Abstract

Photon upconversion (UC) is the sequential absorption of two or more low frequency photons and subsequent emission of light at a higher frequency. Because of a large number of potential applications of this anti-Stokes process, extensive studies of UC have taken place in the last decades. The most crucial challenge in this field is the development of an efficient strategy to enhance the inherently low efficacy of the UC process. Among the various intensively developed approaches, local tailoring of the electromagnetic field with metal nanoparticles (MNPs) to the position of the UC material has been considered as the most promising one. However, distinctive features of photon UC imply the emergence of fluorescence quenching near the MNP. Along with different near-and far-field MNP responses and non-trivial competition of enhancement and quenching of the UC signal in suspension of MNPs on the macroscale, the search of optimal MNP configuration for UC enhancement becomes quite the challenging task to solve. In this paper, we thoroughly analyze these effects with a rigorous and comprehensive theoretical model based on the extended Mie theory for multilayered spheres and the effective medium approach. We provide general guidelines for highly efficient UC enhancement by Ag and Au spherical MNPs.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Highly efficient fluorescence of a fluorescing nanoparticle with a silver shell

Xue-Wen Chen, Wallace C. H. Choy, Sailing He, and P. C. Chui
Opt. Express 15(11) 7083-7094 (2007)

Average enhancement factor of molecules-doped coreshell (Ag@SiO2) on fluorescence

Jiunn-Woei Liaw, Chuan-Li Liu, Wei-Min Tu, Chieh-Sheng Sun, and Mao-Kuen Kuo
Opt. Express 18(12) 12788-12797 (2010)

Fluorescence enhancement of quantum emitters with different energy systems near a single spherical metal nanoparticle

Yingjie Zhang, Ruoyang Zhang, Qingru Wang, Zhishuai Zhang, Haibo Zhu, Jiadong Liu, Feng Song, Shanxin Lin, and Edwin Yue Bun Pun
Opt. Express 18(5) 4316-4328 (2010)

