Abstract

In this paper, a dual broadband terahertz (THz) graphene metamaterial absorber (MA) is presented. The absorber consists of patterned graphene, a gating layer, and gold ground separated by a SiO2 substrate. Multiple resonances and broadband absorption are obtained simultaneously with a simple asymmetric electrical split ring structure. The numerical calculations indicate that there are two broad absorption bands (with an absorptance larger than 95%) from 1.4 THz to 1.9 THz and 4.5 THz to 5.1 THz, respectively. Under the regulation of the graphene chemical potential, the absorption strength can be controlled electrically from 95% to 10%. Furthermore, it possesses a good tolerance of polarization and incidence angles. The design scheme provides a new perspective to design dual broadband absorbers and is scalable to develop various graphene absorbers at other frequencies.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Multi-band terahertz absorber exploiting graphene metamaterial

Qihui Zhou, Peiguo Liu, Li-an Bian, Xin Cai, and Hanqing Liu
Opt. Mater. Express 8(9) 2928-2940 (2018)

Dual-band tunable perfect metamaterial absorber based on graphene

Fengling Wang, Sha Huang, Ling Li, Weidong Chen, and Zhengwei Xie
Appl. Opt. 57(24) 6916-6922 (2018)

Broadband tunable graphene-based metamaterial absorber

Ying Zhang, Yan Shi, and Chang-Hong Liang
Opt. Mater. Express 6(9) 3036-3044 (2016)

References

  • View by:
  • |
  • |
  • |

  1. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
    [Crossref] [PubMed]
  2. Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, N. M. Jokerst, and S. A. Cummer, “A dual-resonant terahertz metamaterial based on single-particle electric-field-coupled resonators,” Appl. Phys. Lett. 93(19), 191110 (2008).
    [Crossref]
  3. K. Ogando and H. Pastoriza, “Design of integration-ready metasurface-based infrared absorbers,” J. Appl. Phys. 118(4), 043109 (2015).
    [Crossref]
  4. K. Wu, Y. Huang, T. Wanghuang, W. Chen, and G. Wen, “Numerical and theoretical analysis on the absorption properties of metasurface-based terahertz absorbers with different thicknesses,” Appl. Opt. 54(2), 299–305 (2015).
    [Crossref] [PubMed]
  5. H. T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93(9), 091117 (2008).
    [Crossref]
  6. I. J. H. McCrindle, J. Grant, T. D. Drysdale, and D. R. S. Cumming, “Multi-spectral materials: Hybridisation of optical plasmonic filters and a terahertz metamaterial absorber,” Adv. Opt. Mater. 2(2), 149–153 (2014).
    [Crossref]
  7. L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015).
    [Crossref]
  8. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref] [PubMed]
  9. Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual band terahertz metamaterial absorber: Design, fabrication, and characterization,” Appl. Phys. Lett. 95(24), 241111 (2009).
    [Crossref]
  10. X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
    [Crossref]
  11. Y. J. Kim, Y. J. Yoo, K. W. Kim, J. Y. Rhee, Y. H. Kim, and Y. Lee, “Dual broadband metamaterial absorber,” Opt. Express 23(4), 3861–3868 (2015).
    [Crossref] [PubMed]
  12. Z. Liu, P. Zhan, J. Chen, C. Tang, Z. Yan, Z. Chen, and Z. Wang, “Dual broadband near-infrared perfect absorber based on a hybrid plasmonic-photonic microstructure,” Opt. Express 21(3), 3021–3030 (2013).
    [Crossref] [PubMed]
  13. H. Yuan, B. O. Zhu, and Y. Feng, “A frequency and bandwidth tunable metamaterial absorber in x-band,” J. Appl. Phys. 117(17), 173103 (2015).
    [Crossref]
  14. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
    [Crossref] [PubMed]
  15. S. Thongrattanasiri, F. H. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
    [Crossref] [PubMed]
  16. T. Yatooshi, A. Ishikawa, and K. Tsuruta, “Terahertz wave front control by tunable metasurface made of graphene ribbons,” Appl. Phys. Lett. 107(5), 053105 (2015).
    [Crossref]
  17. S. Ke, B. Wang, H. Huang, H. Long, K. Wang, and P. Lu, “Plasmonic absorption enhancement in periodic cross-shaped graphene arrays,” Opt. Express 23(7), 8888–8900 (2015).
    [Crossref] [PubMed]
  18. X. Huang, X. Zhang, Z. Hu, M. Aqeeli, and A. Alburaikan, “Design of br0oadband and tunable terahertz absorbers based on graphene metasurface: equivalent circuit model approach,” IET Microw. Antennas Propag. 9(4), 307–312 (2012).
    [Crossref]
  19. N. Hu, P. Liu, L. Bian, Q. Zhou, C. Liu, J. Zhang, and H. Liu, “Multi-mode tunable absorber based on graphene metamaterial,” Superlattices Microstruct. 123, 164–171 (2018).
    [Crossref]
  20. G. Yao, F. Ling, J. Yue, C. Luo, J. Ji, and J. Yao, “Dual-band tunable perfect metamaterial absorber in the THz range,” Opt. Express 24(2), 1518–1527 (2016).
    [Crossref] [PubMed]
  21. H. Chen, W. B. Lu, Z. G. Liu, J. Zhang, A. Q. Zhang, and B. Wu, “Experimental Demonstration of Microwave Absorber Using Large-Area Multilayer Graphene-Based Frequency Selective Surface,” IEEE Trans. Microw. Theory Tech. 66(8), 3807–3816 (2018).
    [Crossref]
  22. L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. J. Taylor, and H.-T. Chen, “Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band,” Opt. Lett. 37(2), 154–156 (2012).
    [Crossref] [PubMed]
  23. X. Li, H. Liu, Q. Sun, and N. Huang, “Ultra-broadband and polarization-insensitive wide-angle terahertz metamaterial absorber,” Photon. Nanostruct. Fundam. Appl. 15, 81–88 (2015).
    [Crossref]
  24. Z. Zhihong, G. Chucai, Z. Jianfa, L. Ken, Y. Xiaodong, and Q. Shiqiao, “Broadband single-layered graphene absorber using periodic arrays of graphene ribbons with gradient width,” Appl. Phys. Express 8(1), 015102 (2015).
    [Crossref]
  25. Q. H. Zhou, P. G. Liu, L. A. Bian, X. Cai, and H. Q. Liu, “Multi-band terahertz absorber exploiting graphene metamaterial,” Opt. Mater. Express 8(9), 2928–2940 (2018).
    [Crossref]
  26. L. Ye, Y. Chen, G. Cai, N. Liu, J. Zhu, Z. Song, and Q. H. Liu, “Broadband absorber with periodically sinusoidally-patterned graphene layer in terahertz range,” Opt. Express 25(10), 11223–11232 (2017).
    [Crossref] [PubMed]
  27. Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
    [Crossref] [PubMed]
  28. V. Thareja, J. H. Kang, H. Yuan, K. M. Milaninia, H. Y. Hwang, Y. Cui, P. G. Kik, and M. L. Brongersma, “Electrically tunable coherent optical absorption in graphene with ion gel,” Nano Lett. 15(3), 1570–1576 (2015).
    [Crossref] [PubMed]
  29. J. S. Gómez-Díaz and J. Perruisseau-Carrier, “Graphene-based plasmonic switches at near infrared frequencies,” Opt. Express 21(13), 15490–15504 (2013).
    [Crossref] [PubMed]
  30. Y. T. Zhao, B. Wu, B. J. Huang, and Q. Cheng, “Switchable broadband terahertz absorber/reflector enabled by hybrid graphene-gold metasurface,” Opt. Express 25(7), 7161–7169 (2017).
    [Crossref] [PubMed]
  31. G. W. Hanson, “Dyadic green’s functions for an anisotropic, non-local model of biased graphene,” IEEE Trans. Antenn. Propag. 56(3), 747–757 (2008).
    [Crossref]
  32. S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev. Lett. 100(1), 016602 (2008).
    [Crossref] [PubMed]
  33. I. Llatser, C. Kremers, A. Cabellos-Aparicio, J. M. Jornet, E. Alarcón, and D. N. Chigrin, “Graphene-based nano-patch antenna for terahertz radiation,” Photon. Nanostructures 10(4), 353–358 (2012).
    [Crossref]
  34. J. A. Robinson, M. Wetherington, J. L. Tedesco, P. M. Campbell, X. Weng, J. Stitt, M. A. Fanton, E. Frantz, D. Snyder, B. L. VanMil, G. G. Jernigan, R. L. Myers-Ward, C. R. Eddy, and D. K. Gaskill, “Correlating Raman spectral signatures with carrier mobility in epitaxial graphene: a guide to achieving high mobility on the wafer scale,” Nano Lett. 9(8), 2873–2876 (2009).
    [Crossref] [PubMed]
  35. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
    [Crossref] [PubMed]
  36. Y. Zhang, Y. Shi, and C. H. Liang, “Broadband tunable graphene-based metamaterial absorber,” Opt. Mater. Express 6(9), 3036–3044 (2016).
    [Crossref]
  37. K. Iwaszczuk, A. C. Strikwerda, K. Fan, X. Zhang, R. D. Averitt, and P. U. Jepsen, “Flexible metamaterial absorbers for stealth applications at terahertz frequencies,” Opt. Express 20(1), 635–643 (2012).
    [Crossref] [PubMed]
  38. H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Mid-infrared plasmons in scaled graphene nanostructures,” Phys. 7, 394–399 (2012).
  39. B. Liu, C. Tang, J. Chen, Q. Wang, M. Pei, and H. Tang, “Dual-band light absorption enhancement of monolayer graphene from surface plasmon polaritons and magnetic dipole resonances in metamaterials,” Opt. Express 25(10), 12061–12068 (2017).
    [Crossref] [PubMed]
  40. J. Kong, An electromagnetic scattering model for soybean canopy, in Electromagnetic Wave Theory (EMW Publishing, 2008).

