wuu, and C. Y. Chiu, “AlGaInP/mirror/Si light-emitting diodes with vertical electrodes by wafer bonding,” Appl. Phys. Lett. 82(23), 4011–4013 (2003).
[Crossref]

Inoue, T.

Y. Kitaura, T. Hashimoto, T. Inoue, K. Ishida, N. Uchitomi, and R. Nii, “Long-term reliability of Pt and Mo diffusion barriers in Ti-Pt-Au and Ti-Mo-Au metallization systems for GaAs digital integrated circuits,” J. Vac. Sci. Technol. 12(5), 2985–2991 (1994).
[Crossref]

Ishida, K.

Y. Kitaura, T. Hashimoto, T. Inoue, K. Ishida, N. Uchitomi, and R. Nii, “Long-term reliability of Pt and Mo diffusion barriers in Ti-Pt-Au and Ti-Mo-Au metallization systems for GaAs digital integrated circuits,” J. Vac. Sci. Technol. 12(5), 2985–2991 (1994).
[Crossref]

Jacob, C.

A. Gupta, D. Paramanik, S. Varma, and C. Jacob, “CVD growth and characterization of 3C-SiC thin films,” Bull. Mater. Sci. 27(5), 445–451 (2004).
[Crossref]

Jain, V.

M. S. Park, V. Jain, E. H. Lee, S. H. Kim, H. Pettersson, Q. Wang, J. D. Song, and W. J. Choi, “InAs/GaAs p–i–p quantum dots-in-a-well infrared photodetectors operating beyond 200 K,” Electron. Lett. 50(23), 1731–1733 (2014).
[Crossref]

A. K. Baraskar, M. A. Wistey, V. Jain, U. Singisetti, G. Burek, B. J. Thibeault, Y. J. Lee, A. C. Gossard, and M. J. W. Rodwell, “Ultralow resistance, nonalloyed Ohmic contacts to n-InGaAs,” J. Vac. Sci. Technol. B 27(4), 2036–2039 (2009).
[Crossref]

Jiang, F.

G. Liu, G. J. Zhang, F. Jiang, X. D. Ding, Y. J. Sun, J. Sun, and E. Ma, “Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility,” Nat. Mater. 12(4), 344–350 (2013).
[Crossref] [PubMed]

Jiang, J.

J. Jiang, S. Tsao, T. O’Sullivan, M. Razeghi, and G. J. Brown, “Fabrication of indium bumps for hybrid infrared focal plane array applications,” Infrared Phys. Technol. 45(2), 143–151 (2004).
[Crossref]

Jiang, Q.

J. Wu, Q. Jiang, S. Chen, M. Tang, Y. I. Mazur, Y. Maidaniuk, M. Benamara, M. P. Semtsiv, W. T. Masselink, K. A. Sablon, G. J. Salamo, and H. Liu, “Monolithically Integrated InAs/GaAs Quantum Dot Mid-Infrared Photodetectors on Silicon Substrates,” ACS Photonics 3(5), 749–753 (2016).
[Crossref]

S. Chen, M. Tang, Q. Jiang, J. Wu, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, P. Smowton, A. Seeds, and H. Liu, “InAs/GaAs Quantum-Dot Superluminescent Light-Emitting Diode Monolithically Grown on a Si substrate,’,” ACS Photonics 1(7), 638–642 (2014).
[Crossref]

Jing, E.

E. Jing, B. Xiong, and Y. Wang, “Low-temperature Au–Si wafer bonding,” J. Micromech. Microeng. 20(9), 095014 (2010).
[Crossref]

Kim, C. Z.

D. M. Geum, M. S. Park, J. Y. Lim, H. D. Yang, J. D. Song, C. Z. Kim, E. Yoon, S. Kim, and W. J. Choi, “Ultra-high-throughput Production of III-V/Si Wafer for Electronic and Photonic Applications,” Sci. Rep. 6(1), 20610 (2016).
[Crossref] [PubMed]

Kim, S.

D. M. Geum, M. S. Park, J. Y. Lim, H. D. Yang, J. D. Song, C. Z. Kim, E. Yoon, S. Kim, and W. J. Choi, “Ultra-high-throughput Production of III-V/Si Wafer for Electronic and Photonic Applications,” Sci. Rep. 6(1), 20610 (2016).
[Crossref] [PubMed]

M. S. Park, D. M. Geum, J. H. Kyhm, J. D. Song, S. Kim, and W. J. Choi, “InGaP/GaAs heterojunction phototransistors transferred to a Si substrate by metal wafer bonding combined with epitaxial lift-off,” Opt. Express 23(21), 26888–26894 (2015).
[Crossref] [PubMed]

Kim, S. H.