References

  • View by:
  • |
  • |
  • |

  1. F. Auzel, “Upconversion and Anti-Stokes Processes with f and d Ions in Solids,” Chem. Rev. 104, 139–174 (2004).
    [Crossref] [PubMed]
  2. B. Zhou, B. Shi, D. Jin, and X. Liu, “Controlling upconversion nanocrystals for emerging applications,” Nat. Nanotechnol. 10, 924–936 (2015).
    [Crossref] [PubMed]
  3. G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion Nanoparticles: Design, Nanochemistry, and Applications in Theranostics,” Chem. Rev. 114, 5161–5214 (2014).
    [Crossref] [PubMed]
  4. C.-W. Chen, P.-H. Lee, Y.-C. Chan, M. Hsiao, C.-H. Chen, P. C. Wu, P. R. Wu, D. P. Tsai, D. Tu, X. Chen, and R.-S. Liu, “Plasmon-induced hyperthermia: hybrid upconversion NaYF 4 :Yb/Er and gold nanomaterials for oral cancer photothermal therapy,” J. Mater. Chem. B 3, 8293–8302 (2015).
    [Crossref]
  5. L. Zhou, R. Wang, C. Yao, X. Li, C. Wang, X. Zhang, C. Xu, A. Zeng, D. Zhao, and F. Zhang, “Single-band upconversion nanoprobes for multiplexed simultaneous in situ molecular mapping of cancer biomarkers,” Nat. Commun. 6, 6938 (2015).
    [Crossref] [PubMed]
  6. X. Wu, Y. Zhang, K. Takle, O. Bilsel, Z. Li, H. Lee, Z. Zhang, D. Li, W. Fan, C. Duan, E. M. Chan, C. Lois, Y. Xiang, and G. Han, “Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications,” ACS Nano 10, 1060–1066 (2016).
    [Crossref] [PubMed]
  7. F. Wang, S. Wen, H. He, B. Wang, Z. Zhou, O. Shimoni, and D. Jin, “Microscopic inspection and tracking of single upconversion nanoparticles in living cells,” Light. Sci. & Appl. 7, 18007 (2018).
    [Crossref]
  8. L. Huot, P. M. Moselund, P. Tidemand-Lichtenberg, L. Leick, and C. Pedersen, “Upconversion imaging using an all-fiber supercontinuum source,” Opt. Lett. 41, 2466 (2016).
    [Crossref] [PubMed]
  9. J. Wang, T. Ming, Z. Jin, J. Wang, L.-D. Sun, and C.-H. Yan, “Photon energy upconversion through thermal radiation with the power efficiency reaching 16%,” Nat. Commun. 5, 5669 (2014).
    [Crossref]
  10. Y. H. Jang, Y. J. Jang, S. Kim, L. N. Quan, K. Chung, and D. H. Kim, “Plasmonic Solar Cells: From Rational Design to Mechanism Overview,” Chem. Rev. 116, 14982–15034 (2016).
    [Crossref] [PubMed]
  11. F. Meng, Y. Luo, Y. Zhou, J. Zhang, Y. Zheng, G. Cao, and X. Tao, “Integrated plasmonic and upconversion starlike Y2O3:Er/Au@TiO2 composite for enhanced photon harvesting in dye-sensitized solar cells,” J. Power Sources 316, 207–214 (2016).
    [Crossref]
  12. D. Li, H. Ågren, and G. Chen, “Near infrared harvesting dye-sensitized solar cells enabled by rare-earth upconversion materials,” Dalton Transactions 47, 8526–8537 (2018).
  13. Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543, 229–233 (2017).
    [Crossref] [PubMed]
  14. Q. Zhan, H. Liu, B. Wang, Q. Wu, R. Pu, C. Zhou, B. Huang, X. Peng, H. Ågren, and S. He, “Achieving high-efficiency emission depletion nanoscopy by employing cross relaxation in upconversion nanoparticles,” Nat. Commun. 8, 1058 (2017).
    [Crossref] [PubMed]
  15. X. Li, F. Zhang, and D. Zhao, “Highly efficient lanthanide upconverting nanomaterials: Progresses and challenges,” Nano Today 8, 643–676 (2013).
    [Crossref]
  16. W. Zou, C. Visser, J. A. Maduro, M. S. Pshenichnikov, and J. C. Hummelen, “Broadband dye-sensitized upconversion of near-infrared light,” Nat. Photonics 6, 560–564 (2012).
    [Crossref]
  17. J. Zhao, S. Ji, and H. Guo, “Triplet-triplet annihilation based upconversion: from triplet sensitizers and triplet acceptors to upconversion quantum yields,” RSC Adv. 1, 937 (2011).
    [Crossref]
  18. Y. C. Simon and C. Weder, “Low-power photon upconversion through triplet-triplet annihilation in polymers,” J. Mater. Chem. 22, 20817 (2012).
    [Crossref]
  19. J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8, 729–734 (2013).
    [Crossref] [PubMed]
  20. D. J. Garfield, N. J. Borys, S. M. Hamed, N. A. Torquato, C. A. Tajon, B. Tian, B. Shevitski, E. S. Barnard, Y. D. Suh, S. Aloni, J. B. Neaton, E. M. Chan, B. E. Cohen, and P. J. Schuck, “Enrichment of molecular antenna triplets amplifies upconverting nanoparticle emission,” Nat. Photonics 12, 402–407 (2018).
    [Crossref]
  21. J. Zhou, S. Wen, J. Liao, C. Clarke, S. A. Tawfik, W. Ren, C. Mi, F. Wang, and D. Jin, “Activation of the surface dark-layer to enhance upconversion in a thermal field,” Nat. Photonics 12, 154–158 (2018).
    [Crossref]
  22. D. M. Wu, A. García-Etxarri, A. Salleo, and J. A. Dionne, “Plasmon-Enhanced Upconversion,” The J. Phys. Chem. Lett. 5, 4020–4031 (2014).
    [Crossref]
  23. W. Park, D. Lu, and S. Ahn, “Plasmon enhancement of luminescence upconversion,” Chem. Soc. Rev. 44, 2940–2962 (2015).
    [Crossref] [PubMed]
  24. W. Xu, X. Chen, and H. Song, “Upconversion manipulation by local electromagnetic field,” Nano Today 17, 54–78 (2017).
    [Crossref]
  25. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
    [Crossref]
  26. Q. Zhan, X. Zhang, Y. Zhao, J. Liu, and S. He, “Tens of thousands-fold upconversion luminescence enhancement induced by a single gold nanorod,” Laser & Photonics Rev. 9, 479–487 (2015).
    [Crossref]
  27. J. R. Lakowicz, “Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission,” Anal. Biochem. 337, 171–194 (2005).
    [Crossref] [PubMed]
  28. P. Yuan, Y. H. Lee, M. K. Gnanasammandhan, Z. Guan, Y. Zhang, and Q.-H. Xu, “Plasmon enhanced upconversion luminescence of NaYF4:Yb, Er@SiO2@Ag core-shell nanocomposites for cell imaging,” Nanoscale 4, 5132 (2012).
    [Crossref] [PubMed]
  29. Z. Wang, W. Gao, R. Wang, J. Shao, Q. Han, C. Wang, J. Zhang, T. Zhang, J. Dong, and H. Zheng, “Influence of SiO2 layer on the plasmon quenched upconversion luminescence emission of core-shell NaYF4:Yb, Er@SiO2@Ag nanocomposites,” Mater. Res. Bull. 83, 515–521 (2016).
    [Crossref]
  30. J. L. Montaño-Priede, O. Peña-Rodríguez, and U. Pal, “Near-Electric-Field Tuned Plasmonic Au@SiO 2 and Ag@SiO 2 Nanoparticles for Efficient Utilization in Luminescence Enhancement and Surface-Enhanced Spectroscopy,” The J. Phys. Chem. C 121, 23062–23071 (2017).
    [Crossref]
  31. N. S. Abadeer, M. R. Brennan, W. L. Wilson, and C. J. Murphy, “Distance and Plasmon Wavelength Dependent Fluorescence of Molecules Bound to Silica-Coated Gold Nanorods,” ACS Nano 8, 8392–8406 (2014).
    [Crossref] [PubMed]
  32. X. Liu and D. Yuan Lei, “Simultaneous excitation and emission enhancements in upconversion luminescence using plasmonic double-resonant gold nanorods,” Sci. Reports 5, 15235 (2015).
    [Crossref]
  33. P. Alonso-González, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, and R. Hillenbrand, “Experimental Verification of the Spectral Shift between Near- and Far-Field Peak Intensities of Plasmonic Infrared Nanoantennas,” Phys. Rev. Lett. 110, 203902 (2013).
    [Crossref] [PubMed]
  34. R. Esteban, M. Laroche, and J.-J. Greffet, “Influence of metallic nanoparticles on upconversion processes,” J. Appl. Phys. 105, 033107 (2009).
    [Crossref]
  35. S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, and J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles - simulation and analysis of the interactions,” Opt. Express 20, 271 (2012).
    [Crossref] [PubMed]
  36. S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, and J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles - simulation and analysis of the interactions: Errata,” Opt. Express 21, 10606 (2013).
    [Crossref] [PubMed]
  37. Y. Ding, X. Zhang, H. Gao, S. Xu, C. Wei, and Y. Zhao, “Plasmonic enhanced upconversion luminescence of β-NaYF4:Yb3+/Er3+ with Ag@SiO2 core-shell nanoparticles,” J. Lumin. 147, 72–76 (2014).
    [Crossref]
  38. Y.-L. Wang, N. Mohammadi Estakhri, A. Johnson, H.-Y. Li, L.-X. Xu, Z. Zhang, A. Alù, Q.-Q. Wang, and C.-K. K. Shih, “Tailoring Plasmonic Enhanced Upconversion in Single NaYF4:Yb3+/Er3+ Nanocrystals,” Sci. Reports 5, 10196 (2015).
    [Crossref]
  39. M. Saboktakin, X. Ye, S. J. Oh, S.-H. Hong, A. T. Fafarman, U. K. Chettiar, N. Engheta, C. B. Murray, and C. R. Kagan, “Metal-Enhanced Upconversion Luminescence Tunable through Metal Nanoparticle-Nanophosphor Separation,” ACS Nano 6, 8758–8766 (2012).
    [Crossref] [PubMed]
  40. W. Xu, S. Xu, Y. Zhu, T. Liu, X. Bai, B. Dong, L. Xu, and H. Song, “Ultra-broad plasma resonance enhanced multicolor emissions in an assembled Ag/NaYF4:Yb, Er nano-film,” Nanoscale 4, 6971 (2012).
    [Crossref] [PubMed]
  41. Q.-C. Sun, H. Mundoor, J. C. Ribot, V. Singh, I. I. Smalyukh, and P. Nagpal, “Plasmon-Enhanced Energy Transfer for Improved Upconversion of Infrared Radiation in Doped-Lanthanide Nanocrystals,” Nano Lett. 14, 101–106 (2014).
    [Crossref]
  42. A. L. Feng, M. L. You, L. Tian, S. Singamaneni, M. Liu, Z. Duan, T. J. Lu, F. Xu, and M. Lin, “Distance-Dependent Plasmon-Enhanced Fluorescence of Upconversion Nanoparticles using Polyelectrolyte Multilayers as Tunable Spacers,” Sci. Reports 5, 7779 (2015).
    [Crossref]
