Abstract

We have demonstrated a reduction in the prevalence of surface defect states in FeS2 iron pyrite thin films by encapsulating them with ZnS. Thin films of FeS2 were grown and encapsulated, without exposure to atmosphere, by a variety of films. X-ray photoelectron spectroscopy (XPS) measurements, using a novel technique that permits us to selectively probe the FeS2-capping layer interface, show a reduction in the surface defect state characterized by the sulfur 2p doublet for ZnS-encapsulated films. We further present an atomistic density functional theory (DFT) model that explains this effect based on epitaxial bonding of FeS2 and ZnS across their interface.

Full Article  |  PDF Article
OSA Recommended Articles
Luminescence enhancement of ZnO-core/a-SiNx:H-shell nanorod arrays

Rui Huang, Shuigang Xu, Yanqing Guo, Wenhao Guo, Xiang Wang, Chao Song, Jie Song, Lin Wang, Kin Ming Ho, and Ning Wang
Opt. Express 21(5) 5891-5896 (2013)

Direct formation of InN-codoped p-ZnO/n-GaN heterojunction diode by solgel spin-coating scheme

Chun-Ying Huang, Ya-Ju Lee, Tai-Yuan Lin, Shao-Lun Chang, Jan-Tian Lian, Hsiu-Mei Lin, Nie-Chuan Chen, and Ying-Jay Yang
Opt. Lett. 39(4) 805-808 (2014)

Effective control over near band-edge emission in ZnO/CuO multilayered films

Bunyod Allabergenov, Ulugbek Shaislamov, Hyunseok Shim, Myeong-Jae Lee, Anvar Matnazarov, and Byeongdae Choi
Opt. Mater. Express 7(2) 494-502 (2017)

References

  • View by:
  • |
  • |
  • |

  1. C. Wadia, A. P. Alivisatos, and D. M. Kammen, “Materials availability expands the opportunity for large-scale photovoltaics deployment,” Environ. Sci. Technol. 43(6), 2072–2077 (2009).
    [Crossref] [PubMed]
  2. A. Ennaoui, S. Fiechter, C. Pettenkofer, N. Alonso-Vante, K. Büker, M. Bronold, C. Höpfner, and H. Tributsch, “Iron disulfide for solar energy conversion,” Sol. Energy Mater. Sol. Cells 29(4), 289–370 (1993).
    [Crossref]
  3. M. Alam Khan, J. C. Sarker, S. Lee, S. C. Mangham, and M. O. Manasreh, “Synthesis, characterization and processing of cubic iron pyrite nanocrystals in a photovoltaic cell,” Mater. Chem. Phys. 148(3), 1022–1028 (2014).
    [Crossref]
  4. A. Ennaoui, S. Fiechter, H. Tributsch, M. Giersig, R. Vogel, and H. Weller, “Photoelectrochemical energy conversion obtained with ultrathin organo‐metallic‐chemical‐vapor‐deposition Layer of FeS2 (pyrite) on TiO2,” J. Electrochem. Soc. 139(9), 2514–2518 (1992).
    [Crossref]
  5. A. Ennaoui, S. Fiechter, W. Jaegermann, and H. Tributsch, “Photoelectrochemistry of highly quantum efficient single‐crystalline n ‐ FeS2 (pyrite),” J. Electrochem. Soc. 133(1), 97–106 (1986).
    [Crossref]
  6. M. Bronold, Y. Tomm, and W. Jaegermann, “Surface states on cubic d-band semiconductor pyrite (FeS2),” Surf. Sci. 314(3), L931–L936 (1994).
    [Crossref]
  7. R. Sun, M. K. Y. Chan, and G. Ceder, “First-principles electronic structure and relative stability of pyrite and marcasite: Implications for photovoltaic performance,” Phys. Rev. B 83(23), 235311 (2011).
    [Crossref]
  8. X. Zhang, M. Li, J. Walter, L. O’Brien, M. A. Manno, B. Voigt, F. Mork, S. V. Baryshev, J. Kakalios, E. S. Aydil, and C. Leighton, “Potential resolution to the doping puzzle in iron pyrite: Carrier type determination by Hall effect and thermopower,” Phys. Rev. Mater. 1(1), 015402 (2017).
    [Crossref]
  9. R. Murphy and D. R. Strongin, “Surface reactivity of pyrite and related sulfides,” Surf. Sci. Rep. 64(1), 1–45 (2009).
    [Crossref]
  10. J. Puthussery, S. Seefeld, N. Berry, M. Gibbs, and M. Law, “Colloidal iron pyrite (FeS2) nanocrystal inks for thin-film photovoltaics,” J. Am. Chem. Soc. 133(4), 716–719 (2011).
    [Crossref] [PubMed]
  11. D. Liang, M. Cabán-Acevedo, N. S. Kaiser, and S. Jin, “Gated Hall effect of nanoplate devices reveals surface-state-induced surface inversion in iron pyrite semiconductor,” Nano Lett. 14(12), 6754–6760 (2014).
    [Crossref] [PubMed]
  12. M. Limpinsel, N. Farhi, N. Berry, J. Lindemuth, C. L. Perkins, Q. Lin, and M. Law, “An inversion layer at the surface of n-type iron pyrite,” Energy Environ. Sci. 7(6), 1974–1989 (2014).
    [Crossref]
  13. Y. N. Zhang, J. Hu, M. Law, and R. Q. Wu, “Effect of surface stoichiometry on the band gap of the pyrite FeS2 (100) surface,” Phys. Rev. B 85(8), 085314 (2012).
    [Crossref]
  14. I. N. Yakovkin and N. V. Petrova, “Influence of the thickness and surface composition on the electronic structure of FeS2 layers,” Appl. Surf. Sci. 377, 184–190 (2016).
    [Crossref]
  15. K. Laajalehto, I. Kartio, and P. Nowak, “XPS study of clean metal sulfide surfaces,” Appl. Surf. Sci. 81(1), 11–15 (1994).
    [Crossref]
  16. J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
    [Crossref] [PubMed]
  17. G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B Condens. Matter 54(16), 11169–11186 (1996).
    [Crossref] [PubMed]
  18. S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, “Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study,” Phys. Rev. B 57(3), 1505–1509 (1998).
    [Crossref]
  19. C. G. Van de Walle and R. M. Martin, “Theoretical study of band offsets at semiconductor interfaces,” Phys. Rev. B 35(15), 8154–8165 (1987).
  20. J. M. Guevremont, A. R. Elseinow, D. R. Strongin, J. Bebie, and M. A. A. Schoonen, “Structure sensitivity of pyrite oxidation; comparison of the (100) and (111) planes,” Am. Mineral. 83(11–12), 1353–1356 (1998).

