Abstract

Ordinary and extraordinary refractive indices of CdSiP2 were measured and a Sellmeier equation was obtained for the first time to our knowledge over the temperature range 90 to 450 K. The index values were used to calculate the crystal temperature and phase-matching angle dependence of the generated wavelengths in the nonlinear frequency conversion of a range of pump wavelengths. A good match was obtained between the calculated values of the wavelengths and some experimental measurements.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Temperature dependent Sellmeier equation for the refractive index of GaP

Jean Wei, Joel M. Murray, Jacob O. Barnes, Douglas M. Krein, Peter G. Schunemann, and Shekhar Guha
Opt. Mater. Express 8(2) 485-490 (2018)

Measurement of refractive indices and thermal refractive-index coefficients of 7.5-mol.% Nb:KTiOPO4 crystal

Hongyuan Shen, Deyin Zhang, Wen Liu, Wenzhi Chen, Guofang Zhang, Ge Zhang, and Wenxiong Lin
Appl. Opt. 38(6) 987-990 (1999)

References

  • View by:
  • |
  • |
  • |

  1. P. G. Schunemann, “CdSiP2 and OPGaAs: New Nonlinear Crystals for the Mid-Infrared,” OSA Tech. Digest (Optical Society of America, 2011), paper AIFA1.
    [Crossref]
  2. F. K. Hopkins, B. Claflin, P. G. Schunemann, N. C. Giles, and L. E. Halliburton, “Potential of CdSiP2 for Enabling Mid-Infrared Sources,” Proc. SPIE 9616, 96160W (2015).
    [Crossref]
  3. K. Zawilski, P. Schunemann, D. Zelmon, and et al.., “Growth and characterization of large CdSiP2 single crystals,” J. Cryst. Growth 312(8), 1127–1132 (2010).
    [Crossref]
  4. P. Brand, B. Boulanger, P. Segonds, V. Kemlin, P. G. Schunemann, K. T. Zawilski, B. Ménaert, and J. Debray “Phase-matching properties and refined Sellmeier equations of the new nonlinear infrared crystal CdSiP2,” OSA Tech. Digest (Optical Society of America, 2011), paper AIFA2.
    [Crossref]
  5. K. Kato, N. Umemura, and V. Petrov, “Sellmeier and thermo-optic dispersion formulas for CdSiP2,” J. Appl. Phys. 109(11), 116104 (2011).
    [Crossref]
  6. T. S. Moss, S. D. Smith, and T. D. F. Hawkins, “Absorption and dispersion of indium antimonide,” Proc. Phys. Soc. B 70(8), 776–784 (1957).
    [Crossref]
  7. T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
    [Crossref]
  8. M. Born and E. Wolf, “Principles of Optics,” 7th ed. (Cambridge University Press, 1999).
  9. S. C. Kumar, M. Jelínek, M. Baudisch, K. T. Zawilski, P. G. Schunemann, V. Kubeček, J. Biegert, and M. Ebrahim-Zadeh, “Tunable, high-energy, mid-infrared, picosecond optical parametric generator based on CdSiP2.,” Opt. Express 20(14), 15703–15709 (2012).
    [Crossref] [PubMed]
  10. P. G. Schunemann, L. A. Pomeranz, K. T. Zawilski, J. Wei, L. P. Gonzalez, S. Guha, and T. M. Pollak “Efficient mid infrared optical parametric oscillator based on CdSiP2”, in Advances in Optical Materials (AIOM) 2009, OSA Technical Digest (Optical Society of America, 2009), paper AWA3.

2015 (1)

F. K. Hopkins, B. Claflin, P. G. Schunemann, N. C. Giles, and L. E. Halliburton, “Potential of CdSiP2 for Enabling Mid-Infrared Sources,” Proc. SPIE 9616, 96160W (2015).
[Crossref]

2012 (1)

2011 (1)

K. Kato, N. Umemura, and V. Petrov, “Sellmeier and thermo-optic dispersion formulas for CdSiP2,” J. Appl. Phys. 109(11), 116104 (2011).
[Crossref]

2010 (1)

K. Zawilski, P. Schunemann, D. Zelmon, and et al.., “Growth and characterization of large CdSiP2 single crystals,” J. Cryst. Growth 312(8), 1127–1132 (2010).
[Crossref]

2003 (1)

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[Crossref]

1957 (1)

T. S. Moss, S. D. Smith, and T. D. F. Hawkins, “Absorption and dispersion of indium antimonide,” Proc. Phys. Soc. B 70(8), 776–784 (1957).
[Crossref]

Baudisch, M.

Becouarn, L.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[Crossref]

Biegert, J.

