Abstract

We demonstrate an all-fiber thulium-doped femtosecond laser by using microfiber coated with gold nanorods (MF-GNRs) as a saturable absorber (SA). The MF-GNR SA exhibits a broadband absorption from 1000 nm to 3000 nm. By placing the MF-GNR SA into a thulium-doped fiber laser (TDFL) cavity, a stable passively mode-locked laser with a central wavelength of ∼1943.5 nm is achieved for a threshold pump power of ∼870 mW. Furthermore, a femtosecond laser with a pulse width of ∼404 fs, a maximum average power of ∼45.5 mW, and a repetition rate of ∼25.66 MHz is obtained for a pump power of 2.1 W. The maximum average power of the laser is increased by ten times and the pulse width is reduced from several picoseconds to 404 fs compared to previously reported 2 μm mode-locked lasers based on GNR SA because of the weak photothermal effect and high laser damage threshold of MF-GNRs SA. To the best of our knowledge, this is the first time all-fiber thulium-doped femtosecond lasers based on MF-GNR SAs have been reported. These results show that MF-GNRs are promising SAs for constructing 2 μm femtosecond fiber lasers.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Nanocomposites with gold nanorod/silica core-shell structure as saturable absorber for femtosecond pulse generation in a fiber laser

Xu-De Wang, Ai-Ping Luo, Hao Liu, Nian Zhao, Meng Liu, Yan-Fang Zhu, Jian-Ping Xue, Zhi-Chao Luo, and Wen-Cheng Xu
Opt. Express 23(17) 22602-22610 (2015)

Passively mode-locked fiber lasers at 1039 and 1560 nm based on a common gold nanorod saturable absorber

Zhe Kang, Xuejian Gao, Lei Zhang, Yan Feng, Guanshi Qin, and Weiping Qin
Opt. Mater. Express 5(4) 794-801 (2015)

Gold nanorods as saturable absorbers for all-fiber passively Q-switched erbium-doped fiber laser

Zhe Kang, Xingyuan Guo, Zhixu Jia, Yang Xu, Lai Liu, Dan Zhao, Guanshi Qin, and Weiping Qin
Opt. Mater. Express 3(11) 1986-1991 (2013)

References

  • View by:
  • |
  • |
  • |

  1. V. S. Letokhov, “Laser biology and medicine,” Nature 316(6026), 325–330 (1985).
    [Crossref] [PubMed]
  2. N. M. Fried, “High-power laser vaporization of the canine prostate using a 110 W Thulium fiber laser at 1.91 microm,” Lasers Surg. Med. 36(1), 52–56 (2005).
    [Crossref] [PubMed]
  3. Z. Li, A. M. Heidt, J. M. O. Daniel, Y. Jung, S. U. Alam, and D. J. Richardson, “Thulium-doped fiber amplifier for optical communications at 2 µm,” Opt. Express 21(8), 9289–9297 (2013).
    [Crossref] [PubMed]
  4. C. W. Rudy, M. J. F. Digonnet, and R. L. Byer, “Advances in 2 μm Tm-doped mode-locked fiber lasers,” Opt. Fiber Technol. 20(6), 642–649 (2014).
    [Crossref]
  5. M. Tao, T. Yu, Z. Wang, H. Chen, Y. Shen, G. Feng, and X. Ye, “Super-flat supercontinuum generation from a Tm-doped fiber amplifier,” Sci. Rep. 6(1), 23759 (2016).
    [Crossref] [PubMed]
  6. M. A. Solodyankin, E. D. Obraztsova, A. S. Lobach, A. I. Chernov, A. V. Tausenev, V. I. Konov, and E. M. Dianov, “Mode-locked 1.93 microm thulium fiber laser with a carbon nanotube absorber,” Opt. Lett. 33(12), 1336–1338 (2008).
    [Crossref] [PubMed]
  7. K. Kieu and F. W. Wise, “Soliton thulium-doped fiber laser carbon nanotube saturable absorber,” IEEE Photonics Technol. Lett. 21(3), 128–130 (2009).
    [Crossref] [PubMed]
  8. T. Hasan, Z. Sun, P. Tan, D. Popa, E. Flahaut, E. J. R. Kelleher, F. Bonaccorso, F. Wang, Z. Jiang, F. Torrisi, G. Privitera, V. Nicolosi, and A. C. Ferrari, “Double-wall carbon nanotubes for wide-band, ultrafast pulse generation,” ACS Nano 8(5), 4836–4847 (2014).
    [Crossref] [PubMed]
  9. M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express 20(22), 25077–25084 (2012).
    [Crossref] [PubMed]
  10. G. Sobon, J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “All-polarization maintaining, graphene-based femtosecond Tm-doped all-fiber laser,” Opt. Express 23(7), 9339–9346 (2015).
    [Crossref] [PubMed]
  11. M. Jung, J. Lee, J. Koo, J. Park, Y. W. Song, K. Lee, S. Lee, and J. H. Lee, “A femtosecond pulse fiber laser at 1935 nm using a bulk-structured Bi2Te3 topological insulator,” Opt. Express 22(7), 7865–7874 (2014).
    [Crossref] [PubMed]
  12. S. B. Lu, L. L. Miao, Z. N. Guo, X. Qi, C. J. Zhao, H. Zhang, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material,” Opt. Express 23(9), 11183–11194 (2015).
    [Crossref] [PubMed]
  13. R. I. Woodward, R. C. T. Howe, G. Hu, F. Torrisi, M. Zhang, T. Hasan, and E. J. R. Kelleher, “Few-layer MoS2 saturable absorbers for short-pulse laser technology: current status and future perspectives,” Photon. Res. 3(2), A30–A42 (2015).
    [Crossref]
  14. L. Zhang and E. K. Wang, “Metal nanoclusters: new fluorescent probes for sensors and bioimaging,” Nano Today 9(1), 132–157 (2014).
    [Crossref]
  15. A. Gopinath, S. V. Boriskina, B. M. Reinhard, and L. Dal Negro, “Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering (SERS),” Opt. Express 17(5), 3741–3753 (2009).
    [Crossref] [PubMed]
  16. M. C. Daniel and D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104(1), 293–346 (2004).
    [Crossref] [PubMed]
  17. X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
    [Crossref] [PubMed]
  18. S. S. Chang, C. L. Lee, and C. R. Chris Wang, “Gold nanorods: Electrochemical synthesis and optical properties,” J. Phys. Chem. B 101(34), 6661–6664 (1997).
    [Crossref]
  19. H. J. Huang, C. P. Yu, H. C. Chang, K. P. Chiu, H. Ming Chen, R. S. Liu, and D. P. Tsai, “Plasmonic optical properties of a single gold nano-rod,” Opt. Express 15(12), 7132–7139 (2007).
    [Crossref] [PubMed]
  20. S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 103(16), 3073–3077 (1999).
    [Crossref]
  21. J. Olesiakbanska, M. Gordel, R. Kolkowski, K. Matczyszyn, and M. Samoc, “Third-order nonlinear optical properties of colloidal gold nanorods,” J. Phys. Chem. C 116(25), 13731–13737 (2012).
    [Crossref]
  22. H. I. Elim, J. Yang, J. Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88(8), 083107 (2006).
    [Crossref]
  23. Z. Kang, Y. Xu, L. Zhang, Z. Jia, L. Liu, D. Zhao, Y. Feng, G. Qin, and W. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
    [Crossref]
  24. Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorods saturable absorber for passive mode-locking at 1 μm wavelength,” Laser Phys. Lett. 11(3), 035102 (2014).
    [Crossref]
  25. X. D. Wang, Z. C. Luo, H. Liu, M. Liu, A. P. Luo, and W. C. Xu, “Microfiber-based gold nanorods as saturable absorber for femtosecond pulse generation in a fiber laser,” Appl. Phys. Lett. 105(16), 161107 (2014).
    [Crossref]
  26. Z. Kang, M. Y. Liu, X. J. Gao, N. Li, S. Y. Yin, G. S. Qin, and W. P. Qin, “Mode-locked thulium-doped fiber laser at 1982 nm by using a gold nanorods saturable absorber,” Laser Phys. Lett. 12(4), 045105 (2015).
    [Crossref]
  27. X. D. Wang, Z. C. Luo, H. Liu, N. Zhao, M. Liu, Y. F. Zhu, J. P. Xue, A. P. Luo, and W. C. Xu, “Gold nanorods as saturable absorber for Q-switched Yb-doped fiber laser,” Opt. Commun. 346, 21–25 (2015).
    [Crossref]
  28. J. Koo, J. Lee, W. Shin, and J. H. Lee, “Large energy, all-fiberized Q-switched pulse laser using a GNRs/PVA saturable absorber,” Opt. Mater. Express 5(8), 1859–1867 (2015).
    [Crossref]
  29. X. D. Wang, Z. C. Luo, M. Liu, R. Tang, A. P. Luo, and W. C. Xu, “Wavelength-switchable femtosecond pulse fiber laser mode-locked by silica-encased gold nanorods,” Laser Phys. Lett. 13(4), 045101 (2016).
    [Crossref]
  30. P. G. Yan, A. J. Liu, Y. S. Chen, H. Chen, S. C. Ruan, C. Y. Guo, S. F. Chen, I. L. Li, H. P. Yang, J. G. Hu, and G. Z. Cao, “Microfiber-based WS2-film saturable absorber for ultra-fast photonics,” Opt. Mater. Express 5(3), 479–489 (2015).
    [Crossref]
  31. J. Sotor, G. Sobon, K. Grodecki, and K. M. Abramski, “Mode-locked erbium-doped fiber laser based on evanescent field interaction with Sb2Te3 topological insulator,” Appl. Phys. Lett. 104(25), 251112 (2014).
    [Crossref]
  32. Y. W. Song, S. Y. Jang, W. S. Han, and M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett. 96(5), 051122 (2010).
    [Crossref]
  33. B. N. And and M. A. Elsayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater. 15(10), 1957–1962 (2003).
    [Crossref]
  34. J. Fontana, R. Nita, N. Charipar, J. Naciri, K. Park, A. Dunkelberger, J. Owrutsky, A. Pique, R. Vaia, and B. Ratna, “Widely tunable infrared plasmonic nanoantennas using directed assembly,” Adv. Opt. Mater. 5(21), 1700335 (2017).
    [Crossref]
  35. P. Yan, Z. Jiang, H. Chen, J. Yin, J. Lai, J. Wang, T. He, and J. Yang, “α-In2Se3 wideband optical modulator for pulsed fiber lasers,” Opt. Lett. 43(18), 4417–4420 (2018).
    [Crossref] [PubMed]
  36. J. T. Wang, Z. K. Jiang, H. Chen, J. R. Li, J. D. Yin, J. Z. Wang, T. H. He, P. G. Yan, and S. C. Ruan, “High energy soliton pulse generation by a magnetron-sputtering-deposition-grown MoTe2 saturable absorber,” Photon. Res. 6(6), 535–541 (2018).
    [Crossref]
  37. S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Laser mode locking using a saturable absorber incorporating carbon nanotubes,” J. Lightwave Technol. 22(1), 51–56 (2004).
    [Crossref]
  38. H. A. Haus, “Mode-locking of lasers,” IEEE J. Quantum Electron. 6(6), 1173–1185 (2000).
    [Crossref]
  39. J. Koo, Y. Jhon, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Near-infrared saturable absorption of defective bulk-structured WTe2 for femtosecond laser mode-locking,” Adv. Funct. Mater. 26(41), 7454–7461 (2016).
    [Crossref]
  40. J. Koo, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Femtosecond harmonic mode-locking of a fiber laser at 3.27 GHz using a bulk-like, MoSe2-based saturable absorber,” Opt. Express 24(10), 10575–10589 (2016).
    [Crossref] [PubMed]