  43. Z. Yin, D. Zhou, W. Xu, S. Cui, X. Chen, H. Wang, S. Xu, and H. Song, “Plasmon-Enhanced Upconversion Luminescence on Vertically Aligned Gold Nanorod Monolayer Supercrystals,” ACS Appl. Mater. & Interfaces 8, 11667–11674 (2016).
    [Crossref]
  44. D. Zhou, D. Liu, W. Xu, Z. Yin, X. Chen, P. Zhou, S. Cui, Z. Chen, and H. Song, “Observation of Considerable Upconversion Enhancement Induced by Cu 2- x S Plasmon Nanoparticles,” ACS Nano 10, 5169–5179 (2016).
    [Crossref] [PubMed]
  45. J. Li, Z. Yang, Z. Chai, J. Qiu, and Z. Song, “Preparation and upconversion emission enhancement of SiO_2 coated YbPO_4: Er^3+ inverse opals with Ag nanoparticles,” Opt. Mater. Express 7, 3503 (2017).
    [Crossref]
  46. B. Shao, Z. Yang, J. Li, J. Yang, Y. Wang, J. Qiu, and Z. Song, “Upconversion emission enhancement by porous silver films with ultra-broad plasmon absorption,” Opt. Mater. Express 7, 1188 (2017).
    [Crossref]
  47. T. van Dijk, S. T. Sivapalan, B. M. DeVetter, T. K. Yang, M. V. Schulmerich, C. J. Murphy, R. Bhargava, and P. S. Carney, “Competition Between Extinction and Enhancement in Surface-Enhanced Raman Spectroscopy,” The J. Phys. Chem. Lett. 4, 1193–1196 (2013).
    [Crossref]
  48. S. T. Sivapalan, B. M. DeVetter, T. K. Yang, T. van Dijk, M. V. Schulmerich, P. S. Carney, R. Bhargava, and C. J. Murphy, “Off-Resonance Surface-Enhanced Raman Spectroscopy from Gold Nanorod Suspensions as a Function of Aspect Ratio: Not What We Thought,” ACS Nano 7, 2099–2105 (2013).
    [Crossref] [PubMed]
  49. B. X. K. Chng, T. van Dijk, R. Bhargava, and P. S. Carney, “Enhancement and extinction effects in surface-enhanced stimulated Raman spectroscopy,” Phys. Chem. Chem. Phys. 17, 21348–21355 (2015).
    [Crossref] [PubMed]
  50. N. L. Gruenke, M. O. McAnally, G. C. Schatz, and R. P. Van Duyne, “Balancing the Effects of Extinction and Enhancement for Optimal Signal in Surface-Enhanced Femtosecond Stimulated Raman Spectroscopy,” The J. Phys. Chem. C 120, 29449–29454 (2016).
    [Crossref]
  51. D. Lu, S. K. Cho, S. Ahn, L. Brun, C. J. Summers, and W. Park, “Plasmon Enhancement Mechanism for the Upconversion Processes in NaYF 4 :Yb 3+, Er 3+ Nanoparticles: Maxwell versus Förster,” ACS Nano 8, 7780–7792 (2014).
    [Crossref] [PubMed]
  52. X. Wang, R. R. Valiev, T. Y. Ohulchanskyy, H. Ågren, C. Yang, and G. Chen, “Dye-sensitized lanthanide-doped upconversion nanoparticles,” Chem. Soc. Rev. 46, 4150–4167 (2017).
    [Crossref] [PubMed]
  53. X. Chen, D. Zhou, W. Xu, J. Zhu, G. Pan, Z. Yin, H. Wang, Y. Zhu, C. Shaobo, and H. Song, “Fabrication of Au-Ag nanocage@NaYF4@NaYF4:Yb, Er Core-Shell Hybrid and its Tunable Upconversion Enhancement,” Sci. Reports 7, 41079 (2017).
    [Crossref]
  54. L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. 100, 13549–13554 (2003).
    [Crossref] [PubMed]
  55. H. Zhang, Y. Li, I. A. Ivanov, Y. Qu, Y. Huang, and X. Duan, “Plasmonic Modulation of the Upconversion Fluorescence in NaYF4:Yb/Tm Hexaplate Nanocrystals Using Gold Nanoparticles or Nanoshells,” Angewandte Chemie Int. Ed. 49, 2865–2868 (2010).
    [Crossref]
  56. H. Xing, W. Bu, S. Zhang, X. Zheng, M. Li, F. Chen, Q. He, L. Zhou, W. Peng, Y. Hua, and J. Shi, “Multifunctional nanoprobes for upconversion fluorescence, MR and CT trimodal imaging,” Biomaterials 33, 1079–1089 (2012).
    [Crossref]
  57. P. Kannan, F. A. Rahim, X. Teng, R. Chen, H. Sun, L. Huang, and D.-H. Kim, “Enhanced emission of NaYF4:Yb, Er/Tm nanoparticles by selective growth of Au and Ag nanoshells,” RSC Adv. 3, 7718 (2013).
    [Crossref]
  58. Y. Qin, Z. Dong, D. Zhou, Y. Yang, X. Xu, and J. Qiu, “Modification on populating paths of β-NaYF_4:Nd/Yb/Ho@SiO_2@Ag core/double-shell nanocomposites with plasmon enhanced upconversion emission,” Opt. Mater. Express 6, 1942 (2016).
    [Crossref]
  59. A. K. Kodali, X. Llora, and R. Bhargava, “Optimally designed nanolayered metal-dielectric particles as probes for massively multiplexed and ultrasensitive molecular assays,” Proc. Natl. Acad. Sci. 107, 13620–13625 (2010).
    [Crossref] [PubMed]
  60. L. Meng, R. Yu, M. Qiu, and F. J. García de Abajo, “Plasmonic Nano-Oven by Concatenation of Multishell Photothermal Enhancement,” ACS Nano 11, 7915–7924 (2017).
    [Crossref] [PubMed]
  61. A. Moroz, “A recursive transfer-matrix solution for a dipole radiating inside and outside a stratified sphere,” Annals Phys. 315, 352–418 (2005).
    [Crossref]
  62. N. Kongsuwan, A. Demetriadou, R. Chikkaraddy, F. Benz, V. A. Turek, U. F. Keyser, J. J. Baumberg, and O. Hess, “Suppressed Quenching and Strong-Coupling of Purcell-Enhanced Single-Molecule Emission in Plasmonic Nanocavities,” ACS Photonics 5, 186–191 (2018).
    [Crossref]
  63. R. Faggiani, J. Yang, and P. Lalanne, “Quenching, Plasmonic, and Radiative Decays in Nanogap Emitting Devices,” ACS Photonics 2, 1739–1744 (2015).
    [Crossref]
  64. N. Sakamoto, T. Onodera, T. Dezawa, Y. Shibata, and H. Oikawa, “Highly Enhanced Emission of Visible Light from Core-Dual-Shell-Type Hybridized Nanoparticles,” Part. & Part. Syst. Charact. 34, 1700258 (2017).
    [Crossref]
  65. R. Kamakura, S. Murai, S. Ishii, T. Nagao, K. Fujita, and K. Tanaka, “Plasmonic-Photonic Hybrid Modes Excited on a Titanium Nitride Nanoparticle Array in the Visible Region,” ACS Photonics 4, 815–822 (2017).
    [Crossref]
  66. Y. S. Kim, P. Leung, and T. F. George, “Classical decay rates for molecules in the presence of a spherical surface: A complete treatment,” Surf. Sci. 195, 1–14 (1988).
    [Crossref]
  67. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical Antennas,” Adv. Opt. Photonics 1, 438 (2009).
    [Crossref]
  68. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH Verlag GmbH, Weinheim, Germany, 1998).
    [Crossref]
  69. W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, P. Nordlander, H. J. Lezec, J. Aizpurua, and K. B. Crozier, “Quantum mechanical effects in plasmonic structures with subnanometre gaps,” Nat. Commun. 7, 11495 (2016).
    [Crossref] [PubMed]
  70. G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kürzinger, “Gold Nanoshells Improve Single Nanoparticle Molecular Sensors,” Nano Lett. 4, 1853–1857 (2004).
    [Crossref]
  71. V. I. Zakomirnyi, I. L. Rasskazov, S. V. Karpov, and S. P. Polyutov, “New ideally absorbing Au plasmonic nanostructures for biomedical applications,” J. Quant. Spectrosc. Radiat. Transf. 187, 54–61 (2017).
    [Crossref]
  72. C. G. Granqvist and O. Hunderi, “Optical absorption of ultrafine metal spheres with dielectric cores,” Zeitschrift fur Physik B Condens. Matter Quanta 30, 47–51 (1978).
    [Crossref]
  73. B. N. Khlebtsov and N. G. Khlebtsov, “Biosensing potential of silica/gold nanoshells: Sensitivity of plasmon resonance to the local dielectric environment,” J. Quant. Spectrosc. Radiat. Transf. 106, 154–169 (2007).
    [Crossref]
  74. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [Crossref]
  75. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, vol. 25 of Springer Series in Materials Science (Springer Berlin Heidelberg, Berlin, Heidelberg, 1995).
    [Crossref]
  76. V. S. Gerasimov, A. E. Ershov, S. V. Karpov, A. P. Gavrilyuk, V. I. Zakomirnyi, I. L. Rasskazov, H. Ågren, and S. P. Polyutov, “Thermal effects in systems of colloidal plasmonic nanoparticles in high-intensity pulsed laser fields [Invited],” Opt. Mater. Express 7, 555 (2017).
    [Crossref]
  77. D. Zhou, D. Liu, W. Xu, X. Chen, Z. Yin, X. Bai, B. Dong, L. Xu, and H. Song, “Synergistic Upconversion Enhancement Induced by Multiple Physical Effects and an Angle-Dependent Anticounterfeit Application,” Chem. Mater. 29, 6799–6809 (2017).
    [Crossref]
  78. D. Zhou, D. Liu, J. Jin, X. Chen, W. Xu, Z. Yin, G. Pan, D. Li, and H. Song, “Semiconductor plasmon-sensitized broadband upconversion and its enhancement effect on the power conversion efficiency of perovskite solar cells,” J. Mater. Chem. A 5, 16559–16567 (2017).
    [Crossref]
  79. D. Zhou, D. Li, X. Zhou, W. Xu, X. Chen, D. Liu, Y. Zhu, and H. Song, “Semiconductor Plasmon Induced Up-Conversion Enhancement in mCu 2- x S@SiO 2 @Y 2 O 3 :Yb 3+ /Er 3+ Core-Shell Nanocomposites,” ACS Appl. Mater. & Interfaces 9, 35226–35233 (2017).
    [Crossref]
  80. G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2, 478 (2012).
    [Crossref]
  81. G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative Plasmonic Materials: Beyond Gold and Silver,” Adv. Mater. 25, 3264–3294 (2013).
    [Crossref] [PubMed]
  82. M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for Plasmonics,” ACS Nano 8, 834–840 (2014).
    [Crossref]
  83. A. Lalisse, G. Tessier, J. Plain, and G. Baffou, “Quantifying the Efficiency of Plasmonic Materials for Near-Field Enhancement and Photothermal Conversion,” The J. Phys. Chem. C 119, 25518–25528 (2015).
    [Crossref]
  84. J. R. Allardice and E. C. Le Ru, “Convergence of Mie theory series: criteria for far-field and near-field properties,” Appl. Opt. 53, 7224 (2014).
    [Crossref] [PubMed]