M. S. Park, V. Jain, E. H. Lee, S. H. Kim, H. Pettersson, Q. Wang, J. D. Song, and W. J. Choi, “InAs/GaAs p–i–p quantum dots-in-a-well infrared photodetectors operating beyond 200 K,” Electron. Lett. 50(23), 1731–1733 (2014).
[Crossref]

Kitaura, Y.

Y. Kitaura, T. Hashimoto, T. Inoue, K. Ishida, N. Uchitomi, and R. Nii, “Long-term reliability of Pt and Mo diffusion barriers in Ti-Pt-Au and Ti-Mo-Au metallization systems for GaAs digital integrated circuits,” J. Vac. Sci. Technol. 12(5), 2985–2991 (1994).
[Crossref]

Kyhm, J. H.

Lee, E. H.

M. S. Park, V. Jain, E. H. Lee, S. H. Kim, H. Pettersson, Q. Wang, J. D. Song, and W. J. Choi, “InAs/GaAs p–i–p quantum dots-in-a-well infrared photodetectors operating beyond 200 K,” Electron. Lett. 50(23), 1731–1733 (2014).
[Crossref]

Lee, Y. J.

A. K. Baraskar, M. A. Wistey, V. Jain, U. Singisetti, G. Burek, B. J. Thibeault, Y. J. Lee, A. C. Gossard, and M. J. W. Rodwell, “Ultralow resistance, nonalloyed Ohmic contacts to n-InGaAs,” J. Vac. Sci. Technol. B 27(4), 2036–2039 (2009).
[Crossref]

LeVan, P. D.

S. D. Gunapala, S. V. Bandara, J. K. Liu, C. J. Hill, S. B. Rafol, J. M. Mumolo, J. T. Trinh, M. Z. Tidrow, and P. D. LeVan, “1024 × 1024 pixel mid-wavelength and long-wavelength infrared QWIP focal plane arrays for imaging applications,” Semicond. Sci. Technol. 20(5), 473–480 (2005).
[Crossref]

Levine, B. F.

B. F. Levine, “Quantum‐well infrared photodetectors,” J. Appl. Phys. 74(8), R1–R81 (1993).
[Crossref]

Lim, J. Y.

D. M. Geum, M. S. Park, J. Y. Lim, H. D. Yang, J. D. Song, C. Z. Kim, E. Yoon, S. Kim, and W. J. Choi, “Ultra-high-throughput Production of III-V/Si Wafer for Electronic and Photonic Applications,” Sci. Rep. 6(1), 20610 (2016).
[Crossref] [PubMed]

Liu, G.

G. Liu, G. J. Zhang, F. Jiang, X. D. Ding, Y. J. Sun, J. Sun, and E. Ma, “Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility,” Nat. Mater. 12(4), 344–350 (2013).
[Crossref] [PubMed]

Liu, H.

J. Wu, Q. Jiang, S. Chen, M. Tang, Y. I. Mazur, Y. Maidaniuk, M. Benamara, M. P. Semtsiv, W. T. Masselink, K. A. Sablon, G. J. Salamo, and H. Liu, “Monolithically Integrated InAs/GaAs Quantum Dot Mid-Infrared Photodetectors on Silicon Substrates,” ACS Photonics 3(5), 749–753 (2016).
[Crossref]

S. Chen, M. Tang, Q. Jiang, J. Wu, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, P. Smowton, A. Seeds, and H. Liu, “InAs/GaAs Quantum-Dot Superluminescent Light-Emitting Diode Monolithically Grown on a Si substrate,’,” ACS Photonics 1(7), 638–642 (2014).
[Crossref]

Liu, J. K.

S. D. Gunapala, S. V. Bandara, J. K. Liu, C. J. Hill, S. B. Rafol, J. M. Mumolo, J. T. Trinh, M. Z. Tidrow, and P. D. LeVan, “1024 × 1024 pixel mid-wavelength and long-wavelength infrared QWIP focal plane arrays for imaging applications,” Semicond. Sci. Technol. 20(5), 473–480 (2005).
[Crossref]

Lu, J. Q.

J. Yua, Y. Wang, J. Q. Lu, and R. J. Gutmann, “Low-temperature silicon wafer bonding based on Ti/Si solid-state amorphization,” Appl. Phys. Lett. 89(9), 092104 (2006).
[Crossref]

Luo, L.

