Abstract

We theoretically show a high-performance refractive index (RI) sensor that consists of a two-dimensional (2D) gold nanoparticle array lying on a dielectric slab waveguide. The sensor has high RI sensitivity and figure of merit (FOM), reaching 250 nm/RIU and 28, respectively. Such a high RI sensitivity and FOM result from a sharp fanolike resonance, which is caused by the interference between the localized surface plasmon resonances (LSPRs) excited on individual gold nanoparticles and the waveguide mode propagating in the adjacent dielectric slab. The interference condition is that the electric field of the waveguide mode must be parallel to the polarization direction of the LSPRs. Our work may have potential applications in ultra-compact biomedical sensing.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Double-layered metal grating for high-performance refractive index sensing

Guozhen Li, Yang Shen, Guohui Xiao, and Chongjun Jin
Opt. Express 23(7) 8995-9003 (2015)

Hybrid integrated plasmonic-photonic waveguides for on-chip localized surface plasmon resonance (LSPR) sensing and spectroscopy

Maysamreza Chamanzar, Zhixuan Xia, Siva Yegnanarayanan, and Ali Adibi
Opt. Express 21(26) 32086-32098 (2013)

References

  • View by:
  • |
  • |
  • |

  1. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
    [Crossref] [PubMed]
  2. Z. Liu, G. Liu, G. Fu, X. Liu, and Y. Wang, “Multi-band light perfect absorption by a metal layer-coupled dielectric metamaterial,” Opt. Express 24(5), 5020–5025 (2016).
    [Crossref] [PubMed]
  3. R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
    [Crossref] [PubMed]
  4. F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
    [Crossref] [PubMed]
  5. Y. Yang, Z. Hu, Y. Wang, B. Wang, Q. Zhan, Y. Zhang, and X. Ao, “Broadband SERS substrates by oblique angle deposition method,” Opt. Mater. Express 6(8), 2644–2654 (2016).
    [Crossref]
  6. J. Chen, R. Q. Xu, Z. D. Yan, C. J. Tang, Z. Chen, and Z. L. Wang, “Preparation of metallic triangular nanoparticle array with controllable interparticle distance and its application in surface-enhanced Raman spectroscopy,” Opt. Commun. 307, 73–75 (2013).
    [Crossref]
  7. B. Zheng, L. Lin, Z. H. Feng, Z. P. Yu, Z. Z. Wang, S. Y. Xu, and Z. Q. Zheng, “Plasmon enhanced near-infrared quantum cutting and simulation analysis of beta-NaYF4: Tb3+, Yb3+ doped with Ag nanoparticles,” Opt. Mater. Express 7(1), 224–230 (2017).
    [Crossref]
  8. K. Zhang, Z.-L. Huang, H.-W. Dai, Z.-W. Ma, J.-B. Han, H.-M. Gong, and Y.-B. Han, “Surface plasmon enhanced third-order optical nonlinearity of silver nanocubes,” Opt. Mater. Express 5(11), 2648–2654 (2015).
    [Crossref]
  9. A. Artar, A. A. Yanik, and H. Altug, “Fabry-Perot nanocavities in multilayered plasmonic crystals for enhanced biosensing,” Appl. Phys. Lett. 4(1), 05115 (2009).
  10. A. A. Yanik, R. Adato, S. Erramilli, and H. Altug, “Hybridized nanocavities as single-polarized plasmonic antennas,” Opt. Express 17(23), 20900–20910 (2009).
    [Crossref] [PubMed]
  11. I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
    [Crossref] [PubMed]
  12. Z. Q. Liu, H. B. Shao, G. Q. Liu, X. S. Liu, H. Q. Zhou, Y. Hu, X. N. Zhang, Z. J. Cai, and G. Gu, “λ3/20000 plasmonic nanocavities with multispectral ultra-narrowband absorption for high-qualitysensing,” Appl. Phys. Lett. 104(8), 081116 (2014).
    [Crossref]
  13. C. J. Tang, P. Zhan, Z. S. Cao, J. Pan, Z. Chen, and Z. L. Wang, “Magnetic field enhancement at optical frequencies through diffraction coupling of magnetic plasmon resonances in metamaterials,” Phys. Rev. B 83(4), 041402 (2011).
    [Crossref]
  14. N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. E. Vandenbosch, L. Lagae, and V. V. Moshchalkov, “Plasmon Line Shaping Using Nanocrosses for High Sensitivity Localized Surface Plasmon Resonance Sensing,” Nano Lett. 11(2), 391–397 (2011).
    [Crossref] [PubMed]
  15. J. Wang, C. Fan, J. He, P. Ding, E. Liang, and Q. Xue, “Double Fano resonances due to interplay of electric and magnetic plasmon modes in planar plasmonic structure with high sensing sensitivity,” Opt. Express 21(2), 2236–2244 (2013).
    [Crossref] [PubMed]
  16. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
    [Crossref] [PubMed]
  17. F. Cheng, X. Yang, and J. Gao, “Enhancing intensity and refractive index sensing capability with infrared plasmonic perfect absorbers,” Opt. Lett. 39(11), 3185–3188 (2014).
    [Crossref] [PubMed]
  18. Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, J. Wang, and Y. Yu, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
    [Crossref] [PubMed]
  19. J. Chen, W. F. Fan, P. Mao, C. J. Tang, Y. J. Liu, Y. Yu, and L. B. Zhang, “Tailoring plasmon lifetime in suspended nanoantenna arrays for high-performance plasmon sensing,” Plasmonics 12(3), 529–534 (2017).
    [Crossref]
  20. J. Chen, W. Fan, T. Zhang, C. Tang, X. Chen, J. Wu, D. Li, and Y. Yu, “Engineering the magnetic plasmon resonances of metamaterials for high-quality sensing,” Opt. Express 25(4), 3675–3681 (2017).
    [Crossref] [PubMed]
  21. K. Lodewijks, J. Ryken, W. Van Roy, G. Borghs, L. Lagae, and P. Van Dorpe, “Tuning the Fano resonance between localized and propagating surface plasmon resonances for refractive index sensing applications,” Plasmonics 8(3), 1379–1385 (2013).
    [Crossref]
  22. R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97(25), 253116 (2010).
    [Crossref]
  23. K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
    [Crossref] [PubMed]
  24. A. J. Pasquale, B. M. Reinhard, and L. Dal Negro, “Engineering Photonic-Plasmonic Coupling in Metal Nanoparticle Necklaces,” ACS Nano 5(8), 6578–6585 (2011).
    [Crossref] [PubMed]
  25. N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
    [Crossref] [PubMed]
  26. Z. Q. Liu, M. D. Yu, S. Huang, X. S. Liu, Y. Wang, M. L. Liu, P. P. Pan, and G. Q. Liu, “Enhancing refractive index sensing capability with hybrid plasmonic-photonic absorbers,” J. Mater. Chem. C 3(17), 4222–4226 (2015).
    [Crossref]
  27. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22(7), 1099–1120 (1983).
    [Crossref] [PubMed]
  28. S. Linden, M. Decker, and M. Wegener, “Model system for a one-dimensional magnetic photonic crystal,” Phys. Rev. Lett. 97(8), 083902 (2006).
    [Crossref] [PubMed]
  29. B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
    [Crossref] [PubMed]
  30. J. Chen, R. Q. Xu, P. Mao, Y. T. Zhang, Y. J. Liu, C. J. Tang, J. Q. Liu, and T. Chen, “Realization of Fanolike resonance due to diffraction coupling of localized surface plasmon resonances in embedded nanoantenna arrays,” Plasmonics 10(2), 341–346 (2015).
    [Crossref]
  31. L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
    [Crossref] [PubMed]
  32. J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10(11), 4680–4685 (2010).
    [Crossref] [PubMed]
  33. S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11(4), 1657–1663 (2011).
    [Crossref] [PubMed]
  34. F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
    [Crossref] [PubMed]