2017 (1)

X. Zhang, M. Li, J. Walter, L. O’Brien, M. A. Manno, B. Voigt, F. Mork, S. V. Baryshev, J. Kakalios, E. S. Aydil, and C. Leighton, “Potential resolution to the doping puzzle in iron pyrite: Carrier type determination by Hall effect and thermopower,” Phys. Rev. Mater. 1(1), 015402 (2017).
[Crossref]

2016 (1)

I. N. Yakovkin and N. V. Petrova, “Influence of the thickness and surface composition on the electronic structure of FeS2 layers,” Appl. Surf. Sci. 377, 184–190 (2016).
[Crossref]

2014 (3)

D. Liang, M. Cabán-Acevedo, N. S. Kaiser, and S. Jin, “Gated Hall effect of nanoplate devices reveals surface-state-induced surface inversion in iron pyrite semiconductor,” Nano Lett. 14(12), 6754–6760 (2014).
[Crossref] [PubMed]

M. Limpinsel, N. Farhi, N. Berry, J. Lindemuth, C. L. Perkins, Q. Lin, and M. Law, “An inversion layer at the surface of n-type iron pyrite,” Energy Environ. Sci. 7(6), 1974–1989 (2014).
[Crossref]

M. Alam Khan, J. C. Sarker, S. Lee, S. C. Mangham, and M. O. Manasreh, “Synthesis, characterization and processing of cubic iron pyrite nanocrystals in a photovoltaic cell,” Mater. Chem. Phys. 148(3), 1022–1028 (2014).
[Crossref]

2012 (1)

Y. N. Zhang, J. Hu, M. Law, and R. Q. Wu, “Effect of surface stoichiometry on the band gap of the pyrite FeS2 (100) surface,” Phys. Rev. B 85(8), 085314 (2012).
[Crossref]

2011 (2)

R. Sun, M. K. Y. Chan, and G. Ceder, “First-principles electronic structure and relative stability of pyrite and marcasite: Implications for photovoltaic performance,” Phys. Rev. B 83(23), 235311 (2011).
[Crossref]

J. Puthussery, S. Seefeld, N. Berry, M. Gibbs, and M. Law, “Colloidal iron pyrite (FeS2) nanocrystal inks for thin-film photovoltaics,” J. Am. Chem. Soc. 133(4), 716–719 (2011).
[Crossref] [PubMed]

2009 (2)

R. Murphy and D. R. Strongin, “Surface reactivity of pyrite and related sulfides,” Surf. Sci. Rep. 64(1), 1–45 (2009).
[Crossref]

C. Wadia, A. P. Alivisatos, and D. M. Kammen, “Materials availability expands the opportunity for large-scale photovoltaics deployment,” Environ. Sci. Technol. 43(6), 2072–2077 (2009).
[Crossref] [PubMed]

1998 (2)

S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, “Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study,” Phys. Rev. B 57(3), 1505–1509 (1998).
[Crossref]

J. M. Guevremont, A. R. Elseinow, D. R. Strongin, J. Bebie, and M. A. A. Schoonen, “Structure sensitivity of pyrite oxidation; comparison of the (100) and (111) planes,” Am. Mineral. 83(11–12), 1353–1356 (1998).

1996 (2)

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
[Crossref] [PubMed]

G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B Condens. Matter 54(16), 11169–11186 (1996).
[Crossref] [PubMed]

1994 (2)

K. Laajalehto, I. Kartio, and P. Nowak, “XPS study of clean metal sulfide surfaces,” Appl. Surf. Sci. 81(1), 11–15 (1994).
[Crossref]

M. Bronold, Y. Tomm, and W. Jaegermann, “Surface states on cubic d-band semiconductor pyrite (FeS2),” Surf. Sci. 314(3), L931–L936 (1994).
[Crossref]

1993 (1)

A. Ennaoui, S. Fiechter, C. Pettenkofer, N. Alonso-Vante, K. Büker, M. Bronold, C. Höpfner, and H. Tributsch, “Iron disulfide for solar energy conversion,” Sol. Energy Mater. Sol. Cells 29(4), 289–370 (1993).
[Crossref]

1992 (1)

A. Ennaoui, S. Fiechter, H. Tributsch, M. Giersig, R. Vogel, and H. Weller, “Photoelectrochemical energy conversion obtained with ultrathin organo‐metallic‐chemical‐vapor‐deposition Layer of FeS2 (pyrite) on TiO2,” J. Electrochem. Soc. 139(9), 2514–2518 (1992).
[Crossref]

1987 (1)

C. G. Van de Walle and R. M. Martin, “Theoretical study of band offsets at semiconductor interfaces,” Phys. Rev. B 35(15), 8154–8165 (1987).