2018 (3)

N. Hu, P. Liu, L. Bian, Q. Zhou, C. Liu, J. Zhang, and H. Liu, “Multi-mode tunable absorber based on graphene metamaterial,” Superlattices Microstruct. 123, 164–171 (2018).
[Crossref]

H. Chen, W. B. Lu, Z. G. Liu, J. Zhang, A. Q. Zhang, and B. Wu, “Experimental Demonstration of Microwave Absorber Using Large-Area Multilayer Graphene-Based Frequency Selective Surface,” IEEE Trans. Microw. Theory Tech. 66(8), 3807–3816 (2018).
[Crossref]

Q. H. Zhou, P. G. Liu, L. A. Bian, X. Cai, and H. Q. Liu, “Multi-band terahertz absorber exploiting graphene metamaterial,” Opt. Mater. Express 8(9), 2928–2940 (2018).
[Crossref]

2017 (3)

2016 (2)

2015 (10)

X. Li, H. Liu, Q. Sun, and N. Huang, “Ultra-broadband and polarization-insensitive wide-angle terahertz metamaterial absorber,” Photon. Nanostruct. Fundam. Appl. 15, 81–88 (2015).
[Crossref]

Z. Zhihong, G. Chucai, Z. Jianfa, L. Ken, Y. Xiaodong, and Q. Shiqiao, “Broadband single-layered graphene absorber using periodic arrays of graphene ribbons with gradient width,” Appl. Phys. Express 8(1), 015102 (2015).
[Crossref]

V. Thareja, J. H. Kang, H. Yuan, K. M. Milaninia, H. Y. Hwang, Y. Cui, P. G. Kik, and M. L. Brongersma, “Electrically tunable coherent optical absorption in graphene with ion gel,” Nano Lett. 15(3), 1570–1576 (2015).
[Crossref] [PubMed]

K. Ogando and H. Pastoriza, “Design of integration-ready metasurface-based infrared absorbers,” J. Appl. Phys. 118(4), 043109 (2015).
[Crossref]

K. Wu, Y. Huang, T. Wanghuang, W. Chen, and G. Wen, “Numerical and theoretical analysis on the absorption properties of metasurface-based terahertz absorbers with different thicknesses,” Appl. Opt. 54(2), 299–305 (2015).
[Crossref] [PubMed]

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015).
[Crossref]

Y. J. Kim, Y. J. Yoo, K. W. Kim, J. Y. Rhee, Y. H. Kim, and Y. Lee, “Dual broadband metamaterial absorber,” Opt. Express 23(4), 3861–3868 (2015).
[Crossref] [PubMed]

H. Yuan, B. O. Zhu, and Y. Feng, “A frequency and bandwidth tunable metamaterial absorber in x-band,” J. Appl. Phys. 117(17), 173103 (2015).
[Crossref]

T. Yatooshi, A. Ishikawa, and K. Tsuruta, “Terahertz wave front control by tunable metasurface made of graphene ribbons,” Appl. Phys. Lett. 107(5), 053105 (2015).
[Crossref]

S. Ke, B. Wang, H. Huang, H. Long, K. Wang, and P. Lu, “Plasmonic absorption enhancement in periodic cross-shaped graphene arrays,” Opt. Express 23(7), 8888–8900 (2015).
[Crossref] [PubMed]

2014 (2)

I. J. H. McCrindle, J. Grant, T. D. Drysdale, and D. R. S. Cumming, “Multi-spectral materials: Hybridisation of optical plasmonic filters and a terahertz metamaterial absorber,” Adv. Opt. Mater. 2(2), 149–153 (2014).
[Crossref]

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

2013 (2)

2012 (7)

X. Huang, X. Zhang, Z. Hu, M. Aqeeli, and A. Alburaikan, “Design of br0oadband and tunable terahertz absorbers based on graphene metasurface: equivalent circuit model approach,” IET Microw. Antennas Propag. 9(4), 307–312 (2012).
[Crossref]

X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
[Crossref]

S. Thongrattanasiri, F. H. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref] [PubMed]

K. Iwaszczuk, A. C. Strikwerda, K. Fan, X. Zhang, R. D. Averitt, and P. U. Jepsen, “Flexible metamaterial absorbers for stealth applications at terahertz frequencies,” Opt. Express 20(1), 635–643 (2012).
[Crossref] [PubMed]

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Mid-infrared plasmons in scaled graphene nanostructures,” Phys. 7, 394–399 (2012).