2017 (3)

2016 (2)

2015 (3)

J. Chen, R. Q. Xu, P. Mao, Y. T. Zhang, Y. J. Liu, C. J. Tang, J. Q. Liu, and T. Chen, “Realization of Fanolike resonance due to diffraction coupling of localized surface plasmon resonances in embedded nanoantenna arrays,” Plasmonics 10(2), 341–346 (2015).
[Crossref]

Z. Q. Liu, M. D. Yu, S. Huang, X. S. Liu, Y. Wang, M. L. Liu, P. P. Pan, and G. Q. Liu, “Enhancing refractive index sensing capability with hybrid plasmonic-photonic absorbers,” J. Mater. Chem. C 3(17), 4222–4226 (2015).
[Crossref]

K. Zhang, Z.-L. Huang, H.-W. Dai, Z.-W. Ma, J.-B. Han, H.-M. Gong, and Y.-B. Han, “Surface plasmon enhanced third-order optical nonlinearity of silver nanocubes,” Opt. Mater. Express 5(11), 2648–2654 (2015).
[Crossref]

2014 (2)

Z. Q. Liu, H. B. Shao, G. Q. Liu, X. S. Liu, H. Q. Zhou, Y. Hu, X. N. Zhang, Z. J. Cai, and G. Gu, “λ3/20000 plasmonic nanocavities with multispectral ultra-narrowband absorption for high-qualitysensing,” Appl. Phys. Lett. 104(8), 081116 (2014).
[Crossref]

F. Cheng, X. Yang, and J. Gao, “Enhancing intensity and refractive index sensing capability with infrared plasmonic perfect absorbers,” Opt. Lett. 39(11), 3185–3188 (2014).
[Crossref] [PubMed]

2013 (4)

J. Wang, C. Fan, J. He, P. Ding, E. Liang, and Q. Xue, “Double Fano resonances due to interplay of electric and magnetic plasmon modes in planar plasmonic structure with high sensing sensitivity,” Opt. Express 21(2), 2236–2244 (2013).
[Crossref] [PubMed]

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, J. Wang, and Y. Yu, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref] [PubMed]

J. Chen, R. Q. Xu, Z. D. Yan, C. J. Tang, Z. Chen, and Z. L. Wang, “Preparation of metallic triangular nanoparticle array with controllable interparticle distance and its application in surface-enhanced Raman spectroscopy,” Opt. Commun. 307, 73–75 (2013).
[Crossref]

K. Lodewijks, J. Ryken, W. Van Roy, G. Borghs, L. Lagae, and P. Van Dorpe, “Tuning the Fano resonance between localized and propagating surface plasmon resonances for refractive index sensing applications,” Plasmonics 8(3), 1379–1385 (2013).
[Crossref]

2011 (6)

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref] [PubMed]

A. J. Pasquale, B. M. Reinhard, and L. Dal Negro, “Engineering Photonic-Plasmonic Coupling in Metal Nanoparticle Necklaces,” ACS Nano 5(8), 6578–6585 (2011).
[Crossref] [PubMed]

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[Crossref] [PubMed]

C. J. Tang, P. Zhan, Z. S. Cao, J. Pan, Z. Chen, and Z. L. Wang, “Magnetic field enhancement at optical frequencies through diffraction coupling of magnetic plasmon resonances in metamaterials,” Phys. Rev. B 83(4), 041402 (2011).
[Crossref]

N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. E. Vandenbosch, L. Lagae, and V. V. Moshchalkov, “Plasmon Line Shaping Using Nanocrosses for High Sensitivity Localized Surface Plasmon Resonance Sensing,” Nano Lett. 11(2), 391–397 (2011).
[Crossref] [PubMed]

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11(4), 1657–1663 (2011).
[Crossref] [PubMed]

2010 (3)

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10(11), 4680–4685 (2010).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97(25), 253116 (2010).
[Crossref]

2009 (3)

A. Artar, A. A. Yanik, and H. Altug, “Fabry-Perot nanocavities in multilayered plasmonic crystals for enhanced biosensing,” Appl. Phys. Lett. 4(1), 05115 (2009).