1986 (1)

A. Ennaoui, S. Fiechter, W. Jaegermann, and H. Tributsch, “Photoelectrochemistry of highly quantum efficient single‐crystalline n ‐ FeS2 (pyrite),” J. Electrochem. Soc. 133(1), 97–106 (1986).
[Crossref]

Alam Khan, M.

M. Alam Khan, J. C. Sarker, S. Lee, S. C. Mangham, and M. O. Manasreh, “Synthesis, characterization and processing of cubic iron pyrite nanocrystals in a photovoltaic cell,” Mater. Chem. Phys. 148(3), 1022–1028 (2014).
[Crossref]

Alivisatos, A. P.

C. Wadia, A. P. Alivisatos, and D. M. Kammen, “Materials availability expands the opportunity for large-scale photovoltaics deployment,” Environ. Sci. Technol. 43(6), 2072–2077 (2009).
[Crossref] [PubMed]

Alonso-Vante, N.

A. Ennaoui, S. Fiechter, C. Pettenkofer, N. Alonso-Vante, K. Büker, M. Bronold, C. Höpfner, and H. Tributsch, “Iron disulfide for solar energy conversion,” Sol. Energy Mater. Sol. Cells 29(4), 289–370 (1993).
[Crossref]

Aydil, E. S.

X. Zhang, M. Li, J. Walter, L. O’Brien, M. A. Manno, B. Voigt, F. Mork, S. V. Baryshev, J. Kakalios, E. S. Aydil, and C. Leighton, “Potential resolution to the doping puzzle in iron pyrite: Carrier type determination by Hall effect and thermopower,” Phys. Rev. Mater. 1(1), 015402 (2017).
[Crossref]

Baryshev, S. V.

X. Zhang, M. Li, J. Walter, L. O’Brien, M. A. Manno, B. Voigt, F. Mork, S. V. Baryshev, J. Kakalios, E. S. Aydil, and C. Leighton, “Potential resolution to the doping puzzle in iron pyrite: Carrier type determination by Hall effect and thermopower,” Phys. Rev. Mater. 1(1), 015402 (2017).
[Crossref]

Bebie, J.

J. M. Guevremont, A. R. Elseinow, D. R. Strongin, J. Bebie, and M. A. A. Schoonen, “Structure sensitivity of pyrite oxidation; comparison of the (100) and (111) planes,” Am. Mineral. 83(11–12), 1353–1356 (1998).

Berry, N.

M. Limpinsel, N. Farhi, N. Berry, J. Lindemuth, C. L. Perkins, Q. Lin, and M. Law, “An inversion layer at the surface of n-type iron pyrite,” Energy Environ. Sci. 7(6), 1974–1989 (2014).
[Crossref]

J. Puthussery, S. Seefeld, N. Berry, M. Gibbs, and M. Law, “Colloidal iron pyrite (FeS2) nanocrystal inks for thin-film photovoltaics,” J. Am. Chem. Soc. 133(4), 716–719 (2011).
[Crossref] [PubMed]

Botton, G. A.

S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, “Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study,” Phys. Rev. B 57(3), 1505–1509 (1998).
[Crossref]

Bronold, M.

M. Bronold, Y. Tomm, and W. Jaegermann, “Surface states on cubic d-band semiconductor pyrite (FeS2),” Surf. Sci. 314(3), L931–L936 (1994).
[Crossref]

A. Ennaoui, S. Fiechter, C. Pettenkofer, N. Alonso-Vante, K. Büker, M. Bronold, C. Höpfner, and H. Tributsch, “Iron disulfide for solar energy conversion,” Sol. Energy Mater. Sol. Cells 29(4), 289–370 (1993).
[Crossref]

Büker, K.

A. Ennaoui, S. Fiechter, C. Pettenkofer, N. Alonso-Vante, K. Büker, M. Bronold, C. Höpfner, and H. Tributsch, “Iron disulfide for solar energy conversion,” Sol. Energy Mater. Sol. Cells 29(4), 289–370 (1993).
[Crossref]

Burke, K.

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
[Crossref] [PubMed]

Cabán-Acevedo, M.

D. Liang, M. Cabán-Acevedo, N. S. Kaiser, and S. Jin, “Gated Hall effect of nanoplate devices reveals surface-state-induced surface inversion in iron pyrite semiconductor,” Nano Lett. 14(12), 6754–6760 (2014).
[Crossref] [PubMed]

Ceder, G.

R. Sun, M. K. Y. Chan, and G. Ceder, “First-principles electronic structure and relative stability of pyrite and marcasite: Implications for photovoltaic performance,” Phys. Rev. B 83(23), 235311 (2011).
[Crossref]

Chan, M. K. Y.