2018 (5)

F. Wang, S. Wen, H. He, B. Wang, Z. Zhou, O. Shimoni, and D. Jin, “Microscopic inspection and tracking of single upconversion nanoparticles in living cells,” Light. Sci. & Appl. 7, 18007 (2018).
[Crossref]

D. Li, H. Ågren, and G. Chen, “Near infrared harvesting dye-sensitized solar cells enabled by rare-earth upconversion materials,” Dalton Transactions 47, 8526–8537 (2018).

D. J. Garfield, N. J. Borys, S. M. Hamed, N. A. Torquato, C. A. Tajon, B. Tian, B. Shevitski, E. S. Barnard, Y. D. Suh, S. Aloni, J. B. Neaton, E. M. Chan, B. E. Cohen, and P. J. Schuck, “Enrichment of molecular antenna triplets amplifies upconverting nanoparticle emission,” Nat. Photonics 12, 402–407 (2018).
[Crossref]

J. Zhou, S. Wen, J. Liao, C. Clarke, S. A. Tawfik, W. Ren, C. Mi, F. Wang, and D. Jin, “Activation of the surface dark-layer to enhance upconversion in a thermal field,” Nat. Photonics 12, 154–158 (2018).
[Crossref]

N. Kongsuwan, A. Demetriadou, R. Chikkaraddy, F. Benz, V. A. Turek, U. F. Keyser, J. J. Baumberg, and O. Hess, “Suppressed Quenching and Strong-Coupling of Purcell-Enhanced Single-Molecule Emission in Plasmonic Nanocavities,” ACS Photonics 5, 186–191 (2018).
[Crossref]

2017 (16)

L. Meng, R. Yu, M. Qiu, and F. J. García de Abajo, “Plasmonic Nano-Oven by Concatenation of Multishell Photothermal Enhancement,” ACS Nano 11, 7915–7924 (2017).
[Crossref] [PubMed]

N. Sakamoto, T. Onodera, T. Dezawa, Y. Shibata, and H. Oikawa, “Highly Enhanced Emission of Visible Light from Core-Dual-Shell-Type Hybridized Nanoparticles,” Part. & Part. Syst. Charact. 34, 1700258 (2017).
[Crossref]

R. Kamakura, S. Murai, S. Ishii, T. Nagao, K. Fujita, and K. Tanaka, “Plasmonic-Photonic Hybrid Modes Excited on a Titanium Nitride Nanoparticle Array in the Visible Region,” ACS Photonics 4, 815–822 (2017).
[Crossref]

V. I. Zakomirnyi, I. L. Rasskazov, S. V. Karpov, and S. P. Polyutov, “New ideally absorbing Au plasmonic nanostructures for biomedical applications,” J. Quant. Spectrosc. Radiat. Transf. 187, 54–61 (2017).
[Crossref]

J. Li, Z. Yang, Z. Chai, J. Qiu, and Z. Song, “Preparation and upconversion emission enhancement of SiO_2 coated YbPO_4: Er^3+ inverse opals with Ag nanoparticles,” Opt. Mater. Express 7, 3503 (2017).
[Crossref]

B. Shao, Z. Yang, J. Li, J. Yang, Y. Wang, J. Qiu, and Z. Song, “Upconversion emission enhancement by porous silver films with ultra-broad plasmon absorption,” Opt. Mater. Express 7, 1188 (2017).
[Crossref]

X. Wang, R. R. Valiev, T. Y. Ohulchanskyy, H. Ågren, C. Yang, and G. Chen, “Dye-sensitized lanthanide-doped upconversion nanoparticles,” Chem. Soc. Rev. 46, 4150–4167 (2017).
[Crossref] [PubMed]

X. Chen, D. Zhou, W. Xu, J. Zhu, G. Pan, Z. Yin, H. Wang, Y. Zhu, C. Shaobo, and H. Song, “Fabrication of Au-Ag nanocage@NaYF4@NaYF4:Yb, Er Core-Shell Hybrid and its Tunable Upconversion Enhancement,” Sci. Reports 7, 41079 (2017).
[Crossref]

W. Xu, X. Chen, and H. Song, “Upconversion manipulation by local electromagnetic field,” Nano Today 17, 54–78 (2017).
[Crossref]

J. L. Montaño-Priede, O. Peña-Rodríguez, and U. Pal, “Near-Electric-Field Tuned Plasmonic Au@SiO 2 and Ag@SiO 2 Nanoparticles for Efficient Utilization in Luminescence Enhancement and Surface-Enhanced Spectroscopy,” The J. Phys. Chem. C 121, 23062–23071 (2017).
[Crossref]

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543, 229–233 (2017).
[Crossref] [PubMed]

Q. Zhan, H. Liu, B. Wang, Q. Wu, R. Pu, C. Zhou, B. Huang, X. Peng, H. Ågren, and S. He, “Achieving high-efficiency emission depletion nanoscopy by employing cross relaxation in upconversion nanoparticles,” Nat. Commun. 8, 1058 (2017).
[Crossref] [PubMed]

V. S. Gerasimov, A. E. Ershov, S. V. Karpov, A. P. Gavrilyuk, V. I. Zakomirnyi, I. L. Rasskazov, H. Ågren, and S. P. Polyutov, “Thermal effects in systems of colloidal plasmonic nanoparticles in high-intensity pulsed laser fields [Invited],” Opt. Mater. Express 7, 555 (2017).
[Crossref]

D. Zhou, D. Liu, W. Xu, X. Chen, Z. Yin, X. Bai, B. Dong, L. Xu, and H. Song, “Synergistic Upconversion Enhancement Induced by Multiple Physical Effects and an Angle-Dependent Anticounterfeit Application,” Chem. Mater. 29, 6799–6809 (2017).
[Crossref]

D. Zhou, D. Liu, J. Jin, X. Chen, W. Xu, Z. Yin, G. Pan, D. Li, and H. Song, “Semiconductor plasmon-sensitized broadband upconversion and its enhancement effect on the power conversion efficiency of perovskite solar cells,” J. Mater. Chem. A 5, 16559–16567 (2017).
[Crossref]

D. Zhou, D. Li, X. Zhou, W. Xu, X. Chen, D. Liu, Y. Zhu, and H. Song, “Semiconductor Plasmon Induced Up-Conversion Enhancement in mCu 2- x S@SiO 2 @Y 2 O 3 :Yb 3+ /Er 3+ Core-Shell Nanocomposites,” ACS Appl. Mater. & Interfaces 9, 35226–35233 (2017).
[Crossref]

2016 (10)