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
[Crossref] [PubMed]

A. A. Yanik, R. Adato, S. Erramilli, and H. Altug, “Hybridized nanocavities as single-polarized plasmonic antennas,” Opt. Express 17(23), 20900–20910 (2009).
[Crossref] [PubMed]

2008 (4)

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
[Crossref] [PubMed]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
[Crossref] [PubMed]

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[Crossref] [PubMed]

2006 (2)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

S. Linden, M. Decker, and M. Wegener, “Model system for a one-dimensional magnetic photonic crystal,” Phys. Rev. Lett. 97(8), 083902 (2006).
[Crossref] [PubMed]

2005 (1)

L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[Crossref] [PubMed]

1983 (1)

Adato, R.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
[Crossref] [PubMed]

A. A. Yanik, R. Adato, S. Erramilli, and H. Altug, “Hybridized nanocavities as single-polarized plasmonic antennas,” Opt. Express 17(23), 20900–20910 (2009).
[Crossref] [PubMed]

Aizpurua, J.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
[Crossref] [PubMed]

Alexander, R. W.

Alivisatos, A. P.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[Crossref] [PubMed]

Altug, H.

A. Artar, A. A. Yanik, and H. Altug, “Fabry-Perot nanocavities in multilayered plasmonic crystals for enhanced biosensing,” Appl. Phys. Lett. 4(1), 05115 (2009).

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
[Crossref] [PubMed]

A. A. Yanik, R. Adato, S. Erramilli, and H. Altug, “Hybridized nanocavities as single-polarized plasmonic antennas,” Opt. Express 17(23), 20900–20910 (2009).
[Crossref] [PubMed]

Ameling, R.

R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97(25), 253116 (2010).
[Crossref]

Amsden, J. J.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
[Crossref] [PubMed]

Ao, X.

Artar, A.

A. Artar, A. A. Yanik, and H. Altug, “Fabry-Perot nanocavities in multilayered plasmonic crystals for enhanced biosensing,” Appl. Phys. Lett. 4(1), 05115 (2009).

Auguié, B.

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[Crossref] [PubMed]

Bao, J.

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10(11), 4680–4685 (2010).
[Crossref] [PubMed]

Bao, K.

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11(4), 1657–1663 (2011).
[Crossref] [PubMed]

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10(11), 4680–4685 (2010).
[Crossref] [PubMed]

Bardhan, R.

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10(11), 4680–4685 (2010).
[Crossref] [PubMed]

Barnes, W. L.

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[Crossref] [PubMed]

Bell, R. J.

Bell, R. R.

Bell, S. E.

Borghs, G.

K. Lodewijks, J. Ryken, W. Van Roy, G. Borghs, L. Lagae, and P. Van Dorpe, “Tuning the Fano resonance between localized and propagating surface plasmon resonances for refractive index sensing applications,” Plasmonics 8(3), 1379–1385 (2013).
[Crossref]

Braun, P. V.

R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97(25), 253116 (2010).
[Crossref]

Cai, Z. J.

Z. Q. Liu, H. B. Shao, G. Q. Liu, X. S. Liu, H. Q. Zhou, Y. Hu, X. N. Zhang, Z. J. Cai, and G. Gu, “λ3/20000 plasmonic nanocavities with multispectral ultra-narrowband absorption for high-qualitysensing,” Appl. Phys. Lett. 104(8), 081116 (2014).
[Crossref]

Cao, Z. S.

C. J. Tang, P. Zhan, Z. S. Cao, J. Pan, Z. Chen, and Z. L. Wang, “Magnetic field enhancement at optical frequencies through diffraction coupling of magnetic plasmon resonances in metamaterials,” Phys. Rev. B 83(4), 041402 (2011).
[Crossref]

Capasso, F.

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10(11), 4680–4685 (2010).
[Crossref] [PubMed]

Chang, S. H.

L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[Crossref] [PubMed]

Chen, J.

J. Chen, W. F. Fan, P. Mao, C. J. Tang, Y. J. Liu, Y. Yu, and L. B. Zhang, “Tailoring plasmon lifetime in suspended nanoantenna arrays for high-performance plasmon sensing,” Plasmonics 12(3), 529–534 (2017).
[Crossref]

J. Chen, W. Fan, T. Zhang, C. Tang, X. Chen, J. Wu, D. Li, and Y. Yu, “Engineering the magnetic plasmon resonances of metamaterials for high-quality sensing,” Opt. Express 25(4), 3675–3681 (2017).
[Crossref] [PubMed]

J. Chen, R. Q. Xu, P. Mao, Y. T. Zhang, Y. J. Liu, C. J. Tang, J. Q. Liu, and T. Chen, “Realization of Fanolike resonance due to diffraction coupling of localized surface plasmon resonances in embedded nanoantenna arrays,” Plasmonics 10(2), 341–346 (2015).
[Crossref]

J. Chen, R. Q. Xu, Z. D. Yan, C. J. Tang, Z. Chen, and Z. L. Wang, “Preparation of metallic triangular nanoparticle array with controllable interparticle distance and its application in surface-enhanced Raman spectroscopy,” Opt. Commun. 307, 73–75 (2013).
[Crossref]

Chen, T.

J. Chen, R. Q. Xu, P. Mao, Y. T. Zhang, Y. J. Liu, C. J. Tang, J. Q. Liu, and T. Chen, “Realization of Fanolike resonance due to diffraction coupling of localized surface plasmon resonances in embedded nanoantenna arrays,” Plasmonics 10(2), 341–346 (2015).
[Crossref]

Chen, X.

Chen, Z.