R. Sun, M. K. Y. Chan, and G. Ceder, “First-principles electronic structure and relative stability of pyrite and marcasite: Implications for photovoltaic performance,” Phys. Rev. B 83(23), 235311 (2011).
[Crossref]

Dudarev, S. L.

S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, “Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study,” Phys. Rev. B 57(3), 1505–1509 (1998).
[Crossref]

Elseinow, A. R.

J. M. Guevremont, A. R. Elseinow, D. R. Strongin, J. Bebie, and M. A. A. Schoonen, “Structure sensitivity of pyrite oxidation; comparison of the (100) and (111) planes,” Am. Mineral. 83(11–12), 1353–1356 (1998).

Ennaoui, A.

A. Ennaoui, S. Fiechter, C. Pettenkofer, N. Alonso-Vante, K. Büker, M. Bronold, C. Höpfner, and H. Tributsch, “Iron disulfide for solar energy conversion,” Sol. Energy Mater. Sol. Cells 29(4), 289–370 (1993).
[Crossref]

A. Ennaoui, S. Fiechter, H. Tributsch, M. Giersig, R. Vogel, and H. Weller, “Photoelectrochemical energy conversion obtained with ultrathin organo‐metallic‐chemical‐vapor‐deposition Layer of FeS2 (pyrite) on TiO2,” J. Electrochem. Soc. 139(9), 2514–2518 (1992).
[Crossref]

A. Ennaoui, S. Fiechter, W. Jaegermann, and H. Tributsch, “Photoelectrochemistry of highly quantum efficient single‐crystalline n ‐ FeS2 (pyrite),” J. Electrochem. Soc. 133(1), 97–106 (1986).
[Crossref]

Ernzerhof, M.

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
[Crossref] [PubMed]

Farhi, N.

M. Limpinsel, N. Farhi, N. Berry, J. Lindemuth, C. L. Perkins, Q. Lin, and M. Law, “An inversion layer at the surface of n-type iron pyrite,” Energy Environ. Sci. 7(6), 1974–1989 (2014).
[Crossref]

Fiechter, S.

A. Ennaoui, S. Fiechter, C. Pettenkofer, N. Alonso-Vante, K. Büker, M. Bronold, C. Höpfner, and H. Tributsch, “Iron disulfide for solar energy conversion,” Sol. Energy Mater. Sol. Cells 29(4), 289–370 (1993).
[Crossref]

A. Ennaoui, S. Fiechter, H. Tributsch, M. Giersig, R. Vogel, and H. Weller, “Photoelectrochemical energy conversion obtained with ultrathin organo‐metallic‐chemical‐vapor‐deposition Layer of FeS2 (pyrite) on TiO2,” J. Electrochem. Soc. 139(9), 2514–2518 (1992).
[Crossref]

A. Ennaoui, S. Fiechter, W. Jaegermann, and H. Tributsch, “Photoelectrochemistry of highly quantum efficient single‐crystalline n ‐ FeS2 (pyrite),” J. Electrochem. Soc. 133(1), 97–106 (1986).
[Crossref]

Furthmüller, J.

G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B Condens. Matter 54(16), 11169–11186 (1996).
[Crossref] [PubMed]

Gibbs, M.

J. Puthussery, S. Seefeld, N. Berry, M. Gibbs, and M. Law, “Colloidal iron pyrite (FeS2) nanocrystal inks for thin-film photovoltaics,” J. Am. Chem. Soc. 133(4), 716–719 (2011).
[Crossref] [PubMed]

Giersig, M.

A. Ennaoui, S. Fiechter, H. Tributsch, M. Giersig, R. Vogel, and H. Weller, “Photoelectrochemical energy conversion obtained with ultrathin organo‐metallic‐chemical‐vapor‐deposition Layer of FeS2 (pyrite) on TiO2,” J. Electrochem. Soc. 139(9), 2514–2518 (1992).
[Crossref]

Guevremont, J. M.

J. M. Guevremont, A. R. Elseinow, D. R. Strongin, J. Bebie, and M. A. A. Schoonen, “Structure sensitivity of pyrite oxidation; comparison of the (100) and (111) planes,” Am. Mineral. 83(11–12), 1353–1356 (1998).

Höpfner, C.

A. Ennaoui, S. Fiechter, C. Pettenkofer, N. Alonso-Vante, K. Büker, M. Bronold, C. Höpfner, and H. Tributsch, “Iron disulfide for solar energy conversion,” Sol. Energy Mater. Sol. Cells 29(4), 289–370 (1993).
[Crossref]

Hu, J.

Y. N. Zhang, J. Hu, M. Law, and R. Q. Wu, “Effect of surface stoichiometry on the band gap of the pyrite FeS2 (100) surface,” Phys. Rev. B 85(8), 085314 (2012).
[Crossref]

Humphreys, C. J.

S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, “Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study,” Phys. Rev. B 57(3), 1505–1509 (1998).
[Crossref]

Jaegermann, W.

M. Bronold, Y. Tomm, and W. Jaegermann, “Surface states on cubic d-band semiconductor pyrite (FeS2),” Surf. Sci. 314(3), L931–L936 (1994).
[Crossref]

A. Ennaoui, S. Fiechter, W. Jaegermann, and H. Tributsch, “Photoelectrochemistry of highly quantum efficient single‐crystalline n ‐ FeS2 (pyrite),” J. Electrochem. Soc. 133(1), 97–106 (1986).
[Crossref]

Jin, S.

