Abstract

Lead-tetrakis-4(cumylphenoxy)phthalocyanine (PbPc) is dispersed into several common optical polymers at various doping levels. The linear and nonlinear optical properties are measured at 600 nm near the region where the excited state and ground state absorption cross sections are nearly equal. The effective nonlinear refraction coefficients observed at high concentration are as much three orders of magnitude larger than that observed for fused silica.

Full Article  |  PDF Article
OSA Recommended Articles
Synthesis, chemical characterization and nonlinear optical properties of thallium(III) phthalocyanine halide complexes

Jeffrey P. Fitzgerald, Peter D. Huffman, Ian A. Brenner, Jeremiah J. Wathen, Guy Beadie, Richard G. S. Pong, James S. Shirk, and Steven R. Flom
Opt. Mater. Express 5(7) 1560-1578 (2015)

Dispersion of the third-order nonlinear-optical properties of poly(p-phenylene benzobisthiazole) and its molecular composites with polyamides

Herman Vanherzeele, Jeffrey S. Meth, Sampson A. Jenekhe, and Michael F. Roberts
J. Opt. Soc. Am. B 9(4) 524-533 (1992)

Ultrafast Z-scan measurements of nonlinear optical constants of window materials at 772, 1030, and 1550  nm

Steven R. Flom, Guy Beadie, Shyam S. Bayya, Brandon Shaw, and Jason M. Auxier
Appl. Opt. 54(31) F123-F128 (2015)

References

  • View by:
  • |
  • |
  • |

  1. H. Isago, “Prototypical optical absorption spectra of phthalocyanines and their theoretical background,” in Optical Spectra of Phthalocyanines and Related Compounds (National Institute for Materials Science, Springer Japan, 2015).
  2. J. S. Shirk, R. G. S. Pong, F. J. Bartoli, and A. W. Snow, “Optical limiter using a lead phthalocyanine,” Appl. Phys. Lett. 63(14), 1880–1882 (1993).
    [Crossref]
  3. J. S. Shirk, R. G. S. Pong, S. R. Flom, H. Heckmann, and M. Hanack, “Effect of axial substitution on the optical limiting properties of indium phthalocyanines,” J. Phys. Chem. A 104(7), 1438–1449 (2000).
    [Crossref]
  4. J. P. Fitzgerald, P. D. Huffman, I. A. Brenner, J. J. Wathen, G. Beadie, R. G. S. Pong, J. S. Shirk, and S. R. Flom, “Synthesis, chemical characterization and nonlinear optical properties of thallium(III) phthalocyanine halide complexes,” Opt. Mater. Express 5(7), 1560–1578 (2015).
    [Crossref]
  5. T. H. Wei, D. J. Hagan, M. J. Sence, E. W. Vanstryland, J. W. Perry, and D. R. Coulter, ““Direct measurements of nonlinear absorption and refraction in solutions of phthalocyanines,” Appl. Phys. B. 54, 46–51 (1992).
  6. S. R. Flom, R. G. S. Pong, S. R. Carlo, and J. S. Shirk, “Highly nonlinear polymers: Fabrication and optical properties,” in OSA Trends in Optics and Photonics Series, 2003), 293–295.
  7. R. L. Sutherland, Handbook of Nonlinear Optics, 2nd ed. (Marcel Dekker, Inc., NewYork, 2003).
  8. W. M. K. P. Wijekoon, K.-S. Lee, and P. N. Prasad, “Nonlinear optical properties of polymers,” in Physical Properties of Polymers Handbook, J. E. Mark, ed. (Springer, New York, 2007), 795–822.
  9. D. Dini, M. J. F. Calvete, and M. Hanack, “Nonlinear Optical Materials for the Smart Filtering of Optical Radiation,” Chem. Rev. 116(22), 13043–13233 (2016).
    [Crossref] [PubMed]
  10. S. Carlo, A. W. Snow, R. G. S. Pong, J. S. Shirk, and S. R. Flom, “Fabricating polymers for optical devices,” U.S. Patent #8,003,713 (2011).
  11. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
    [Crossref]
  12. S. R. Flom, G. Beadie, S. S. Bayya, B. Shaw, and J. M. Auxier, “Ultrafast Z-scan measurements of nonlinear optical constants of window materials at 772, 1030, and 1550 nm,” Appl. Opt. 54(31), F123–F128 (2015).
    [Crossref] [PubMed]
  13. T. F. Johnston, “Beam propagation (M2) measurement made as easy as it gets: the four-cuts method,” Appl. Opt. 37(21), 4840–4850 (1998).
    [Crossref] [PubMed]
  14. R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer Academic Publishers, Norwell, MA, 2000).
  15. A. Ranade, A. Hiltner, E. Baer, J. S. Shirk, and R. S. Lepkowicz, “Aggregation of lead phthalocyanine in blends with polycarbonate,” J. Appl. Polym. Sci. 104(1), 464–469 (2007).
    [Crossref]
  16. A. W. Snow, “Phthalocyanine Aggregation,” in Porphyrin Handbook, Vol 17 Phthalocyanines: Properties and Materials, K. M. Kadish, K. W. Smith, and R. Guilard, eds. (Academic Press, San Diego, CA, 2003), pp. 129–176.
  17. G. I. Stegeman, “Material figures of merit and implications for all-optical waveguide switching,” Proc. SPIE 1852, 75–89 (1993).
    [Crossref]