2018 (2)

2017 (1)

J. Fontana, R. Nita, N. Charipar, J. Naciri, K. Park, A. Dunkelberger, J. Owrutsky, A. Pique, R. Vaia, and B. Ratna, “Widely tunable infrared plasmonic nanoantennas using directed assembly,” Adv. Opt. Mater. 5(21), 1700335 (2017).
[Crossref]

2016 (4)

X. D. Wang, Z. C. Luo, M. Liu, R. Tang, A. P. Luo, and W. C. Xu, “Wavelength-switchable femtosecond pulse fiber laser mode-locked by silica-encased gold nanorods,” Laser Phys. Lett. 13(4), 045101 (2016).
[Crossref]

J. Koo, Y. Jhon, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Near-infrared saturable absorption of defective bulk-structured WTe2 for femtosecond laser mode-locking,” Adv. Funct. Mater. 26(41), 7454–7461 (2016).
[Crossref]

M. Tao, T. Yu, Z. Wang, H. Chen, Y. Shen, G. Feng, and X. Ye, “Super-flat supercontinuum generation from a Tm-doped fiber amplifier,” Sci. Rep. 6(1), 23759 (2016).
[Crossref] [PubMed]

J. Koo, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Femtosecond harmonic mode-locking of a fiber laser at 3.27 GHz using a bulk-like, MoSe2-based saturable absorber,” Opt. Express 24(10), 10575–10589 (2016).
[Crossref] [PubMed]

2015 (7)

Z. Kang, M. Y. Liu, X. J. Gao, N. Li, S. Y. Yin, G. S. Qin, and W. P. Qin, “Mode-locked thulium-doped fiber laser at 1982 nm by using a gold nanorods saturable absorber,” Laser Phys. Lett. 12(4), 045105 (2015).
[Crossref]

X. D. Wang, Z. C. Luo, H. Liu, N. Zhao, M. Liu, Y. F. Zhu, J. P. Xue, A. P. Luo, and W. C. Xu, “Gold nanorods as saturable absorber for Q-switched Yb-doped fiber laser,” Opt. Commun. 346, 21–25 (2015).
[Crossref]

P. G. Yan, A. J. Liu, Y. S. Chen, H. Chen, S. C. Ruan, C. Y. Guo, S. F. Chen, I. L. Li, H. P. Yang, J. G. Hu, and G. Z. Cao, “Microfiber-based WS2-film saturable absorber for ultra-fast photonics,” Opt. Mater. Express 5(3), 479–489 (2015).
[Crossref]

R. I. Woodward, R. C. T. Howe, G. Hu, F. Torrisi, M. Zhang, T. Hasan, and E. J. R. Kelleher, “Few-layer MoS2 saturable absorbers for short-pulse laser technology: current status and future perspectives,” Photon. Res. 3(2), A30–A42 (2015).
[Crossref]

G. Sobon, J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “All-polarization maintaining, graphene-based femtosecond Tm-doped all-fiber laser,” Opt. Express 23(7), 9339–9346 (2015).
[Crossref] [PubMed]

S. B. Lu, L. L. Miao, Z. N. Guo, X. Qi, C. J. Zhao, H. Zhang, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material,” Opt. Express 23(9), 11183–11194 (2015).
[Crossref] [PubMed]

J. Koo, J. Lee, W. Shin, and J. H. Lee, “Large energy, all-fiberized Q-switched pulse laser using a GNRs/PVA saturable absorber,” Opt. Mater. Express 5(8), 1859–1867 (2015).
[Crossref]

2014 (7)

Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorods saturable absorber for passive mode-locking at 1 μm wavelength,” Laser Phys. Lett. 11(3), 035102 (2014).
[Crossref]