I. Llatser, C. Kremers, A. Cabellos-Aparicio, J. M. Jornet, E. Alarcón, and D. N. Chigrin, “Graphene-based nano-patch antenna for terahertz radiation,” Photon. Nanostructures 10(4), 353–358 (2012).
[Crossref]

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. J. Taylor, and H.-T. Chen, “Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band,” Opt. Lett. 37(2), 154–156 (2012).
[Crossref] [PubMed]

2011 (1)

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

2009 (2)

J. A. Robinson, M. Wetherington, J. L. Tedesco, P. M. Campbell, X. Weng, J. Stitt, M. A. Fanton, E. Frantz, D. Snyder, B. L. VanMil, G. G. Jernigan, R. L. Myers-Ward, C. R. Eddy, and D. K. Gaskill, “Correlating Raman spectral signatures with carrier mobility in epitaxial graphene: a guide to achieving high mobility on the wafer scale,” Nano Lett. 9(8), 2873–2876 (2009).
[Crossref] [PubMed]

Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual band terahertz metamaterial absorber: Design, fabrication, and characterization,” Appl. Phys. Lett. 95(24), 241111 (2009).
[Crossref]

2008 (5)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

H. T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93(9), 091117 (2008).
[Crossref]

Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, N. M. Jokerst, and S. A. Cummer, “A dual-resonant terahertz metamaterial based on single-particle electric-field-coupled resonators,” Appl. Phys. Lett. 93(19), 191110 (2008).
[Crossref]

G. W. Hanson, “Dyadic green’s functions for an anisotropic, non-local model of biased graphene,” IEEE Trans. Antenn. Propag. 56(3), 747–757 (2008).
[Crossref]

S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev. Lett. 100(1), 016602 (2008).
[Crossref] [PubMed]

2004 (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Ajayan, P. M.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

Alarcón, E.

I. Llatser, C. Kremers, A. Cabellos-Aparicio, J. M. Jornet, E. Alarcón, and D. N. Chigrin, “Graphene-based nano-patch antenna for terahertz radiation,” Photon. Nanostructures 10(4), 353–358 (2012).
[Crossref]

Alburaikan, A.

X. Huang, X. Zhang, Z. Hu, M. Aqeeli, and A. Alburaikan, “Design of br0oadband and tunable terahertz absorbers based on graphene metasurface: equivalent circuit model approach,” IET Microw. Antennas Propag. 9(4), 307–312 (2012).
[Crossref]

Aqeeli, M.

X. Huang, X. Zhang, Z. Hu, M. Aqeeli, and A. Alburaikan, “Design of br0oadband and tunable terahertz absorbers based on graphene metasurface: equivalent circuit model approach,” IET Microw. Antennas Propag. 9(4), 307–312 (2012).
[Crossref]

Averitt, R. D.

K. Iwaszczuk, A. C. Strikwerda, K. Fan, X. Zhang, R. D. Averitt, and P. U. Jepsen, “Flexible metamaterial absorbers for stealth applications at terahertz frequencies,” Opt. Express 20(1), 635–643 (2012).
[Crossref] [PubMed]

H. T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93(9), 091117 (2008).
[Crossref]

Avouris, P.

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Mid-infrared plasmons in scaled graphene nanostructures,” Phys. 7, 394–399 (2012).

Bian, L.

N. Hu, P. Liu, L. Bian, Q. Zhou, C. Liu, J. Zhang, and H. Liu, “Multi-mode tunable absorber based on graphene metamaterial,” Superlattices Microstruct. 123, 164–171 (2018).
[Crossref]

Bian, L. A.

Bingham, C.

Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, N. M. Jokerst, and S. A. Cummer, “A dual-resonant terahertz metamaterial based on single-particle electric-field-coupled resonators,” Appl. Phys. Lett. 93(19), 191110 (2008).
[Crossref]

Bingham, C. M.

H. T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93(9), 091117 (2008).
[Crossref]

Brongersma, M. L.

V. Thareja, J. H. Kang, H. Yuan, K. M. Milaninia, H. Y. Hwang, Y. Cui, P. G. Kik, and M. L. Brongersma, “Electrically tunable coherent optical absorption in graphene with ion gel,” Nano Lett. 15(3), 1570–1576 (2015).
[Crossref] [PubMed]

Cabellos-Aparicio, A.

I. Llatser, C. Kremers, A. Cabellos-Aparicio, J. M. Jornet, E. Alarcón, and D. N. Chigrin, “Graphene-based nano-patch antenna for terahertz radiation,” Photon. Nanostructures 10(4), 353–358 (2012).
[Crossref]

Cai, G.

Cai, X.

Campbell, P. M.

J. A. Robinson, M. Wetherington, J. L. Tedesco, P. M. Campbell, X. Weng, J. Stitt, M. A. Fanton, E. Frantz, D. Snyder, B. L. VanMil, G. G. Jernigan, R. L. Myers-Ward, C. R. Eddy, and D. K. Gaskill, “Correlating Raman spectral signatures with carrier mobility in epitaxial graphene: a guide to achieving high mobility on the wafer scale,” Nano Lett. 9(8), 2873–2876 (2009).
[Crossref] [PubMed]

Chen, H.

H. Chen, W. B. Lu, Z. G. Liu, J. Zhang, A. Q. Zhang, and B. Wu, “Experimental Demonstration of Microwave Absorber Using Large-Area Multilayer Graphene-Based Frequency Selective Surface,” IEEE Trans. Microw. Theory Tech. 66(8), 3807–3816 (2018).
[Crossref]

Chen, H. T.

H. T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93(9), 091117 (2008).
[Crossref]

Chen, H.-T.

Chen, J.

Chen, W.

Chen, Y.

Chen, Z.

Cheng, Q.

Chigrin, D. N.

I. Llatser, C. Kremers, A. Cabellos-Aparicio, J. M. Jornet, E. Alarcón, and D. N. Chigrin, “Graphene-based nano-patch antenna for terahertz radiation,” Photon. Nanostructures 10(4), 353–358 (2012).
[Crossref]

Chowdhury, D. R.

Chucai, G.

Z. Zhihong, G. Chucai, Z. Jianfa, L. Ken, Y. Xiaodong, and Q. Shiqiao, “Broadband single-layered graphene absorber using periodic arrays of graphene ribbons with gradient width,” Appl. Phys. Express 8(1), 015102 (2015).
[Crossref]

Cong, L.

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015).
[Crossref]

Cui, T. J.

X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
[Crossref]

Cui, Y.

V. Thareja, J. H. Kang, H. Yuan, K. M. Milaninia, H. Y. Hwang, Y. Cui, P. G. Kik, and M. L. Brongersma, “Electrically tunable coherent optical absorption in graphene with ion gel,” Nano Lett. 15(3), 1570–1576 (2015).
[Crossref] [PubMed]

Cummer, S. A.

Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, N. M. Jokerst, and S. A. Cummer, “A dual-resonant terahertz metamaterial based on single-particle electric-field-coupled resonators,” Appl. Phys. Lett. 93(19), 191110 (2008).
[Crossref]

Cumming, D. R. S.

I. J. H. McCrindle, J. Grant, T. D. Drysdale, and D. R. S. Cumming, “Multi-spectral materials: Hybridisation of optical plasmonic filters and a terahertz metamaterial absorber,” Adv. Opt. Mater. 2(2), 149–153 (2014).
[Crossref]

de Abajo, F. J.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

Drysdale, T. D.

I. J. H. McCrindle, J. Grant, T. D. Drysdale, and D. R. S. Cumming, “Multi-spectral materials: Hybridisation of optical plasmonic filters and a terahertz metamaterial absorber,” Adv. Opt. Mater. 2(2), 149–153 (2014).
[Crossref]

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Eddy, C. R.

J. A. Robinson, M. Wetherington, J. L. Tedesco, P. M. Campbell, X. Weng, J. Stitt, M. A. Fanton, E. Frantz, D. Snyder, B. L. VanMil, G. G. Jernigan, R. L. Myers-Ward, C. R. Eddy, and D. K. Gaskill, “Correlating Raman spectral signatures with carrier mobility in epitaxial graphene: a guide to achieving high mobility on the wafer scale,” Nano Lett. 9(8), 2873–2876 (2009).
[Crossref] [PubMed]

Elias, D. C.

S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev. Lett. 100(1), 016602 (2008).
[Crossref] [PubMed]

Fan, K.

Fang, Z.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

Fanton, M. A.

