Abstract

A novel refractive index (RI) sensor based on microfiber (MF) coated with gold nanowires has been proposed and theoretically investigated. Compared with gold film, the gold nanowires can significantly improve the performance of the MF sensor. The influence of the diameters of gold nanowire and microfiber on the sensing properties are investigated. For analyte RI ns = 1.33, the maximum sensitivity of 5200nm/RIU (DMF = 3μm, Dwire = 120nm) and the maximum figure of merit (FOM) of 150.38RIU−1 (DMF = 9μm, Dwire = 30nm) can be achieved. Both the sensitivity and the FOM will increase when the RI increases from 1.33 to 1.40. For ns = 1.40, an extremely high RI sensitivity of 12314nm/RIU (DMF = 10μm, Dwire = 50nm) can be obtained.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Recent advances in plasmonic photonic crystal fibers: design, fabrication and applications

Dora Juan Juan Hu and Ho Pui Ho
Adv. Opt. Photon. 9(2) 257-314 (2017)

Ultrahigh sensitivity refractive index sensor of a D-shaped PCF based on surface plasmon resonance

JunJun Wu, Shuguang Li, Xinyu Wang, Min Shi, Xinxing Feng, and Yundong Liu
Appl. Opt. 57(15) 4002-4007 (2018)

Dual-polarized highly sensitive plasmonic sensor in the visible to near-IR spectrum

Md. Saiful Islam, Jakeya Sultana, Ahmmed. A. Rifat, Rajib Ahmed, Alex Dinovitser, Brian W.-H. Ng, Heike Ebendorff-Heidepriem, and Derek Abbott
Opt. Express 26(23) 30347-30361 (2018)

References

  • View by:
  • |
  • |
  • |

  1. B. D. Gupta and R. K. Verma, “Surface Plasmon Resonance-Based Fiber Optic Sensors: Principle, Probe Designs, and Some Applications,” J. Sens. 2009, 12 (2009).
    [Crossref]
  2. J. C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B Condens. Matter Mater. Phys. 60(12), 9061–9068 (1999).
    [Crossref]
  3. R. Sun, P. Dong, N. N. Feng, C. Y. Hong, J. Michel, M. Lipson, and L. Kimerling, “Horizontal single and multiple slot waveguides: optical transmission at λ = 1550 nm,” Opt. Express 15(26), 17967–17972 (2007).
    [Crossref] [PubMed]
  4. C. L. Smith, B. Desiatov, I. Goykmann, I. Fernandez-Cuesta, U. Levy, and A. Kristensen, “Plasmonic V-groove waveguides with Bragg grating filters via nanoimprint lithography,” Opt. Express 20(5), 5696–5706 (2012).
    [Crossref] [PubMed]
  5. R. Jorgenson and S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 12(3), 213–220 (1993).
    [Crossref]
  6. L. Gai, J. Li, and Y. Zhao, “Preparation and application of microfiber resonant ring sensors: A review,” Opt. Laser Technol. 89, 126–136 (2017).
    [Crossref]
  7. N. Goswami, K. K. Chauhan, and A. Saha, “Analysis of surface plasmon resonance based bimetal coated tapered fiber optic sensor with enhanced sensitivity through radially polarized light,” Opt. Commun. 379, 6–12 (2016).
    [Crossref]
  8. M. Piliarik, J. Homola, Z. Manıková, and J. Čtyroký, “Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber,” Sens. Actuators B Chem. 90(1-3), 236–242 (2003).
    [Crossref]
  9. B. Spacková and J. Homola, “Theoretical analysis of a fiber optic surface plasmon resonance sensor utilizing a Bragg grating,” Opt. Express 17(25), 23254–23264 (2009).
    [Crossref] [PubMed]
  10. H.-F. Hu, Z.-Q. Deng, Y. Zhao, J. Li, and Q. Wang, “Sensing properties of long period fiber grating coated by silver film,” IEEE Photonics Technol. Lett. 27(1), 46–49 (2015).
    [Crossref]
  11. Z. Li, T. Chen, Z. Zhang, Y. Zhou, D. Li, and Z. Xie, “Highly sensitive surface plasmon resonance sensor utilizing a long period grating with photosensitive cladding,” Appl. Opt. 55(6), 1470–1480 (2016).
    [Crossref] [PubMed]
  12. A. A. Rifat, M. R. Hasan, R. Ahmed, and A. E. Miroshnichenko, “Microstructured Optical Fiber-Based Plasmonic Sensors,” in Computational Photonic Sensors(Springer, 2019), pp. 203–232.
  13. A. A. Rifat, F. Haider, R. Ahmed, G. A. Mahdiraji, F. R. Mahamd Adikan, and A. E. Miroshnichenko, “Highly sensitive selectively coated photonic crystal fiber-based plasmonic sensor,” Opt. Lett. 43(4), 891–894 (2018).
    [Crossref] [PubMed]
  14. Y. S. Chiam, K. S. Lim, S. W. Harun, S. N. Gan, and S. W. Phang, “Conducting polymer coated optical microfiber sensor for alcohol detection,” Sens. Actuators A Phys. 205, 58–62 (2014).
    [Crossref]
  15. K. Li, W. Zhou, and S. Zeng, “Optical Micro/Nanofiber-Based Localized Surface Plasmon Resonance Biosensors: Fiber Diameter Dependence,” Sensors (Basel) 18(10), 3295 (2018).
    [Crossref] [PubMed]
  16. R. Tabassum and B. D. Gupta, “Influence of oxide overlayer on the performance of a fiber optic SPR sensor with Al/Cu layers,” IEEE J. Sel. Top. Quantum Electron. 23(2), 81–88 (2017).
    [Crossref]
  17. T. Wieduwilt, K. Kirsch, J. Dellith, R. Willsch, and H. Bartelt, “Optical fiber micro-taper with circular symmetric gold coating for sensor applications based on surface plasmon resonance,” Plasmonics 8(2), 545–554 (2013).
    [Crossref]
  18. X. Xie, J. Li, L.-P. Sun, X. Shen, L. Jin, and B. O. Guan, “A high-sensitivity current sensor utilizing CrNi wire and microfiber coils,” Sensors (Basel) 14(5), 8423–8429 (2014).
    [Crossref] [PubMed]
  19. S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 10 (2005).
    [Crossref]
  20. N. Luan, R. Wang, W. Lv, Y. Lu, and J. Yao, “Surface plasmon resonance temperature sensor based on photonic crystal fibers randomly filled with silver nanowires,” Sensors (Basel) 14(9), 16035–16045 (2014).
    [Crossref] [PubMed]
  21. D. F. Santos, A. Guerreiro, and J. M. Baptista, “Surface plasmon resonance sensor based on D-type fiber with a gold wire,” Optik (Stuttg.) 139, 244–249 (2017).
    [Crossref]
  22. C. Liu, F. Wang, J. Lv, T. Sun, Q. Liu, C. Fu, H. Mu, and P. K. Chu, “A highly temperature-sensitive photonic crystal fiber based on surface plasmon resonance,” Opt. Commun. 359, 378–382 (2016).
    [Crossref]
  23. A. K. Sharma and B. Gupta, “On the performance of different bimetallic combinations in surface plasmon resonance based fiber optic sensors,” J. Appl. Phys. 101(9), 093111 (2007).
    [Crossref]
  24. C. Du, Q. Wang, H. Hu, and Y. Zhao, “Highly Sensitive Refractive Index Sensor Based on Four-Hole Grapefruit Microstructured Fiber with Surface Plasmon Resonance,” Plasmonics 12(6), 1961–1965 (2017).
    [Crossref]
  25. H. Wang, Y. Wang, Y. Wang, W. Xu, and S. Xu, “Modulation of hot regions in waveguide-based evanescent-field-coupled localized surface plasmons for plasmon-enhanced spectroscopy,” Photon. Res. 5(5), 527–535 (2017).
    [Crossref]
  26. M. Tian, P. Lu, L. Chen, C. Lv, and D. Liu, “All-solid D-shaped photonic fiber sensor based on surface plasmon resonance,” Opt. Commun. 285(6), 1550–1554 (2012).
    [Crossref]
  27. J. Yu, S. Jin, Q. Wei, Z. Zang, H. Lu, X. He, Y. Luo, J. Tang, J. Zhang, and Z. Chen, “Hybrid optical fiber add-drop filter based on wavelength dependent light coupling between micro/nano fiber ring and side-polished fiber,” Sci. Rep. 5(1), 7710 (2015).
    [Crossref] [PubMed]
  28. T. Wieduwilt, K. Kirsch, J. Dellith, R. Willsch, and H. Bartelt, “Optical fiber micro-taper with circular symmetric gold coating for sensor applications based on surface plasmon resonance,” Plasmonics 8(2), 545–554 (2013).
    [Crossref]
  29. G. Jing, H. Bodiguel, F. Doumenc, E. Sultan, and B. Guerrier, “Drying of colloidal suspensions and polymer solutions near the contact line: deposit thickness at low capillary number,” Langmuir 26(4), 2288–2293 (2010).
    [Crossref] [PubMed]
  30. R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, “Capillary flow as the cause of ring stains from dried liquid drops,” Nature 389(6653), 827–829 (1997).
    [Crossref]
  31. B. T. Kuhlmey, B. J. Eggleton, and D. K. Wu, “Fluid-filled solid-core photonic bandgap fibers,” J. Lightwave Technol. 27(11), 1617–1630 (2009).
    [Crossref]