Y. H. Jang, Y. J. Jang, S. Kim, L. N. Quan, K. Chung, and D. H. Kim, “Plasmonic Solar Cells: From Rational Design to Mechanism Overview,” Chem. Rev. 116, 14982–15034 (2016).
[Crossref] [PubMed]

F. Meng, Y. Luo, Y. Zhou, J. Zhang, Y. Zheng, G. Cao, and X. Tao, “Integrated plasmonic and upconversion starlike Y2O3:Er/Au@TiO2 composite for enhanced photon harvesting in dye-sensitized solar cells,” J. Power Sources 316, 207–214 (2016).
[Crossref]

L. Huot, P. M. Moselund, P. Tidemand-Lichtenberg, L. Leick, and C. Pedersen, “Upconversion imaging using an all-fiber supercontinuum source,” Opt. Lett. 41, 2466 (2016).
[Crossref] [PubMed]

X. Wu, Y. Zhang, K. Takle, O. Bilsel, Z. Li, H. Lee, Z. Zhang, D. Li, W. Fan, C. Duan, E. M. Chan, C. Lois, Y. Xiang, and G. Han, “Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications,” ACS Nano 10, 1060–1066 (2016).
[Crossref] [PubMed]

Z. Wang, W. Gao, R. Wang, J. Shao, Q. Han, C. Wang, J. Zhang, T. Zhang, J. Dong, and H. Zheng, “Influence of SiO2 layer on the plasmon quenched upconversion luminescence emission of core-shell NaYF4:Yb, Er@SiO2@Ag nanocomposites,” Mater. Res. Bull. 83, 515–521 (2016).
[Crossref]

Z. Yin, D. Zhou, W. Xu, S. Cui, X. Chen, H. Wang, S. Xu, and H. Song, “Plasmon-Enhanced Upconversion Luminescence on Vertically Aligned Gold Nanorod Monolayer Supercrystals,” ACS Appl. Mater. & Interfaces 8, 11667–11674 (2016).
[Crossref]

D. Zhou, D. Liu, W. Xu, Z. Yin, X. Chen, P. Zhou, S. Cui, Z. Chen, and H. Song, “Observation of Considerable Upconversion Enhancement Induced by Cu 2- x S Plasmon Nanoparticles,” ACS Nano 10, 5169–5179 (2016).
[Crossref] [PubMed]

N. L. Gruenke, M. O. McAnally, G. C. Schatz, and R. P. Van Duyne, “Balancing the Effects of Extinction and Enhancement for Optimal Signal in Surface-Enhanced Femtosecond Stimulated Raman Spectroscopy,” The J. Phys. Chem. C 120, 29449–29454 (2016).
[Crossref]

W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, P. Nordlander, H. J. Lezec, J. Aizpurua, and K. B. Crozier, “Quantum mechanical effects in plasmonic structures with subnanometre gaps,” Nat. Commun. 7, 11495 (2016).
[Crossref] [PubMed]

Y. Qin, Z. Dong, D. Zhou, Y. Yang, X. Xu, and J. Qiu, “Modification on populating paths of β-NaYF_4:Nd/Yb/Ho@SiO_2@Ag core/double-shell nanocomposites with plasmon enhanced upconversion emission,” Opt. Mater. Express 6, 1942 (2016).
[Crossref]

2015 (11)

R. Faggiani, J. Yang, and P. Lalanne, “Quenching, Plasmonic, and Radiative Decays in Nanogap Emitting Devices,” ACS Photonics 2, 1739–1744 (2015).
[Crossref]

B. X. K. Chng, T. van Dijk, R. Bhargava, and P. S. Carney, “Enhancement and extinction effects in surface-enhanced stimulated Raman spectroscopy,” Phys. Chem. Chem. Phys. 17, 21348–21355 (2015).
[Crossref] [PubMed]

Y.-L. Wang, N. Mohammadi Estakhri, A. Johnson, H.-Y. Li, L.-X. Xu, Z. Zhang, A. Alù, Q.-Q. Wang, and C.-K. K. Shih, “Tailoring Plasmonic Enhanced Upconversion in Single NaYF4:Yb3+/Er3+ Nanocrystals,” Sci. Reports 5, 10196 (2015).
[Crossref]

A. L. Feng, M. L. You, L. Tian, S. Singamaneni, M. Liu, Z. Duan, T. J. Lu, F. Xu, and M. Lin, “Distance-Dependent Plasmon-Enhanced Fluorescence of Upconversion Nanoparticles using Polyelectrolyte Multilayers as Tunable Spacers,” Sci. Reports 5, 7779 (2015).
[Crossref]

X. Liu and D. Yuan Lei, “Simultaneous excitation and emission enhancements in upconversion luminescence using plasmonic double-resonant gold nanorods,” Sci. Reports 5, 15235 (2015).
[Crossref]

Q. Zhan, X. Zhang, Y. Zhao, J. Liu, and S. He, “Tens of thousands-fold upconversion luminescence enhancement induced by a single gold nanorod,” Laser & Photonics Rev. 9, 479–487 (2015).
[Crossref]

W. Park, D. Lu, and S. Ahn, “Plasmon enhancement of luminescence upconversion,” Chem. Soc. Rev. 44, 2940–2962 (2015).
[Crossref] [PubMed]

B. Zhou, B. Shi, D. Jin, and X. Liu, “Controlling upconversion nanocrystals for emerging applications,” Nat. Nanotechnol. 10, 924–936 (2015).
[Crossref] [PubMed]

C.-W. Chen, P.-H. Lee, Y.-C. Chan, M. Hsiao, C.-H. Chen, P. C. Wu, P. R. Wu, D. P. Tsai, D. Tu, X. Chen, and R.-S. Liu, “Plasmon-induced hyperthermia: hybrid upconversion NaYF 4 :Yb/Er and gold nanomaterials for oral cancer photothermal therapy,” J. Mater. Chem. B 3, 8293–8302 (2015).
[Crossref]

L. Zhou, R. Wang, C. Yao, X. Li, C. Wang, X. Zhang, C. Xu, A. Zeng, D. Zhao, and F. Zhang, “Single-band upconversion nanoprobes for multiplexed simultaneous in situ molecular mapping of cancer biomarkers,” Nat. Commun. 6, 6938 (2015).
[Crossref] [PubMed]

A. Lalisse, G. Tessier, J. Plain, and G. Baffou, “Quantifying the Efficiency of Plasmonic Materials for Near-Field Enhancement and Photothermal Conversion,” The J. Phys. Chem. C 119, 25518–25528 (2015).
[Crossref]

2014 (9)

J. R. Allardice and E. C. Le Ru, “Convergence of Mie theory series: criteria for far-field and near-field properties,” Appl. Opt. 53, 7224 (2014).
[Crossref] [PubMed]

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for Plasmonics,” ACS Nano 8, 834–840 (2014).
[Crossref]

G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion Nanoparticles: Design, Nanochemistry, and Applications in Theranostics,” Chem. Rev. 114, 5161–5214 (2014).
[Crossref] [PubMed]

J. Wang, T. Ming, Z. Jin, J. Wang, L.-D. Sun, and C.-H. Yan, “Photon energy upconversion through thermal radiation with the power efficiency reaching 16%,” Nat. Commun. 5, 5669 (2014).
[Crossref]

D. M. Wu, A. García-Etxarri, A. Salleo, and J. A. Dionne, “Plasmon-Enhanced Upconversion,” The J. Phys. Chem. Lett. 5, 4020–4031 (2014).
[Crossref]

N. S. Abadeer, M. R. Brennan, W. L. Wilson, and C. J. Murphy, “Distance and Plasmon Wavelength Dependent Fluorescence of Molecules Bound to Silica-Coated Gold Nanorods,” ACS Nano 8, 8392–8406 (2014).
[Crossref] [PubMed]