J. A. Robinson, M. Wetherington, J. L. Tedesco, P. M. Campbell, X. Weng, J. Stitt, M. A. Fanton, E. Frantz, D. Snyder, B. L. VanMil, G. G. Jernigan, R. L. Myers-Ward, C. R. Eddy, and D. K. Gaskill, “Correlating Raman spectral signatures with carrier mobility in epitaxial graphene: a guide to achieving high mobility on the wafer scale,” Nano Lett. 9(8), 2873–2876 (2009).
[Crossref] [PubMed]

Feng, Y.

H. Yuan, B. O. Zhu, and Y. Feng, “A frequency and bandwidth tunable metamaterial absorber in x-band,” J. Appl. Phys. 117(17), 173103 (2015).
[Crossref]

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Frantz, E.

J. A. Robinson, M. Wetherington, J. L. Tedesco, P. M. Campbell, X. Weng, J. Stitt, M. A. Fanton, E. Frantz, D. Snyder, B. L. VanMil, G. G. Jernigan, R. L. Myers-Ward, C. R. Eddy, and D. K. Gaskill, “Correlating Raman spectral signatures with carrier mobility in epitaxial graphene: a guide to achieving high mobility on the wafer scale,” Nano Lett. 9(8), 2873–2876 (2009).
[Crossref] [PubMed]

Freitag, M.

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Mid-infrared plasmons in scaled graphene nanostructures,” Phys. 7, 394–399 (2012).

García de Abajo, F. J.

S. Thongrattanasiri, F. H. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref] [PubMed]

Gaskill, D. K.

J. A. Robinson, M. Wetherington, J. L. Tedesco, P. M. Campbell, X. Weng, J. Stitt, M. A. Fanton, E. Frantz, D. Snyder, B. L. VanMil, G. G. Jernigan, R. L. Myers-Ward, C. R. Eddy, and D. K. Gaskill, “Correlating Raman spectral signatures with carrier mobility in epitaxial graphene: a guide to achieving high mobility on the wafer scale,” Nano Lett. 9(8), 2873–2876 (2009).
[Crossref] [PubMed]

Geim, A. K.

S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev. Lett. 100(1), 016602 (2008).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Geng, B.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Gómez-Díaz, J. S.

Gossard, A. C.

H. T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93(9), 091117 (2008).
[Crossref]

Grant, J.

I. J. H. McCrindle, J. Grant, T. D. Drysdale, and D. R. S. Cumming, “Multi-spectral materials: Hybridisation of optical plasmonic filters and a terahertz metamaterial absorber,” Adv. Opt. Mater. 2(2), 149–153 (2014).
[Crossref]

Grigorieva, I. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Gu, J.

X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
[Crossref]

Guinea, F.

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Mid-infrared plasmons in scaled graphene nanostructures,” Phys. 7, 394–399 (2012).

Halas, N. J.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

Han, J.

X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
[Crossref]

Hand, T. H.

Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, N. M. Jokerst, and S. A. Cummer, “A dual-resonant terahertz metamaterial based on single-particle electric-field-coupled resonators,” Appl. Phys. Lett. 93(19), 191110 (2008).
[Crossref]

Hanson, G. W.

G. W. Hanson, “Dyadic green’s functions for an anisotropic, non-local model of biased graphene,” IEEE Trans. Antenn. Propag. 56(3), 747–757 (2008).
[Crossref]

Hu, N.

N. Hu, P. Liu, L. Bian, Q. Zhou, C. Liu, J. Zhang, and H. Liu, “Multi-mode tunable absorber based on graphene metamaterial,” Superlattices Microstruct. 123, 164–171 (2018).
[Crossref]

Hu, Z.

X. Huang, X. Zhang, Z. Hu, M. Aqeeli, and A. Alburaikan, “Design of br0oadband and tunable terahertz absorbers based on graphene metasurface: equivalent circuit model approach,” IET Microw. Antennas Propag. 9(4), 307–312 (2012).
[Crossref]

Huang, B. J.

Huang, H.

Huang, L.

Huang, N.

X. Li, H. Liu, Q. Sun, and N. Huang, “Ultra-broadband and polarization-insensitive wide-angle terahertz metamaterial absorber,” Photon. Nanostruct. Fundam. Appl. 15, 81–88 (2015).
[Crossref]

Huang, X.

X. Huang, X. Zhang, Z. Hu, M. Aqeeli, and A. Alburaikan, “Design of br0oadband and tunable terahertz absorbers based on graphene metasurface: equivalent circuit model approach,” IET Microw. Antennas Propag. 9(4), 307–312 (2012).
[Crossref]

Huang, Y.

Hwang, H. Y.

V. Thareja, J. H. Kang, H. Yuan, K. M. Milaninia, H. Y. Hwang, Y. Cui, P. G. Kik, and M. L. Brongersma, “Electrically tunable coherent optical absorption in graphene with ion gel,” Nano Lett. 15(3), 1570–1576 (2015).
[Crossref] [PubMed]

Ishikawa, A.

T. Yatooshi, A. Ishikawa, and K. Tsuruta, “Terahertz wave front control by tunable metasurface made of graphene ribbons,” Appl. Phys. Lett. 107(5), 053105 (2015).
[Crossref]

Iwaszczuk, K.

Jaszczak, J. A.

S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev. Lett. 100(1), 016602 (2008).
[Crossref] [PubMed]

Jepsen, P. U.

Jernigan, G. G.

J. A. Robinson, M. Wetherington, J. L. Tedesco, P. M. Campbell, X. Weng, J. Stitt, M. A. Fanton, E. Frantz, D. Snyder, B. L. VanMil, G. G. Jernigan, R. L. Myers-Ward, C. R. Eddy, and D. K. Gaskill, “Correlating Raman spectral signatures with carrier mobility in epitaxial graphene: a guide to achieving high mobility on the wafer scale,” Nano Lett. 9(8), 2873–2876 (2009).
[Crossref] [PubMed]

Ji, J.

Jianfa, Z.

Z. Zhihong, G. Chucai, Z. Jianfa, L. Ken, Y. Xiaodong, and Q. Shiqiao, “Broadband single-layered graphene absorber using periodic arrays of graphene ribbons with gradient width,” Appl. Phys. Express 8(1), 015102 (2015).
[Crossref]

Jiang, D.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Jokerst, N. M.

Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, N. M. Jokerst, and S. A. Cummer, “A dual-resonant terahertz metamaterial based on single-particle electric-field-coupled resonators,” Appl. Phys. Lett. 93(19), 191110 (2008).
[Crossref]

H. T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93(9), 091117 (2008).
[Crossref]

Jornet, J. M.

I. Llatser, C. Kremers, A. Cabellos-Aparicio, J. M. Jornet, E. Alarcón, and D. N. Chigrin, “Graphene-based nano-patch antenna for terahertz radiation,” Photon. Nanostructures 10(4), 353–358 (2012).
[Crossref]

Ju, L.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Kang, J. H.

V. Thareja, J. H. Kang, H. Yuan, K. M. Milaninia, H. Y. Hwang, Y. Cui, P. G. Kik, and M. L. Brongersma, “Electrically tunable coherent optical absorption in graphene with ion gel,” Nano Lett. 15(3), 1570–1576 (2015).
[Crossref] [PubMed]

Katsnelson, M. I.

S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev. Lett. 100(1), 016602 (2008).
[Crossref] [PubMed]

Ke, S.

Ken, L.

Z. Zhihong, G. Chucai, Z. Jianfa, L. Ken, Y. Xiaodong, and Q. Shiqiao, “Broadband single-layered graphene absorber using periodic arrays of graphene ribbons with gradient width,” Appl. Phys. Express 8(1), 015102 (2015).
[Crossref]

Kik, P. G.