2018 (2)

K. Li, W. Zhou, and S. Zeng, “Optical Micro/Nanofiber-Based Localized Surface Plasmon Resonance Biosensors: Fiber Diameter Dependence,” Sensors (Basel) 18(10), 3295 (2018).
[Crossref] [PubMed]

A. A. Rifat, F. Haider, R. Ahmed, G. A. Mahdiraji, F. R. Mahamd Adikan, and A. E. Miroshnichenko, “Highly sensitive selectively coated photonic crystal fiber-based plasmonic sensor,” Opt. Lett. 43(4), 891–894 (2018).
[Crossref] [PubMed]

2017 (5)

H. Wang, Y. Wang, Y. Wang, W. Xu, and S. Xu, “Modulation of hot regions in waveguide-based evanescent-field-coupled localized surface plasmons for plasmon-enhanced spectroscopy,” Photon. Res. 5(5), 527–535 (2017).
[Crossref]

C. Du, Q. Wang, H. Hu, and Y. Zhao, “Highly Sensitive Refractive Index Sensor Based on Four-Hole Grapefruit Microstructured Fiber with Surface Plasmon Resonance,” Plasmonics 12(6), 1961–1965 (2017).
[Crossref]

R. Tabassum and B. D. Gupta, “Influence of oxide overlayer on the performance of a fiber optic SPR sensor with Al/Cu layers,” IEEE J. Sel. Top. Quantum Electron. 23(2), 81–88 (2017).
[Crossref]

L. Gai, J. Li, and Y. Zhao, “Preparation and application of microfiber resonant ring sensors: A review,” Opt. Laser Technol. 89, 126–136 (2017).
[Crossref]

D. F. Santos, A. Guerreiro, and J. M. Baptista, “Surface plasmon resonance sensor based on D-type fiber with a gold wire,” Optik (Stuttg.) 139, 244–249 (2017).
[Crossref]

2016 (3)

C. Liu, F. Wang, J. Lv, T. Sun, Q. Liu, C. Fu, H. Mu, and P. K. Chu, “A highly temperature-sensitive photonic crystal fiber based on surface plasmon resonance,” Opt. Commun. 359, 378–382 (2016).
[Crossref]

N. Goswami, K. K. Chauhan, and A. Saha, “Analysis of surface plasmon resonance based bimetal coated tapered fiber optic sensor with enhanced sensitivity through radially polarized light,” Opt. Commun. 379, 6–12 (2016).
[Crossref]

Z. Li, T. Chen, Z. Zhang, Y. Zhou, D. Li, and Z. Xie, “Highly sensitive surface plasmon resonance sensor utilizing a long period grating with photosensitive cladding,” Appl. Opt. 55(6), 1470–1480 (2016).
[Crossref] [PubMed]

2015 (2)

H.-F. Hu, Z.-Q. Deng, Y. Zhao, J. Li, and Q. Wang, “Sensing properties of long period fiber grating coated by silver film,” IEEE Photonics Technol. Lett. 27(1), 46–49 (2015).
[Crossref]

J. Yu, S. Jin, Q. Wei, Z. Zang, H. Lu, X. He, Y. Luo, J. Tang, J. Zhang, and Z. Chen, “Hybrid optical fiber add-drop filter based on wavelength dependent light coupling between micro/nano fiber ring and side-polished fiber,” Sci. Rep. 5(1), 7710 (2015).
[Crossref] [PubMed]

2014 (3)

Y. S. Chiam, K. S. Lim, S. W. Harun, S. N. Gan, and S. W. Phang, “Conducting polymer coated optical microfiber sensor for alcohol detection,” Sens. Actuators A Phys. 205, 58–62 (2014).
[Crossref]

N. Luan, R. Wang, W. Lv, Y. Lu, and J. Yao, “Surface plasmon resonance temperature sensor based on photonic crystal fibers randomly filled with silver nanowires,” Sensors (Basel) 14(9), 16035–16045 (2014).
[Crossref] [PubMed]