2016 (1)

D. Dini, M. J. F. Calvete, and M. Hanack, “Nonlinear Optical Materials for the Smart Filtering of Optical Radiation,” Chem. Rev. 116(22), 13043–13233 (2016).
[Crossref] [PubMed]

2015 (2)

2007 (1)

A. Ranade, A. Hiltner, E. Baer, J. S. Shirk, and R. S. Lepkowicz, “Aggregation of lead phthalocyanine in blends with polycarbonate,” J. Appl. Polym. Sci. 104(1), 464–469 (2007).
[Crossref]

2000 (1)

J. S. Shirk, R. G. S. Pong, S. R. Flom, H. Heckmann, and M. Hanack, “Effect of axial substitution on the optical limiting properties of indium phthalocyanines,” J. Phys. Chem. A 104(7), 1438–1449 (2000).
[Crossref]

1998 (1)

1993 (2)

G. I. Stegeman, “Material figures of merit and implications for all-optical waveguide switching,” Proc. SPIE 1852, 75–89 (1993).
[Crossref]

J. S. Shirk, R. G. S. Pong, F. J. Bartoli, and A. W. Snow, “Optical limiter using a lead phthalocyanine,” Appl. Phys. Lett. 63(14), 1880–1882 (1993).
[Crossref]

1992 (1)

T. H. Wei, D. J. Hagan, M. J. Sence, E. W. Vanstryland, J. W. Perry, and D. R. Coulter, ““Direct measurements of nonlinear absorption and refraction in solutions of phthalocyanines,” Appl. Phys. B. 54, 46–51 (1992).

1990 (1)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Auxier, J. M.

Baer, E.

A. Ranade, A. Hiltner, E. Baer, J. S. Shirk, and R. S. Lepkowicz, “Aggregation of lead phthalocyanine in blends with polycarbonate,” J. Appl. Polym. Sci. 104(1), 464–469 (2007).
[Crossref]

Bartoli, F. J.

J. S. Shirk, R. G. S. Pong, F. J. Bartoli, and A. W. Snow, “Optical limiter using a lead phthalocyanine,” Appl. Phys. Lett. 63(14), 1880–1882 (1993).
[Crossref]

Bayya, S. S.

Beadie, G.

Brenner, I. A.

Calvete, M. J. F.

D. Dini, M. J. F. Calvete, and M. Hanack, “Nonlinear Optical Materials for the Smart Filtering of Optical Radiation,” Chem. Rev. 116(22), 13043–13233 (2016).
[Crossref] [PubMed]

Coulter, D. R.

T. H. Wei, D. J. Hagan, M. J. Sence, E. W. Vanstryland, J. W. Perry, and D. R. Coulter, ““Direct measurements of nonlinear absorption and refraction in solutions of phthalocyanines,” Appl. Phys. B. 54, 46–51 (1992).

Dini, D.