Q. Huang, G. Xu, Y. Yuan, X. Cheng, and L. Luo, “Development of indium bumping technology through AZ9260 resist electroplating,” J. Micromech. Microeng. 20(5), 055035 (2010).
[Crossref]

Ma, E.

G. Liu, G. J. Zhang, F. Jiang, X. D. Ding, Y. J. Sun, J. Sun, and E. Ma, “Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility,” Nat. Mater. 12(4), 344–350 (2013).
[Crossref] [PubMed]

Maidaniuk, Y.

J. Wu, Q. Jiang, S. Chen, M. Tang, Y. I. Mazur, Y. Maidaniuk, M. Benamara, M. P. Semtsiv, W. T. Masselink, K. A. Sablon, G. J. Salamo, and H. Liu, “Monolithically Integrated InAs/GaAs Quantum Dot Mid-Infrared Photodetectors on Silicon Substrates,” ACS Photonics 3(5), 749–753 (2016).
[Crossref]

Masselink, W. T.

J. Wu, Q. Jiang, S. Chen, M. Tang, Y. I. Mazur, Y. Maidaniuk, M. Benamara, M. P. Semtsiv, W. T. Masselink, K. A. Sablon, G. J. Salamo, and H. Liu, “Monolithically Integrated InAs/GaAs Quantum Dot Mid-Infrared Photodetectors on Silicon Substrates,” ACS Photonics 3(5), 749–753 (2016).
[Crossref]

Mazur, Y. I.

J. Wu, Q. Jiang, S. Chen, M. Tang, Y. I. Mazur, Y. Maidaniuk, M. Benamara, M. P. Semtsiv, W. T. Masselink, K. A. Sablon, G. J. Salamo, and H. Liu, “Monolithically Integrated InAs/GaAs Quantum Dot Mid-Infrared Photodetectors on Silicon Substrates,” ACS Photonics 3(5), 749–753 (2016).
[Crossref]

S. Chen, M. Tang, Q. Jiang, J. Wu, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, P. Smowton, A. Seeds, and H. Liu, “InAs/GaAs Quantum-Dot Superluminescent Light-Emitting Diode Monolithically Grown on a Si substrate,’,” ACS Photonics 1(7), 638–642 (2014).
[Crossref]

Mumolo, J. M.

S. D. Gunapala, S. V. Bandara, J. K. Liu, C. J. Hill, S. B. Rafol, J. M. Mumolo, J. T. Trinh, M. Z. Tidrow, and P. D. LeVan, “1024 × 1024 pixel mid-wavelength and long-wavelength infrared QWIP focal plane arrays for imaging applications,” Semicond. Sci. Technol. 20(5), 473–480 (2005).
[Crossref]

Nii, R.

Y. Kitaura, T. Hashimoto, T. Inoue, K. Ishida, N. Uchitomi, and R. Nii, “Long-term reliability of Pt and Mo diffusion barriers in Ti-Pt-Au and Ti-Mo-Au metallization systems for GaAs digital integrated circuits,” J. Vac. Sci. Technol. 12(5), 2985–2991 (1994).
[Crossref]

O’Sullivan, T.

J. Jiang, S. Tsao, T. O’Sullivan, M. Razeghi, and G. J. Brown, “Fabrication of indium bumps for hybrid infrared focal plane array applications,” Infrared Phys. Technol. 45(2), 143–151 (2004).
[Crossref]

Pan, N.

P. Fay, K. Stevens, J. Elliot, and N. Pan, “Performance Dependence of InGaP/InGaAs/GaAs pHEMT’s on Gate Metallization,” IEEE Electron Device Lett. 20(11), 554–556 (1999).
[Crossref]

Paramanik, D.

A. Gupta, D. Paramanik, S. Varma, and C. Jacob, “CVD growth and characterization of 3C-SiC thin films,” Bull. Mater. Sci. 27(5), 445–451 (2004).
[Crossref]

Park, M. S.