X. Xie, J. Li, L.-P. Sun, X. Shen, L. Jin, and B. O. Guan, “A high-sensitivity current sensor utilizing CrNi wire and microfiber coils,” Sensors (Basel) 14(5), 8423–8429 (2014).
[Crossref] [PubMed]

2013 (2)

T. Wieduwilt, K. Kirsch, J. Dellith, R. Willsch, and H. Bartelt, “Optical fiber micro-taper with circular symmetric gold coating for sensor applications based on surface plasmon resonance,” Plasmonics 8(2), 545–554 (2013).
[Crossref]

T. Wieduwilt, K. Kirsch, J. Dellith, R. Willsch, and H. Bartelt, “Optical fiber micro-taper with circular symmetric gold coating for sensor applications based on surface plasmon resonance,” Plasmonics 8(2), 545–554 (2013).
[Crossref]

2012 (2)

M. Tian, P. Lu, L. Chen, C. Lv, and D. Liu, “All-solid D-shaped photonic fiber sensor based on surface plasmon resonance,” Opt. Commun. 285(6), 1550–1554 (2012).
[Crossref]

C. L. Smith, B. Desiatov, I. Goykmann, I. Fernandez-Cuesta, U. Levy, and A. Kristensen, “Plasmonic V-groove waveguides with Bragg grating filters via nanoimprint lithography,” Opt. Express 20(5), 5696–5706 (2012).
[Crossref] [PubMed]

2010 (1)

G. Jing, H. Bodiguel, F. Doumenc, E. Sultan, and B. Guerrier, “Drying of colloidal suspensions and polymer solutions near the contact line: deposit thickness at low capillary number,” Langmuir 26(4), 2288–2293 (2010).
[Crossref] [PubMed]

2009 (3)

2007 (2)

R. Sun, P. Dong, N. N. Feng, C. Y. Hong, J. Michel, M. Lipson, and L. Kimerling, “Horizontal single and multiple slot waveguides: optical transmission at λ = 1550 nm,” Opt. Express 15(26), 17967–17972 (2007).
[Crossref] [PubMed]

A. K. Sharma and B. Gupta, “On the performance of different bimetallic combinations in surface plasmon resonance based fiber optic sensors,” J. Appl. Phys. 101(9), 093111 (2007).
[Crossref]

2005 (1)

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 10 (2005).
[Crossref]

2003 (1)

M. Piliarik, J. Homola, Z. Manıková, and J. Čtyroký, “Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber,” Sens. Actuators B Chem. 90(1-3), 236–242 (2003).
[Crossref]

1999 (1)

J. C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B Condens. Matter Mater. Phys. 60(12), 9061–9068 (1999).
[Crossref]

1997 (1)

R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, “Capillary flow as the cause of ring stains from dried liquid drops,” Nature 389(6653), 827–829 (1997).
[Crossref]

1993 (1)

R. Jorgenson and S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 12(3), 213–220 (1993).
[Crossref]

Ahmed, R.

Atwater, H. A.

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 10 (2005).
[Crossref]

Bakajin, O.

R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, “Capillary flow as the cause of ring stains from dried liquid drops,” Nature 389(6653), 827–829 (1997).
[Crossref]

Baptista, J. M.

D. F. Santos, A. Guerreiro, and J. M. Baptista, “Surface plasmon resonance sensor based on D-type fiber with a gold wire,” Optik (Stuttg.) 139, 244–249 (2017).
[Crossref]

Bartelt, H.

T. Wieduwilt, K. Kirsch, J. Dellith, R. Willsch, and H. Bartelt, “Optical fiber micro-taper with circular symmetric gold coating for sensor applications based on surface plasmon resonance,” Plasmonics 8(2), 545–554 (2013).
[Crossref]

T. Wieduwilt, K. Kirsch, J. Dellith, R. Willsch, and H. Bartelt, “Optical fiber micro-taper with circular symmetric gold coating for sensor applications based on surface plasmon resonance,” Plasmonics 8(2), 545–554 (2013).
[Crossref]

Bodiguel, H.

G. Jing, H. Bodiguel, F. Doumenc, E. Sultan, and B. Guerrier, “Drying of colloidal suspensions and polymer solutions near the contact line: deposit thickness at low capillary number,” Langmuir 26(4), 2288–2293 (2010).
[Crossref] [PubMed]

Chauhan, K. K.

N. Goswami, K. K. Chauhan, and A. Saha, “Analysis of surface plasmon resonance based bimetal coated tapered fiber optic sensor with enhanced sensitivity through radially polarized light,” Opt. Commun. 379, 6–12 (2016).
[Crossref]

Chen, L.

M. Tian, P. Lu, L. Chen, C. Lv, and D. Liu, “All-solid D-shaped photonic fiber sensor based on surface plasmon resonance,” Opt. Commun. 285(6), 1550–1554 (2012).
[Crossref]

Chen, T.

Chen, Z.

J. Yu, S. Jin, Q. Wei, Z. Zang, H. Lu, X. He, Y. Luo, J. Tang, J. Zhang, and Z. Chen, “Hybrid optical fiber add-drop filter based on wavelength dependent light coupling between micro/nano fiber ring and side-polished fiber,” Sci. Rep. 5(1), 7710 (2015).
[Crossref] [PubMed]

Chiam, Y. S.

Y. S. Chiam, K. S. Lim, S. W. Harun, S. N. Gan, and S. W. Phang, “Conducting polymer coated optical microfiber sensor for alcohol detection,” Sens. Actuators A Phys. 205, 58–62 (2014).
[Crossref]

Chu, P. K.

C. Liu, F. Wang, J. Lv, T. Sun, Q. Liu, C. Fu, H. Mu, and P. K. Chu, “A highly temperature-sensitive photonic crystal fiber based on surface plasmon resonance,” Opt. Commun. 359, 378–382 (2016).
[Crossref]

Ctyroký, J.

M. Piliarik, J. Homola, Z. Manıková, and J. Čtyroký, “Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber,” Sens. Actuators B Chem. 90(1-3), 236–242 (2003).
[Crossref]

Deegan, R. D.

R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, “Capillary flow as the cause of ring stains from dried liquid drops,” Nature 389(6653), 827–829 (1997).
[Crossref]

Dellith, J.

T. Wieduwilt, K. Kirsch, J. Dellith, R. Willsch, and H. Bartelt, “Optical fiber micro-taper with circular symmetric gold coating for sensor applications based on surface plasmon resonance,” Plasmonics 8(2), 545–554 (2013).
[Crossref]

T. Wieduwilt, K. Kirsch, J. Dellith, R. Willsch, and H. Bartelt, “Optical fiber micro-taper with circular symmetric gold coating for sensor applications based on surface plasmon resonance,” Plasmonics 8(2), 545–554 (2013).
[Crossref]

Deng, Z.-Q.