D. Liang, M. Cabán-Acevedo, N. S. Kaiser, and S. Jin, “Gated Hall effect of nanoplate devices reveals surface-state-induced surface inversion in iron pyrite semiconductor,” Nano Lett. 14(12), 6754–6760 (2014).
[Crossref] [PubMed]

Kaiser, N. S.

D. Liang, M. Cabán-Acevedo, N. S. Kaiser, and S. Jin, “Gated Hall effect of nanoplate devices reveals surface-state-induced surface inversion in iron pyrite semiconductor,” Nano Lett. 14(12), 6754–6760 (2014).
[Crossref] [PubMed]

Kakalios, J.

X. Zhang, M. Li, J. Walter, L. O’Brien, M. A. Manno, B. Voigt, F. Mork, S. V. Baryshev, J. Kakalios, E. S. Aydil, and C. Leighton, “Potential resolution to the doping puzzle in iron pyrite: Carrier type determination by Hall effect and thermopower,” Phys. Rev. Mater. 1(1), 015402 (2017).
[Crossref]

Kammen, D. M.

C. Wadia, A. P. Alivisatos, and D. M. Kammen, “Materials availability expands the opportunity for large-scale photovoltaics deployment,” Environ. Sci. Technol. 43(6), 2072–2077 (2009).
[Crossref] [PubMed]

Kartio, I.

K. Laajalehto, I. Kartio, and P. Nowak, “XPS study of clean metal sulfide surfaces,” Appl. Surf. Sci. 81(1), 11–15 (1994).
[Crossref]

Kresse, G.

G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B Condens. Matter 54(16), 11169–11186 (1996).
[Crossref] [PubMed]

Laajalehto, K.

K. Laajalehto, I. Kartio, and P. Nowak, “XPS study of clean metal sulfide surfaces,” Appl. Surf. Sci. 81(1), 11–15 (1994).
[Crossref]

Law, M.

M. Limpinsel, N. Farhi, N. Berry, J. Lindemuth, C. L. Perkins, Q. Lin, and M. Law, “An inversion layer at the surface of n-type iron pyrite,” Energy Environ. Sci. 7(6), 1974–1989 (2014).
[Crossref]

Y. N. Zhang, J. Hu, M. Law, and R. Q. Wu, “Effect of surface stoichiometry on the band gap of the pyrite FeS2 (100) surface,” Phys. Rev. B 85(8), 085314 (2012).
[Crossref]

J. Puthussery, S. Seefeld, N. Berry, M. Gibbs, and M. Law, “Colloidal iron pyrite (FeS2) nanocrystal inks for thin-film photovoltaics,” J. Am. Chem. Soc. 133(4), 716–719 (2011).
[Crossref] [PubMed]

Lee, S.

M. Alam Khan, J. C. Sarker, S. Lee, S. C. Mangham, and M. O. Manasreh, “Synthesis, characterization and processing of cubic iron pyrite nanocrystals in a photovoltaic cell,” Mater. Chem. Phys. 148(3), 1022–1028 (2014).
[Crossref]

Leighton, C.

X. Zhang, M. Li, J. Walter, L. O’Brien, M. A. Manno, B. Voigt, F. Mork, S. V. Baryshev, J. Kakalios, E. S. Aydil, and C. Leighton, “Potential resolution to the doping puzzle in iron pyrite: Carrier type determination by Hall effect and thermopower,” Phys. Rev. Mater. 1(1), 015402 (2017).
[Crossref]

Li, M.

X. Zhang, M. Li, J. Walter, L. O’Brien, M. A. Manno, B. Voigt, F. Mork, S. V. Baryshev, J. Kakalios, E. S. Aydil, and C. Leighton, “Potential resolution to the doping puzzle in iron pyrite: Carrier type determination by Hall effect and thermopower,” Phys. Rev. Mater. 1(1), 015402 (2017).
[Crossref]

Liang, D.

D. Liang, M. Cabán-Acevedo, N. S. Kaiser, and S. Jin, “Gated Hall effect of nanoplate devices reveals surface-state-induced surface inversion in iron pyrite semiconductor,” Nano Lett. 14(12), 6754–6760 (2014).
[Crossref] [PubMed]

Limpinsel, M.

M. Limpinsel, N. Farhi, N. Berry, J. Lindemuth, C. L. Perkins, Q. Lin, and M. Law, “An inversion layer at the surface of n-type iron pyrite,” Energy Environ. Sci. 7(6), 1974–1989 (2014).
[Crossref]

Lin, Q.

M. Limpinsel, N. Farhi, N. Berry, J. Lindemuth, C. L. Perkins, Q. Lin, and M. Law, “An inversion layer at the surface of n-type iron pyrite,” Energy Environ. Sci. 7(6), 1974–1989 (2014).
[Crossref]

Lindemuth, J.

M. Limpinsel, N. Farhi, N. Berry, J. Lindemuth, C. L. Perkins, Q. Lin, and M. Law, “An inversion layer at the surface of n-type iron pyrite,” Energy Environ. Sci. 7(6), 1974–1989 (2014).
[Crossref]

Manasreh, M. O.

M. Alam Khan, J. C. Sarker, S. Lee, S. C. Mangham, and M. O. Manasreh, “Synthesis, characterization and processing of cubic iron pyrite nanocrystals in a photovoltaic cell,” Mater. Chem. Phys. 148(3), 1022–1028 (2014).
[Crossref]

Mangham, S. C.