V. Thareja, J. H. Kang, H. Yuan, K. M. Milaninia, H. Y. Hwang, Y. Cui, P. G. Kik, and M. L. Brongersma, “Electrically tunable coherent optical absorption in graphene with ion gel,” Nano Lett. 15(3), 1570–1576 (2015).
[Crossref] [PubMed]

Kim, K. W.

Kim, Y. H.

Kim, Y. J.

Koppens, F. H.

S. Thongrattanasiri, F. H. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref] [PubMed]

Kremers, C.

I. Llatser, C. Kremers, A. Cabellos-Aparicio, J. M. Jornet, E. Alarcón, and D. N. Chigrin, “Graphene-based nano-patch antenna for terahertz radiation,” Photon. Nanostructures 10(4), 353–358 (2012).
[Crossref]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Lee, Y.

Li, X.

X. Li, H. Liu, Q. Sun, and N. Huang, “Ultra-broadband and polarization-insensitive wide-angle terahertz metamaterial absorber,” Photon. Nanostruct. Fundam. Appl. 15, 81–88 (2015).
[Crossref]

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Mid-infrared plasmons in scaled graphene nanostructures,” Phys. 7, 394–399 (2012).

Liang, C. H.

Ling, F.

Liu, B.

Liu, C.

N. Hu, P. Liu, L. Bian, Q. Zhou, C. Liu, J. Zhang, and H. Liu, “Multi-mode tunable absorber based on graphene metamaterial,” Superlattices Microstruct. 123, 164–171 (2018).
[Crossref]

Liu, H.

N. Hu, P. Liu, L. Bian, Q. Zhou, C. Liu, J. Zhang, and H. Liu, “Multi-mode tunable absorber based on graphene metamaterial,” Superlattices Microstruct. 123, 164–171 (2018).
[Crossref]

X. Li, H. Liu, Q. Sun, and N. Huang, “Ultra-broadband and polarization-insensitive wide-angle terahertz metamaterial absorber,” Photon. Nanostruct. Fundam. Appl. 15, 81–88 (2015).
[Crossref]

Liu, H. Q.

Liu, M.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Liu, N.

Liu, P.

N. Hu, P. Liu, L. Bian, Q. Zhou, C. Liu, J. Zhang, and H. Liu, “Multi-mode tunable absorber based on graphene metamaterial,” Superlattices Microstruct. 123, 164–171 (2018).
[Crossref]

Liu, P. G.

Liu, Q. H.

Liu, Y. L.

Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual band terahertz metamaterial absorber: Design, fabrication, and characterization,” Appl. Phys. Lett. 95(24), 241111 (2009).
[Crossref]

Liu, Z.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

Z. Liu, P. Zhan, J. Chen, C. Tang, Z. Yan, Z. Chen, and Z. Wang, “Dual broadband near-infrared perfect absorber based on a hybrid plasmonic-photonic microstructure,” Opt. Express 21(3), 3021–3030 (2013).
[Crossref] [PubMed]

Liu, Z. G.

H. Chen, W. B. Lu, Z. G. Liu, J. Zhang, A. Q. Zhang, and B. Wu, “Experimental Demonstration of Microwave Absorber Using Large-Area Multilayer Graphene-Based Frequency Selective Surface,” IEEE Trans. Microw. Theory Tech. 66(8), 3807–3816 (2018).
[Crossref]

Llatser, I.

I. Llatser, C. Kremers, A. Cabellos-Aparicio, J. M. Jornet, E. Alarcón, and D. N. Chigrin, “Graphene-based nano-patch antenna for terahertz radiation,” Photon. Nanostructures 10(4), 353–358 (2012).
[Crossref]

Long, H.

Low, T.

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Mid-infrared plasmons in scaled graphene nanostructures,” Phys. 7, 394–399 (2012).

Lu, P.

Lu, W. B.

H. Chen, W. B. Lu, Z. G. Liu, J. Zhang, A. Q. Zhang, and B. Wu, “Experimental Demonstration of Microwave Absorber Using Large-Area Multilayer Graphene-Based Frequency Selective Surface,” IEEE Trans. Microw. Theory Tech. 66(8), 3807–3816 (2018).
[Crossref]

Luo, C.

Luo, S.-N.

McCrindle, I. J. H.

I. J. H. McCrindle, J. Grant, T. D. Drysdale, and D. R. S. Cumming, “Multi-spectral materials: Hybridisation of optical plasmonic filters and a terahertz metamaterial absorber,” Adv. Opt. Mater. 2(2), 149–153 (2014).
[Crossref]

Milaninia, K. M.

V. Thareja, J. H. Kang, H. Yuan, K. M. Milaninia, H. Y. Hwang, Y. Cui, P. G. Kik, and M. L. Brongersma, “Electrically tunable coherent optical absorption in graphene with ion gel,” Nano Lett. 15(3), 1570–1576 (2015).
[Crossref] [PubMed]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Morozov, S. V.

S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev. Lett. 100(1), 016602 (2008).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Myers-Ward, R. L.

J. A. Robinson, M. Wetherington, J. L. Tedesco, P. M. Campbell, X. Weng, J. Stitt, M. A. Fanton, E. Frantz, D. Snyder, B. L. VanMil, G. G. Jernigan, R. L. Myers-Ward, C. R. Eddy, and D. K. Gaskill, “Correlating Raman spectral signatures with carrier mobility in epitaxial graphene: a guide to achieving high mobility on the wafer scale,” Nano Lett. 9(8), 2873–2876 (2009).
[Crossref] [PubMed]

Nordlander, P.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

Novoselov, K. S.

S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev. Lett. 100(1), 016602 (2008).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

O’Hara, J. F.

H. T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93(9), 091117 (2008).
[Crossref]

Ogando, K.

K. Ogando and H. Pastoriza, “Design of integration-ready metasurface-based infrared absorbers,” J. Appl. Phys. 118(4), 043109 (2015).
[Crossref]

Padilla, W. J.

Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, N. M. Jokerst, and S. A. Cummer, “A dual-resonant terahertz metamaterial based on single-particle electric-field-coupled resonators,” Appl. Phys. Lett. 93(19), 191110 (2008).
[Crossref]

H. T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93(9), 091117 (2008).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Palit, S.

H. T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93(9), 091117 (2008).
[Crossref]

Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, N. M. Jokerst, and S. A. Cummer, “A dual-resonant terahertz metamaterial based on single-particle electric-field-coupled resonators,” Appl. Phys. Lett. 93(19), 191110 (2008).
[Crossref]

Pastoriza, H.

K. Ogando and H. Pastoriza, “Design of integration-ready metasurface-based infrared absorbers,” J. Appl. Phys. 118(4), 043109 (2015).
[Crossref]

Pei, M.

Perruisseau-Carrier, J.

Ramani, S.

Reiten, M. T.

Rhee, J. Y.

Robinson, J. A.

J. A. Robinson, M. Wetherington, J. L. Tedesco, P. M. Campbell, X. Weng, J. Stitt, M. A. Fanton, E. Frantz, D. Snyder, B. L. VanMil, G. G. Jernigan, R. L. Myers-Ward, C. R. Eddy, and D. K. Gaskill, “Correlating Raman spectral signatures with carrier mobility in epitaxial graphene: a guide to achieving high mobility on the wafer scale,” Nano Lett. 9(8), 2873–2876 (2009).
[Crossref] [PubMed]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Schedin, F.

S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev. Lett. 100(1), 016602 (2008).
[Crossref] [PubMed]

Schlather, A. E.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Shen, X.