H.-F. Hu, Z.-Q. Deng, Y. Zhao, J. Li, and Q. Wang, “Sensing properties of long period fiber grating coated by silver film,” IEEE Photonics Technol. Lett. 27(1), 46–49 (2015).
[Crossref]

Dereux, A.

J. C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B Condens. Matter Mater. Phys. 60(12), 9061–9068 (1999).
[Crossref]

Desiatov, B.

Dong, P.

Doumenc, F.

G. Jing, H. Bodiguel, F. Doumenc, E. Sultan, and B. Guerrier, “Drying of colloidal suspensions and polymer solutions near the contact line: deposit thickness at low capillary number,” Langmuir 26(4), 2288–2293 (2010).
[Crossref] [PubMed]

Du, C.

C. Du, Q. Wang, H. Hu, and Y. Zhao, “Highly Sensitive Refractive Index Sensor Based on Four-Hole Grapefruit Microstructured Fiber with Surface Plasmon Resonance,” Plasmonics 12(6), 1961–1965 (2017).
[Crossref]

Dupont, T. F.

R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, “Capillary flow as the cause of ring stains from dried liquid drops,” Nature 389(6653), 827–829 (1997).
[Crossref]

Eggleton, B. J.

Feng, N. N.

Fernandez-Cuesta, I.

Fu, C.

C. Liu, F. Wang, J. Lv, T. Sun, Q. Liu, C. Fu, H. Mu, and P. K. Chu, “A highly temperature-sensitive photonic crystal fiber based on surface plasmon resonance,” Opt. Commun. 359, 378–382 (2016).
[Crossref]

Gai, L.

L. Gai, J. Li, and Y. Zhao, “Preparation and application of microfiber resonant ring sensors: A review,” Opt. Laser Technol. 89, 126–136 (2017).
[Crossref]

Gan, S. N.

Y. S. Chiam, K. S. Lim, S. W. Harun, S. N. Gan, and S. W. Phang, “Conducting polymer coated optical microfiber sensor for alcohol detection,” Sens. Actuators A Phys. 205, 58–62 (2014).
[Crossref]

Girard, C.

J. C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B Condens. Matter Mater. Phys. 60(12), 9061–9068 (1999).
[Crossref]

Goswami, N.

N. Goswami, K. K. Chauhan, and A. Saha, “Analysis of surface plasmon resonance based bimetal coated tapered fiber optic sensor with enhanced sensitivity through radially polarized light,” Opt. Commun. 379, 6–12 (2016).
[Crossref]

Goudonnet, J. P.

J. C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B Condens. Matter Mater. Phys. 60(12), 9061–9068 (1999).
[Crossref]

Goykmann, I.

Guan, B. O.

X. Xie, J. Li, L.-P. Sun, X. Shen, L. Jin, and B. O. Guan, “A high-sensitivity current sensor utilizing CrNi wire and microfiber coils,” Sensors (Basel) 14(5), 8423–8429 (2014).
[Crossref] [PubMed]

Guerreiro, A.

D. F. Santos, A. Guerreiro, and J. M. Baptista, “Surface plasmon resonance sensor based on D-type fiber with a gold wire,” Optik (Stuttg.) 139, 244–249 (2017).
[Crossref]

Guerrier, B.

G. Jing, H. Bodiguel, F. Doumenc, E. Sultan, and B. Guerrier, “Drying of colloidal suspensions and polymer solutions near the contact line: deposit thickness at low capillary number,” Langmuir 26(4), 2288–2293 (2010).
[Crossref] [PubMed]

Gupta, B.

A. K. Sharma and B. Gupta, “On the performance of different bimetallic combinations in surface plasmon resonance based fiber optic sensors,” J. Appl. Phys. 101(9), 093111 (2007).
[Crossref]

Gupta, B. D.

R. Tabassum and B. D. Gupta, “Influence of oxide overlayer on the performance of a fiber optic SPR sensor with Al/Cu layers,” IEEE J. Sel. Top. Quantum Electron. 23(2), 81–88 (2017).
[Crossref]

B. D. Gupta and R. K. Verma, “Surface Plasmon Resonance-Based Fiber Optic Sensors: Principle, Probe Designs, and Some Applications,” J. Sens. 2009, 12 (2009).
[Crossref]

Haider, F.

Harun, S. W.

Y. S. Chiam, K. S. Lim, S. W. Harun, S. N. Gan, and S. W. Phang, “Conducting polymer coated optical microfiber sensor for alcohol detection,” Sens. Actuators A Phys. 205, 58–62 (2014).
[Crossref]

He, X.

J. Yu, S. Jin, Q. Wei, Z. Zang, H. Lu, X. He, Y. Luo, J. Tang, J. Zhang, and Z. Chen, “Hybrid optical fiber add-drop filter based on wavelength dependent light coupling between micro/nano fiber ring and side-polished fiber,” Sci. Rep. 5(1), 7710 (2015).
[Crossref] [PubMed]

Homola, J.

B. Spacková and J. Homola, “Theoretical analysis of a fiber optic surface plasmon resonance sensor utilizing a Bragg grating,” Opt. Express 17(25), 23254–23264 (2009).
[Crossref] [PubMed]

M. Piliarik, J. Homola, Z. Manıková, and J. Čtyroký, “Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber,” Sens. Actuators B Chem. 90(1-3), 236–242 (2003).
[Crossref]

Hong, C. Y.

Hu, H.

C. Du, Q. Wang, H. Hu, and Y. Zhao, “Highly Sensitive Refractive Index Sensor Based on Four-Hole Grapefruit Microstructured Fiber with Surface Plasmon Resonance,” Plasmonics 12(6), 1961–1965 (2017).
[Crossref]

Hu, H.-F.

H.-F. Hu, Z.-Q. Deng, Y. Zhao, J. Li, and Q. Wang, “Sensing properties of long period fiber grating coated by silver film,” IEEE Photonics Technol. Lett. 27(1), 46–49 (2015).
[Crossref]

Huber, G.

R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, “Capillary flow as the cause of ring stains from dried liquid drops,” Nature 389(6653), 827–829 (1997).
[Crossref]

Jin, L.

X. Xie, J. Li, L.-P. Sun, X. Shen, L. Jin, and B. O. Guan, “A high-sensitivity current sensor utilizing CrNi wire and microfiber coils,” Sensors (Basel) 14(5), 8423–8429 (2014).
[Crossref] [PubMed]

Jin, S.