X. D. Wang, Z. C. Luo, H. Liu, M. Liu, A. P. Luo, and W. C. Xu, “Microfiber-based gold nanorods as saturable absorber for femtosecond pulse generation in a fiber laser,” Appl. Phys. Lett. 105(16), 161107 (2014).
[Crossref]

J. Sotor, G. Sobon, K. Grodecki, and K. M. Abramski, “Mode-locked erbium-doped fiber laser based on evanescent field interaction with Sb2Te3 topological insulator,” Appl. Phys. Lett. 104(25), 251112 (2014).
[Crossref]

C. W. Rudy, M. J. F. Digonnet, and R. L. Byer, “Advances in 2 μm Tm-doped mode-locked fiber lasers,” Opt. Fiber Technol. 20(6), 642–649 (2014).
[Crossref]

T. Hasan, Z. Sun, P. Tan, D. Popa, E. Flahaut, E. J. R. Kelleher, F. Bonaccorso, F. Wang, Z. Jiang, F. Torrisi, G. Privitera, V. Nicolosi, and A. C. Ferrari, “Double-wall carbon nanotubes for wide-band, ultrafast pulse generation,” ACS Nano 8(5), 4836–4847 (2014).
[Crossref] [PubMed]

L. Zhang and E. K. Wang, “Metal nanoclusters: new fluorescent probes for sensors and bioimaging,” Nano Today 9(1), 132–157 (2014).
[Crossref]

M. Jung, J. Lee, J. Koo, J. Park, Y. W. Song, K. Lee, S. Lee, and J. H. Lee, “A femtosecond pulse fiber laser at 1935 nm using a bulk-structured Bi2Te3 topological insulator,” Opt. Express 22(7), 7865–7874 (2014).
[Crossref] [PubMed]

2013 (2)

Z. Kang, Y. Xu, L. Zhang, Z. Jia, L. Liu, D. Zhao, Y. Feng, G. Qin, and W. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

Z. Li, A. M. Heidt, J. M. O. Daniel, Y. Jung, S. U. Alam, and D. J. Richardson, “Thulium-doped fiber amplifier for optical communications at 2 µm,” Opt. Express 21(8), 9289–9297 (2013).
[Crossref] [PubMed]

2012 (2)

M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express 20(22), 25077–25084 (2012).
[Crossref] [PubMed]

J. Olesiakbanska, M. Gordel, R. Kolkowski, K. Matczyszyn, and M. Samoc, “Third-order nonlinear optical properties of colloidal gold nanorods,” J. Phys. Chem. C 116(25), 13731–13737 (2012).
[Crossref]

2010 (1)

Y. W. Song, S. Y. Jang, W. S. Han, and M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett. 96(5), 051122 (2010).
[Crossref]

2009 (2)

2008 (1)

2007 (1)

2006 (2)

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[Crossref] [PubMed]

H. I. Elim, J. Yang, J. Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88(8), 083107 (2006).
[Crossref]

2005 (1)

N. M. Fried, “High-power laser vaporization of the canine prostate using a 110 W Thulium fiber laser at 1.91 microm,” Lasers Surg. Med. 36(1), 52–56 (2005).
[Crossref] [PubMed]

2004 (2)

M. C. Daniel and D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104(1), 293–346 (2004).
[Crossref] [PubMed]

S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Laser mode locking using a saturable absorber incorporating carbon nanotubes,” J. Lightwave Technol. 22(1), 51–56 (2004).
[Crossref]

2003 (1)

B. N. And and M. A. Elsayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater. 15(10), 1957–1962 (2003).
[Crossref]

2000 (1)

H. A. Haus, “Mode-locking of lasers,” IEEE J. Quantum Electron. 6(6), 1173–1185 (2000).
[Crossref]

1999 (1)

S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 103(16), 3073–3077 (1999).
[Crossref]

1997 (1)

S. S. Chang, C. L. Lee, and C. R. Chris Wang, “Gold nanorods: Electrochemical synthesis and optical properties,” J. Phys. Chem. B 101(34), 6661–6664 (1997).
[Crossref]

1985 (1)

V. S. Letokhov, “Laser biology and medicine,” Nature 316(6026), 325–330 (1985).
[Crossref] [PubMed]

Abramski, K. M.

G. Sobon, J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “All-polarization maintaining, graphene-based femtosecond Tm-doped all-fiber laser,” Opt. Express 23(7), 9339–9346 (2015).
[Crossref] [PubMed]

J. Sotor, G. Sobon, K. Grodecki, and K. M. Abramski, “Mode-locked erbium-doped fiber laser based on evanescent field interaction with Sb2Te3 topological insulator,” Appl. Phys. Lett. 104(25), 251112 (2014).
[Crossref]

Alam, S. U.

And, B. N.

B. N. And and M. A. Elsayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater. 15(10), 1957–1962 (2003).
[Crossref]

Astruc, D.

M. C. Daniel and D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104(1), 293–346 (2004).
[Crossref] [PubMed]

Bae, M. K.

Y. W. Song, S. Y. Jang, W. S. Han, and M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett. 96(5), 051122 (2010).
[Crossref]

Bonaccorso, F.

T. Hasan, Z. Sun, P. Tan, D. Popa, E. Flahaut, E. J. R. Kelleher, F. Bonaccorso, F. Wang, Z. Jiang, F. Torrisi, G. Privitera, V. Nicolosi, and A. C. Ferrari, “Double-wall carbon nanotubes for wide-band, ultrafast pulse generation,” ACS Nano 8(5), 4836–4847 (2014).
[Crossref] [PubMed]

Boriskina, S. V.

Byer, R. L.

C. W. Rudy, M. J. F. Digonnet, and R. L. Byer, “Advances in 2 μm Tm-doped mode-locked fiber lasers,” Opt. Fiber Technol. 20(6), 642–649 (2014).
[Crossref]

Cao, G. Z.

Chang, H. C.

Chang, S. S.

S. S. Chang, C. L. Lee, and C. R. Chris Wang, “Gold nanorods: Electrochemical synthesis and optical properties,” J. Phys. Chem. B 101(34), 6661–6664 (1997).
[Crossref]

Charipar, N.

J. Fontana, R. Nita, N. Charipar, J. Naciri, K. Park, A. Dunkelberger, J. Owrutsky, A. Pique, R. Vaia, and B. Ratna, “Widely tunable infrared plasmonic nanoantennas using directed assembly,” Adv. Opt. Mater. 5(21), 1700335 (2017).
[Crossref]

Chen, H.

Chen, S. F.

Chen, Y. S.

Chernov, A. I.

Chiu, K. P.

Chris Wang, C. R.

S. S. Chang, C. L. Lee, and C. R. Chris Wang, “Gold nanorods: Electrochemical synthesis and optical properties,” J. Phys. Chem. B 101(34), 6661–6664 (1997).
[Crossref]

Dal Negro, L.

Daniel, J. M. O.

Daniel, M. C.

M. C. Daniel and D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104(1), 293–346 (2004).
[Crossref] [PubMed]

Dianov, E. M.

Digonnet, M. J. F.

C. W. Rudy, M. J. F. Digonnet, and R. L. Byer, “Advances in 2 μm Tm-doped mode-locked fiber lasers,” Opt. Fiber Technol. 20(6), 642–649 (2014).
[Crossref]

Dunkelberger, A.

J. Fontana, R. Nita, N. Charipar, J. Naciri, K. Park, A. Dunkelberger, J. Owrutsky, A. Pique, R. Vaia, and B. Ratna, “Widely tunable infrared plasmonic nanoantennas using directed assembly,” Adv. Opt. Mater. 5(21), 1700335 (2017).
[Crossref]

Elim, H. I.

H. I. Elim, J. Yang, J. Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88(8), 083107 (2006).
[Crossref]

Elsayed, M. A.