Y. Ding, X. Zhang, H. Gao, S. Xu, C. Wei, and Y. Zhao, “Plasmonic enhanced upconversion luminescence of β-NaYF4:Yb3+/Er3+ with Ag@SiO2 core-shell nanoparticles,” J. Lumin. 147, 72–76 (2014).
[Crossref]

Q.-C. Sun, H. Mundoor, J. C. Ribot, V. Singh, I. I. Smalyukh, and P. Nagpal, “Plasmon-Enhanced Energy Transfer for Improved Upconversion of Infrared Radiation in Doped-Lanthanide Nanocrystals,” Nano Lett. 14, 101–106 (2014).
[Crossref]

D. Lu, S. K. Cho, S. Ahn, L. Brun, C. J. Summers, and W. Park, “Plasmon Enhancement Mechanism for the Upconversion Processes in NaYF 4 :Yb 3+, Er 3+ Nanoparticles: Maxwell versus Förster,” ACS Nano 8, 7780–7792 (2014).
[Crossref] [PubMed]

2013 (8)

T. van Dijk, S. T. Sivapalan, B. M. DeVetter, T. K. Yang, M. V. Schulmerich, C. J. Murphy, R. Bhargava, and P. S. Carney, “Competition Between Extinction and Enhancement in Surface-Enhanced Raman Spectroscopy,” The J. Phys. Chem. Lett. 4, 1193–1196 (2013).
[Crossref]

S. T. Sivapalan, B. M. DeVetter, T. K. Yang, T. van Dijk, M. V. Schulmerich, P. S. Carney, R. Bhargava, and C. J. Murphy, “Off-Resonance Surface-Enhanced Raman Spectroscopy from Gold Nanorod Suspensions as a Function of Aspect Ratio: Not What We Thought,” ACS Nano 7, 2099–2105 (2013).
[Crossref] [PubMed]

P. Kannan, F. A. Rahim, X. Teng, R. Chen, H. Sun, L. Huang, and D.-H. Kim, “Enhanced emission of NaYF4:Yb, Er/Tm nanoparticles by selective growth of Au and Ag nanoshells,” RSC Adv. 3, 7718 (2013).
[Crossref]

S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, and J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles - simulation and analysis of the interactions: Errata,” Opt. Express 21, 10606 (2013).
[Crossref] [PubMed]

P. Alonso-González, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, and R. Hillenbrand, “Experimental Verification of the Spectral Shift between Near- and Far-Field Peak Intensities of Plasmonic Infrared Nanoantennas,” Phys. Rev. Lett. 110, 203902 (2013).
[Crossref] [PubMed]

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8, 729–734 (2013).
[Crossref] [PubMed]

X. Li, F. Zhang, and D. Zhao, “Highly efficient lanthanide upconverting nanomaterials: Progresses and challenges,” Nano Today 8, 643–676 (2013).
[Crossref]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative Plasmonic Materials: Beyond Gold and Silver,” Adv. Mater. 25, 3264–3294 (2013).
[Crossref] [PubMed]

2012 (8)

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2, 478 (2012).
[Crossref]

W. Zou, C. Visser, J. A. Maduro, M. S. Pshenichnikov, and J. C. Hummelen, “Broadband dye-sensitized upconversion of near-infrared light,” Nat. Photonics 6, 560–564 (2012).
[Crossref]

Y. C. Simon and C. Weder, “Low-power photon upconversion through triplet-triplet annihilation in polymers,” J. Mater. Chem. 22, 20817 (2012).
[Crossref]

S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, and J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles - simulation and analysis of the interactions,” Opt. Express 20, 271 (2012).
[Crossref] [PubMed]

P. Yuan, Y. H. Lee, M. K. Gnanasammandhan, Z. Guan, Y. Zhang, and Q.-H. Xu, “Plasmon enhanced upconversion luminescence of NaYF4:Yb, Er@SiO2@Ag core-shell nanocomposites for cell imaging,” Nanoscale 4, 5132 (2012).
[Crossref] [PubMed]

H. Xing, W. Bu, S. Zhang, X. Zheng, M. Li, F. Chen, Q. He, L. Zhou, W. Peng, Y. Hua, and J. Shi, “Multifunctional nanoprobes for upconversion fluorescence, MR and CT trimodal imaging,” Biomaterials 33, 1079–1089 (2012).
[Crossref]

M. Saboktakin, X. Ye, S. J. Oh, S.-H. Hong, A. T. Fafarman, U. K. Chettiar, N. Engheta, C. B. Murray, and C. R. Kagan, “Metal-Enhanced Upconversion Luminescence Tunable through Metal Nanoparticle-Nanophosphor Separation,” ACS Nano 6, 8758–8766 (2012).
[Crossref] [PubMed]

W. Xu, S. Xu, Y. Zhu, T. Liu, X. Bai, B. Dong, L. Xu, and H. Song, “Ultra-broad plasma resonance enhanced multicolor emissions in an assembled Ag/NaYF4:Yb, Er nano-film,” Nanoscale 4, 6971 (2012).
[Crossref] [PubMed]

2011 (1)

J. Zhao, S. Ji, and H. Guo, “Triplet-triplet annihilation based upconversion: from triplet sensitizers and triplet acceptors to upconversion quantum yields,” RSC Adv. 1, 937 (2011).
[Crossref]

2010 (2)

H. Zhang, Y. Li, I. A. Ivanov, Y. Qu, Y. Huang, and X. Duan, “Plasmonic Modulation of the Upconversion Fluorescence in NaYF4:Yb/Tm Hexaplate Nanocrystals Using Gold Nanoparticles or Nanoshells,” Angewandte Chemie Int. Ed. 49, 2865–2868 (2010).
[Crossref]

A. K. Kodali, X. Llora, and R. Bhargava, “Optimally designed nanolayered metal-dielectric particles as probes for massively multiplexed and ultrasensitive molecular assays,” Proc. Natl. Acad. Sci. 107, 13620–13625 (2010).
[Crossref] [PubMed]

2009 (2)

R. Esteban, M. Laroche, and J.-J. Greffet, “Influence of metallic nanoparticles on upconversion processes,” J. Appl. Phys. 105, 033107 (2009).
[Crossref]

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical Antennas,” Adv. Opt. Photonics 1, 438 (2009).
[Crossref]

2007 (2)

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
[Crossref]

B. N. Khlebtsov and N. G. Khlebtsov, “Biosensing potential of silica/gold nanoshells: Sensitivity of plasmon resonance to the local dielectric environment,” J. Quant. Spectrosc. Radiat. Transf. 106, 154–169 (2007).
[Crossref]

2005 (2)

A. Moroz, “A recursive transfer-matrix solution for a dipole radiating inside and outside a stratified sphere,” Annals Phys. 315, 352–418 (2005).
[Crossref]

J. R. Lakowicz, “Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission,” Anal. Biochem. 337, 171–194 (2005).
[Crossref] [PubMed]

2004 (2)

F. Auzel, “Upconversion and Anti-Stokes Processes with f and d Ions in Solids,” Chem. Rev. 104, 139–174 (2004).
[Crossref] [PubMed]

G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kürzinger, “Gold Nanoshells Improve Single Nanoparticle Molecular Sensors,” Nano Lett. 4, 1853–1857 (2004).
[Crossref]

2003 (1)

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. 100, 13549–13554 (2003).
[Crossref] [PubMed]

1988 (1)

Y. S. Kim, P. Leung, and T. F. George, “Classical decay rates for molecules in the presence of a spherical surface: A complete treatment,” Surf. Sci. 195, 1–14 (1988).
[Crossref]

1978 (1)

C. G. Granqvist and O. Hunderi, “Optical absorption of ultrafine metal spheres with dielectric cores,” Zeitschrift fur Physik B Condens. Matter Quanta 30, 47–51 (1978).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Abadeer, N. S.