J. Yu, S. Jin, Q. Wei, Z. Zang, H. Lu, X. He, Y. Luo, J. Tang, J. Zhang, and Z. Chen, “Hybrid optical fiber add-drop filter based on wavelength dependent light coupling between micro/nano fiber ring and side-polished fiber,” Sci. Rep. 5(1), 7710 (2015).
[Crossref] [PubMed]

Jing, G.

G. Jing, H. Bodiguel, F. Doumenc, E. Sultan, and B. Guerrier, “Drying of colloidal suspensions and polymer solutions near the contact line: deposit thickness at low capillary number,” Langmuir 26(4), 2288–2293 (2010).
[Crossref] [PubMed]

Jorgenson, R.

R. Jorgenson and S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 12(3), 213–220 (1993).
[Crossref]

Kimerling, L.

Kirsch, K.

T. Wieduwilt, K. Kirsch, J. Dellith, R. Willsch, and H. Bartelt, “Optical fiber micro-taper with circular symmetric gold coating for sensor applications based on surface plasmon resonance,” Plasmonics 8(2), 545–554 (2013).
[Crossref]

T. Wieduwilt, K. Kirsch, J. Dellith, R. Willsch, and H. Bartelt, “Optical fiber micro-taper with circular symmetric gold coating for sensor applications based on surface plasmon resonance,” Plasmonics 8(2), 545–554 (2013).
[Crossref]

Krenn, J. R.

J. C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B Condens. Matter Mater. Phys. 60(12), 9061–9068 (1999).
[Crossref]

Kristensen, A.

Kuhlmey, B. T.

Levy, U.

Li, D.

Li, J.

L. Gai, J. Li, and Y. Zhao, “Preparation and application of microfiber resonant ring sensors: A review,” Opt. Laser Technol. 89, 126–136 (2017).
[Crossref]

H.-F. Hu, Z.-Q. Deng, Y. Zhao, J. Li, and Q. Wang, “Sensing properties of long period fiber grating coated by silver film,” IEEE Photonics Technol. Lett. 27(1), 46–49 (2015).
[Crossref]

X. Xie, J. Li, L.-P. Sun, X. Shen, L. Jin, and B. O. Guan, “A high-sensitivity current sensor utilizing CrNi wire and microfiber coils,” Sensors (Basel) 14(5), 8423–8429 (2014).
[Crossref] [PubMed]

Li, K.

K. Li, W. Zhou, and S. Zeng, “Optical Micro/Nanofiber-Based Localized Surface Plasmon Resonance Biosensors: Fiber Diameter Dependence,” Sensors (Basel) 18(10), 3295 (2018).
[Crossref] [PubMed]

Li, Z.

Lim, K. S.

Y. S. Chiam, K. S. Lim, S. W. Harun, S. N. Gan, and S. W. Phang, “Conducting polymer coated optical microfiber sensor for alcohol detection,” Sens. Actuators A Phys. 205, 58–62 (2014).
[Crossref]

Lipson, M.

Liu, C.

C. Liu, F. Wang, J. Lv, T. Sun, Q. Liu, C. Fu, H. Mu, and P. K. Chu, “A highly temperature-sensitive photonic crystal fiber based on surface plasmon resonance,” Opt. Commun. 359, 378–382 (2016).
[Crossref]

Liu, D.

M. Tian, P. Lu, L. Chen, C. Lv, and D. Liu, “All-solid D-shaped photonic fiber sensor based on surface plasmon resonance,” Opt. Commun. 285(6), 1550–1554 (2012).
[Crossref]

Liu, Q.

C. Liu, F. Wang, J. Lv, T. Sun, Q. Liu, C. Fu, H. Mu, and P. K. Chu, “A highly temperature-sensitive photonic crystal fiber based on surface plasmon resonance,” Opt. Commun. 359, 378–382 (2016).
[Crossref]

Lu, H.

J. Yu, S. Jin, Q. Wei, Z. Zang, H. Lu, X. He, Y. Luo, J. Tang, J. Zhang, and Z. Chen, “Hybrid optical fiber add-drop filter based on wavelength dependent light coupling between micro/nano fiber ring and side-polished fiber,” Sci. Rep. 5(1), 7710 (2015).
[Crossref] [PubMed]

Lu, P.

M. Tian, P. Lu, L. Chen, C. Lv, and D. Liu, “All-solid D-shaped photonic fiber sensor based on surface plasmon resonance,” Opt. Commun. 285(6), 1550–1554 (2012).
[Crossref]

Lu, Y.

N. Luan, R. Wang, W. Lv, Y. Lu, and J. Yao, “Surface plasmon resonance temperature sensor based on photonic crystal fibers randomly filled with silver nanowires,” Sensors (Basel) 14(9), 16035–16045 (2014).
[Crossref] [PubMed]

Luan, N.

N. Luan, R. Wang, W. Lv, Y. Lu, and J. Yao, “Surface plasmon resonance temperature sensor based on photonic crystal fibers randomly filled with silver nanowires,” Sensors (Basel) 14(9), 16035–16045 (2014).
[Crossref] [PubMed]

Luo, Y.

J. Yu, S. Jin, Q. Wei, Z. Zang, H. Lu, X. He, Y. Luo, J. Tang, J. Zhang, and Z. Chen, “Hybrid optical fiber add-drop filter based on wavelength dependent light coupling between micro/nano fiber ring and side-polished fiber,” Sci. Rep. 5(1), 7710 (2015).
[Crossref] [PubMed]

Lv, C.

M. Tian, P. Lu, L. Chen, C. Lv, and D. Liu, “All-solid D-shaped photonic fiber sensor based on surface plasmon resonance,” Opt. Commun. 285(6), 1550–1554 (2012).
[Crossref]

Lv, J.

C. Liu, F. Wang, J. Lv, T. Sun, Q. Liu, C. Fu, H. Mu, and P. K. Chu, “A highly temperature-sensitive photonic crystal fiber based on surface plasmon resonance,” Opt. Commun. 359, 378–382 (2016).
[Crossref]

Lv, W.

N. Luan, R. Wang, W. Lv, Y. Lu, and J. Yao, “Surface plasmon resonance temperature sensor based on photonic crystal fibers randomly filled with silver nanowires,” Sensors (Basel) 14(9), 16035–16045 (2014).
[Crossref] [PubMed]

Mahamd Adikan, F. R.

Mahdiraji, G. A.

Maier, S. A.

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 10 (2005).
[Crossref]

Maniková, Z.

M. Piliarik, J. Homola, Z. Manıková, and J. Čtyroký, “Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber,” Sens. Actuators B Chem. 90(1-3), 236–242 (2003).
[Crossref]

Michel, J.

Miroshnichenko, A. E.

Mu, H.

C. Liu, F. Wang, J. Lv, T. Sun, Q. Liu, C. Fu, H. Mu, and P. K. Chu, “A highly temperature-sensitive photonic crystal fiber based on surface plasmon resonance,” Opt. Commun. 359, 378–382 (2016).
[Crossref]

Nagel, S. R.