D. Dini, M. J. F. Calvete, and M. Hanack, “Nonlinear Optical Materials for the Smart Filtering of Optical Radiation,” Chem. Rev. 116(22), 13043–13233 (2016).
[Crossref] [PubMed]

Fitzgerald, J. P.

Flom, S. R.

Hagan, D. J.

T. H. Wei, D. J. Hagan, M. J. Sence, E. W. Vanstryland, J. W. Perry, and D. R. Coulter, ““Direct measurements of nonlinear absorption and refraction in solutions of phthalocyanines,” Appl. Phys. B. 54, 46–51 (1992).

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Hanack, M.

D. Dini, M. J. F. Calvete, and M. Hanack, “Nonlinear Optical Materials for the Smart Filtering of Optical Radiation,” Chem. Rev. 116(22), 13043–13233 (2016).
[Crossref] [PubMed]

J. S. Shirk, R. G. S. Pong, S. R. Flom, H. Heckmann, and M. Hanack, “Effect of axial substitution on the optical limiting properties of indium phthalocyanines,” J. Phys. Chem. A 104(7), 1438–1449 (2000).
[Crossref]

Heckmann, H.

J. S. Shirk, R. G. S. Pong, S. R. Flom, H. Heckmann, and M. Hanack, “Effect of axial substitution on the optical limiting properties of indium phthalocyanines,” J. Phys. Chem. A 104(7), 1438–1449 (2000).
[Crossref]

Hiltner, A.

A. Ranade, A. Hiltner, E. Baer, J. S. Shirk, and R. S. Lepkowicz, “Aggregation of lead phthalocyanine in blends with polycarbonate,” J. Appl. Polym. Sci. 104(1), 464–469 (2007).
[Crossref]

Huffman, P. D.

Johnston, T. F.

Lepkowicz, R. S.

A. Ranade, A. Hiltner, E. Baer, J. S. Shirk, and R. S. Lepkowicz, “Aggregation of lead phthalocyanine in blends with polycarbonate,” J. Appl. Polym. Sci. 104(1), 464–469 (2007).
[Crossref]

Perry, J. W.

T. H. Wei, D. J. Hagan, M. J. Sence, E. W. Vanstryland, J. W. Perry, and D. R. Coulter, ““Direct measurements of nonlinear absorption and refraction in solutions of phthalocyanines,” Appl. Phys. B. 54, 46–51 (1992).

Pong, R. G. S.

J. P. Fitzgerald, P. D. Huffman, I. A. Brenner, J. J. Wathen, G. Beadie, R. G. S. Pong, J. S. Shirk, and S. R. Flom, “Synthesis, chemical characterization and nonlinear optical properties of thallium(III) phthalocyanine halide complexes,” Opt. Mater. Express 5(7), 1560–1578 (2015).
[Crossref]

J. S. Shirk, R. G. S. Pong, S. R. Flom, H. Heckmann, and M. Hanack, “Effect of axial substitution on the optical limiting properties of indium phthalocyanines,” J. Phys. Chem. A 104(7), 1438–1449 (2000).
[Crossref]

J. S. Shirk, R. G. S. Pong, F. J. Bartoli, and A. W. Snow, “Optical limiter using a lead phthalocyanine,” Appl. Phys. Lett. 63(14), 1880–1882 (1993).
[Crossref]

Ranade, A.

A. Ranade, A. Hiltner, E. Baer, J. S. Shirk, and R. S. Lepkowicz, “Aggregation of lead phthalocyanine in blends with polycarbonate,” J. Appl. Polym. Sci. 104(1), 464–469 (2007).
[Crossref]

Said, A. A.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Sence, M. J.

T. H. Wei, D. J. Hagan, M. J. Sence, E. W. Vanstryland, J. W. Perry, and D. R. Coulter, ““Direct measurements of nonlinear absorption and refraction in solutions of phthalocyanines,” Appl. Phys. B. 54, 46–51 (1992).

Shaw, B.

Sheik-Bahae, M.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Shirk, J. S.