D. M. Geum, M. S. Park, J. Y. Lim, H. D. Yang, J. D. Song, C. Z. Kim, E. Yoon, S. Kim, and W. J. Choi, “Ultra-high-throughput Production of III-V/Si Wafer for Electronic and Photonic Applications,” Sci. Rep. 6(1), 20610 (2016).
[Crossref] [PubMed]

M. S. Park, D. M. Geum, J. H. Kyhm, J. D. Song, S. Kim, and W. J. Choi, “InGaP/GaAs heterojunction phototransistors transferred to a Si substrate by metal wafer bonding combined with epitaxial lift-off,” Opt. Express 23(21), 26888–26894 (2015).
[Crossref] [PubMed]

M. S. Park, V. Jain, E. H. Lee, S. H. Kim, H. Pettersson, Q. Wang, J. D. Song, and W. J. Choi, “InAs/GaAs p–i–p quantum dots-in-a-well infrared photodetectors operating beyond 200 K,” Electron. Lett. 50(23), 1731–1733 (2014).
[Crossref]

Pettersson, H.

M. S. Park, V. Jain, E. H. Lee, S. H. Kim, H. Pettersson, Q. Wang, J. D. Song, and W. J. Choi, “InAs/GaAs p–i–p quantum dots-in-a-well infrared photodetectors operating beyond 200 K,” Electron. Lett. 50(23), 1731–1733 (2014).
[Crossref]

Rafol, S. B.

S. D. Gunapala, S. V. Bandara, J. K. Liu, C. J. Hill, S. B. Rafol, J. M. Mumolo, J. T. Trinh, M. Z. Tidrow, and P. D. LeVan, “1024 × 1024 pixel mid-wavelength and long-wavelength infrared QWIP focal plane arrays for imaging applications,” Semicond. Sci. Technol. 20(5), 473–480 (2005).
[Crossref]

Razeghi, M.

J. Jiang, S. Tsao, T. O’Sullivan, M. Razeghi, and G. J. Brown, “Fabrication of indium bumps for hybrid infrared focal plane array applications,” Infrared Phys. Technol. 45(2), 143–151 (2004).
[Crossref]

Rodwell, M. J. W.

A. K. Baraskar, M. A. Wistey, V. Jain, U. Singisetti, G. Burek, B. J. Thibeault, Y. J. Lee, A. C. Gossard, and M. J. W. Rodwell, “Ultralow resistance, nonalloyed Ohmic contacts to n-InGaAs,” J. Vac. Sci. Technol. B 27(4), 2036–2039 (2009).
[Crossref]

Rogalski, A.

A. Rogalski, “Quantum well photoconductors in infrared detector technology,” J. Appl. Phys. 93(8), 4355–4391 (2003).
[Crossref]

Sablon, K. A.

J. Wu, Q. Jiang, S. Chen, M. Tang, Y. I. Mazur, Y. Maidaniuk, M. Benamara, M. P. Semtsiv, W. T. Masselink, K. A. Sablon, G. J. Salamo, and H. Liu, “Monolithically Integrated InAs/GaAs Quantum Dot Mid-Infrared Photodetectors on Silicon Substrates,” ACS Photonics 3(5), 749–753 (2016).
[Crossref]

Salamo, G. J.

J. Wu, Q. Jiang, S. Chen, M. Tang, Y. I. Mazur, Y. Maidaniuk, M. Benamara, M. P. Semtsiv, W. T. Masselink, K. A. Sablon, G. J. Salamo, and H. Liu, “Monolithically Integrated InAs/GaAs Quantum Dot Mid-Infrared Photodetectors on Silicon Substrates,” ACS Photonics 3(5), 749–753 (2016).
[Crossref]

S. Chen, M. Tang, Q. Jiang, J. Wu, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, P. Smowton, A. Seeds, and H. Liu, “InAs/GaAs Quantum-Dot Superluminescent Light-Emitting Diode Monolithically Grown on a Si substrate,’,” ACS Photonics 1(7), 638–642 (2014).
[Crossref]

Sawada, R.

E. Higurashi, D. Chino, T. Suga, and R. Sawada, “Au–Au Surface-Activated Bonding and Its Application to Optical Microsensors With 3-D Structure,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1500–1505 (2009).
[Crossref]

Seeds, A.

S. Chen, M. Tang, Q. Jiang, J. Wu, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, P. Smowton, A. Seeds, and H. Liu, “InAs/GaAs Quantum-Dot Superluminescent Light-Emitting Diode Monolithically Grown on a Si substrate,’,” ACS Photonics 1(7), 638–642 (2014).
[Crossref]

Semtsiv, M. P.

J. Wu, Q. Jiang, S. Chen, M. Tang, Y. I. Mazur, Y. Maidaniuk, M. Benamara, M. P. Semtsiv, W. T. Masselink, K. A. Sablon, G. J. Salamo, and H. Liu, “Monolithically Integrated InAs/GaAs Quantum Dot Mid-Infrared Photodetectors on Silicon Substrates,” ACS Photonics 3(5), 749–753 (2016).
[Crossref]

Singisetti, U.