J. Chen, R. Q. Xu, Z. D. Yan, C. J. Tang, Z. Chen, and Z. L. Wang, “Preparation of metallic triangular nanoparticle array with controllable interparticle distance and its application in surface-enhanced Raman spectroscopy,” Opt. Commun. 307, 73–75 (2013).
[Crossref]

C. J. Tang, P. Zhan, Z. S. Cao, J. Pan, Z. Chen, and Z. L. Wang, “Magnetic field enhancement at optical frequencies through diffraction coupling of magnetic plasmon resonances in metamaterials,” Phys. Rev. B 83(4), 041402 (2011).
[Crossref]

Cheng, F.

Cornelius, T. W.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
[Crossref] [PubMed]

Dai, H.-W.

Dal Negro, L.

A. J. Pasquale, B. M. Reinhard, and L. Dal Negro, “Engineering Photonic-Plasmonic Coupling in Metal Nanoparticle Necklaces,” ACS Nano 5(8), 6578–6585 (2011).
[Crossref] [PubMed]

Decker, M.

S. Linden, M. Decker, and M. Wegener, “Model system for a one-dimensional magnetic photonic crystal,” Phys. Rev. Lett. 97(8), 083902 (2006).
[Crossref] [PubMed]

Ding, P.

Erramilli, S.

A. A. Yanik, R. Adato, S. Erramilli, and H. Altug, “Hybridized nanocavities as single-polarized plasmonic antennas,” Opt. Express 17(23), 20900–20910 (2009).
[Crossref] [PubMed]

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
[Crossref] [PubMed]

Fan, C.

Fan, J. A.

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10(11), 4680–4685 (2010).
[Crossref] [PubMed]

Fan, W.

Fan, W. F.

J. Chen, W. F. Fan, P. Mao, C. J. Tang, Y. J. Liu, Y. Yu, and L. B. Zhang, “Tailoring plasmon lifetime in suspended nanoantenna arrays for high-performance plasmon sensing,” Plasmonics 12(3), 529–534 (2017).
[Crossref]

Fan, X.

Feng, Z. H.

Fu, G.

Gao, J.

García-Etxarri, A.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
[Crossref] [PubMed]

Giessen, H.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[Crossref] [PubMed]

R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97(25), 253116 (2010).
[Crossref]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Gong, H.-M.

Gu, G.

Z. Q. Liu, H. B. Shao, G. Q. Liu, X. S. Liu, H. Q. Zhou, Y. Hu, X. N. Zhang, Z. J. Cai, and G. Gu, “λ3/20000 plasmonic nanocavities with multispectral ultra-narrowband absorption for high-qualitysensing,” Appl. Phys. Lett. 104(8), 081116 (2014).
[Crossref]

Hafner, J. H.

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref] [PubMed]

Halas, N. J.

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11(4), 1657–1663 (2011).
[Crossref] [PubMed]

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10(11), 4680–4685 (2010).
[Crossref] [PubMed]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

Han, J.-B.

Han, Y.-B.

Hao, F.

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

He, J.

Hentschel, M.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97(25), 253116 (2010).
[Crossref]

Hong, M. K.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
[Crossref] [PubMed]

Hu, Y.

Z. Q. Liu, H. B. Shao, G. Q. Liu, X. S. Liu, H. Q. Zhou, Y. Hu, X. N. Zhang, Z. J. Cai, and G. Gu, “λ3/20000 plasmonic nanocavities with multispectral ultra-narrowband absorption for high-qualitysensing,” Appl. Phys. Lett. 104(8), 081116 (2014).
[Crossref]

Hu, Z.

Huang, C.

N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. E. Vandenbosch, L. Lagae, and V. V. Moshchalkov, “Plasmon Line Shaping Using Nanocrosses for High Sensitivity Localized Surface Plasmon Resonance Sensing,” Nano Lett. 11(2), 391–397 (2011).
[Crossref] [PubMed]

Huang, S.

Z. Q. Liu, M. D. Yu, S. Huang, X. S. Liu, Y. Wang, M. L. Liu, P. P. Pan, and G. Q. Liu, “Enhancing refractive index sensing capability with hybrid plasmonic-photonic absorbers,” J. Mater. Chem. C 3(17), 4222–4226 (2015).
[Crossref]

Huang, Z.-L.

Jiang, R.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, J. Wang, and Y. Yu, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref] [PubMed]

Jin, C.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, J. Wang, and Y. Yu, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref] [PubMed]

Kaplan, D. L.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
[Crossref] [PubMed]

Karim, S.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
[Crossref] [PubMed]

Lagae, L.

K. Lodewijks, J. Ryken, W. Van Roy, G. Borghs, L. Lagae, and P. Van Dorpe, “Tuning the Fano resonance between localized and propagating surface plasmon resonances for refractive index sensing applications,” Plasmonics 8(3), 1379–1385 (2013).
[Crossref]

N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. E. Vandenbosch, L. Lagae, and V. V. Moshchalkov, “Plasmon Line Shaping Using Nanocrosses for High Sensitivity Localized Surface Plasmon Resonance Sensing,” Nano Lett. 11(2), 391–397 (2011).
[Crossref] [PubMed]

Langguth, L.

R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97(25), 253116 (2010).
[Crossref]

Li, D.

Liang, E.

Lin, L.

Linden, S.

S. Linden, M. Decker, and M. Wegener, “Model system for a one-dimensional magnetic photonic crystal,” Phys. Rev. Lett. 97(8), 083902 (2006).
[Crossref] [PubMed]

Liu, G.

Liu, G. Q.