X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
[Crossref]

Shi, Y.

Shiqiao, Q.

Z. Zhihong, G. Chucai, Z. Jianfa, L. Ken, Y. Xiaodong, and Q. Shiqiao, “Broadband single-layered graphene absorber using periodic arrays of graphene ribbons with gradient width,” Appl. Phys. Express 8(1), 015102 (2015).
[Crossref]

Singh, R.

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015).
[Crossref]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

H. T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93(9), 091117 (2008).
[Crossref]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Snyder, D.

J. A. Robinson, M. Wetherington, J. L. Tedesco, P. M. Campbell, X. Weng, J. Stitt, M. A. Fanton, E. Frantz, D. Snyder, B. L. VanMil, G. G. Jernigan, R. L. Myers-Ward, C. R. Eddy, and D. K. Gaskill, “Correlating Raman spectral signatures with carrier mobility in epitaxial graphene: a guide to achieving high mobility on the wafer scale,” Nano Lett. 9(8), 2873–2876 (2009).
[Crossref] [PubMed]

Song, Z.

Stitt, J.

J. A. Robinson, M. Wetherington, J. L. Tedesco, P. M. Campbell, X. Weng, J. Stitt, M. A. Fanton, E. Frantz, D. Snyder, B. L. VanMil, G. G. Jernigan, R. L. Myers-Ward, C. R. Eddy, and D. K. Gaskill, “Correlating Raman spectral signatures with carrier mobility in epitaxial graphene: a guide to achieving high mobility on the wafer scale,” Nano Lett. 9(8), 2873–2876 (2009).
[Crossref] [PubMed]

Strikwerda, A. C.

Sun, Q.

X. Li, H. Liu, Q. Sun, and N. Huang, “Ultra-broadband and polarization-insensitive wide-angle terahertz metamaterial absorber,” Photon. Nanostruct. Fundam. Appl. 15, 81–88 (2015).
[Crossref]

Tan, S.

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015).
[Crossref]

Tang, C.

Tang, H.

Taylor, A. J.

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. J. Taylor, and H.-T. Chen, “Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band,” Opt. Lett. 37(2), 154–156 (2012).
[Crossref] [PubMed]

H. T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93(9), 091117 (2008).
[Crossref]

Tedesco, J. L.

J. A. Robinson, M. Wetherington, J. L. Tedesco, P. M. Campbell, X. Weng, J. Stitt, M. A. Fanton, E. Frantz, D. Snyder, B. L. VanMil, G. G. Jernigan, R. L. Myers-Ward, C. R. Eddy, and D. K. Gaskill, “Correlating Raman spectral signatures with carrier mobility in epitaxial graphene: a guide to achieving high mobility on the wafer scale,” Nano Lett. 9(8), 2873–2876 (2009).
[Crossref] [PubMed]

Thareja, V.

V. Thareja, J. H. Kang, H. Yuan, K. M. Milaninia, H. Y. Hwang, Y. Cui, P. G. Kik, and M. L. Brongersma, “Electrically tunable coherent optical absorption in graphene with ion gel,” Nano Lett. 15(3), 1570–1576 (2015).
[Crossref] [PubMed]

Thongrattanasiri, S.

S. Thongrattanasiri, F. H. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref] [PubMed]

Tsuruta, K.

T. Yatooshi, A. Ishikawa, and K. Tsuruta, “Terahertz wave front control by tunable metasurface made of graphene ribbons,” Appl. Phys. Lett. 107(5), 053105 (2015).
[Crossref]

Tyler, T.

Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, N. M. Jokerst, and S. A. Cummer, “A dual-resonant terahertz metamaterial based on single-particle electric-field-coupled resonators,” Appl. Phys. Lett. 93(19), 191110 (2008).
[Crossref]

H. T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93(9), 091117 (2008).
[Crossref]

Ulin-Avila, E.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

VanMil, B. L.

J. A. Robinson, M. Wetherington, J. L. Tedesco, P. M. Campbell, X. Weng, J. Stitt, M. A. Fanton, E. Frantz, D. Snyder, B. L. VanMil, G. G. Jernigan, R. L. Myers-Ward, C. R. Eddy, and D. K. Gaskill, “Correlating Raman spectral signatures with carrier mobility in epitaxial graphene: a guide to achieving high mobility on the wafer scale,” Nano Lett. 9(8), 2873–2876 (2009).
[Crossref] [PubMed]

Wang, B.

Wang, F.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Wang, K.

Wang, Q.

Wang, Y.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

Wang, Z.

Wanghuang, T.

Wen, G.

Wen, Q. Y.

Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual band terahertz metamaterial absorber: Design, fabrication, and characterization,” Appl. Phys. Lett. 95(24), 241111 (2009).
[Crossref]

Weng, X.

J. A. Robinson, M. Wetherington, J. L. Tedesco, P. M. Campbell, X. Weng, J. Stitt, M. A. Fanton, E. Frantz, D. Snyder, B. L. VanMil, G. G. Jernigan, R. L. Myers-Ward, C. R. Eddy, and D. K. Gaskill, “Correlating Raman spectral signatures with carrier mobility in epitaxial graphene: a guide to achieving high mobility on the wafer scale,” Nano Lett. 9(8), 2873–2876 (2009).
[Crossref] [PubMed]

Wetherington, M.

J. A. Robinson, M. Wetherington, J. L. Tedesco, P. M. Campbell, X. Weng, J. Stitt, M. A. Fanton, E. Frantz, D. Snyder, B. L. VanMil, G. G. Jernigan, R. L. Myers-Ward, C. R. Eddy, and D. K. Gaskill, “Correlating Raman spectral signatures with carrier mobility in epitaxial graphene: a guide to achieving high mobility on the wafer scale,” Nano Lett. 9(8), 2873–2876 (2009).
[Crossref] [PubMed]

Wu, B.

H. Chen, W. B. Lu, Z. G. Liu, J. Zhang, A. Q. Zhang, and B. Wu, “Experimental Demonstration of Microwave Absorber Using Large-Area Multilayer Graphene-Based Frequency Selective Surface,” IEEE Trans. Microw. Theory Tech. 66(8), 3807–3816 (2018).
[Crossref]

Y. T. Zhao, B. Wu, B. J. Huang, and Q. Cheng, “Switchable broadband terahertz absorber/reflector enabled by hybrid graphene-gold metasurface,” Opt. Express 25(7), 7161–7169 (2017).
[Crossref] [PubMed]

Wu, K.

Wu, Y.

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Mid-infrared plasmons in scaled graphene nanostructures,” Phys. 7, 394–399 (2012).

Xia, F.

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Mid-infrared plasmons in scaled graphene nanostructures,” Phys. 7, 394–399 (2012).

Xiaodong, Y.

Z. Zhihong, G. Chucai, Z. Jianfa, L. Ken, Y. Xiaodong, and Q. Shiqiao, “Broadband single-layered graphene absorber using periodic arrays of graphene ribbons with gradient width,” Appl. Phys. Express 8(1), 015102 (2015).
[Crossref]

Xie, Y. S.

Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual band terahertz metamaterial absorber: Design, fabrication, and characterization,” Appl. Phys. Lett. 95(24), 241111 (2009).
[Crossref]

Yahiaoui, R.

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015).
[Crossref]

Yan, F.

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015).
[Crossref]

Yan, H.

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Mid-infrared plasmons in scaled graphene nanostructures,” Phys. 7, 394–399 (2012).

Yan, Z.

Yang, Q. H.

Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual band terahertz metamaterial absorber: Design, fabrication, and characterization,” Appl. Phys. Lett. 95(24), 241111 (2009).
[Crossref]

Yang, Y.