J. P. Fitzgerald, P. D. Huffman, I. A. Brenner, J. J. Wathen, G. Beadie, R. G. S. Pong, J. S. Shirk, and S. R. Flom, “Synthesis, chemical characterization and nonlinear optical properties of thallium(III) phthalocyanine halide complexes,” Opt. Mater. Express 5(7), 1560–1578 (2015).
[Crossref]

A. Ranade, A. Hiltner, E. Baer, J. S. Shirk, and R. S. Lepkowicz, “Aggregation of lead phthalocyanine in blends with polycarbonate,” J. Appl. Polym. Sci. 104(1), 464–469 (2007).
[Crossref]

J. S. Shirk, R. G. S. Pong, S. R. Flom, H. Heckmann, and M. Hanack, “Effect of axial substitution on the optical limiting properties of indium phthalocyanines,” J. Phys. Chem. A 104(7), 1438–1449 (2000).
[Crossref]

J. S. Shirk, R. G. S. Pong, F. J. Bartoli, and A. W. Snow, “Optical limiter using a lead phthalocyanine,” Appl. Phys. Lett. 63(14), 1880–1882 (1993).
[Crossref]

Snow, A. W.

J. S. Shirk, R. G. S. Pong, F. J. Bartoli, and A. W. Snow, “Optical limiter using a lead phthalocyanine,” Appl. Phys. Lett. 63(14), 1880–1882 (1993).
[Crossref]

Stegeman, G. I.

G. I. Stegeman, “Material figures of merit and implications for all-optical waveguide switching,” Proc. SPIE 1852, 75–89 (1993).
[Crossref]

Van Stryland, E. W.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Vanstryland, E. W.

T. H. Wei, D. J. Hagan, M. J. Sence, E. W. Vanstryland, J. W. Perry, and D. R. Coulter, ““Direct measurements of nonlinear absorption and refraction in solutions of phthalocyanines,” Appl. Phys. B. 54, 46–51 (1992).

Wathen, J. J.

Wei, T. H.

T. H. Wei, D. J. Hagan, M. J. Sence, E. W. Vanstryland, J. W. Perry, and D. R. Coulter, ““Direct measurements of nonlinear absorption and refraction in solutions of phthalocyanines,” Appl. Phys. B. 54, 46–51 (1992).

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B. (1)

T. H. Wei, D. J. Hagan, M. J. Sence, E. W. Vanstryland, J. W. Perry, and D. R. Coulter, ““Direct measurements of nonlinear absorption and refraction in solutions of phthalocyanines,” Appl. Phys. B. 54, 46–51 (1992).

Appl. Phys. Lett. (1)

J. S. Shirk, R. G. S. Pong, F. J. Bartoli, and A. W. Snow, “Optical limiter using a lead phthalocyanine,” Appl. Phys. Lett. 63(14), 1880–1882 (1993).
[Crossref]

Chem. Rev. (1)

D. Dini, M. J. F. Calvete, and M. Hanack, “Nonlinear Optical Materials for the Smart Filtering of Optical Radiation,” Chem. Rev. 116(22), 13043–13233 (2016).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (1)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

J. Appl. Polym. Sci. (1)

A. Ranade, A. Hiltner, E. Baer, J. S. Shirk, and R. S. Lepkowicz, “Aggregation of lead phthalocyanine in blends with polycarbonate,” J. Appl. Polym. Sci. 104(1), 464–469 (2007).
[Crossref]

J. Phys. Chem. A (1)

J. S. Shirk, R. G. S. Pong, S. R. Flom, H. Heckmann, and M. Hanack, “Effect of axial substitution on the optical limiting properties of indium phthalocyanines,” J. Phys. Chem. A 104(7), 1438–1449 (2000).
[Crossref]

Opt. Mater. Express (1)

Proc. SPIE (1)

G. I. Stegeman, “Material figures of merit and implications for all-optical waveguide switching,” Proc. SPIE 1852, 75–89 (1993).
[Crossref]

Other (7)

A. W. Snow, “Phthalocyanine Aggregation,” in Porphyrin Handbook, Vol 17 Phthalocyanines: Properties and Materials, K. M. Kadish, K. W. Smith, and R. Guilard, eds. (Academic Press, San Diego, CA, 2003), pp. 129–176.