A. K. Baraskar, M. A. Wistey, V. Jain, U. Singisetti, G. Burek, B. J. Thibeault, Y. J. Lee, A. C. Gossard, and M. J. W. Rodwell, “Ultralow resistance, nonalloyed Ohmic contacts to n-InGaAs,” J. Vac. Sci. Technol. B 27(4), 2036–2039 (2009).
[Crossref]

Smowton, P.

S. Chen, M. Tang, Q. Jiang, J. Wu, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, P. Smowton, A. Seeds, and H. Liu, “InAs/GaAs Quantum-Dot Superluminescent Light-Emitting Diode Monolithically Grown on a Si substrate,’,” ACS Photonics 1(7), 638–642 (2014).
[Crossref]

Song, J. D.

D. M. Geum, M. S. Park, J. Y. Lim, H. D. Yang, J. D. Song, C. Z. Kim, E. Yoon, S. Kim, and W. J. Choi, “Ultra-high-throughput Production of III-V/Si Wafer for Electronic and Photonic Applications,” Sci. Rep. 6(1), 20610 (2016).
[Crossref] [PubMed]

M. S. Park, D. M. Geum, J. H. Kyhm, J. D. Song, S. Kim, and W. J. Choi, “InGaP/GaAs heterojunction phototransistors transferred to a Si substrate by metal wafer bonding combined with epitaxial lift-off,” Opt. Express 23(21), 26888–26894 (2015).
[Crossref] [PubMed]

M. S. Park, V. Jain, E. H. Lee, S. H. Kim, H. Pettersson, Q. Wang, J. D. Song, and W. J. Choi, “InAs/GaAs p–i–p quantum dots-in-a-well infrared photodetectors operating beyond 200 K,” Electron. Lett. 50(23), 1731–1733 (2014).
[Crossref]

Stevens, K.

P. Fay, K. Stevens, J. Elliot, and N. Pan, “Performance Dependence of InGaP/InGaAs/GaAs pHEMT’s on Gate Metallization,” IEEE Electron Device Lett. 20(11), 554–556 (1999).
[Crossref]

Suga, T.

E. Higurashi, D. Chino, T. Suga, and R. Sawada, “Au–Au Surface-Activated Bonding and Its Application to Optical Microsensors With 3-D Structure,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1500–1505 (2009).
[Crossref]

Sun, J.

G. Liu, G. J. Zhang, F. Jiang, X. D. Ding, Y. J. Sun, J. Sun, and E. Ma, “Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility,” Nat. Mater. 12(4), 344–350 (2013).
[Crossref] [PubMed]

Sun, Y. J.

G. Liu, G. J. Zhang, F. Jiang, X. D. Ding, Y. J. Sun, J. Sun, and E. Ma, “Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility,” Nat. Mater. 12(4), 344–350 (2013).
[Crossref] [PubMed]

Tang, M.

J. Wu, Q. Jiang, S. Chen, M. Tang, Y. I. Mazur, Y. Maidaniuk, M. Benamara, M. P. Semtsiv, W. T. Masselink, K. A. Sablon, G. J. Salamo, and H. Liu, “Monolithically Integrated InAs/GaAs Quantum Dot Mid-Infrared Photodetectors on Silicon Substrates,” ACS Photonics 3(5), 749–753 (2016).
[Crossref]

S. Chen, M. Tang, Q. Jiang, J. Wu, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, P. Smowton, A. Seeds, and H. Liu, “InAs/GaAs Quantum-Dot Superluminescent Light-Emitting Diode Monolithically Grown on a Si substrate,’,” ACS Photonics 1(7), 638–642 (2014).
[Crossref]

Thibeault, B. J.

A. K. Baraskar, M. A. Wistey, V. Jain, U. Singisetti, G. Burek, B. J. Thibeault, Y. J. Lee, A. C. Gossard, and M. J. W. Rodwell, “Ultralow resistance, nonalloyed Ohmic contacts to n-InGaAs,” J. Vac. Sci. Technol. B 27(4), 2036–2039 (2009).
[Crossref]

Tidrow, M. Z.

S. D. Gunapala, S. V. Bandara, J. K. Liu, C. J. Hill, S. B. Rafol, J. M. Mumolo, J. T. Trinh, M. Z. Tidrow, and P. D. LeVan, “1024 × 1024 pixel mid-wavelength and long-wavelength infrared QWIP focal plane arrays for imaging applications,” Semicond. Sci. Technol. 20(5), 473–480 (2005).
[Crossref]

Trinh, J. T.