B. N. And and M. A. Elsayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater. 15(10), 1957–1962 (2003).
[Crossref]

El-Sayed, I. H.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[Crossref] [PubMed]

El-Sayed, M. A.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[Crossref] [PubMed]

S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 103(16), 3073–3077 (1999).
[Crossref]

Fan, D. Y.

Feng, G.

M. Tao, T. Yu, Z. Wang, H. Chen, Y. Shen, G. Feng, and X. Ye, “Super-flat supercontinuum generation from a Tm-doped fiber amplifier,” Sci. Rep. 6(1), 23759 (2016).
[Crossref] [PubMed]

Feng, Y.

Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorods saturable absorber for passive mode-locking at 1 μm wavelength,” Laser Phys. Lett. 11(3), 035102 (2014).
[Crossref]

Z. Kang, Y. Xu, L. Zhang, Z. Jia, L. Liu, D. Zhao, Y. Feng, G. Qin, and W. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

Ferrari, A. C.

T. Hasan, Z. Sun, P. Tan, D. Popa, E. Flahaut, E. J. R. Kelleher, F. Bonaccorso, F. Wang, Z. Jiang, F. Torrisi, G. Privitera, V. Nicolosi, and A. C. Ferrari, “Double-wall carbon nanotubes for wide-band, ultrafast pulse generation,” ACS Nano 8(5), 4836–4847 (2014).
[Crossref] [PubMed]

M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express 20(22), 25077–25084 (2012).
[Crossref] [PubMed]

Flahaut, E.

T. Hasan, Z. Sun, P. Tan, D. Popa, E. Flahaut, E. J. R. Kelleher, F. Bonaccorso, F. Wang, Z. Jiang, F. Torrisi, G. Privitera, V. Nicolosi, and A. C. Ferrari, “Double-wall carbon nanotubes for wide-band, ultrafast pulse generation,” ACS Nano 8(5), 4836–4847 (2014).
[Crossref] [PubMed]

Fontana, J.

J. Fontana, R. Nita, N. Charipar, J. Naciri, K. Park, A. Dunkelberger, J. Owrutsky, A. Pique, R. Vaia, and B. Ratna, “Widely tunable infrared plasmonic nanoantennas using directed assembly,” Adv. Opt. Mater. 5(21), 1700335 (2017).
[Crossref]

Fried, N. M.

N. M. Fried, “High-power laser vaporization of the canine prostate using a 110 W Thulium fiber laser at 1.91 microm,” Lasers Surg. Med. 36(1), 52–56 (2005).
[Crossref] [PubMed]

Gao, X. J.

Z. Kang, M. Y. Liu, X. J. Gao, N. Li, S. Y. Yin, G. S. Qin, and W. P. Qin, “Mode-locked thulium-doped fiber laser at 1982 nm by using a gold nanorods saturable absorber,” Laser Phys. Lett. 12(4), 045105 (2015).
[Crossref]

Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorods saturable absorber for passive mode-locking at 1 μm wavelength,” Laser Phys. Lett. 11(3), 035102 (2014).
[Crossref]

Gopinath, A.

Gordel, M.

J. Olesiakbanska, M. Gordel, R. Kolkowski, K. Matczyszyn, and M. Samoc, “Third-order nonlinear optical properties of colloidal gold nanorods,” J. Phys. Chem. C 116(25), 13731–13737 (2012).
[Crossref]

Grodecki, K.

J. Sotor, G. Sobon, K. Grodecki, and K. M. Abramski, “Mode-locked erbium-doped fiber laser based on evanescent field interaction with Sb2Te3 topological insulator,” Appl. Phys. Lett. 104(25), 251112 (2014).
[Crossref]

Guo, C. Y.

Guo, Z. N.

Han, W. S.

Y. W. Song, S. Y. Jang, W. S. Han, and M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett. 96(5), 051122 (2010).
[Crossref]

Hasan, T.

Haus, H. A.

H. A. Haus, “Mode-locking of lasers,” IEEE J. Quantum Electron. 6(6), 1173–1185 (2000).
[Crossref]

He, T.

He, T. H.

Heidt, A. M.

Howe, R. C. T.

Hu, G.

Hu, J. G.

Huang, H. J.

Huang, X.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[Crossref] [PubMed]

Jablonski, M.

Jang, S. Y.

Y. W. Song, S. Y. Jang, W. S. Han, and M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett. 96(5), 051122 (2010).
[Crossref]

Jhon, Y.

J. Koo, Y. Jhon, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Near-infrared saturable absorption of defective bulk-structured WTe2 for femtosecond laser mode-locking,” Adv. Funct. Mater. 26(41), 7454–7461 (2016).
[Crossref]

Jhon, Y. M.

J. Koo, Y. Jhon, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Near-infrared saturable absorption of defective bulk-structured WTe2 for femtosecond laser mode-locking,” Adv. Funct. Mater. 26(41), 7454–7461 (2016).
[Crossref]

J. Koo, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Femtosecond harmonic mode-locking of a fiber laser at 3.27 GHz using a bulk-like, MoSe2-based saturable absorber,” Opt. Express 24(10), 10575–10589 (2016).
[Crossref] [PubMed]

Ji, W.

H. I. Elim, J. Yang, J. Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88(8), 083107 (2006).
[Crossref]

Jia, Z.

Z. Kang, Y. Xu, L. Zhang, Z. Jia, L. Liu, D. Zhao, Y. Feng, G. Qin, and W. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

Jia, Z. X.

Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorods saturable absorber for passive mode-locking at 1 μm wavelength,” Laser Phys. Lett. 11(3), 035102 (2014).
[Crossref]

Jiang, Z.

P. Yan, Z. Jiang, H. Chen, J. Yin, J. Lai, J. Wang, T. He, and J. Yang, “α-In2Se3 wideband optical modulator for pulsed fiber lasers,” Opt. Lett. 43(18), 4417–4420 (2018).
[Crossref] [PubMed]

T. Hasan, Z. Sun, P. Tan, D. Popa, E. Flahaut, E. J. R. Kelleher, F. Bonaccorso, F. Wang, Z. Jiang, F. Torrisi, G. Privitera, V. Nicolosi, and A. C. Ferrari, “Double-wall carbon nanotubes for wide-band, ultrafast pulse generation,” ACS Nano 8(5), 4836–4847 (2014).
[Crossref] [PubMed]

Jiang, Z. K.

Jung, M.

Jung, Y.

Kang, Z.

Z. Kang, M. Y. Liu, X. J. Gao, N. Li, S. Y. Yin, G. S. Qin, and W. P. Qin, “Mode-locked thulium-doped fiber laser at 1982 nm by using a gold nanorods saturable absorber,” Laser Phys. Lett. 12(4), 045105 (2015).
[Crossref]

Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorods saturable absorber for passive mode-locking at 1 μm wavelength,” Laser Phys. Lett. 11(3), 035102 (2014).
[Crossref]

Z. Kang, Y. Xu, L. Zhang, Z. Jia, L. Liu, D. Zhao, Y. Feng, G. Qin, and W. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

Kelleher, E. J. R.

Kieu, K.

K. Kieu and F. W. Wise, “Soliton thulium-doped fiber laser carbon nanotube saturable absorber,” IEEE Photonics Technol. Lett. 21(3), 128–130 (2009).
[Crossref] [PubMed]

Kolkowski, R.

J. Olesiakbanska, M. Gordel, R. Kolkowski, K. Matczyszyn, and M. Samoc, “Third-order nonlinear optical properties of colloidal gold nanorods,” J. Phys. Chem. C 116(25), 13731–13737 (2012).
[Crossref]

Konov, V. I.

Koo, J.

Krajewska, A.

Lai, J.

Lee, C. L.

S. S. Chang, C. L. Lee, and C. R. Chris Wang, “Gold nanorods: Electrochemical synthesis and optical properties,” J. Phys. Chem. B 101(34), 6661–6664 (1997).
[Crossref]

Lee, J.

Lee, J. H.

Lee, J. Y.