R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, “Capillary flow as the cause of ring stains from dried liquid drops,” Nature 389(6653), 827–829 (1997).
[Crossref]

Phang, S. W.

Y. S. Chiam, K. S. Lim, S. W. Harun, S. N. Gan, and S. W. Phang, “Conducting polymer coated optical microfiber sensor for alcohol detection,” Sens. Actuators A Phys. 205, 58–62 (2014).
[Crossref]

Piliarik, M.

M. Piliarik, J. Homola, Z. Manıková, and J. Čtyroký, “Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber,” Sens. Actuators B Chem. 90(1-3), 236–242 (2003).
[Crossref]

Rifat, A. A.

Saha, A.

N. Goswami, K. K. Chauhan, and A. Saha, “Analysis of surface plasmon resonance based bimetal coated tapered fiber optic sensor with enhanced sensitivity through radially polarized light,” Opt. Commun. 379, 6–12 (2016).
[Crossref]

Santos, D. F.

D. F. Santos, A. Guerreiro, and J. M. Baptista, “Surface plasmon resonance sensor based on D-type fiber with a gold wire,” Optik (Stuttg.) 139, 244–249 (2017).
[Crossref]

Sharma, A. K.

A. K. Sharma and B. Gupta, “On the performance of different bimetallic combinations in surface plasmon resonance based fiber optic sensors,” J. Appl. Phys. 101(9), 093111 (2007).
[Crossref]

Shen, X.

X. Xie, J. Li, L.-P. Sun, X. Shen, L. Jin, and B. O. Guan, “A high-sensitivity current sensor utilizing CrNi wire and microfiber coils,” Sensors (Basel) 14(5), 8423–8429 (2014).
[Crossref] [PubMed]

Smith, C. L.

Spacková, B.

Sultan, E.

G. Jing, H. Bodiguel, F. Doumenc, E. Sultan, and B. Guerrier, “Drying of colloidal suspensions and polymer solutions near the contact line: deposit thickness at low capillary number,” Langmuir 26(4), 2288–2293 (2010).
[Crossref] [PubMed]

Sun, L.-P.

X. Xie, J. Li, L.-P. Sun, X. Shen, L. Jin, and B. O. Guan, “A high-sensitivity current sensor utilizing CrNi wire and microfiber coils,” Sensors (Basel) 14(5), 8423–8429 (2014).
[Crossref] [PubMed]

Sun, R.

Sun, T.

C. Liu, F. Wang, J. Lv, T. Sun, Q. Liu, C. Fu, H. Mu, and P. K. Chu, “A highly temperature-sensitive photonic crystal fiber based on surface plasmon resonance,” Opt. Commun. 359, 378–382 (2016).
[Crossref]

Tabassum, R.

R. Tabassum and B. D. Gupta, “Influence of oxide overlayer on the performance of a fiber optic SPR sensor with Al/Cu layers,” IEEE J. Sel. Top. Quantum Electron. 23(2), 81–88 (2017).
[Crossref]

Tang, J.

J. Yu, S. Jin, Q. Wei, Z. Zang, H. Lu, X. He, Y. Luo, J. Tang, J. Zhang, and Z. Chen, “Hybrid optical fiber add-drop filter based on wavelength dependent light coupling between micro/nano fiber ring and side-polished fiber,” Sci. Rep. 5(1), 7710 (2015).
[Crossref] [PubMed]

Tian, M.

M. Tian, P. Lu, L. Chen, C. Lv, and D. Liu, “All-solid D-shaped photonic fiber sensor based on surface plasmon resonance,” Opt. Commun. 285(6), 1550–1554 (2012).
[Crossref]

Verma, R. K.

B. D. Gupta and R. K. Verma, “Surface Plasmon Resonance-Based Fiber Optic Sensors: Principle, Probe Designs, and Some Applications,” J. Sens. 2009, 12 (2009).
[Crossref]

Wang, F.

C. Liu, F. Wang, J. Lv, T. Sun, Q. Liu, C. Fu, H. Mu, and P. K. Chu, “A highly temperature-sensitive photonic crystal fiber based on surface plasmon resonance,” Opt. Commun. 359, 378–382 (2016).
[Crossref]

Wang, H.

Wang, Q.

C. Du, Q. Wang, H. Hu, and Y. Zhao, “Highly Sensitive Refractive Index Sensor Based on Four-Hole Grapefruit Microstructured Fiber with Surface Plasmon Resonance,” Plasmonics 12(6), 1961–1965 (2017).
[Crossref]

H.-F. Hu, Z.-Q. Deng, Y. Zhao, J. Li, and Q. Wang, “Sensing properties of long period fiber grating coated by silver film,” IEEE Photonics Technol. Lett. 27(1), 46–49 (2015).
[Crossref]

Wang, R.

N. Luan, R. Wang, W. Lv, Y. Lu, and J. Yao, “Surface plasmon resonance temperature sensor based on photonic crystal fibers randomly filled with silver nanowires,” Sensors (Basel) 14(9), 16035–16045 (2014).
[Crossref] [PubMed]

Wang, Y.

Weeber, J. C.

J. C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B Condens. Matter Mater. Phys. 60(12), 9061–9068 (1999).
[Crossref]

Wei, Q.

J. Yu, S. Jin, Q. Wei, Z. Zang, H. Lu, X. He, Y. Luo, J. Tang, J. Zhang, and Z. Chen, “Hybrid optical fiber add-drop filter based on wavelength dependent light coupling between micro/nano fiber ring and side-polished fiber,” Sci. Rep. 5(1), 7710 (2015).
[Crossref] [PubMed]

Wieduwilt, T.

T. Wieduwilt, K. Kirsch, J. Dellith, R. Willsch, and H. Bartelt, “Optical fiber micro-taper with circular symmetric gold coating for sensor applications based on surface plasmon resonance,” Plasmonics 8(2), 545–554 (2013).
[Crossref]

T. Wieduwilt, K. Kirsch, J. Dellith, R. Willsch, and H. Bartelt, “Optical fiber micro-taper with circular symmetric gold coating for sensor applications based on surface plasmon resonance,” Plasmonics 8(2), 545–554 (2013).
[Crossref]

Willsch, R.

T. Wieduwilt, K. Kirsch, J. Dellith, R. Willsch, and H. Bartelt, “Optical fiber micro-taper with circular symmetric gold coating for sensor applications based on surface plasmon resonance,” Plasmonics 8(2), 545–554 (2013).
[Crossref]

T. Wieduwilt, K. Kirsch, J. Dellith, R. Willsch, and H. Bartelt, “Optical fiber micro-taper with circular symmetric gold coating for sensor applications based on surface plasmon resonance,” Plasmonics 8(2), 545–554 (2013).
[Crossref]

Witten, T. A.