S. D. Gunapala, S. V. Bandara, J. K. Liu, C. J. Hill, S. B. Rafol, J. M. Mumolo, J. T. Trinh, M. Z. Tidrow, and P. D. LeVan, “1024 × 1024 pixel mid-wavelength and long-wavelength infrared QWIP focal plane arrays for imaging applications,” Semicond. Sci. Technol. 20(5), 473–480 (2005).
[Crossref]

Tsao, S.

J. Jiang, S. Tsao, T. O’Sullivan, M. Razeghi, and G. J. Brown, “Fabrication of indium bumps for hybrid infrared focal plane array applications,” Infrared Phys. Technol. 45(2), 143–151 (2004).
[Crossref]

Uchitomi, N.

Y. Kitaura, T. Hashimoto, T. Inoue, K. Ishida, N. Uchitomi, and R. Nii, “Long-term reliability of Pt and Mo diffusion barriers in Ti-Pt-Au and Ti-Mo-Au metallization systems for GaAs digital integrated circuits,” J. Vac. Sci. Technol. 12(5), 2985–2991 (1994).
[Crossref]

Varma, S.

A. Gupta, D. Paramanik, S. Varma, and C. Jacob, “CVD growth and characterization of 3C-SiC thin films,” Bull. Mater. Sci. 27(5), 445–451 (2004).
[Crossref]

Wang, Q.

M. S. Park, V. Jain, E. H. Lee, S. H. Kim, H. Pettersson, Q. Wang, J. D. Song, and W. J. Choi, “InAs/GaAs p–i–p quantum dots-in-a-well infrared photodetectors operating beyond 200 K,” Electron. Lett. 50(23), 1731–1733 (2014).
[Crossref]

Wang, Y.

E. Jing, B. Xiong, and Y. Wang, “Low-temperature Au–Si wafer bonding,” J. Micromech. Microeng. 20(9), 095014 (2010).
[Crossref]

J. Yua, Y. Wang, J. Q. Lu, and R. J. Gutmann, “Low-temperature silicon wafer bonding based on Ti/Si solid-state amorphization,” Appl. Phys. Lett. 89(9), 092104 (2006).
[Crossref]

Wistey, M. A.

A. K. Baraskar, M. A. Wistey, V. Jain, U. Singisetti, G. Burek, B. J. Thibeault, Y. J. Lee, A. C. Gossard, and M. J. W. Rodwell, “Ultralow resistance, nonalloyed Ohmic contacts to n-InGaAs,” J. Vac. Sci. Technol. B 27(4), 2036–2039 (2009).
[Crossref]

Wu, J.

J. Wu, Q. Jiang, S. Chen, M. Tang, Y. I. Mazur, Y. Maidaniuk, M. Benamara, M. P. Semtsiv, W. T. Masselink, K. A. Sablon, G. J. Salamo, and H. Liu, “Monolithically Integrated InAs/GaAs Quantum Dot Mid-Infrared Photodetectors on Silicon Substrates,” ACS Photonics 3(5), 749–753 (2016).
[Crossref]

S. Chen, M. Tang, Q. Jiang, J. Wu, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, P. Smowton, A. Seeds, and H. Liu, “InAs/GaAs Quantum-Dot Superluminescent Light-Emitting Diode Monolithically Grown on a Si substrate,’,” ACS Photonics 1(7), 638–642 (2014).
[Crossref]

Wuu, D. S.

R. H. Horng, S. H. Huang, D. S. Wuu, and C. Y. Chiu, “AlGaInP/mirror/Si light-emitting diodes with vertical electrodes by wafer bonding,” Appl. Phys. Lett. 82(23), 4011–4013 (2003).
[Crossref]

Xiong, B.

E. Jing, B. Xiong, and Y. Wang, “Low-temperature Au–Si wafer bonding,” J. Micromech. Microeng. 20(9), 095014 (2010).
[Crossref]

Xu, G.

Q. Huang, G. Xu, Y. Yuan, X. Cheng, and L. Luo, “Development of indium bumping technology through AZ9260 resist electroplating,” J. Micromech. Microeng. 20(5), 055035 (2010).
[Crossref]

Yang, H. D.