H. I. Elim, J. Yang, J. Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88(8), 083107 (2006).
[Crossref]

Lee, K.

Lee, S.

Letokhov, V. S.

V. S. Letokhov, “Laser biology and medicine,” Nature 316(6026), 325–330 (1985).
[Crossref] [PubMed]

Li, I. L.

Li, J. R.

Li, N.

Z. Kang, M. Y. Liu, X. J. Gao, N. Li, S. Y. Yin, G. S. Qin, and W. P. Qin, “Mode-locked thulium-doped fiber laser at 1982 nm by using a gold nanorods saturable absorber,” Laser Phys. Lett. 12(4), 045105 (2015).
[Crossref]

Li, Q.

Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorods saturable absorber for passive mode-locking at 1 μm wavelength,” Laser Phys. Lett. 11(3), 035102 (2014).
[Crossref]

Li, Z.

Link, S.

S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 103(16), 3073–3077 (1999).
[Crossref]

Liu, A. J.

Liu, H.

X. D. Wang, Z. C. Luo, H. Liu, N. Zhao, M. Liu, Y. F. Zhu, J. P. Xue, A. P. Luo, and W. C. Xu, “Gold nanorods as saturable absorber for Q-switched Yb-doped fiber laser,” Opt. Commun. 346, 21–25 (2015).
[Crossref]

X. D. Wang, Z. C. Luo, H. Liu, M. Liu, A. P. Luo, and W. C. Xu, “Microfiber-based gold nanorods as saturable absorber for femtosecond pulse generation in a fiber laser,” Appl. Phys. Lett. 105(16), 161107 (2014).
[Crossref]

Liu, L.

Z. Kang, Y. Xu, L. Zhang, Z. Jia, L. Liu, D. Zhao, Y. Feng, G. Qin, and W. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

Liu, M.

X. D. Wang, Z. C. Luo, M. Liu, R. Tang, A. P. Luo, and W. C. Xu, “Wavelength-switchable femtosecond pulse fiber laser mode-locked by silica-encased gold nanorods,” Laser Phys. Lett. 13(4), 045101 (2016).
[Crossref]

X. D. Wang, Z. C. Luo, H. Liu, N. Zhao, M. Liu, Y. F. Zhu, J. P. Xue, A. P. Luo, and W. C. Xu, “Gold nanorods as saturable absorber for Q-switched Yb-doped fiber laser,” Opt. Commun. 346, 21–25 (2015).
[Crossref]

X. D. Wang, Z. C. Luo, H. Liu, M. Liu, A. P. Luo, and W. C. Xu, “Microfiber-based gold nanorods as saturable absorber for femtosecond pulse generation in a fiber laser,” Appl. Phys. Lett. 105(16), 161107 (2014).
[Crossref]

Liu, M. Y.

Z. Kang, M. Y. Liu, X. J. Gao, N. Li, S. Y. Yin, G. S. Qin, and W. P. Qin, “Mode-locked thulium-doped fiber laser at 1982 nm by using a gold nanorods saturable absorber,” Laser Phys. Lett. 12(4), 045105 (2015).
[Crossref]

Liu, R. S.

Lobach, A. S.

Lu, S. B.

Luo, A. P.

X. D. Wang, Z. C. Luo, M. Liu, R. Tang, A. P. Luo, and W. C. Xu, “Wavelength-switchable femtosecond pulse fiber laser mode-locked by silica-encased gold nanorods,” Laser Phys. Lett. 13(4), 045101 (2016).
[Crossref]

X. D. Wang, Z. C. Luo, H. Liu, N. Zhao, M. Liu, Y. F. Zhu, J. P. Xue, A. P. Luo, and W. C. Xu, “Gold nanorods as saturable absorber for Q-switched Yb-doped fiber laser,” Opt. Commun. 346, 21–25 (2015).
[Crossref]

X. D. Wang, Z. C. Luo, H. Liu, M. Liu, A. P. Luo, and W. C. Xu, “Microfiber-based gold nanorods as saturable absorber for femtosecond pulse generation in a fiber laser,” Appl. Phys. Lett. 105(16), 161107 (2014).
[Crossref]

Luo, Z. C.

X. D. Wang, Z. C. Luo, M. Liu, R. Tang, A. P. Luo, and W. C. Xu, “Wavelength-switchable femtosecond pulse fiber laser mode-locked by silica-encased gold nanorods,” Laser Phys. Lett. 13(4), 045101 (2016).
[Crossref]

X. D. Wang, Z. C. Luo, H. Liu, N. Zhao, M. Liu, Y. F. Zhu, J. P. Xue, A. P. Luo, and W. C. Xu, “Gold nanorods as saturable absorber for Q-switched Yb-doped fiber laser,” Opt. Commun. 346, 21–25 (2015).
[Crossref]

X. D. Wang, Z. C. Luo, H. Liu, M. Liu, A. P. Luo, and W. C. Xu, “Microfiber-based gold nanorods as saturable absorber for femtosecond pulse generation in a fiber laser,” Appl. Phys. Lett. 105(16), 161107 (2014).
[Crossref]

Matczyszyn, K.

J. Olesiakbanska, M. Gordel, R. Kolkowski, K. Matczyszyn, and M. Samoc, “Third-order nonlinear optical properties of colloidal gold nanorods,” J. Phys. Chem. C 116(25), 13731–13737 (2012).
[Crossref]

Mi, J.

H. I. Elim, J. Yang, J. Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88(8), 083107 (2006).
[Crossref]

Miao, L. L.

Ming Chen, H.

Mohamed, M. B.

S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 103(16), 3073–3077 (1999).
[Crossref]

Naciri, J.

J. Fontana, R. Nita, N. Charipar, J. Naciri, K. Park, A. Dunkelberger, J. Owrutsky, A. Pique, R. Vaia, and B. Ratna, “Widely tunable infrared plasmonic nanoantennas using directed assembly,” Adv. Opt. Mater. 5(21), 1700335 (2017).
[Crossref]

Nicolosi, V.

T. Hasan, Z. Sun, P. Tan, D. Popa, E. Flahaut, E. J. R. Kelleher, F. Bonaccorso, F. Wang, Z. Jiang, F. Torrisi, G. Privitera, V. Nicolosi, and A. C. Ferrari, “Double-wall carbon nanotubes for wide-band, ultrafast pulse generation,” ACS Nano 8(5), 4836–4847 (2014).
[Crossref] [PubMed]

Nita, R.

J. Fontana, R. Nita, N. Charipar, J. Naciri, K. Park, A. Dunkelberger, J. Owrutsky, A. Pique, R. Vaia, and B. Ratna, “Widely tunable infrared plasmonic nanoantennas using directed assembly,” Adv. Opt. Mater. 5(21), 1700335 (2017).
[Crossref]

Obraztsova, E. D.

Olesiakbanska, J.

J. Olesiakbanska, M. Gordel, R. Kolkowski, K. Matczyszyn, and M. Samoc, “Third-order nonlinear optical properties of colloidal gold nanorods,” J. Phys. Chem. C 116(25), 13731–13737 (2012).
[Crossref]

Owrutsky, J.

J. Fontana, R. Nita, N. Charipar, J. Naciri, K. Park, A. Dunkelberger, J. Owrutsky, A. Pique, R. Vaia, and B. Ratna, “Widely tunable infrared plasmonic nanoantennas using directed assembly,” Adv. Opt. Mater. 5(21), 1700335 (2017).
[Crossref]

Park, J.

Park, K.

J. Fontana, R. Nita, N. Charipar, J. Naciri, K. Park, A. Dunkelberger, J. Owrutsky, A. Pique, R. Vaia, and B. Ratna, “Widely tunable infrared plasmonic nanoantennas using directed assembly,” Adv. Opt. Mater. 5(21), 1700335 (2017).
[Crossref]

Pasternak, I.