R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, “Capillary flow as the cause of ring stains from dried liquid drops,” Nature 389(6653), 827–829 (1997).
[Crossref]

Wu, D. K.

Xie, X.

X. Xie, J. Li, L.-P. Sun, X. Shen, L. Jin, and B. O. Guan, “A high-sensitivity current sensor utilizing CrNi wire and microfiber coils,” Sensors (Basel) 14(5), 8423–8429 (2014).
[Crossref] [PubMed]

Xie, Z.

Xu, S.

Xu, W.

Yao, J.

N. Luan, R. Wang, W. Lv, Y. Lu, and J. Yao, “Surface plasmon resonance temperature sensor based on photonic crystal fibers randomly filled with silver nanowires,” Sensors (Basel) 14(9), 16035–16045 (2014).
[Crossref] [PubMed]

Yee, S.

R. Jorgenson and S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 12(3), 213–220 (1993).
[Crossref]

Yu, J.

J. Yu, S. Jin, Q. Wei, Z. Zang, H. Lu, X. He, Y. Luo, J. Tang, J. Zhang, and Z. Chen, “Hybrid optical fiber add-drop filter based on wavelength dependent light coupling between micro/nano fiber ring and side-polished fiber,” Sci. Rep. 5(1), 7710 (2015).
[Crossref] [PubMed]

Zang, Z.

J. Yu, S. Jin, Q. Wei, Z. Zang, H. Lu, X. He, Y. Luo, J. Tang, J. Zhang, and Z. Chen, “Hybrid optical fiber add-drop filter based on wavelength dependent light coupling between micro/nano fiber ring and side-polished fiber,” Sci. Rep. 5(1), 7710 (2015).
[Crossref] [PubMed]

Zeng, S.

K. Li, W. Zhou, and S. Zeng, “Optical Micro/Nanofiber-Based Localized Surface Plasmon Resonance Biosensors: Fiber Diameter Dependence,” Sensors (Basel) 18(10), 3295 (2018).
[Crossref] [PubMed]

Zhang, J.

J. Yu, S. Jin, Q. Wei, Z. Zang, H. Lu, X. He, Y. Luo, J. Tang, J. Zhang, and Z. Chen, “Hybrid optical fiber add-drop filter based on wavelength dependent light coupling between micro/nano fiber ring and side-polished fiber,” Sci. Rep. 5(1), 7710 (2015).
[Crossref] [PubMed]

Zhang, Z.

Zhao, Y.

L. Gai, J. Li, and Y. Zhao, “Preparation and application of microfiber resonant ring sensors: A review,” Opt. Laser Technol. 89, 126–136 (2017).
[Crossref]

C. Du, Q. Wang, H. Hu, and Y. Zhao, “Highly Sensitive Refractive Index Sensor Based on Four-Hole Grapefruit Microstructured Fiber with Surface Plasmon Resonance,” Plasmonics 12(6), 1961–1965 (2017).
[Crossref]

H.-F. Hu, Z.-Q. Deng, Y. Zhao, J. Li, and Q. Wang, “Sensing properties of long period fiber grating coated by silver film,” IEEE Photonics Technol. Lett. 27(1), 46–49 (2015).
[Crossref]

Zhou, W.

K. Li, W. Zhou, and S. Zeng, “Optical Micro/Nanofiber-Based Localized Surface Plasmon Resonance Biosensors: Fiber Diameter Dependence,” Sensors (Basel) 18(10), 3295 (2018).
[Crossref] [PubMed]

Zhou, Y.

Appl. Opt. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

R. Tabassum and B. D. Gupta, “Influence of oxide overlayer on the performance of a fiber optic SPR sensor with Al/Cu layers,” IEEE J. Sel. Top. Quantum Electron. 23(2), 81–88 (2017).
[Crossref]

IEEE Photonics Technol. Lett. (1)

H.-F. Hu, Z.-Q. Deng, Y. Zhao, J. Li, and Q. Wang, “Sensing properties of long period fiber grating coated by silver film,” IEEE Photonics Technol. Lett. 27(1), 46–49 (2015).
[Crossref]

J. Appl. Phys. (2)

A. K. Sharma and B. Gupta, “On the performance of different bimetallic combinations in surface plasmon resonance based fiber optic sensors,” J. Appl. Phys. 101(9), 093111 (2007).
[Crossref]

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 10 (2005).
[Crossref]

J. Lightwave Technol. (1)

J. Sens. (1)

B. D. Gupta and R. K. Verma, “Surface Plasmon Resonance-Based Fiber Optic Sensors: Principle, Probe Designs, and Some Applications,” J. Sens. 2009, 12 (2009).
[Crossref]

Langmuir (1)

G. Jing, H. Bodiguel, F. Doumenc, E. Sultan, and B. Guerrier, “Drying of colloidal suspensions and polymer solutions near the contact line: deposit thickness at low capillary number,” Langmuir 26(4), 2288–2293 (2010).
[Crossref] [PubMed]

Nature (1)

R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, “Capillary flow as the cause of ring stains from dried liquid drops,” Nature 389(6653), 827–829 (1997).
[Crossref]

Opt. Commun. (3)

C. Liu, F. Wang, J. Lv, T. Sun, Q. Liu, C. Fu, H. Mu, and P. K. Chu, “A highly temperature-sensitive photonic crystal fiber based on surface plasmon resonance,” Opt. Commun. 359, 378–382 (2016).
[Crossref]

M. Tian, P. Lu, L. Chen, C. Lv, and D. Liu, “All-solid D-shaped photonic fiber sensor based on surface plasmon resonance,” Opt. Commun. 285(6), 1550–1554 (2012).
[Crossref]

N. Goswami, K. K. Chauhan, and A. Saha, “Analysis of surface plasmon resonance based bimetal coated tapered fiber optic sensor with enhanced sensitivity through radially polarized light,” Opt. Commun. 379, 6–12 (2016).
[Crossref]

Opt. Express (3)

Opt. Laser Technol. (1)

L. Gai, J. Li, and Y. Zhao, “Preparation and application of microfiber resonant ring sensors: A review,” Opt. Laser Technol. 89, 126–136 (2017).
[Crossref]

Opt. Lett. (1)

Optik (Stuttg.) (1)

D. F. Santos, A. Guerreiro, and J. M. Baptista, “Surface plasmon resonance sensor based on D-type fiber with a gold wire,” Optik (Stuttg.) 139, 244–249 (2017).
[Crossref]

Photon. Res. (1)

Phys. Rev. B Condens. Matter Mater. Phys. (1)