X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
[Crossref]

Yao, G.

Yao, J.

Yatooshi, T.

T. Yatooshi, A. Ishikawa, and K. Tsuruta, “Terahertz wave front control by tunable metasurface made of graphene ribbons,” Appl. Phys. Lett. 107(5), 053105 (2015).
[Crossref]

Ye, L.

Yin, X.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Yoo, Y. J.

Yuan, H.

V. Thareja, J. H. Kang, H. Yuan, K. M. Milaninia, H. Y. Hwang, Y. Cui, P. G. Kik, and M. L. Brongersma, “Electrically tunable coherent optical absorption in graphene with ion gel,” Nano Lett. 15(3), 1570–1576 (2015).
[Crossref] [PubMed]

H. Yuan, B. O. Zhu, and Y. Feng, “A frequency and bandwidth tunable metamaterial absorber in x-band,” J. Appl. Phys. 117(17), 173103 (2015).
[Crossref]

Yuan, Y.

Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, N. M. Jokerst, and S. A. Cummer, “A dual-resonant terahertz metamaterial based on single-particle electric-field-coupled resonators,” Appl. Phys. Lett. 93(19), 191110 (2008).
[Crossref]

Yue, J.

Zang, Y.

X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
[Crossref]

Zentgraf, T.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Zhan, P.

Zhang, A. Q.

H. Chen, W. B. Lu, Z. G. Liu, J. Zhang, A. Q. Zhang, and B. Wu, “Experimental Demonstration of Microwave Absorber Using Large-Area Multilayer Graphene-Based Frequency Selective Surface,” IEEE Trans. Microw. Theory Tech. 66(8), 3807–3816 (2018).
[Crossref]

Zhang, H. W.

Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual band terahertz metamaterial absorber: Design, fabrication, and characterization,” Appl. Phys. Lett. 95(24), 241111 (2009).
[Crossref]

Zhang, J.

H. Chen, W. B. Lu, Z. G. Liu, J. Zhang, A. Q. Zhang, and B. Wu, “Experimental Demonstration of Microwave Absorber Using Large-Area Multilayer Graphene-Based Frequency Selective Surface,” IEEE Trans. Microw. Theory Tech. 66(8), 3807–3816 (2018).
[Crossref]

N. Hu, P. Liu, L. Bian, Q. Zhou, C. Liu, J. Zhang, and H. Liu, “Multi-mode tunable absorber based on graphene metamaterial,” Superlattices Microstruct. 123, 164–171 (2018).
[Crossref]

Zhang, W.

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015).
[Crossref]

X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
[Crossref]

Zhang, X.

X. Huang, X. Zhang, Z. Hu, M. Aqeeli, and A. Alburaikan, “Design of br0oadband and tunable terahertz absorbers based on graphene metasurface: equivalent circuit model approach,” IET Microw. Antennas Propag. 9(4), 307–312 (2012).
[Crossref]

K. Iwaszczuk, A. C. Strikwerda, K. Fan, X. Zhang, R. D. Averitt, and P. U. Jepsen, “Flexible metamaterial absorbers for stealth applications at terahertz frequencies,” Opt. Express 20(1), 635–643 (2012).
[Crossref] [PubMed]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Zhang, Y.

Y. Zhang, Y. Shi, and C. H. Liang, “Broadband tunable graphene-based metamaterial absorber,” Opt. Mater. Express 6(9), 3036–3044 (2016).
[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Zhao, Y. T.

Zhihong, Z.

Z. Zhihong, G. Chucai, Z. Jianfa, L. Ken, Y. Xiaodong, and Q. Shiqiao, “Broadband single-layered graphene absorber using periodic arrays of graphene ribbons with gradient width,” Appl. Phys. Express 8(1), 015102 (2015).
[Crossref]

Zhou, Q.

N. Hu, P. Liu, L. Bian, Q. Zhou, C. Liu, J. Zhang, and H. Liu, “Multi-mode tunable absorber based on graphene metamaterial,” Superlattices Microstruct. 123, 164–171 (2018).
[Crossref]

Zhou, Q. H.

Zhu, B. O.

H. Yuan, B. O. Zhu, and Y. Feng, “A frequency and bandwidth tunable metamaterial absorber in x-band,” J. Appl. Phys. 117(17), 173103 (2015).
[Crossref]

Zhu, J.

Zhu, W.

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Mid-infrared plasmons in scaled graphene nanostructures,” Phys. 7, 394–399 (2012).

Zhu, X.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

Zide, J. M. O.

H. T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93(9), 091117 (2008).
[Crossref]

Adv. Opt. Mater. (1)

I. J. H. McCrindle, J. Grant, T. D. Drysdale, and D. R. S. Cumming, “Multi-spectral materials: Hybridisation of optical plasmonic filters and a terahertz metamaterial absorber,” Adv. Opt. Mater. 2(2), 149–153 (2014).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Express (1)

Z. Zhihong, G. Chucai, Z. Jianfa, L. Ken, Y. Xiaodong, and Q. Shiqiao, “Broadband single-layered graphene absorber using periodic arrays of graphene ribbons with gradient width,” Appl. Phys. Express 8(1), 015102 (2015).
[Crossref]

Appl. Phys. Lett. (6)

H. T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93(9), 091117 (2008).
[Crossref]

Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, N. M. Jokerst, and S. A. Cummer, “A dual-resonant terahertz metamaterial based on single-particle electric-field-coupled resonators,” Appl. Phys. Lett. 93(19), 191110 (2008).
[Crossref]

Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual band terahertz metamaterial absorber: Design, fabrication, and characterization,” Appl. Phys. Lett. 95(24), 241111 (2009).
[Crossref]

X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
[Crossref]

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015).
[Crossref]

T. Yatooshi, A. Ishikawa, and K. Tsuruta, “Terahertz wave front control by tunable metasurface made of graphene ribbons,” Appl. Phys. Lett. 107(5), 053105 (2015).
[Crossref]

IEEE Trans. Antenn. Propag. (1)

G. W. Hanson, “Dyadic green’s functions for an anisotropic, non-local model of biased graphene,” IEEE Trans. Antenn. Propag. 56(3), 747–757 (2008).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

H. Chen, W. B. Lu, Z. G. Liu, J. Zhang, A. Q. Zhang, and B. Wu, “Experimental Demonstration of Microwave Absorber Using Large-Area Multilayer Graphene-Based Frequency Selective Surface,” IEEE Trans. Microw. Theory Tech. 66(8), 3807–3816 (2018).
[Crossref]

IET Microw. Antennas Propag. (1)

X. Huang, X. Zhang, Z. Hu, M. Aqeeli, and A. Alburaikan, “Design of br0oadband and tunable terahertz absorbers based on graphene metasurface: equivalent circuit model approach,” IET Microw. Antennas Propag. 9(4), 307–312 (2012).
[Crossref]

J. Appl. Phys. (2)

H. Yuan, B. O. Zhu, and Y. Feng, “A frequency and bandwidth tunable metamaterial absorber in x-band,” J. Appl. Phys. 117(17), 173103 (2015).
[Crossref]

K. Ogando and H. Pastoriza, “Design of integration-ready metasurface-based infrared absorbers,” J. Appl. Phys. 118(4), 043109 (2015).
[Crossref]

Nano Lett. (3)

J. A. Robinson, M. Wetherington, J. L. Tedesco, P. M. Campbell, X. Weng, J. Stitt, M. A. Fanton, E. Frantz, D. Snyder, B. L. VanMil, G. G. Jernigan, R. L. Myers-Ward, C. R. Eddy, and D. K. Gaskill, “Correlating Raman spectral signatures with carrier mobility in epitaxial graphene: a guide to achieving high mobility on the wafer scale,” Nano Lett. 9(8), 2873–2876 (2009).
[Crossref] [PubMed]