Claflin, B.

F. K. Hopkins, B. Claflin, P. G. Schunemann, N. C. Giles, and L. E. Halliburton, “Potential of CdSiP2 for Enabling Mid-Infrared Sources,” Proc. SPIE 9616, 96160W (2015).
[Crossref]

Ebrahim-Zadeh, M.

Eyres, L. A.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[Crossref]

Fejer, M. M.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[Crossref]

Gerard, B.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[Crossref]

Giles, N. C.

F. K. Hopkins, B. Claflin, P. G. Schunemann, N. C. Giles, and L. E. Halliburton, “Potential of CdSiP2 for Enabling Mid-Infrared Sources,” Proc. SPIE 9616, 96160W (2015).
[Crossref]

Halliburton, L. E.

F. K. Hopkins, B. Claflin, P. G. Schunemann, N. C. Giles, and L. E. Halliburton, “Potential of CdSiP2 for Enabling Mid-Infrared Sources,” Proc. SPIE 9616, 96160W (2015).
[Crossref]

Harris, J. S.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[Crossref]

Hawkins, T. D. F.

T. S. Moss, S. D. Smith, and T. D. F. Hawkins, “Absorption and dispersion of indium antimonide,” Proc. Phys. Soc. B 70(8), 776–784 (1957).
[Crossref]

Hopkins, F. K.

F. K. Hopkins, B. Claflin, P. G. Schunemann, N. C. Giles, and L. E. Halliburton, “Potential of CdSiP2 for Enabling Mid-Infrared Sources,” Proc. SPIE 9616, 96160W (2015).
[Crossref]

Jelínek, M.

Kato, K.

K. Kato, N. Umemura, and V. Petrov, “Sellmeier and thermo-optic dispersion formulas for CdSiP2,” J. Appl. Phys. 109(11), 116104 (2011).
[Crossref]

Kubecek, V.

Kumar, S. C.

Kuo, P. S.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[Crossref]

Lallier, E.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[Crossref]

Levi, O.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[Crossref]

Moss, T. S.

T. S. Moss, S. D. Smith, and T. D. F. Hawkins, “Absorption and dispersion of indium antimonide,” Proc. Phys. Soc. B 70(8), 776–784 (1957).
[Crossref]

Petrov, V.

K. Kato, N. Umemura, and V. Petrov, “Sellmeier and thermo-optic dispersion formulas for CdSiP2,” J. Appl. Phys. 109(11), 116104 (2011).
[Crossref]

Pinguet, T. J.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[Crossref]

Schunemann, P.

K. Zawilski, P. Schunemann, D. Zelmon, and et al.., “Growth and characterization of large CdSiP2 single crystals,” J. Cryst. Growth 312(8), 1127–1132 (2010).
[Crossref]

Schunemann, P. G.

Skauli, T.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[Crossref]

Smith, S. D.

T. S. Moss, S. D. Smith, and T. D. F. Hawkins, “Absorption and dispersion of indium antimonide,” Proc. Phys. Soc. B 70(8), 776–784 (1957).
[Crossref]

Umemura, N.

K. Kato, N. Umemura, and V. Petrov, “Sellmeier and thermo-optic dispersion formulas for CdSiP2,” J. Appl. Phys. 109(11), 116104 (2011).
[Crossref]

Vodopyanov, K. L.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[Crossref]

Zawilski, K.

K. Zawilski, P. Schunemann, D. Zelmon, and et al.., “Growth and characterization of large CdSiP2 single crystals,” J. Cryst. Growth 312(8), 1127–1132 (2010).
[Crossref]

Zawilski, K. T.

Zelmon, D.

K. Zawilski, P. Schunemann, D. Zelmon, and et al.., “Growth and characterization of large CdSiP2 single crystals,” J. Cryst. Growth 312(8), 1127–1132 (2010).
[Crossref]

J. Appl. Phys. (2)

K. Kato, N. Umemura, and V. Petrov, “Sellmeier and thermo-optic dispersion formulas for CdSiP2,” J. Appl. Phys. 109(11), 116104 (2011).
[Crossref]

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[Crossref]

J. Cryst. Growth (1)

K. Zawilski, P. Schunemann, D. Zelmon, and et al.., “Growth and characterization of large CdSiP2 single crystals,” J. Cryst. Growth 312(8), 1127–1132 (2010).
[Crossref]

Opt. Express (1)

Proc. Phys. Soc. B (1)

T. S. Moss, S. D. Smith, and T. D. F. Hawkins, “Absorption and dispersion of indium antimonide,” Proc. Phys. Soc. B 70(8), 776–784 (1957).
[Crossref]