M. Alam Khan, J. C. Sarker, S. Lee, S. C. Mangham, and M. O. Manasreh, “Synthesis, characterization and processing of cubic iron pyrite nanocrystals in a photovoltaic cell,” Mater. Chem. Phys. 148(3), 1022–1028 (2014).
[Crossref]

Manno, M. A.

X. Zhang, M. Li, J. Walter, L. O’Brien, M. A. Manno, B. Voigt, F. Mork, S. V. Baryshev, J. Kakalios, E. S. Aydil, and C. Leighton, “Potential resolution to the doping puzzle in iron pyrite: Carrier type determination by Hall effect and thermopower,” Phys. Rev. Mater. 1(1), 015402 (2017).
[Crossref]

Martin, R. M.

C. G. Van de Walle and R. M. Martin, “Theoretical study of band offsets at semiconductor interfaces,” Phys. Rev. B 35(15), 8154–8165 (1987).

Mork, F.

X. Zhang, M. Li, J. Walter, L. O’Brien, M. A. Manno, B. Voigt, F. Mork, S. V. Baryshev, J. Kakalios, E. S. Aydil, and C. Leighton, “Potential resolution to the doping puzzle in iron pyrite: Carrier type determination by Hall effect and thermopower,” Phys. Rev. Mater. 1(1), 015402 (2017).
[Crossref]

Murphy, R.

R. Murphy and D. R. Strongin, “Surface reactivity of pyrite and related sulfides,” Surf. Sci. Rep. 64(1), 1–45 (2009).
[Crossref]

Nowak, P.

K. Laajalehto, I. Kartio, and P. Nowak, “XPS study of clean metal sulfide surfaces,” Appl. Surf. Sci. 81(1), 11–15 (1994).
[Crossref]

O’Brien, L.

X. Zhang, M. Li, J. Walter, L. O’Brien, M. A. Manno, B. Voigt, F. Mork, S. V. Baryshev, J. Kakalios, E. S. Aydil, and C. Leighton, “Potential resolution to the doping puzzle in iron pyrite: Carrier type determination by Hall effect and thermopower,” Phys. Rev. Mater. 1(1), 015402 (2017).
[Crossref]

Perdew, J. P.

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
[Crossref] [PubMed]

Perkins, C. L.

M. Limpinsel, N. Farhi, N. Berry, J. Lindemuth, C. L. Perkins, Q. Lin, and M. Law, “An inversion layer at the surface of n-type iron pyrite,” Energy Environ. Sci. 7(6), 1974–1989 (2014).
[Crossref]

Petrova, N. V.

I. N. Yakovkin and N. V. Petrova, “Influence of the thickness and surface composition on the electronic structure of FeS2 layers,” Appl. Surf. Sci. 377, 184–190 (2016).
[Crossref]

Pettenkofer, C.

A. Ennaoui, S. Fiechter, C. Pettenkofer, N. Alonso-Vante, K. Büker, M. Bronold, C. Höpfner, and H. Tributsch, “Iron disulfide for solar energy conversion,” Sol. Energy Mater. Sol. Cells 29(4), 289–370 (1993).
[Crossref]

Puthussery, J.

J. Puthussery, S. Seefeld, N. Berry, M. Gibbs, and M. Law, “Colloidal iron pyrite (FeS2) nanocrystal inks for thin-film photovoltaics,” J. Am. Chem. Soc. 133(4), 716–719 (2011).
[Crossref] [PubMed]

Sarker, J. C.

M. Alam Khan, J. C. Sarker, S. Lee, S. C. Mangham, and M. O. Manasreh, “Synthesis, characterization and processing of cubic iron pyrite nanocrystals in a photovoltaic cell,” Mater. Chem. Phys. 148(3), 1022–1028 (2014).
[Crossref]

Savrasov, S. Y.

S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, “Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study,” Phys. Rev. B 57(3), 1505–1509 (1998).
[Crossref]

Schoonen, M. A. A.

J. M. Guevremont, A. R. Elseinow, D. R. Strongin, J. Bebie, and M. A. A. Schoonen, “Structure sensitivity of pyrite oxidation; comparison of the (100) and (111) planes,” Am. Mineral. 83(11–12), 1353–1356 (1998).

Seefeld, S.

J. Puthussery, S. Seefeld, N. Berry, M. Gibbs, and M. Law, “Colloidal iron pyrite (FeS2) nanocrystal inks for thin-film photovoltaics,” J. Am. Chem. Soc. 133(4), 716–719 (2011).
[Crossref] [PubMed]

Strongin, D. R.

R. Murphy and D. R. Strongin, “Surface reactivity of pyrite and related sulfides,” Surf. Sci. Rep. 64(1), 1–45 (2009).
[Crossref]

J. M. Guevremont, A. R. Elseinow, D. R. Strongin, J. Bebie, and M. A. A. Schoonen, “Structure sensitivity of pyrite oxidation; comparison of the (100) and (111) planes,” Am. Mineral. 83(11–12), 1353–1356 (1998).

Sun, R.

R. Sun, M. K. Y. Chan, and G. Ceder, “First-principles electronic structure and relative stability of pyrite and marcasite: Implications for photovoltaic performance,” Phys. Rev. B 83(23), 235311 (2011).
[Crossref]

Sutton, A. P.

S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, “Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study,” Phys. Rev. B 57(3), 1505–1509 (1998).
[Crossref]

Tomm, Y.