J. C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B Condens. Matter Mater. Phys. 60(12), 9061–9068 (1999).
[Crossref]

Plasmonics (3)

T. Wieduwilt, K. Kirsch, J. Dellith, R. Willsch, and H. Bartelt, “Optical fiber micro-taper with circular symmetric gold coating for sensor applications based on surface plasmon resonance,” Plasmonics 8(2), 545–554 (2013).
[Crossref]

C. Du, Q. Wang, H. Hu, and Y. Zhao, “Highly Sensitive Refractive Index Sensor Based on Four-Hole Grapefruit Microstructured Fiber with Surface Plasmon Resonance,” Plasmonics 12(6), 1961–1965 (2017).
[Crossref]

T. Wieduwilt, K. Kirsch, J. Dellith, R. Willsch, and H. Bartelt, “Optical fiber micro-taper with circular symmetric gold coating for sensor applications based on surface plasmon resonance,” Plasmonics 8(2), 545–554 (2013).
[Crossref]

Sci. Rep. (1)

J. Yu, S. Jin, Q. Wei, Z. Zang, H. Lu, X. He, Y. Luo, J. Tang, J. Zhang, and Z. Chen, “Hybrid optical fiber add-drop filter based on wavelength dependent light coupling between micro/nano fiber ring and side-polished fiber,” Sci. Rep. 5(1), 7710 (2015).
[Crossref] [PubMed]

Sens. Actuators A Phys. (1)

Y. S. Chiam, K. S. Lim, S. W. Harun, S. N. Gan, and S. W. Phang, “Conducting polymer coated optical microfiber sensor for alcohol detection,” Sens. Actuators A Phys. 205, 58–62 (2014).
[Crossref]

Sens. Actuators B Chem. (2)

R. Jorgenson and S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 12(3), 213–220 (1993).
[Crossref]

M. Piliarik, J. Homola, Z. Manıková, and J. Čtyroký, “Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber,” Sens. Actuators B Chem. 90(1-3), 236–242 (2003).
[Crossref]

Sensors (Basel) (3)

K. Li, W. Zhou, and S. Zeng, “Optical Micro/Nanofiber-Based Localized Surface Plasmon Resonance Biosensors: Fiber Diameter Dependence,” Sensors (Basel) 18(10), 3295 (2018).
[Crossref] [PubMed]

X. Xie, J. Li, L.-P. Sun, X. Shen, L. Jin, and B. O. Guan, “A high-sensitivity current sensor utilizing CrNi wire and microfiber coils,” Sensors (Basel) 14(5), 8423–8429 (2014).
[Crossref] [PubMed]

N. Luan, R. Wang, W. Lv, Y. Lu, and J. Yao, “Surface plasmon resonance temperature sensor based on photonic crystal fibers randomly filled with silver nanowires,” Sensors (Basel) 14(9), 16035–16045 (2014).
[Crossref] [PubMed]

Other (1)

A. A. Rifat, M. R. Hasan, R. Ahmed, and A. E. Miroshnichenko, “Microstructured Optical Fiber-Based Plasmonic Sensors,” in Computational Photonic Sensors(Springer, 2019), pp. 203–232.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic of gold nanowires based fiber sensor. (a) Three-dimensional schematic; (b) Cross-section of the proposed sensor; (c) A quarter of the cross-section and the boundary conditions; (d) is the zoom in of (c); (d) The geometry diagram of gold nanowires and microfiber.
Fig. 2
Fig. 2 The calculated real part of the effective index as a function of wavelength respectively for the MF-guided mode (black line) and plasmon mode (red line); Here, the diameters of gold nanowire and microfiber are 40nm and 6.0μm, respectively. Insets are distributions of optical field respectively for plasmon mode (a), MF-guided mode (b), and SPR mode (c)
Fig. 3
Fig. 3 Mode field distribution and its partial enlargement of the GNC-MF (a) and GFC-MF (b) with the polarization of TE polarization (c) Comparison of normalized electric field of radial energy distribution of cross section of SPR sensor with gold film and gold nanowire structure; (d) Transmission loss spectra of the GFC-MF (black) and the GNC-MF (red) when the analyte RI ns = 1.33 and 1.34.
Fig. 4
Fig. 4 (a),(b) Loss spectra of SPR sensor with 60nm diameter/thickness of gold nanowire/film respectively for MF diameter = 4.0 μm, 5.0 μm, 6.0 μm, 7.0 μm when ns = 1.33 and 1.34; (c) shows variation transmission loss peak with MF diameter for ns = 1.33 and 1.34, respectively; (d) shows sensitivity and FOM with MF diameter.
Fig. 5
Fig. 5 Loss spectra of the GNC-MF and the GFC-MF sensor with different gold nanowire (a) diameter/gold film (b) thickness for the MF diameter fixed at 5μm and ns = 1.33 and 1.34; (c) transmission loss peak with gold nanowire diameter/gold film thickness respectively for different RIs of 1.33 and 1.34; (d) sensitivity and FOM with gold nanowire diameter/gold film thickness.
Fig. 6
Fig. 6 The sensitivity of the GNC-MF and GFC-MF sensor on the microfiber diameters (3.0~10.0μm) vary with different gold nanowire/film diameters/thickness from 30 nm to 120 nm.
Fig. 7
Fig. 7 The FOM of the GNC-MF and GFC-MF sensor on the same microfiber diameters (3.0~10.0μm) and analyte RI (ns = 1.33) varies with different gold nanowire/film diameters/thickness from 10nm to 80nm.
Fig. 8
Fig. 8 Transmission loss spectra of the GNC-MF and the GFC-MF with increase of the analyte RI from 1.33 to 1.41.
Fig. 9
Fig. 9 (a) Sensitivities of the GNC-MF and the GFC-MF sensor when the analyte RI increases from 1.33 to 1.40; (b) FOM of the GNC-MF and the GFC-MF sensor at the analyte RI of 1.33~1.40; (c), (d) Field strength distribution of the GNC-MF and the GFC-MF sensor at the analyte RI of 1.33~1.41, respectively.

Tables (2)

Tables Icon

Table 1 The comparison of maximum sensitivities between GNC-MF and GFC-MF for different DMF

Tables Icon

Table 2 The comparison of maximum FOM between GNC-MF and GFC-MF for different DMF

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

θ= sin 1 r gold r gold + r MF ,
N= 2*π 2*θ .
ε m ( λ )=1 λ 2 λ c λ p 2 ( λ c +jλ ) ,
α loss = 40π λIn10 Im( n eff )(dB/m).
S(λ)= λ res n s (nm/RIU),
FOM= S(λ) FWHM (RI U 1 ).
f enhan = S max_wire S max_film S max_film ×100%,
F enhan = FO M max_wire FO M max_film FO M max_film ×100%,