Z. Q. Liu, M. D. Yu, S. Huang, X. S. Liu, Y. Wang, M. L. Liu, P. P. Pan, and G. Q. Liu, “Enhancing refractive index sensing capability with hybrid plasmonic-photonic absorbers,” J. Mater. Chem. C 3(17), 4222–4226 (2015).
[Crossref]

Z. Q. Liu, H. B. Shao, G. Q. Liu, X. S. Liu, H. Q. Zhou, Y. Hu, X. N. Zhang, Z. J. Cai, and G. Gu, “λ3/20000 plasmonic nanocavities with multispectral ultra-narrowband absorption for high-qualitysensing,” Appl. Phys. Lett. 104(8), 081116 (2014).
[Crossref]

Liu, J. Q.

J. Chen, R. Q. Xu, P. Mao, Y. T. Zhang, Y. J. Liu, C. J. Tang, J. Q. Liu, and T. Chen, “Realization of Fanolike resonance due to diffraction coupling of localized surface plasmon resonances in embedded nanoantenna arrays,” Plasmonics 10(2), 341–346 (2015).
[Crossref]

Liu, M.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, J. Wang, and Y. Yu, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref] [PubMed]

Liu, M. L.

Z. Q. Liu, M. D. Yu, S. Huang, X. S. Liu, Y. Wang, M. L. Liu, P. P. Pan, and G. Q. Liu, “Enhancing refractive index sensing capability with hybrid plasmonic-photonic absorbers,” J. Mater. Chem. C 3(17), 4222–4226 (2015).
[Crossref]

Liu, N.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Liu, T.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, J. Wang, and Y. Yu, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref] [PubMed]

Liu, X.

Liu, X. S.

Z. Q. Liu, M. D. Yu, S. Huang, X. S. Liu, Y. Wang, M. L. Liu, P. P. Pan, and G. Q. Liu, “Enhancing refractive index sensing capability with hybrid plasmonic-photonic absorbers,” J. Mater. Chem. C 3(17), 4222–4226 (2015).
[Crossref]

Z. Q. Liu, H. B. Shao, G. Q. Liu, X. S. Liu, H. Q. Zhou, Y. Hu, X. N. Zhang, Z. J. Cai, and G. Gu, “λ3/20000 plasmonic nanocavities with multispectral ultra-narrowband absorption for high-qualitysensing,” Appl. Phys. Lett. 104(8), 081116 (2014).
[Crossref]

Liu, Y. J.

J. Chen, W. F. Fan, P. Mao, C. J. Tang, Y. J. Liu, Y. Yu, and L. B. Zhang, “Tailoring plasmon lifetime in suspended nanoantenna arrays for high-performance plasmon sensing,” Plasmonics 12(3), 529–534 (2017).
[Crossref]

J. Chen, R. Q. Xu, P. Mao, Y. T. Zhang, Y. J. Liu, C. J. Tang, J. Q. Liu, and T. Chen, “Realization of Fanolike resonance due to diffraction coupling of localized surface plasmon resonances in embedded nanoantenna arrays,” Plasmonics 10(2), 341–346 (2015).
[Crossref]

Liu, Z.

Liu, Z. Q.

Z. Q. Liu, M. D. Yu, S. Huang, X. S. Liu, Y. Wang, M. L. Liu, P. P. Pan, and G. Q. Liu, “Enhancing refractive index sensing capability with hybrid plasmonic-photonic absorbers,” J. Mater. Chem. C 3(17), 4222–4226 (2015).
[Crossref]

Z. Q. Liu, H. B. Shao, G. Q. Liu, X. S. Liu, H. Q. Zhou, Y. Hu, X. N. Zhang, Z. J. Cai, and G. Gu, “λ3/20000 plasmonic nanocavities with multispectral ultra-narrowband absorption for high-qualitysensing,” Appl. Phys. Lett. 104(8), 081116 (2014).
[Crossref]

Lodewijks, K.

K. Lodewijks, J. Ryken, W. Van Roy, G. Borghs, L. Lagae, and P. Van Dorpe, “Tuning the Fano resonance between localized and propagating surface plasmon resonances for refractive index sensing applications,” Plasmonics 8(3), 1379–1385 (2013).
[Crossref]

N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. E. Vandenbosch, L. Lagae, and V. V. Moshchalkov, “Plasmon Line Shaping Using Nanocrosses for High Sensitivity Localized Surface Plasmon Resonance Sensing,” Nano Lett. 11(2), 391–397 (2011).
[Crossref] [PubMed]

Long, L. L.

Ma, Z.-W.

Maier, S. A.

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

Manoharan, V. N.

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10(11), 4680–4685 (2010).
[Crossref] [PubMed]

Mao, P.

J. Chen, W. F. Fan, P. Mao, C. J. Tang, Y. J. Liu, Y. Yu, and L. B. Zhang, “Tailoring plasmon lifetime in suspended nanoantenna arrays for high-performance plasmon sensing,” Plasmonics 12(3), 529–534 (2017).
[Crossref]

J. Chen, R. Q. Xu, P. Mao, Y. T. Zhang, Y. J. Liu, C. J. Tang, J. Q. Liu, and T. Chen, “Realization of Fanolike resonance due to diffraction coupling of localized surface plasmon resonances in embedded nanoantenna arrays,” Plasmonics 10(2), 341–346 (2015).
[Crossref]

Mayer, K. M.

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref] [PubMed]

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97(25), 253116 (2010).
[Crossref]

Moshchalkov, V. V.

N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. E. Vandenbosch, L. Lagae, and V. V. Moshchalkov, “Plasmon Line Shaping Using Nanocrosses for High Sensitivity Localized Surface Plasmon Resonance Sensing,” Nano Lett. 11(2), 391–397 (2011).
[Crossref] [PubMed]

Neubrech, F.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
[Crossref] [PubMed]

Nordlander, P.

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11(4), 1657–1663 (2011).
[Crossref] [PubMed]

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10(11), 4680–4685 (2010).
[Crossref] [PubMed]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

Omenetto, F. G.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
[Crossref] [PubMed]

Ordal, M. A.

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

Pan, J.