Pique, A.

J. Fontana, R. Nita, N. Charipar, J. Naciri, K. Park, A. Dunkelberger, J. Owrutsky, A. Pique, R. Vaia, and B. Ratna, “Widely tunable infrared plasmonic nanoantennas using directed assembly,” Adv. Opt. Mater. 5(21), 1700335 (2017).
[Crossref]

Popa, D.

T. Hasan, Z. Sun, P. Tan, D. Popa, E. Flahaut, E. J. R. Kelleher, F. Bonaccorso, F. Wang, Z. Jiang, F. Torrisi, G. Privitera, V. Nicolosi, and A. C. Ferrari, “Double-wall carbon nanotubes for wide-band, ultrafast pulse generation,” ACS Nano 8(5), 4836–4847 (2014).
[Crossref] [PubMed]

M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express 20(22), 25077–25084 (2012).
[Crossref] [PubMed]

Popov, S. V.

Privitera, G.

T. Hasan, Z. Sun, P. Tan, D. Popa, E. Flahaut, E. J. R. Kelleher, F. Bonaccorso, F. Wang, Z. Jiang, F. Torrisi, G. Privitera, V. Nicolosi, and A. C. Ferrari, “Double-wall carbon nanotubes for wide-band, ultrafast pulse generation,” ACS Nano 8(5), 4836–4847 (2014).
[Crossref] [PubMed]

Qi, X.

Qian, W.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[Crossref] [PubMed]

Qin, G.

Z. Kang, Y. Xu, L. Zhang, Z. Jia, L. Liu, D. Zhao, Y. Feng, G. Qin, and W. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

Qin, G. S.

Z. Kang, M. Y. Liu, X. J. Gao, N. Li, S. Y. Yin, G. S. Qin, and W. P. Qin, “Mode-locked thulium-doped fiber laser at 1982 nm by using a gold nanorods saturable absorber,” Laser Phys. Lett. 12(4), 045105 (2015).
[Crossref]

Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorods saturable absorber for passive mode-locking at 1 μm wavelength,” Laser Phys. Lett. 11(3), 035102 (2014).
[Crossref]

Qin, W.

Z. Kang, Y. Xu, L. Zhang, Z. Jia, L. Liu, D. Zhao, Y. Feng, G. Qin, and W. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

Qin, W. P.

Z. Kang, M. Y. Liu, X. J. Gao, N. Li, S. Y. Yin, G. S. Qin, and W. P. Qin, “Mode-locked thulium-doped fiber laser at 1982 nm by using a gold nanorods saturable absorber,” Laser Phys. Lett. 12(4), 045105 (2015).
[Crossref]

Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorods saturable absorber for passive mode-locking at 1 μm wavelength,” Laser Phys. Lett. 11(3), 035102 (2014).
[Crossref]

Ratna, B.

J. Fontana, R. Nita, N. Charipar, J. Naciri, K. Park, A. Dunkelberger, J. Owrutsky, A. Pique, R. Vaia, and B. Ratna, “Widely tunable infrared plasmonic nanoantennas using directed assembly,” Adv. Opt. Mater. 5(21), 1700335 (2017).
[Crossref]

Reinhard, B. M.

Richardson, D. J.

Ruan, S. C.

Rudy, C. W.

C. W. Rudy, M. J. F. Digonnet, and R. L. Byer, “Advances in 2 μm Tm-doped mode-locked fiber lasers,” Opt. Fiber Technol. 20(6), 642–649 (2014).
[Crossref]

Samoc, M.

J. Olesiakbanska, M. Gordel, R. Kolkowski, K. Matczyszyn, and M. Samoc, “Third-order nonlinear optical properties of colloidal gold nanorods,” J. Phys. Chem. C 116(25), 13731–13737 (2012).
[Crossref]

Set, S. Y.

Shen, Y.

M. Tao, T. Yu, Z. Wang, H. Chen, Y. Shen, G. Feng, and X. Ye, “Super-flat supercontinuum generation from a Tm-doped fiber amplifier,” Sci. Rep. 6(1), 23759 (2016).
[Crossref] [PubMed]

Shin, W.

Sobon, G.

G. Sobon, J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “All-polarization maintaining, graphene-based femtosecond Tm-doped all-fiber laser,” Opt. Express 23(7), 9339–9346 (2015).
[Crossref] [PubMed]

J. Sotor, G. Sobon, K. Grodecki, and K. M. Abramski, “Mode-locked erbium-doped fiber laser based on evanescent field interaction with Sb2Te3 topological insulator,” Appl. Phys. Lett. 104(25), 251112 (2014).
[Crossref]

Solodyankin, M. A.

Song, Y. W.

M. Jung, J. Lee, J. Koo, J. Park, Y. W. Song, K. Lee, S. Lee, and J. H. Lee, “A femtosecond pulse fiber laser at 1935 nm using a bulk-structured Bi2Te3 topological insulator,” Opt. Express 22(7), 7865–7874 (2014).
[Crossref] [PubMed]

Y. W. Song, S. Y. Jang, W. S. Han, and M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett. 96(5), 051122 (2010).
[Crossref]

Sotor, J.

G. Sobon, J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “All-polarization maintaining, graphene-based femtosecond Tm-doped all-fiber laser,” Opt. Express 23(7), 9339–9346 (2015).
[Crossref] [PubMed]

J. Sotor, G. Sobon, K. Grodecki, and K. M. Abramski, “Mode-locked erbium-doped fiber laser based on evanescent field interaction with Sb2Te3 topological insulator,” Appl. Phys. Lett. 104(25), 251112 (2014).
[Crossref]

Strupinski, W.

Sun, Z.

T. Hasan, Z. Sun, P. Tan, D. Popa, E. Flahaut, E. J. R. Kelleher, F. Bonaccorso, F. Wang, Z. Jiang, F. Torrisi, G. Privitera, V. Nicolosi, and A. C. Ferrari, “Double-wall carbon nanotubes for wide-band, ultrafast pulse generation,” ACS Nano 8(5), 4836–4847 (2014).
[Crossref] [PubMed]

M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express 20(22), 25077–25084 (2012).
[Crossref] [PubMed]

Tan, P.

T. Hasan, Z. Sun, P. Tan, D. Popa, E. Flahaut, E. J. R. Kelleher, F. Bonaccorso, F. Wang, Z. Jiang, F. Torrisi, G. Privitera, V. Nicolosi, and A. C. Ferrari, “Double-wall carbon nanotubes for wide-band, ultrafast pulse generation,” ACS Nano 8(5), 4836–4847 (2014).
[Crossref] [PubMed]

Tanaka, Y.

Tang, D. Y.

Tang, R.

X. D. Wang, Z. C. Luo, M. Liu, R. Tang, A. P. Luo, and W. C. Xu, “Wavelength-switchable femtosecond pulse fiber laser mode-locked by silica-encased gold nanorods,” Laser Phys. Lett. 13(4), 045101 (2016).
[Crossref]

Tao, M.

M. Tao, T. Yu, Z. Wang, H. Chen, Y. Shen, G. Feng, and X. Ye, “Super-flat supercontinuum generation from a Tm-doped fiber amplifier,” Sci. Rep. 6(1), 23759 (2016).
[Crossref] [PubMed]

Tausenev, A. V.

Taylor, J. R.

Torrisi, F.

Tsai, D. P.

Vaia, R.

J. Fontana, R. Nita, N. Charipar, J. Naciri, K. Park, A. Dunkelberger, J. Owrutsky, A. Pique, R. Vaia, and B. Ratna, “Widely tunable infrared plasmonic nanoantennas using directed assembly,” Adv. Opt. Mater. 5(21), 1700335 (2017).
[Crossref]

Wang, E. K.

L. Zhang and E. K. Wang, “Metal nanoclusters: new fluorescent probes for sensors and bioimaging,” Nano Today 9(1), 132–157 (2014).
[Crossref]

Wang, F.