N. S. Abadeer, M. R. Brennan, W. L. Wilson, and C. J. Murphy, “Distance and Plasmon Wavelength Dependent Fluorescence of Molecules Bound to Silica-Coated Gold Nanorods,” ACS Nano 8, 8392–8406 (2014).
[Crossref] [PubMed]

Ågren, H.

D. Li, H. Ågren, and G. Chen, “Near infrared harvesting dye-sensitized solar cells enabled by rare-earth upconversion materials,” Dalton Transactions 47, 8526–8537 (2018).

Q. Zhan, H. Liu, B. Wang, Q. Wu, R. Pu, C. Zhou, B. Huang, X. Peng, H. Ågren, and S. He, “Achieving high-efficiency emission depletion nanoscopy by employing cross relaxation in upconversion nanoparticles,” Nat. Commun. 8, 1058 (2017).
[Crossref] [PubMed]

X. Wang, R. R. Valiev, T. Y. Ohulchanskyy, H. Ågren, C. Yang, and G. Chen, “Dye-sensitized lanthanide-doped upconversion nanoparticles,” Chem. Soc. Rev. 46, 4150–4167 (2017).
[Crossref] [PubMed]

V. S. Gerasimov, A. E. Ershov, S. V. Karpov, A. P. Gavrilyuk, V. I. Zakomirnyi, I. L. Rasskazov, H. Ågren, and S. P. Polyutov, “Thermal effects in systems of colloidal plasmonic nanoparticles in high-intensity pulsed laser fields [Invited],” Opt. Mater. Express 7, 555 (2017).
[Crossref]

Ahn, S.

W. Park, D. Lu, and S. Ahn, “Plasmon enhancement of luminescence upconversion,” Chem. Soc. Rev. 44, 2940–2962 (2015).
[Crossref] [PubMed]

D. Lu, S. K. Cho, S. Ahn, L. Brun, C. J. Summers, and W. Park, “Plasmon Enhancement Mechanism for the Upconversion Processes in NaYF 4 :Yb 3+, Er 3+ Nanoparticles: Maxwell versus Förster,” ACS Nano 8, 7780–7792 (2014).
[Crossref] [PubMed]

Aizpurua, J.

W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, P. Nordlander, H. J. Lezec, J. Aizpurua, and K. B. Crozier, “Quantum mechanical effects in plasmonic structures with subnanometre gaps,” Nat. Commun. 7, 11495 (2016).
[Crossref] [PubMed]

P. Alonso-González, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, and R. Hillenbrand, “Experimental Verification of the Spectral Shift between Near- and Far-Field Peak Intensities of Plasmonic Infrared Nanoantennas,” Phys. Rev. Lett. 110, 203902 (2013).
[Crossref] [PubMed]

Albella, P.

P. Alonso-González, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, and R. Hillenbrand, “Experimental Verification of the Spectral Shift between Near- and Far-Field Peak Intensities of Plasmonic Infrared Nanoantennas,” Phys. Rev. Lett. 110, 203902 (2013).
[Crossref] [PubMed]

Allardice, J. R.

Aloni, S.

D. J. Garfield, N. J. Borys, S. M. Hamed, N. A. Torquato, C. A. Tajon, B. Tian, B. Shevitski, E. S. Barnard, Y. D. Suh, S. Aloni, J. B. Neaton, E. M. Chan, B. E. Cohen, and P. J. Schuck, “Enrichment of molecular antenna triplets amplifies upconverting nanoparticle emission,” Nat. Photonics 12, 402–407 (2018).
[Crossref]

Alonso-González, P.

P. Alonso-González, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, and R. Hillenbrand, “Experimental Verification of the Spectral Shift between Near- and Far-Field Peak Intensities of Plasmonic Infrared Nanoantennas,” Phys. Rev. Lett. 110, 203902 (2013).
[Crossref] [PubMed]

Alù, A.

Y.-L. Wang, N. Mohammadi Estakhri, A. Johnson, H.-Y. Li, L.-X. Xu, Z. Zhang, A. Alù, Q.-Q. Wang, and C.-K. K. Shih, “Tailoring Plasmonic Enhanced Upconversion in Single NaYF4:Yb3+/Er3+ Nanocrystals,” Sci. Reports 5, 10196 (2015).
[Crossref]

Auzel, F.

F. Auzel, “Upconversion and Anti-Stokes Processes with f and d Ions in Solids,” Chem. Rev. 104, 139–174 (2004).
[Crossref] [PubMed]

Baffou, G.

A. Lalisse, G. Tessier, J. Plain, and G. Baffou, “Quantifying the Efficiency of Plasmonic Materials for Near-Field Enhancement and Photothermal Conversion,” The J. Phys. Chem. C 119, 25518–25528 (2015).
[Crossref]

Bai, X.

D. Zhou, D. Liu, W. Xu, X. Chen, Z. Yin, X. Bai, B. Dong, L. Xu, and H. Song, “Synergistic Upconversion Enhancement Induced by Multiple Physical Effects and an Angle-Dependent Anticounterfeit Application,” Chem. Mater. 29, 6799–6809 (2017).
[Crossref]

W. Xu, S. Xu, Y. Zhu, T. Liu, X. Bai, B. Dong, L. Xu, and H. Song, “Ultra-broad plasma resonance enhanced multicolor emissions in an assembled Ag/NaYF4:Yb, Er nano-film,” Nanoscale 4, 6971 (2012).
[Crossref] [PubMed]

Bankson, J. A.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. 100, 13549–13554 (2003).
[Crossref] [PubMed]

Barnard, E. S.

D. J. Garfield, N. J. Borys, S. M. Hamed, N. A. Torquato, C. A. Tajon, B. Tian, B. Shevitski, E. S. Barnard, Y. D. Suh, S. Aloni, J. B. Neaton, E. M. Chan, B. E. Cohen, and P. J. Schuck, “Enrichment of molecular antenna triplets amplifies upconverting nanoparticle emission,” Nat. Photonics 12, 402–407 (2018).
[Crossref]

Baumberg, J. J.

N. Kongsuwan, A. Demetriadou, R. Chikkaraddy, F. Benz, V. A. Turek, U. F. Keyser, J. J. Baumberg, and O. Hess, “Suppressed Quenching and Strong-Coupling of Purcell-Enhanced Single-Molecule Emission in Plasmonic Nanocavities,” ACS Photonics 5, 186–191 (2018).
[Crossref]

W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, P. Nordlander, H. J. Lezec, J. Aizpurua, and K. B. Crozier, “Quantum mechanical effects in plasmonic structures with subnanometre gaps,” Nat. Commun. 7, 11495 (2016).
[Crossref] [PubMed]

Bein, T.

G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kürzinger, “Gold Nanoshells Improve Single Nanoparticle Molecular Sensors,” Nano Lett. 4, 1853–1857 (2004).
[Crossref]

Benz, F.

N. Kongsuwan, A. Demetriadou, R. Chikkaraddy, F. Benz, V. A. Turek, U. F. Keyser, J. J. Baumberg, and O. Hess, “Suppressed Quenching and Strong-Coupling of Purcell-Enhanced Single-Molecule Emission in Plasmonic Nanocavities,” ACS Photonics 5, 186–191 (2018).
[Crossref]

Bharadwaj, P.

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical Antennas,” Adv. Opt. Photonics 1, 438 (2009).
[Crossref]

Bhargava, R.