Proc. SPIE (1)

F. K. Hopkins, B. Claflin, P. G. Schunemann, N. C. Giles, and L. E. Halliburton, “Potential of CdSiP2 for Enabling Mid-Infrared Sources,” Proc. SPIE 9616, 96160W (2015).
[Crossref]

Other (4)

P. G. Schunemann, “CdSiP2 and OPGaAs: New Nonlinear Crystals for the Mid-Infrared,” OSA Tech. Digest (Optical Society of America, 2011), paper AIFA1.
[Crossref]

P. Brand, B. Boulanger, P. Segonds, V. Kemlin, P. G. Schunemann, K. T. Zawilski, B. Ménaert, and J. Debray “Phase-matching properties and refined Sellmeier equations of the new nonlinear infrared crystal CdSiP2,” OSA Tech. Digest (Optical Society of America, 2011), paper AIFA2.
[Crossref]

M. Born and E. Wolf, “Principles of Optics,” 7th ed. (Cambridge University Press, 1999).

P. G. Schunemann, L. A. Pomeranz, K. T. Zawilski, J. Wei, L. P. Gonzalez, S. Guha, and T. M. Pollak “Efficient mid infrared optical parametric oscillator based on CdSiP2”, in Advances in Optical Materials (AIOM) 2009, OSA Technical Digest (Optical Society of America, 2009), paper AWA3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 Temperature dependent FTIR transmission spectra of CdSiP2 for light polarized along the ordinary axis.
Fig. 2
Fig. 2 The experimentally obtained values for the ordinary and extraordinary refractive indices of CdSiP2 at different temperatures.
Fig. 3
Fig. 3 Fit errors between Sellmeier expressions and experimental refractive index at different temperatures, for both the ordinary (left column) and extraordinary (right column) axes.
Fig. 4
Fig. 4 Comparison between the experimental temperature-dependent idler and signal wavelengths [8] (symbols) and the predictions using temperature-dependent Sellmeier equation (solid lines) for Type I phase matching at critical phase matching angle, and CdSiP2 is pumped at 1.064 μm.
Fig. 5
Fig. 5 (a). Comparison of angular dependent between the experimental results (Ref [9], symbols) and the prediction using the Sellmeier equation at 295 K (solid line), shifted by −0.2° (see text); Fig. 5(b), Comparison of temperature dependent signal and idler wavelengths between experimental results (symbols) from Ref [9]. and the prediction using the Sellmeier equation (solid lines).
Fig. 6
Fig. 6 Non-critical phase matching signal and idler wavelengths as a function of wavelength, temperature, and phase matching type.
Fig. 7
Fig. 7 Phase matching angle for degenerate optical parametric generation at 90 K, 300 K, and 450 K, as a function of the pump laser wavelength. These are shown for the two phase matching types (eeo and eoe) for which phase matching occurs.
Fig. 8
Fig. 8 (a). Phase matching curves for CdSiP2 pumped at 2.34 μm, for a variety of temperatures. The curves are notable for simultaneously phase matching a broad range of wavelengths; Fig. 8(b). Plot of the sinc2 function for a 1 cm thick CdSiP2 crystal held at 300 K, for several crystal angles. This curve is a useful metric for the nonlinear conversion efficiency.
Fig. 9
Fig. 9 Phase matching curves for CdSiP2 pumped at 1.064 μm, for a variety of temperatures. The phase matching types differ between the two figures.
Fig. 10
Fig. 10 Phase matching curves for CdSiP2 pumped at 1.25 μm, for a variety of temperatures. The phase matching types differ between the two figures.
Fig. 11
Fig. 11 Phase matching curves for CdSiP2 pumped at 1.34 μm, for a variety of temperatures. The phase matching types differ between the two figures.
Fig. 12
Fig. 12 Phase matching curves for CdSiP2 pumped at 1.55 μm, for a variety of temperatures. The phase matching types differ between the two figures.
Fig. 13
Fig. 13 Phase matching curves for CdSiP2 pumped at 2.00 μm, for a variety of temperatures. The phase matching types differ between the two figures.
Fig. 14
Fig. 14 (a). Phase matching curves for CdSiP2 pumped at 4.6 μm, for a variety of temperatures. The phase matching angle attains a maximum between cryogenic and elevated temperatures, as seen in Fig. 14(b), for the case of degenerate optical parametric down conversion.

Tables (1)

Tables Icon

Table 1 Temperature-dependent Sellmeier fit coefficientsa

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

2 n( λ )d=mλ
n 2 =A(T)+ B(T) λ 2 C + D λ 2 E

Metrics