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

V. Thareja, J. H. Kang, H. Yuan, K. M. Milaninia, H. Y. Hwang, Y. Cui, P. G. Kik, and M. L. Brongersma, “Electrically tunable coherent optical absorption in graphene with ion gel,” Nano Lett. 15(3), 1570–1576 (2015).
[Crossref] [PubMed]

Nature (1)

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Opt. Express (9)

J. S. Gómez-Díaz and J. Perruisseau-Carrier, “Graphene-based plasmonic switches at near infrared frequencies,” Opt. Express 21(13), 15490–15504 (2013).
[Crossref] [PubMed]

Y. T. Zhao, B. Wu, B. J. Huang, and Q. Cheng, “Switchable broadband terahertz absorber/reflector enabled by hybrid graphene-gold metasurface,” Opt. Express 25(7), 7161–7169 (2017).
[Crossref] [PubMed]

G. Yao, F. Ling, J. Yue, C. Luo, J. Ji, and J. Yao, “Dual-band tunable perfect metamaterial absorber in the THz range,” Opt. Express 24(2), 1518–1527 (2016).
[Crossref] [PubMed]

L. Ye, Y. Chen, G. Cai, N. Liu, J. Zhu, Z. Song, and Q. H. Liu, “Broadband absorber with periodically sinusoidally-patterned graphene layer in terahertz range,” Opt. Express 25(10), 11223–11232 (2017).
[Crossref] [PubMed]

Y. J. Kim, Y. J. Yoo, K. W. Kim, J. Y. Rhee, Y. H. Kim, and Y. Lee, “Dual broadband metamaterial absorber,” Opt. Express 23(4), 3861–3868 (2015).
[Crossref] [PubMed]

Z. Liu, P. Zhan, J. Chen, C. Tang, Z. Yan, Z. Chen, and Z. Wang, “Dual broadband near-infrared perfect absorber based on a hybrid plasmonic-photonic microstructure,” Opt. Express 21(3), 3021–3030 (2013).
[Crossref] [PubMed]

S. Ke, B. Wang, H. Huang, H. Long, K. Wang, and P. Lu, “Plasmonic absorption enhancement in periodic cross-shaped graphene arrays,” Opt. Express 23(7), 8888–8900 (2015).
[Crossref] [PubMed]

K. Iwaszczuk, A. C. Strikwerda, K. Fan, X. Zhang, R. D. Averitt, and P. U. Jepsen, “Flexible metamaterial absorbers for stealth applications at terahertz frequencies,” Opt. Express 20(1), 635–643 (2012).
[Crossref] [PubMed]

B. Liu, C. Tang, J. Chen, Q. Wang, M. Pei, and H. Tang, “Dual-band light absorption enhancement of monolayer graphene from surface plasmon polaritons and magnetic dipole resonances in metamaterials,” Opt. Express 25(10), 12061–12068 (2017).
[Crossref] [PubMed]

Opt. Lett. (1)

Opt. Mater. Express (2)

Photon. Nanostruct. Fundam. Appl. (1)

X. Li, H. Liu, Q. Sun, and N. Huang, “Ultra-broadband and polarization-insensitive wide-angle terahertz metamaterial absorber,” Photon. Nanostruct. Fundam. Appl. 15, 81–88 (2015).
[Crossref]

Photon. Nanostructures (1)

I. Llatser, C. Kremers, A. Cabellos-Aparicio, J. M. Jornet, E. Alarcón, and D. N. Chigrin, “Graphene-based nano-patch antenna for terahertz radiation,” Photon. Nanostructures 10(4), 353–358 (2012).
[Crossref]

Phys. (1)

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Mid-infrared plasmons in scaled graphene nanostructures,” Phys. 7, 394–399 (2012).

Phys. Rev. Lett. (3)

S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev. Lett. 100(1), 016602 (2008).
[Crossref] [PubMed]

S. Thongrattanasiri, F. H. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Science (2)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Superlattices Microstruct. (1)

N. Hu, P. Liu, L. Bian, Q. Zhou, C. Liu, J. Zhang, and H. Liu, “Multi-mode tunable absorber based on graphene metamaterial,” Superlattices Microstruct. 123, 164–171 (2018).
[Crossref]

Other (1)

J. Kong, An electromagnetic scattering model for soybean canopy, in Electromagnetic Wave Theory (EMW Publishing, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Structures and geometric parameters of the proposed broadband absorber (a) 3D views of the proposed absorbers where unit cells are arranged periodically along x- and y-directions, and a DC voltage Vg is applied on the gold electrode covered on ion-gel and the polysilicon layer beneath the patterned graphene (ion-gel on the top is not shown). (b) Vertical view of graphene unit cell, the parameters of the absorber are set as p=26, d 1 =5, d 2 =11.8, d 3 =6.8, h 1 =6.2, h 2 =9.8, b 1 =9.8, b 2 =6.2, w 1 =3, g=0.65, t i = t A =0.1, t 1 = t p =0.02, w=3, Unit: μm. (c) Side view of absorber unit cell in which the single-layer graphene is molded as an equivalent 2D surface impedance layer without thickness in numerical simulation.
Fig. 2
Fig. 2 Surface impedance of graphene when chemical potential varies from 0.1eV to 0.6eV (a) Real part and (b) Imaginary part.
Fig. 3
Fig. 3 The absorption spectrums of the proposed absorber for different polarizations where graphene chemical potential E f is set as 0.5 eV.
Fig. 4
Fig. 4 The distributions of the electric field and surface currents of the proposed absorber with the graphene chemical potential E f =0.5eVunder normal incidence at (a) 1.45 THz (b) 1.85 THz (c) 4.6 THz and (d) 5.0 THz. For each picture: xoy plane with z = 0 (left) and yoz plane cut along AA’ (right). The white arrows represent currents where the density of the arrows indicate the current intensity. The electric field is along y-direction and wave vector k along positive z-direction.
Fig. 5
Fig. 5 The simulated normal incidence absorption spectrums in TM polarization as a function of frequency and geometric parameters (a) w, the width of graphene arms and (b) g, the length of gaps in eSRR. The graphene chemical potential is set as E f = 0.5 eV and the unit is μm.
Fig. 6
Fig. 6 The simulated normal incidence absorption spectrums of the proposed absorber for (a) TE polarizations and (b) TM polarizations when chemical potential various form 0.5 eV to 0.2 eV.
Fig. 7
Fig. 7 Simulated absorption spectrums of the proposed absorber as a function of operating frequency and incidence angle with the graphene chemical potential E f = 0.5 eV for (a) TM polarization and (b) TE polarization. The absorber exhibits excellent performances with relatively stable absorbance and bandwidth over a wide range of oblique incidence angles for both polarizations. Its peak absorbance remains more than 70% with a sufficient broadband of 0.5 THz over a wide range of incident angle up to 60° for both polarizations.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

σ(ω) = σ intra (ω)+ σ inter (ω),
σ intra (ω)= 2 K B e 2 T π 2 ln[2cosh( E f 2 K B T )] i ω+i π 1
σ inter (ω)= e 2 4 [H( ω 2 )+ 4iω π 0 H(ε)H(ε/2) ω 2 4 ε 2 dε,
H(ε)=sinh[ε/ k B T]/{cosh[ E f /( k B T)]+cosh[ε/( k B T)]}.
| E f | v f (π a 0 | V g V Dirac |) 1/2 .

Metrics