T. Hasan, Z. Sun, P. Tan, D. Popa, E. Flahaut, E. J. R. Kelleher, F. Bonaccorso, F. Wang, Z. Jiang, F. Torrisi, G. Privitera, V. Nicolosi, and A. C. Ferrari, “Double-wall carbon nanotubes for wide-band, ultrafast pulse generation,” ACS Nano 8(5), 4836–4847 (2014).
[Crossref] [PubMed]

M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express 20(22), 25077–25084 (2012).
[Crossref] [PubMed]

Wang, J.

Wang, J. T.

Wang, J. Z.

Wang, X. D.

X. D. Wang, Z. C. Luo, M. Liu, R. Tang, A. P. Luo, and W. C. Xu, “Wavelength-switchable femtosecond pulse fiber laser mode-locked by silica-encased gold nanorods,” Laser Phys. Lett. 13(4), 045101 (2016).
[Crossref]

X. D. Wang, Z. C. Luo, H. Liu, N. Zhao, M. Liu, Y. F. Zhu, J. P. Xue, A. P. Luo, and W. C. Xu, “Gold nanorods as saturable absorber for Q-switched Yb-doped fiber laser,” Opt. Commun. 346, 21–25 (2015).
[Crossref]

X. D. Wang, Z. C. Luo, H. Liu, M. Liu, A. P. Luo, and W. C. Xu, “Microfiber-based gold nanorods as saturable absorber for femtosecond pulse generation in a fiber laser,” Appl. Phys. Lett. 105(16), 161107 (2014).
[Crossref]

Wang, Z.

M. Tao, T. Yu, Z. Wang, H. Chen, Y. Shen, G. Feng, and X. Ye, “Super-flat supercontinuum generation from a Tm-doped fiber amplifier,” Sci. Rep. 6(1), 23759 (2016).
[Crossref] [PubMed]

Wen, S. C.

Wise, F. W.

K. Kieu and F. W. Wise, “Soliton thulium-doped fiber laser carbon nanotube saturable absorber,” IEEE Photonics Technol. Lett. 21(3), 128–130 (2009).
[Crossref] [PubMed]

Woodward, R. I.

Xu, W. C.

X. D. Wang, Z. C. Luo, M. Liu, R. Tang, A. P. Luo, and W. C. Xu, “Wavelength-switchable femtosecond pulse fiber laser mode-locked by silica-encased gold nanorods,” Laser Phys. Lett. 13(4), 045101 (2016).
[Crossref]

X. D. Wang, Z. C. Luo, H. Liu, N. Zhao, M. Liu, Y. F. Zhu, J. P. Xue, A. P. Luo, and W. C. Xu, “Gold nanorods as saturable absorber for Q-switched Yb-doped fiber laser,” Opt. Commun. 346, 21–25 (2015).
[Crossref]

X. D. Wang, Z. C. Luo, H. Liu, M. Liu, A. P. Luo, and W. C. Xu, “Microfiber-based gold nanorods as saturable absorber for femtosecond pulse generation in a fiber laser,” Appl. Phys. Lett. 105(16), 161107 (2014).
[Crossref]

Xu, Y.

Z. Kang, Y. Xu, L. Zhang, Z. Jia, L. Liu, D. Zhao, Y. Feng, G. Qin, and W. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

Xue, J. P.

X. D. Wang, Z. C. Luo, H. Liu, N. Zhao, M. Liu, Y. F. Zhu, J. P. Xue, A. P. Luo, and W. C. Xu, “Gold nanorods as saturable absorber for Q-switched Yb-doped fiber laser,” Opt. Commun. 346, 21–25 (2015).
[Crossref]

Yaguchi, H.

Yan, P.

Yan, P. G.

Yang, H. P.

Yang, J.

P. Yan, Z. Jiang, H. Chen, J. Yin, J. Lai, J. Wang, T. He, and J. Yang, “α-In2Se3 wideband optical modulator for pulsed fiber lasers,” Opt. Lett. 43(18), 4417–4420 (2018).
[Crossref] [PubMed]

H. I. Elim, J. Yang, J. Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88(8), 083107 (2006).
[Crossref]

Ye, X.

M. Tao, T. Yu, Z. Wang, H. Chen, Y. Shen, G. Feng, and X. Ye, “Super-flat supercontinuum generation from a Tm-doped fiber amplifier,” Sci. Rep. 6(1), 23759 (2016).
[Crossref] [PubMed]

Yin, J.

Yin, J. D.

Yin, S. Y.

Z. Kang, M. Y. Liu, X. J. Gao, N. Li, S. Y. Yin, G. S. Qin, and W. P. Qin, “Mode-locked thulium-doped fiber laser at 1982 nm by using a gold nanorods saturable absorber,” Laser Phys. Lett. 12(4), 045105 (2015).
[Crossref]

Yu, C. P.

Yu, T.

M. Tao, T. Yu, Z. Wang, H. Chen, Y. Shen, G. Feng, and X. Ye, “Super-flat supercontinuum generation from a Tm-doped fiber amplifier,” Sci. Rep. 6(1), 23759 (2016).
[Crossref] [PubMed]

Zhang, H.

Zhang, L.

L. Zhang and E. K. Wang, “Metal nanoclusters: new fluorescent probes for sensors and bioimaging,” Nano Today 9(1), 132–157 (2014).
[Crossref]

Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorods saturable absorber for passive mode-locking at 1 μm wavelength,” Laser Phys. Lett. 11(3), 035102 (2014).
[Crossref]

Z. Kang, Y. Xu, L. Zhang, Z. Jia, L. Liu, D. Zhao, Y. Feng, G. Qin, and W. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

Zhang, M.

Zhao, C. J.

Zhao, D.

Z. Kang, Y. Xu, L. Zhang, Z. Jia, L. Liu, D. Zhao, Y. Feng, G. Qin, and W. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

Zhao, N.

X. D. Wang, Z. C. Luo, H. Liu, N. Zhao, M. Liu, Y. F. Zhu, J. P. Xue, A. P. Luo, and W. C. Xu, “Gold nanorods as saturable absorber for Q-switched Yb-doped fiber laser,” Opt. Commun. 346, 21–25 (2015).
[Crossref]

Zhu, Y. F.

X. D. Wang, Z. C. Luo, H. Liu, N. Zhao, M. Liu, Y. F. Zhu, J. P. Xue, A. P. Luo, and W. C. Xu, “Gold nanorods as saturable absorber for Q-switched Yb-doped fiber laser,” Opt. Commun. 346, 21–25 (2015).
[Crossref]

ACS Nano (1)

T. Hasan, Z. Sun, P. Tan, D. Popa, E. Flahaut, E. J. R. Kelleher, F. Bonaccorso, F. Wang, Z. Jiang, F. Torrisi, G. Privitera, V. Nicolosi, and A. C. Ferrari, “Double-wall carbon nanotubes for wide-band, ultrafast pulse generation,” ACS Nano 8(5), 4836–4847 (2014).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

J. Koo, Y. Jhon, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Near-infrared saturable absorption of defective bulk-structured WTe2 for femtosecond laser mode-locking,” Adv. Funct. Mater. 26(41), 7454–7461 (2016).
[Crossref]

Adv. Opt. Mater. (1)

J. Fontana, R. Nita, N. Charipar, J. Naciri, K. Park, A. Dunkelberger, J. Owrutsky, A. Pique, R. Vaia, and B. Ratna, “Widely tunable infrared plasmonic nanoantennas using directed assembly,” Adv. Opt. Mater. 5(21), 1700335 (2017).
[Crossref]

Appl. Phys. Lett. (5)

H. I. Elim, J. Yang, J. Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88(8), 083107 (2006).
[Crossref]

Z. Kang, Y. Xu, L. Zhang, Z. Jia, L. Liu, D. Zhao, Y. Feng, G. Qin, and W. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