C. J. Tang, P. Zhan, Z. S. Cao, J. Pan, Z. Chen, and Z. L. Wang, “Magnetic field enhancement at optical frequencies through diffraction coupling of magnetic plasmon resonances in metamaterials,” Phys. Rev. B 83(4), 041402 (2011).
[Crossref]

Pan, P. P.

Z. Q. Liu, M. D. Yu, S. Huang, X. S. Liu, Y. Wang, M. L. Liu, P. P. Pan, and G. Q. Liu, “Enhancing refractive index sensing capability with hybrid plasmonic-photonic absorbers,” J. Mater. Chem. C 3(17), 4222–4226 (2015).
[Crossref]

Pasquale, A. J.

A. J. Pasquale, B. M. Reinhard, and L. Dal Negro, “Engineering Photonic-Plasmonic Coupling in Metal Nanoparticle Necklaces,” ACS Nano 5(8), 6578–6585 (2011).
[Crossref] [PubMed]

Pucci, A.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
[Crossref] [PubMed]

Reinhard, B. M.

A. J. Pasquale, B. M. Reinhard, and L. Dal Negro, “Engineering Photonic-Plasmonic Coupling in Metal Nanoparticle Necklaces,” ACS Nano 5(8), 6578–6585 (2011).
[Crossref] [PubMed]

Ryken, J.

K. Lodewijks, J. Ryken, W. Van Roy, G. Borghs, L. Lagae, and P. Van Dorpe, “Tuning the Fano resonance between localized and propagating surface plasmon resonances for refractive index sensing applications,” Plasmonics 8(3), 1379–1385 (2013).
[Crossref]

Schatz, G. C.

L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[Crossref] [PubMed]

Shao, H. B.

Z. Q. Liu, H. B. Shao, G. Q. Liu, X. S. Liu, H. Q. Zhou, Y. Hu, X. N. Zhang, Z. J. Cai, and G. Gu, “λ3/20000 plasmonic nanocavities with multispectral ultra-narrowband absorption for high-qualitysensing,” Appl. Phys. Lett. 104(8), 081116 (2014).
[Crossref]

Shen, Y.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, J. Wang, and Y. Yu, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref] [PubMed]

Sherry, L. J.

L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[Crossref] [PubMed]

Shvets, G.

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10(11), 4680–4685 (2010).
[Crossref] [PubMed]

Sonnefraud, Y.

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

Tang, C.

Tang, C. J.

J. Chen, W. F. Fan, P. Mao, C. J. Tang, Y. J. Liu, Y. Yu, and L. B. Zhang, “Tailoring plasmon lifetime in suspended nanoantenna arrays for high-performance plasmon sensing,” Plasmonics 12(3), 529–534 (2017).
[Crossref]

J. Chen, R. Q. Xu, P. Mao, Y. T. Zhang, Y. J. Liu, C. J. Tang, J. Q. Liu, and T. Chen, “Realization of Fanolike resonance due to diffraction coupling of localized surface plasmon resonances in embedded nanoantenna arrays,” Plasmonics 10(2), 341–346 (2015).
[Crossref]

J. Chen, R. Q. Xu, Z. D. Yan, C. J. Tang, Z. Chen, and Z. L. Wang, “Preparation of metallic triangular nanoparticle array with controllable interparticle distance and its application in surface-enhanced Raman spectroscopy,” Opt. Commun. 307, 73–75 (2013).
[Crossref]

C. J. Tang, P. Zhan, Z. S. Cao, J. Pan, Z. Chen, and Z. L. Wang, “Magnetic field enhancement at optical frequencies through diffraction coupling of magnetic plasmon resonances in metamaterials,” Phys. Rev. B 83(4), 041402 (2011).
[Crossref]

Tang, M. L.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[Crossref] [PubMed]

Tao, Y.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, J. Wang, and Y. Yu, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref] [PubMed]

Van Dorpe, P.

K. Lodewijks, J. Ryken, W. Van Roy, G. Borghs, L. Lagae, and P. Van Dorpe, “Tuning the Fano resonance between localized and propagating surface plasmon resonances for refractive index sensing applications,” Plasmonics 8(3), 1379–1385 (2013).
[Crossref]

N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. E. Vandenbosch, L. Lagae, and V. V. Moshchalkov, “Plasmon Line Shaping Using Nanocrosses for High Sensitivity Localized Surface Plasmon Resonance Sensing,” Nano Lett. 11(2), 391–397 (2011).
[Crossref] [PubMed]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

Van Duyne, R. P.

L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[Crossref] [PubMed]

Van Roy, W.

K. Lodewijks, J. Ryken, W. Van Roy, G. Borghs, L. Lagae, and P. Van Dorpe, “Tuning the Fano resonance between localized and propagating surface plasmon resonances for refractive index sensing applications,” Plasmonics 8(3), 1379–1385 (2013).
[Crossref]

Vandenbosch, G. A. E.

N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. E. Vandenbosch, L. Lagae, and V. V. Moshchalkov, “Plasmon Line Shaping Using Nanocrosses for High Sensitivity Localized Surface Plasmon Resonance Sensing,” Nano Lett. 11(2), 391–397 (2011).
[Crossref] [PubMed]

Verellen, N.

N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. E. Vandenbosch, L. Lagae, and V. V. Moshchalkov, “Plasmon Line Shaping Using Nanocrosses for High Sensitivity Localized Surface Plasmon Resonance Sensing,” Nano Lett. 11(2), 391–397 (2011).
[Crossref] [PubMed]

Wang, B.

Wang, J.

J. Wang, C. Fan, J. He, P. Ding, E. Liang, and Q. Xue, “Double Fano resonances due to interplay of electric and magnetic plasmon modes in planar plasmonic structure with high sensing sensitivity,” Opt. Express 21(2), 2236–2244 (2013).
[Crossref] [PubMed]

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, J. Wang, and Y. Yu, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref] [PubMed]

Wang, X.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, J. Wang, and Y. Yu, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref] [PubMed]

Wang, Y.