D. M. Geum, M. S. Park, J. Y. Lim, H. D. Yang, J. D. Song, C. Z. Kim, E. Yoon, S. Kim, and W. J. Choi, “Ultra-high-throughput Production of III-V/Si Wafer for Electronic and Photonic Applications,” Sci. Rep. 6(1), 20610 (2016).
[Crossref] [PubMed]

Yoon, E.

D. M. Geum, M. S. Park, J. Y. Lim, H. D. Yang, J. D. Song, C. Z. Kim, E. Yoon, S. Kim, and W. J. Choi, “Ultra-high-throughput Production of III-V/Si Wafer for Electronic and Photonic Applications,” Sci. Rep. 6(1), 20610 (2016).
[Crossref] [PubMed]

Yua, J.

J. Yua, Y. Wang, J. Q. Lu, and R. J. Gutmann, “Low-temperature silicon wafer bonding based on Ti/Si solid-state amorphization,” Appl. Phys. Lett. 89(9), 092104 (2006).
[Crossref]

Yuan, Y.

Q. Huang, G. Xu, Y. Yuan, X. Cheng, and L. Luo, “Development of indium bumping technology through AZ9260 resist electroplating,” J. Micromech. Microeng. 20(5), 055035 (2010).
[Crossref]

Zhang, G. J.

G. Liu, G. J. Zhang, F. Jiang, X. D. Ding, Y. J. Sun, J. Sun, and E. Ma, “Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility,” Nat. Mater. 12(4), 344–350 (2013).
[Crossref] [PubMed]

ACS Photonics (2)

J. Wu, Q. Jiang, S. Chen, M. Tang, Y. I. Mazur, Y. Maidaniuk, M. Benamara, M. P. Semtsiv, W. T. Masselink, K. A. Sablon, G. J. Salamo, and H. Liu, “Monolithically Integrated InAs/GaAs Quantum Dot Mid-Infrared Photodetectors on Silicon Substrates,” ACS Photonics 3(5), 749–753 (2016).
[Crossref]

S. Chen, M. Tang, Q. Jiang, J. Wu, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, P. Smowton, A. Seeds, and H. Liu, “InAs/GaAs Quantum-Dot Superluminescent Light-Emitting Diode Monolithically Grown on a Si substrate,’,” ACS Photonics 1(7), 638–642 (2014).
[Crossref]

Appl. Phys. Lett. (2)

J. Yua, Y. Wang, J. Q. Lu, and R. J. Gutmann, “Low-temperature silicon wafer bonding based on Ti/Si solid-state amorphization,” Appl. Phys. Lett. 89(9), 092104 (2006).
[Crossref]

R. H. Horng, S. H. Huang, D. S. Wuu, and C. Y. Chiu, “AlGaInP/mirror/Si light-emitting diodes with vertical electrodes by wafer bonding,” Appl. Phys. Lett. 82(23), 4011–4013 (2003).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

E. Altin, M. Hostut, and Y. Ergun, “Barrier lowering effect and dark current characteristics in asymmetric GaAs/AlGaAs multi quantum well structure,” Appl. Phys., A Mater. Sci. Process. 105(4), 833–839 (2011).
[Crossref]

Bull. Mater. Sci. (1)

A. Gupta, D. Paramanik, S. Varma, and C. Jacob, “CVD growth and characterization of 3C-SiC thin films,” Bull. Mater. Sci. 27(5), 445–451 (2004).
[Crossref]

Electron. Lett. (1)

M. S. Park, V. Jain, E. H. Lee, S. H. Kim, H. Pettersson, Q. Wang, J. D. Song, and W. J. Choi, “InAs/GaAs p–i–p quantum dots-in-a-well infrared photodetectors operating beyond 200 K,” Electron. Lett. 50(23), 1731–1733 (2014).
[Crossref]

IEEE Electron Device Lett. (1)

P. Fay, K. Stevens, J. Elliot, and N. Pan, “Performance Dependence of InGaP/InGaAs/GaAs pHEMT’s on Gate Metallization,” IEEE Electron Device Lett. 20(11), 554–556 (1999).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

E. Higurashi, D. Chino, T. Suga, and R. Sawada, “Au–Au Surface-Activated Bonding and Its Application to Optical Microsensors With 3-D Structure,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1500–1505 (2009).
[Crossref]

Infrared Phys. Technol. (1)

J. Jiang, S. Tsao, T. O’Sullivan, M. Razeghi, and G. J. Brown, “Fabrication of indium bumps for hybrid infrared focal plane array applications,” Infrared Phys. Technol. 45(2), 143–151 (2004).
[Crossref]