X. D. Wang, Z. C. Luo, H. Liu, M. Liu, A. P. Luo, and W. C. Xu, “Microfiber-based gold nanorods as saturable absorber for femtosecond pulse generation in a fiber laser,” Appl. Phys. Lett. 105(16), 161107 (2014).
[Crossref]

J. Sotor, G. Sobon, K. Grodecki, and K. M. Abramski, “Mode-locked erbium-doped fiber laser based on evanescent field interaction with Sb2Te3 topological insulator,” Appl. Phys. Lett. 104(25), 251112 (2014).
[Crossref]

Y. W. Song, S. Y. Jang, W. S. Han, and M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett. 96(5), 051122 (2010).
[Crossref]

Chem. Mater. (1)

B. N. And and M. A. Elsayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater. 15(10), 1957–1962 (2003).
[Crossref]

Chem. Rev. (1)

M. C. Daniel and D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104(1), 293–346 (2004).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (1)

H. A. Haus, “Mode-locking of lasers,” IEEE J. Quantum Electron. 6(6), 1173–1185 (2000).
[Crossref]

IEEE Photonics Technol. Lett. (1)

K. Kieu and F. W. Wise, “Soliton thulium-doped fiber laser carbon nanotube saturable absorber,” IEEE Photonics Technol. Lett. 21(3), 128–130 (2009).
[Crossref] [PubMed]

J. Am. Chem. Soc. (1)

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[Crossref] [PubMed]

J. Lightwave Technol. (1)

J. Phys. Chem. B (2)

S. S. Chang, C. L. Lee, and C. R. Chris Wang, “Gold nanorods: Electrochemical synthesis and optical properties,” J. Phys. Chem. B 101(34), 6661–6664 (1997).
[Crossref]

S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 103(16), 3073–3077 (1999).
[Crossref]

J. Phys. Chem. C (1)

J. Olesiakbanska, M. Gordel, R. Kolkowski, K. Matczyszyn, and M. Samoc, “Third-order nonlinear optical properties of colloidal gold nanorods,” J. Phys. Chem. C 116(25), 13731–13737 (2012).
[Crossref]

Laser Phys. Lett. (3)

Z. Kang, M. Y. Liu, X. J. Gao, N. Li, S. Y. Yin, G. S. Qin, and W. P. Qin, “Mode-locked thulium-doped fiber laser at 1982 nm by using a gold nanorods saturable absorber,” Laser Phys. Lett. 12(4), 045105 (2015).
[Crossref]

Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorods saturable absorber for passive mode-locking at 1 μm wavelength,” Laser Phys. Lett. 11(3), 035102 (2014).
[Crossref]

X. D. Wang, Z. C. Luo, M. Liu, R. Tang, A. P. Luo, and W. C. Xu, “Wavelength-switchable femtosecond pulse fiber laser mode-locked by silica-encased gold nanorods,” Laser Phys. Lett. 13(4), 045101 (2016).
[Crossref]

Lasers Surg. Med. (1)

N. M. Fried, “High-power laser vaporization of the canine prostate using a 110 W Thulium fiber laser at 1.91 microm,” Lasers Surg. Med. 36(1), 52–56 (2005).
[Crossref] [PubMed]

Nano Today (1)

L. Zhang and E. K. Wang, “Metal nanoclusters: new fluorescent probes for sensors and bioimaging,” Nano Today 9(1), 132–157 (2014).
[Crossref]

Nature (1)

V. S. Letokhov, “Laser biology and medicine,” Nature 316(6026), 325–330 (1985).
[Crossref] [PubMed]

Opt. Commun. (1)

X. D. Wang, Z. C. Luo, H. Liu, N. Zhao, M. Liu, Y. F. Zhu, J. P. Xue, A. P. Luo, and W. C. Xu, “Gold nanorods as saturable absorber for Q-switched Yb-doped fiber laser,” Opt. Commun. 346, 21–25 (2015).
[Crossref]

Opt. Express (8)

G. Sobon, J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “All-polarization maintaining, graphene-based femtosecond Tm-doped all-fiber laser,” Opt. Express 23(7), 9339–9346 (2015).
[Crossref] [PubMed]

S. B. Lu, L. L. Miao, Z. N. Guo, X. Qi, C. J. Zhao, H. Zhang, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material,” Opt. Express 23(9), 11183–11194 (2015).
[Crossref] [PubMed]

J. Koo, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Femtosecond harmonic mode-locking of a fiber laser at 3.27 GHz using a bulk-like, MoSe2-based saturable absorber,” Opt. Express 24(10), 10575–10589 (2016).
[Crossref] [PubMed]

H. J. Huang, C. P. Yu, H. C. Chang, K. P. Chiu, H. Ming Chen, R. S. Liu, and D. P. Tsai, “Plasmonic optical properties of a single gold nano-rod,” Opt. Express 15(12), 7132–7139 (2007).
[Crossref] [PubMed]

A. Gopinath, S. V. Boriskina, B. M. Reinhard, and L. Dal Negro, “Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering (SERS),” Opt. Express 17(5), 3741–3753 (2009).
[Crossref] [PubMed]

M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express 20(22), 25077–25084 (2012).
[Crossref] [PubMed]

Z. Li, A. M. Heidt, J. M. O. Daniel, Y. Jung, S. U. Alam, and D. J. Richardson, “Thulium-doped fiber amplifier for optical communications at 2 µm,” Opt. Express 21(8), 9289–9297 (2013).
[Crossref] [PubMed]

M. Jung, J. Lee, J. Koo, J. Park, Y. W. Song, K. Lee, S. Lee, and J. H. Lee, “A femtosecond pulse fiber laser at 1935 nm using a bulk-structured Bi2Te3 topological insulator,” Opt. Express 22(7), 7865–7874 (2014).
[Crossref] [PubMed]

Opt. Fiber Technol. (1)

C. W. Rudy, M. J. F. Digonnet, and R. L. Byer, “Advances in 2 μm Tm-doped mode-locked fiber lasers,” Opt. Fiber Technol. 20(6), 642–649 (2014).
[Crossref]

Opt. Lett. (2)

Opt. Mater. Express (2)

Photon. Res. (2)

Sci. Rep. (1)

M. Tao, T. Yu, Z. Wang, H. Chen, Y. Shen, G. Feng, and X. Ye, “Super-flat supercontinuum generation from a Tm-doped fiber amplifier,” Sci. Rep. 6(1), 23759 (2016).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Characterization of as-synthesized GNRs: (a) TEM image of GNRs. (b) Aspect ratio distribution of GNRs.
Fig. 2
Fig. 2 (a) The experimental setup of the fabrication MF-GNRs SA, (b) The SEM image of MF-GNRs SA, Inset: SEM image of the GNRs deposited on the waist of microfiber, (c) Scattering evanescent field of the MF-GNRs SA through launching the red-light.
Fig. 3
Fig. 3 (a) The absorption spectra of GNRs solution, GNRs film and (b) MF-GNRs SA. Insets of (a): photographs of GNRs solution and film. Inset of (b): photograph of MF-GNRs SA.
Fig. 4
Fig. 4 The dependence of the transmittance on the incident pump peak power density of MF-GNRs SA.
Fig. 5
Fig. 5 The schematic of MF-GNRs SA based fiber laser cavity.
Fig. 6
Fig. 6 Mode-locked laser characterization in TDF laser cavity with MF-GNRs SA: (a) Emission spectrum, (b) Pulse train, (c) Single pulse profile, and (d) Output power versus pump power.
Fig. 7
Fig. 7 Radio frequency (RF) spectrum of the mode-locked laser. Inset: RF spectrum for a wide span of 500 MHz.
Fig. 8
Fig. 8 Long-term stability of the mode-locked laser operation.

Metrics