M. Bronold, Y. Tomm, and W. Jaegermann, “Surface states on cubic d-band semiconductor pyrite (FeS2),” Surf. Sci. 314(3), L931–L936 (1994).
[Crossref]

Tributsch, H.

A. Ennaoui, S. Fiechter, C. Pettenkofer, N. Alonso-Vante, K. Büker, M. Bronold, C. Höpfner, and H. Tributsch, “Iron disulfide for solar energy conversion,” Sol. Energy Mater. Sol. Cells 29(4), 289–370 (1993).
[Crossref]

A. Ennaoui, S. Fiechter, H. Tributsch, M. Giersig, R. Vogel, and H. Weller, “Photoelectrochemical energy conversion obtained with ultrathin organo‐metallic‐chemical‐vapor‐deposition Layer of FeS2 (pyrite) on TiO2,” J. Electrochem. Soc. 139(9), 2514–2518 (1992).
[Crossref]

A. Ennaoui, S. Fiechter, W. Jaegermann, and H. Tributsch, “Photoelectrochemistry of highly quantum efficient single‐crystalline n ‐ FeS2 (pyrite),” J. Electrochem. Soc. 133(1), 97–106 (1986).
[Crossref]

Van de Walle, C. G.

C. G. Van de Walle and R. M. Martin, “Theoretical study of band offsets at semiconductor interfaces,” Phys. Rev. B 35(15), 8154–8165 (1987).

Vogel, R.

A. Ennaoui, S. Fiechter, H. Tributsch, M. Giersig, R. Vogel, and H. Weller, “Photoelectrochemical energy conversion obtained with ultrathin organo‐metallic‐chemical‐vapor‐deposition Layer of FeS2 (pyrite) on TiO2,” J. Electrochem. Soc. 139(9), 2514–2518 (1992).
[Crossref]

Voigt, B.

X. Zhang, M. Li, J. Walter, L. O’Brien, M. A. Manno, B. Voigt, F. Mork, S. V. Baryshev, J. Kakalios, E. S. Aydil, and C. Leighton, “Potential resolution to the doping puzzle in iron pyrite: Carrier type determination by Hall effect and thermopower,” Phys. Rev. Mater. 1(1), 015402 (2017).
[Crossref]

Wadia, C.

C. Wadia, A. P. Alivisatos, and D. M. Kammen, “Materials availability expands the opportunity for large-scale photovoltaics deployment,” Environ. Sci. Technol. 43(6), 2072–2077 (2009).
[Crossref] [PubMed]

Walter, J.

X. Zhang, M. Li, J. Walter, L. O’Brien, M. A. Manno, B. Voigt, F. Mork, S. V. Baryshev, J. Kakalios, E. S. Aydil, and C. Leighton, “Potential resolution to the doping puzzle in iron pyrite: Carrier type determination by Hall effect and thermopower,” Phys. Rev. Mater. 1(1), 015402 (2017).
[Crossref]

Weller, H.

A. Ennaoui, S. Fiechter, H. Tributsch, M. Giersig, R. Vogel, and H. Weller, “Photoelectrochemical energy conversion obtained with ultrathin organo‐metallic‐chemical‐vapor‐deposition Layer of FeS2 (pyrite) on TiO2,” J. Electrochem. Soc. 139(9), 2514–2518 (1992).
[Crossref]

Wu, R. Q.

Y. N. Zhang, J. Hu, M. Law, and R. Q. Wu, “Effect of surface stoichiometry on the band gap of the pyrite FeS2 (100) surface,” Phys. Rev. B 85(8), 085314 (2012).
[Crossref]

Yakovkin, I. N.

I. N. Yakovkin and N. V. Petrova, “Influence of the thickness and surface composition on the electronic structure of FeS2 layers,” Appl. Surf. Sci. 377, 184–190 (2016).
[Crossref]

Zhang, X.

X. Zhang, M. Li, J. Walter, L. O’Brien, M. A. Manno, B. Voigt, F. Mork, S. V. Baryshev, J. Kakalios, E. S. Aydil, and C. Leighton, “Potential resolution to the doping puzzle in iron pyrite: Carrier type determination by Hall effect and thermopower,” Phys. Rev. Mater. 1(1), 015402 (2017).
[Crossref]

Zhang, Y. N.

Y. N. Zhang, J. Hu, M. Law, and R. Q. Wu, “Effect of surface stoichiometry on the band gap of the pyrite FeS2 (100) surface,” Phys. Rev. B 85(8), 085314 (2012).
[Crossref]

Am. Mineral. (1)

J. M. Guevremont, A. R. Elseinow, D. R. Strongin, J. Bebie, and M. A. A. Schoonen, “Structure sensitivity of pyrite oxidation; comparison of the (100) and (111) planes,” Am. Mineral. 83(11–12), 1353–1356 (1998).