Wang, Z. L.

J. Chen, R. Q. Xu, Z. D. Yan, C. J. Tang, Z. Chen, and Z. L. Wang, “Preparation of metallic triangular nanoparticle array with controllable interparticle distance and its application in surface-enhanced Raman spectroscopy,” Opt. Commun. 307, 73–75 (2013).
[Crossref]

C. J. Tang, P. Zhan, Z. S. Cao, J. Pan, Z. Chen, and Z. L. Wang, “Magnetic field enhancement at optical frequencies through diffraction coupling of magnetic plasmon resonances in metamaterials,” Phys. Rev. B 83(4), 041402 (2011).
[Crossref]

Wang, Z. Z.

Ward, C. A.

Wegener, M.

S. Linden, M. Decker, and M. Wegener, “Model system for a one-dimensional magnetic photonic crystal,” Phys. Rev. Lett. 97(8), 083902 (2006).
[Crossref] [PubMed]

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

White, I. M.

Wiley, B. J.

L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[Crossref] [PubMed]

Wu, C.

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10(11), 4680–4685 (2010).
[Crossref] [PubMed]

Wu, J.

Xia, Y.

L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[Crossref] [PubMed]

Xiao, G.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, J. Wang, and Y. Yu, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref] [PubMed]

Xu, H.

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11(4), 1657–1663 (2011).
[Crossref] [PubMed]

Xu, R. Q.

J. Chen, R. Q. Xu, P. Mao, Y. T. Zhang, Y. J. Liu, C. J. Tang, J. Q. Liu, and T. Chen, “Realization of Fanolike resonance due to diffraction coupling of localized surface plasmon resonances in embedded nanoantenna arrays,” Plasmonics 10(2), 341–346 (2015).
[Crossref]

J. Chen, R. Q. Xu, Z. D. Yan, C. J. Tang, Z. Chen, and Z. L. Wang, “Preparation of metallic triangular nanoparticle array with controllable interparticle distance and its application in surface-enhanced Raman spectroscopy,” Opt. Commun. 307, 73–75 (2013).
[Crossref]

Xu, S. Y.

Xue, Q.

Yan, Z. D.

J. Chen, R. Q. Xu, Z. D. Yan, C. J. Tang, Z. Chen, and Z. L. Wang, “Preparation of metallic triangular nanoparticle array with controllable interparticle distance and its application in surface-enhanced Raman spectroscopy,” Opt. Commun. 307, 73–75 (2013).
[Crossref]

Yang, X.

Yang, Y.

Yanik, A. A.

A. A. Yanik, R. Adato, S. Erramilli, and H. Altug, “Hybridized nanocavities as single-polarized plasmonic antennas,” Opt. Express 17(23), 20900–20910 (2009).
[Crossref] [PubMed]

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
[Crossref] [PubMed]

A. Artar, A. A. Yanik, and H. Altug, “Fabry-Perot nanocavities in multilayered plasmonic crystals for enhanced biosensing,” Appl. Phys. Lett. 4(1), 05115 (2009).

Yu, M. D.

Z. Q. Liu, M. D. Yu, S. Huang, X. S. Liu, Y. Wang, M. L. Liu, P. P. Pan, and G. Q. Liu, “Enhancing refractive index sensing capability with hybrid plasmonic-photonic absorbers,” J. Mater. Chem. C 3(17), 4222–4226 (2015).
[Crossref]

Yu, Y.

J. Chen, W. F. Fan, P. Mao, C. J. Tang, Y. J. Liu, Y. Yu, and L. B. Zhang, “Tailoring plasmon lifetime in suspended nanoantenna arrays for high-performance plasmon sensing,” Plasmonics 12(3), 529–534 (2017).
[Crossref]

J. Chen, W. Fan, T. Zhang, C. Tang, X. Chen, J. Wu, D. Li, and Y. Yu, “Engineering the magnetic plasmon resonances of metamaterials for high-quality sensing,” Opt. Express 25(4), 3675–3681 (2017).
[Crossref] [PubMed]

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, J. Wang, and Y. Yu, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref] [PubMed]

Yu, Z. P.

Zhan, P.

C. J. Tang, P. Zhan, Z. S. Cao, J. Pan, Z. Chen, and Z. L. Wang, “Magnetic field enhancement at optical frequencies through diffraction coupling of magnetic plasmon resonances in metamaterials,” Phys. Rev. B 83(4), 041402 (2011).
[Crossref]

Zhan, Q.

Zhang, K.

Zhang, L. B.

J. Chen, W. F. Fan, P. Mao, C. J. Tang, Y. J. Liu, Y. Yu, and L. B. Zhang, “Tailoring plasmon lifetime in suspended nanoantenna arrays for high-performance plasmon sensing,” Plasmonics 12(3), 529–534 (2017).
[Crossref]

Zhang, S.

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11(4), 1657–1663 (2011).
[Crossref] [PubMed]

Zhang, T.

Zhang, X. N.

Z. Q. Liu, H. B. Shao, G. Q. Liu, X. S. Liu, H. Q. Zhou, Y. Hu, X. N. Zhang, Z. J. Cai, and G. Gu, “λ3/20000 plasmonic nanocavities with multispectral ultra-narrowband absorption for high-qualitysensing,” Appl. Phys. Lett. 104(8), 081116 (2014).
[Crossref]

Zhang, Y.

Zhang, Y. T.

J. Chen, R. Q. Xu, P. Mao, Y. T. Zhang, Y. J. Liu, C. J. Tang, J. Q. Liu, and T. Chen, “Realization of Fanolike resonance due to diffraction coupling of localized surface plasmon resonances in embedded nanoantenna arrays,” Plasmonics 10(2), 341–346 (2015).
[Crossref]

Zheng, B.

Zheng, Z. Q.

Zhou, H. Q.