H. Isago, “Prototypical optical absorption spectra of phthalocyanines and their theoretical background,” in Optical Spectra of Phthalocyanines and Related Compounds (National Institute for Materials Science, Springer Japan, 2015).

R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer Academic Publishers, Norwell, MA, 2000).

S. Carlo, A. W. Snow, R. G. S. Pong, J. S. Shirk, and S. R. Flom, “Fabricating polymers for optical devices,” U.S. Patent #8,003,713 (2011).

S. R. Flom, R. G. S. Pong, S. R. Carlo, and J. S. Shirk, “Highly nonlinear polymers: Fabrication and optical properties,” in OSA Trends in Optics and Photonics Series, 2003), 293–295.

R. L. Sutherland, Handbook of Nonlinear Optics, 2nd ed. (Marcel Dekker, Inc., NewYork, 2003).

W. M. K. P. Wijekoon, K.-S. Lee, and P. N. Prasad, “Nonlinear optical properties of polymers,” in Physical Properties of Polymers Handbook, J. E. Mark, ed. (Springer, New York, 2007), 795–822.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic of Z-scan setup. Ultrafast pulses are derived from a femtosecond chirped pulse amplifier (CPA) system converted to tunable wavelengths via a noncollinear optical parametric amplifier (NOPA). Intensity is controlled via a waveplate-polarizer combination, and the beam is spatially filtered to ensure M-squared values <1.1 in the sample region. Open aperture (measuring nonlinear absorption α2) and closed aperture (measuring nonlinear refraction n2) data traces are acquired simultaneously. When needed, a mirror drops in to pick off the reference arm to measure energy or perform frequency resolved optical gating (FROG) for pulse characterization.
Fig. 2
Fig. 2 Output of the M2 routine showing the typical razor blade measurement and fit at one of the positions on the z axis. The large data panel shows the fit to both the horizontal and vertical beam waist minimum. Zr X and Zr Y are the horizontal and vertical Rayleigh ranges in mm, wo X and wo Y are the horizontal and vertical beam waists in µm while Zo X and Zo Y are the locations of the two minima in mm. Msq X and Msq Y and their δs are the M2 results with their error estimates.
Fig. 3
Fig. 3 The upper colored panel shows the measured second harmonic signal of the 600 nm laser pulse. Wavelength is on the horizontal axis while time is plotted on the vertical axis. The results panel shows the measured pulse width and bandwidth products.
Fig. 4
Fig. 4 The left panel shows the measurement of the pulse width and its fit while the right panel demonstrates the observed and predicted wavelength response from the 600 nm laser pulse.
Fig. 5
Fig. 5 Observed Z-scan response from a 2.07 mm thick fused silica window at 600 nm using a peak irradiance of 250 GW/cm2. a) is the open aperture signal and fit while b) shows the closed aperture response and fit.
Fig. 6
Fig. 6 600 nm Z-scans from bulk polymers. The multiple traces in each panel are taken at differing pulse energies that are roughly a factor of 2 higher than the previous scan. Figure 6a) and 6b) are the raw transmissions observed from open aperture and closed aperture Z-scans respectively. Figure 6c) and 6d) show the four highest intensity scans normalized to the lowest energy Z-Scan. Pulse energy increases by 2x from green to black to blue to red.
Fig. 7
Fig. 7 Extinction spectra from varying concentrations of PbPc in: a) polycarbonate, b) SAN 29, c) SAN 23, and d) PMMA. The flat portions of the spectra result from instrument saturation as described in the text.
Fig. 8
Fig. 8 Raw and normalized data similar to Fig. 6. Raw transmission data are shown on the top two graphs while the normalized data is shown on the lower half. Intensity increases in the following order; green, black, blue and red.
Fig. 9
Fig. 9 Nonlinear least squares fits to the Z-scan data for the 3.1% PbPc in PC sample. The peak intensity of the 600 nm pulse was 22GW/cm2. The upper panel displays the open aperture data and its fit while the lower pane is the fit to the closed aperture divided by the open.

Tables (2)

Tables Icon

Table 1 Results of the measurements of n2 at 600 nm for each of the polymers tested

Tables Icon

Table 2 Optical data from PbPc(PC)4 in polymers