Appl. Surf. Sci. (2)

I. N. Yakovkin and N. V. Petrova, “Influence of the thickness and surface composition on the electronic structure of FeS2 layers,” Appl. Surf. Sci. 377, 184–190 (2016).
[Crossref]

K. Laajalehto, I. Kartio, and P. Nowak, “XPS study of clean metal sulfide surfaces,” Appl. Surf. Sci. 81(1), 11–15 (1994).
[Crossref]

Energy Environ. Sci. (1)

M. Limpinsel, N. Farhi, N. Berry, J. Lindemuth, C. L. Perkins, Q. Lin, and M. Law, “An inversion layer at the surface of n-type iron pyrite,” Energy Environ. Sci. 7(6), 1974–1989 (2014).
[Crossref]

Environ. Sci. Technol. (1)

C. Wadia, A. P. Alivisatos, and D. M. Kammen, “Materials availability expands the opportunity for large-scale photovoltaics deployment,” Environ. Sci. Technol. 43(6), 2072–2077 (2009).
[Crossref] [PubMed]

J. Am. Chem. Soc. (1)

J. Puthussery, S. Seefeld, N. Berry, M. Gibbs, and M. Law, “Colloidal iron pyrite (FeS2) nanocrystal inks for thin-film photovoltaics,” J. Am. Chem. Soc. 133(4), 716–719 (2011).
[Crossref] [PubMed]

J. Electrochem. Soc. (2)

A. Ennaoui, S. Fiechter, H. Tributsch, M. Giersig, R. Vogel, and H. Weller, “Photoelectrochemical energy conversion obtained with ultrathin organo‐metallic‐chemical‐vapor‐deposition Layer of FeS2 (pyrite) on TiO2,” J. Electrochem. Soc. 139(9), 2514–2518 (1992).
[Crossref]

A. Ennaoui, S. Fiechter, W. Jaegermann, and H. Tributsch, “Photoelectrochemistry of highly quantum efficient single‐crystalline n ‐ FeS2 (pyrite),” J. Electrochem. Soc. 133(1), 97–106 (1986).
[Crossref]

Mater. Chem. Phys. (1)

M. Alam Khan, J. C. Sarker, S. Lee, S. C. Mangham, and M. O. Manasreh, “Synthesis, characterization and processing of cubic iron pyrite nanocrystals in a photovoltaic cell,” Mater. Chem. Phys. 148(3), 1022–1028 (2014).
[Crossref]

Nano Lett. (1)

D. Liang, M. Cabán-Acevedo, N. S. Kaiser, and S. Jin, “Gated Hall effect of nanoplate devices reveals surface-state-induced surface inversion in iron pyrite semiconductor,” Nano Lett. 14(12), 6754–6760 (2014).
[Crossref] [PubMed]

Phys. Rev. B (4)

R. Sun, M. K. Y. Chan, and G. Ceder, “First-principles electronic structure and relative stability of pyrite and marcasite: Implications for photovoltaic performance,” Phys. Rev. B 83(23), 235311 (2011).
[Crossref]

S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, “Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study,” Phys. Rev. B 57(3), 1505–1509 (1998).
[Crossref]

C. G. Van de Walle and R. M. Martin, “Theoretical study of band offsets at semiconductor interfaces,” Phys. Rev. B 35(15), 8154–8165 (1987).

Y. N. Zhang, J. Hu, M. Law, and R. Q. Wu, “Effect of surface stoichiometry on the band gap of the pyrite FeS2 (100) surface,” Phys. Rev. B 85(8), 085314 (2012).
[Crossref]

Phys. Rev. B Condens. Matter (1)

G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B Condens. Matter 54(16), 11169–11186 (1996).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
[Crossref] [PubMed]

Phys. Rev. Mater. (1)

X. Zhang, M. Li, J. Walter, L. O’Brien, M. A. Manno, B. Voigt, F. Mork, S. V. Baryshev, J. Kakalios, E. S. Aydil, and C. Leighton, “Potential resolution to the doping puzzle in iron pyrite: Carrier type determination by Hall effect and thermopower,” Phys. Rev. Mater. 1(1), 015402 (2017).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

A. Ennaoui, S. Fiechter, C. Pettenkofer, N. Alonso-Vante, K. Büker, M. Bronold, C. Höpfner, and H. Tributsch, “Iron disulfide for solar energy conversion,” Sol. Energy Mater. Sol. Cells 29(4), 289–370 (1993).
[Crossref]

Surf. Sci. (1)

M. Bronold, Y. Tomm, and W. Jaegermann, “Surface states on cubic d-band semiconductor pyrite (FeS2),” Surf. Sci. 314(3), L931–L936 (1994).
[Crossref]

Surf. Sci. Rep. (1)

R. Murphy and D. R. Strongin, “Surface reactivity of pyrite and related sulfides,” Surf. Sci. Rep. 64(1), 1–45 (2009).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic depiction of the experimental technique employed for XPS studies, with sample cross sections (left) and relative XPS signal contributions from each layer (right) for three different etching conditions. The underetched sample (a) primarily shows peaks from the capping layer; the correctly etched sample (b) retains a few nm of capping layer, with observable XPS signal from both the capping layer and pyrite; and the overetched sample (c) shows peaks from only the FeS2.
Fig. 2
Fig. 2 (a) X-ray diffraction pattern with pyrite peaks identified; (b) transmission electron microscopy diffraction pattern showing FeS2 lattice spacing; (c) cross-section scanning electron microscopy showing dense pyrite film.
Fig. 3
Fig. 3 Deconvolved peak fitting of XPS results. Sulfur 2p doublets for surface (blue) and bulk (yellow) states are shaded for clarity.
Fig. 4
Fig. 4 (a) Images of DFT modeling results showing passivation of surface sulfur atoms in an FeS2 crystal by ZnS. Closeup image of passivation around atomic-scale features is also shown, indicating that realistic crystallite shapes can be passivated in this manner; (b) Band alignment at an FeS2/ZnS/FeS2 interface, with offsets indicated.

Metrics