J. Appl. Phys. (2)

B. F. Levine, “Quantum‐well infrared photodetectors,” J. Appl. Phys. 74(8), R1–R81 (1993).
[Crossref]

A. Rogalski, “Quantum well photoconductors in infrared detector technology,” J. Appl. Phys. 93(8), 4355–4391 (2003).
[Crossref]

J. Micromech. Microeng. (2)

Q. Huang, G. Xu, Y. Yuan, X. Cheng, and L. Luo, “Development of indium bumping technology through AZ9260 resist electroplating,” J. Micromech. Microeng. 20(5), 055035 (2010).
[Crossref]

E. Jing, B. Xiong, and Y. Wang, “Low-temperature Au–Si wafer bonding,” J. Micromech. Microeng. 20(9), 095014 (2010).
[Crossref]

J. Vac. Sci. Technol. (1)

Y. Kitaura, T. Hashimoto, T. Inoue, K. Ishida, N. Uchitomi, and R. Nii, “Long-term reliability of Pt and Mo diffusion barriers in Ti-Pt-Au and Ti-Mo-Au metallization systems for GaAs digital integrated circuits,” J. Vac. Sci. Technol. 12(5), 2985–2991 (1994).
[Crossref]

J. Vac. Sci. Technol. B (1)

A. K. Baraskar, M. A. Wistey, V. Jain, U. Singisetti, G. Burek, B. J. Thibeault, Y. J. Lee, A. C. Gossard, and M. J. W. Rodwell, “Ultralow resistance, nonalloyed Ohmic contacts to n-InGaAs,” J. Vac. Sci. Technol. B 27(4), 2036–2039 (2009).
[Crossref]

Nat. Mater. (1)

G. Liu, G. J. Zhang, F. Jiang, X. D. Ding, Y. J. Sun, J. Sun, and E. Ma, “Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility,” Nat. Mater. 12(4), 344–350 (2013).
[Crossref] [PubMed]

Opt. Express (1)

Sci. Rep. (1)

D. M. Geum, M. S. Park, J. Y. Lim, H. D. Yang, J. D. Song, C. Z. Kim, E. Yoon, S. Kim, and W. J. Choi, “Ultra-high-throughput Production of III-V/Si Wafer for Electronic and Photonic Applications,” Sci. Rep. 6(1), 20610 (2016).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

S. D. Gunapala, S. V. Bandara, J. K. Liu, C. J. Hill, S. B. Rafol, J. M. Mumolo, J. T. Trinh, M. Z. Tidrow, and P. D. LeVan, “1024 × 1024 pixel mid-wavelength and long-wavelength infrared QWIP focal plane arrays for imaging applications,” Semicond. Sci. Technol. 20(5), 473–480 (2005).
[Crossref]

Other (1)

A.G. Bacaa, F. Renb, J.C. Zolper, R.D. Briggsa and S.J. Peartonc, “A survey of ohmic contacts to III-V compound semiconductors,” Thin Solid Films 308−309, 599−606 (1997).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) The epitaxial layers and (b) the energy band diagram of the as-grown QWIP at thermal equilibrium.
Fig. 2
Fig. 2 (a) Fabrication process flow of the InP/InGaAs QWIP on Si wafer by Mo/Au double layer based metal wafer bonding technology. (b) AFM image of the surface of the device film transferred to Si after the removal of the InP substrate. The AFM was operated in contact mode and the scan area is 2 × 2 μm2. (c) Schematic illustration of the fabricated device with cross-sectional SEM images and the enlarged SEM image of the bonding interface.
Fig. 3
Fig. 3 Comparison of (a) Raman spectra and (b) XRD 2θ scanning between the as-grown InGaAs/InP QWIP on InP and boned device epitaxial layers on Si.
Fig. 4
Fig. 4 Comparison of dark current versus applied bias voltage of the bonded (Solid lines) and the as-grown (Dashed line) QWIP having a 200 × 200-μm2-area at different temperatures.
Fig. 5
Fig. 5 (a) Dark current with respect to different side length and (b) A/P−ID/P relationship of the bonded QWIPs at −0.5 V of the applied bias and 78K. The JA of the device was found to be 2.54 × 10−4 A/cm2.
Fig. 6
Fig. 6 Temperature dependence of the dark current density for the bonded QWIP at different bias voltages. The calculated activation energy is 142, 137, 129, and 117 meV at the bias voltage of −0.1, −0.3, −0.5, and −0.7 V, respectively.

Metrics