Z. Q. Liu, H. B. Shao, G. Q. Liu, X. S. Liu, H. Q. Zhou, Y. Hu, X. N. Zhang, Z. J. Cai, and G. Gu, “λ3/20000 plasmonic nanocavities with multispectral ultra-narrowband absorption for high-qualitysensing,” Appl. Phys. Lett. 104(8), 081116 (2014).
[Crossref]

Zhou, J.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, J. Wang, and Y. Yu, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref] [PubMed]

Zhou, Z. K.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, J. Wang, and Y. Yu, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref] [PubMed]

Zhu, J.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, J. Wang, and Y. Yu, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref] [PubMed]

ACS Nano (1)

A. J. Pasquale, B. M. Reinhard, and L. Dal Negro, “Engineering Photonic-Plasmonic Coupling in Metal Nanoparticle Necklaces,” ACS Nano 5(8), 6578–6585 (2011).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97(25), 253116 (2010).
[Crossref]

A. Artar, A. A. Yanik, and H. Altug, “Fabry-Perot nanocavities in multilayered plasmonic crystals for enhanced biosensing,” Appl. Phys. Lett. 4(1), 05115 (2009).

Z. Q. Liu, H. B. Shao, G. Q. Liu, X. S. Liu, H. Q. Zhou, Y. Hu, X. N. Zhang, Z. J. Cai, and G. Gu, “λ3/20000 plasmonic nanocavities with multispectral ultra-narrowband absorption for high-qualitysensing,” Appl. Phys. Lett. 104(8), 081116 (2014).
[Crossref]

Chem. Rev. (1)

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref] [PubMed]

J. Mater. Chem. C (1)

Z. Q. Liu, M. D. Yu, S. Huang, X. S. Liu, Y. Wang, M. L. Liu, P. P. Pan, and G. Q. Liu, “Enhancing refractive index sensing capability with hybrid plasmonic-photonic absorbers,” J. Mater. Chem. C 3(17), 4222–4226 (2015).
[Crossref]

Nano Lett. (6)

L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[Crossref] [PubMed]

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10(11), 4680–4685 (2010).
[Crossref] [PubMed]

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11(4), 1657–1663 (2011).
[Crossref] [PubMed]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. E. Vandenbosch, L. Lagae, and V. V. Moshchalkov, “Plasmon Line Shaping Using Nanocrosses for High Sensitivity Localized Surface Plasmon Resonance Sensing,” Nano Lett. 11(2), 391–397 (2011).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Nat. Commun. (1)

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, J. Wang, and Y. Yu, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref] [PubMed]

Nat. Mater. (1)

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[Crossref] [PubMed]

Opt. Commun. (1)

J. Chen, R. Q. Xu, Z. D. Yan, C. J. Tang, Z. Chen, and Z. L. Wang, “Preparation of metallic triangular nanoparticle array with controllable interparticle distance and its application in surface-enhanced Raman spectroscopy,” Opt. Commun. 307, 73–75 (2013).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Opt. Mater. Express (3)

Phys. Rev. B (1)

C. J. Tang, P. Zhan, Z. S. Cao, J. Pan, Z. Chen, and Z. L. Wang, “Magnetic field enhancement at optical frequencies through diffraction coupling of magnetic plasmon resonances in metamaterials,” Phys. Rev. B 83(4), 041402 (2011).
[Crossref]

Phys. Rev. Lett. (3)

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
[Crossref] [PubMed]

S. Linden, M. Decker, and M. Wegener, “Model system for a one-dimensional magnetic photonic crystal,” Phys. Rev. Lett. 97(8), 083902 (2006).
[Crossref] [PubMed]

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[Crossref] [PubMed]

Plasmonics (3)

J. Chen, R. Q. Xu, P. Mao, Y. T. Zhang, Y. J. Liu, C. J. Tang, J. Q. Liu, and T. Chen, “Realization of Fanolike resonance due to diffraction coupling of localized surface plasmon resonances in embedded nanoantenna arrays,” Plasmonics 10(2), 341–346 (2015).
[Crossref]

K. Lodewijks, J. Ryken, W. Van Roy, G. Borghs, L. Lagae, and P. Van Dorpe, “Tuning the Fano resonance between localized and propagating surface plasmon resonances for refractive index sensing applications,” Plasmonics 8(3), 1379–1385 (2013).
[Crossref]

J. Chen, W. F. Fan, P. Mao, C. J. Tang, Y. J. Liu, Y. Yu, and L. B. Zhang, “Tailoring plasmon lifetime in suspended nanoantenna arrays for high-performance plasmon sensing,” Plasmonics 12(3), 529–534 (2017).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
[Crossref] [PubMed]

Science (1)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic of a plasmonic structure for high-performance RI sensing. Gold nanoparticle array is placed on a dielectric waveguide layer (a) and directly placed on the substrate (b). Px and Py are the periods in the x and y directions, respectively. The polarization of the incident light is along the long axis of the ellipsoidal nanoparticle.
Fig. 2
Fig. 2 Normal-incidence transmission spectra of two structures schematically shown in Fig. 1, with Px = 200 nm and Py = 700 nm. (b) and (c) Normalized electric field intensity (E/Ein)2 on the xoy plane across the center of the gold nanoparticles at the dip 1 and dip 2 resonances indicated in Fig. 2(a).
Fig. 3
Fig. 3 (a)-(c) Normalized electric field components (Ex/Ein)2, (Ey/Ein)2 and (Ez/Ein)2 on the xoy plane across the center of the gold nanoparticles at the dip 2 resonance. (d)-(f) The same as (a)-(c), but for normalized magnetic field components (Hx/Hin)2, (Hy/Hin)2 and (Hz/Hin)2.
Fig. 4
Fig. 4 (a) Transmission spectra of the designed RI sensor under different dielectric environment. (b) The dependence of the resonance wavelengths of dip 1 (black) and dip 2 (red) on the refractive index of the environment medium.

Metrics