B. X. K. Chng, T. van Dijk, R. Bhargava, and P. S. Carney, “Enhancement and extinction effects in surface-enhanced stimulated Raman spectroscopy,” Phys. Chem. Chem. Phys. 17, 21348–21355 (2015).
[Crossref] [PubMed]

S. T. Sivapalan, B. M. DeVetter, T. K. Yang, T. van Dijk, M. V. Schulmerich, P. S. Carney, R. Bhargava, and C. J. Murphy, “Off-Resonance Surface-Enhanced Raman Spectroscopy from Gold Nanorod Suspensions as a Function of Aspect Ratio: Not What We Thought,” ACS Nano 7, 2099–2105 (2013).
[Crossref] [PubMed]

T. van Dijk, S. T. Sivapalan, B. M. DeVetter, T. K. Yang, M. V. Schulmerich, C. J. Murphy, R. Bhargava, and P. S. Carney, “Competition Between Extinction and Enhancement in Surface-Enhanced Raman Spectroscopy,” The J. Phys. Chem. Lett. 4, 1193–1196 (2013).
[Crossref]

A. K. Kodali, X. Llora, and R. Bhargava, “Optimally designed nanolayered metal-dielectric particles as probes for massively multiplexed and ultrasensitive molecular assays,” Proc. Natl. Acad. Sci. 107, 13620–13625 (2010).
[Crossref] [PubMed]

Bilsel, O.

X. Wu, Y. Zhang, K. Takle, O. Bilsel, Z. Li, H. Lee, Z. Zhang, D. Li, W. Fan, C. Duan, E. M. Chan, C. Lois, Y. Xiang, and G. Han, “Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications,” ACS Nano 10, 1060–1066 (2016).
[Crossref] [PubMed]

Biner, D.

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH Verlag GmbH, Weinheim, Germany, 1998).
[Crossref]

Boltasseva, A.

Borisov, A. G.

W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, P. Nordlander, H. J. Lezec, J. Aizpurua, and K. B. Crozier, “Quantum mechanical effects in plasmonic structures with subnanometre gaps,” Nat. Commun. 7, 11495 (2016).
[Crossref] [PubMed]

Borys, N. J.

D. J. Garfield, N. J. Borys, S. M. Hamed, N. A. Torquato, C. A. Tajon, B. Tian, B. Shevitski, E. S. Barnard, Y. D. Suh, S. Aloni, J. B. Neaton, E. M. Chan, B. E. Cohen, and P. J. Schuck, “Enrichment of molecular antenna triplets amplifies upconverting nanoparticle emission,” Nat. Photonics 12, 402–407 (2018).
[Crossref]

Brennan, M. R.

N. S. Abadeer, M. R. Brennan, W. L. Wilson, and C. J. Murphy, “Distance and Plasmon Wavelength Dependent Fluorescence of Molecules Bound to Silica-Coated Gold Nanorods,” ACS Nano 8, 8392–8406 (2014).
[Crossref] [PubMed]

Brogl, S.

G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kürzinger, “Gold Nanoshells Improve Single Nanoparticle Molecular Sensors,” Nano Lett. 4, 1853–1857 (2004).
[Crossref]

Brun, L.

D. Lu, S. K. Cho, S. Ahn, L. Brun, C. J. Summers, and W. Park, “Plasmon Enhancement Mechanism for the Upconversion Processes in NaYF 4 :Yb 3+, Er 3+ Nanoparticles: Maxwell versus Förster,” ACS Nano 8, 7780–7792 (2014).
[Crossref] [PubMed]

Bu, W.

H. Xing, W. Bu, S. Zhang, X. Zheng, M. Li, F. Chen, Q. He, L. Zhou, W. Peng, Y. Hua, and J. Shi, “Multifunctional nanoprobes for upconversion fluorescence, MR and CT trimodal imaging,” Biomaterials 33, 1079–1089 (2012).
[Crossref]

Cao, G.

F. Meng, Y. Luo, Y. Zhou, J. Zhang, Y. Zheng, G. Cao, and X. Tao, “Integrated plasmonic and upconversion starlike Y2O3:Er/Au@TiO2 composite for enhanced photon harvesting in dye-sensitized solar cells,” J. Power Sources 316, 207–214 (2016).
[Crossref]

Carney, P. S.

B. X. K. Chng, T. van Dijk, R. Bhargava, and P. S. Carney, “Enhancement and extinction effects in surface-enhanced stimulated Raman spectroscopy,” Phys. Chem. Chem. Phys. 17, 21348–21355 (2015).
[Crossref] [PubMed]

S. T. Sivapalan, B. M. DeVetter, T. K. Yang, T. van Dijk, M. V. Schulmerich, P. S. Carney, R. Bhargava, and C. J. Murphy, “Off-Resonance Surface-Enhanced Raman Spectroscopy from Gold Nanorod Suspensions as a Function of Aspect Ratio: Not What We Thought,” ACS Nano 7, 2099–2105 (2013).
[Crossref] [PubMed]

T. van Dijk, S. T. Sivapalan, B. M. DeVetter, T. K. Yang, M. V. Schulmerich, C. J. Murphy, R. Bhargava, and P. S. Carney, “Competition Between Extinction and Enhancement in Surface-Enhanced Raman Spectroscopy,” The J. Phys. Chem. Lett. 4, 1193–1196 (2013).
[Crossref]

Casanova, F.

P. Alonso-González, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, and R. Hillenbrand, “Experimental Verification of the Spectral Shift between Near- and Far-Field Peak Intensities of Plasmonic Infrared Nanoantennas,” Phys. Rev. Lett. 110, 203902 (2013).
[Crossref] [PubMed]

Chai, Z.

Chan, E. M.

D. J. Garfield, N. J. Borys, S. M. Hamed, N. A. Torquato, C. A. Tajon, B. Tian, B. Shevitski, E. S. Barnard, Y. D. Suh, S. Aloni, J. B. Neaton, E. M. Chan, B. E. Cohen, and P. J. Schuck, “Enrichment of molecular antenna triplets amplifies upconverting nanoparticle emission,” Nat. Photonics 12, 402–407 (2018).
[Crossref]

X. Wu, Y. Zhang, K. Takle, O. Bilsel, Z. Li, H. Lee, Z. Zhang, D. Li, W. Fan, C. Duan, E. M. Chan, C. Lois, Y. Xiang, and G. Han, “Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications,” ACS Nano 10, 1060–1066 (2016).
[Crossref] [PubMed]

Chan, Y.-C.

C.-W. Chen, P.-H. Lee, Y.-C. Chan, M. Hsiao, C.-H. Chen, P. C. Wu, P. R. Wu, D. P. Tsai, D. Tu, X. Chen, and R.-S. Liu, “Plasmon-induced hyperthermia: hybrid upconversion NaYF 4 :Yb/Er and gold nanomaterials for oral cancer photothermal therapy,” J. Mater. Chem. B 3, 8293–8302 (2015).
[Crossref]

Chen, C.-H.

C.-W. Chen, P.-H. Lee, Y.-C. Chan, M. Hsiao, C.-H. Chen, P. C. Wu, P. R. Wu, D. P. Tsai, D. Tu, X. Chen, and R.-S. Liu, “Plasmon-induced hyperthermia: hybrid upconversion NaYF 4 :Yb/Er and gold nanomaterials for oral cancer photothermal therapy,” J. Mater. Chem. B 3, 8293–8302 (2015).
[Crossref]

Chen, C.-W.

C.-W. Chen, P.-H. Lee, Y.-C. Chan, M. Hsiao, C.-H. Chen, P. C. Wu, P. R. Wu, D. P. Tsai, D. Tu, X. Chen, and R.-S. Liu, “Plasmon-induced hyperthermia: hybrid upconversion NaYF 4 :Yb/Er and gold nanomaterials for oral cancer photothermal therapy,” J. Mater. Chem. B 3, 8293–8302 (2015).
[Crossref]

Chen, F.

H. Xing, W. Bu, S. Zhang, X. Zheng, M. Li, F. Chen, Q. He, L. Zhou, W. Peng, Y. Hua, and J. Shi, “Multifunctional nanoprobes for upconversion fluorescence, MR and CT trimodal imaging,” Biomaterials 33, 1079–1089 (2012).
[Crossref]

Chen, G.

D. Li, H. Ågren, and G. Chen, “Near infrared harvesting dye-sensitized solar cells enabled by rare-earth upconversion materials,” Dalton Transactions 47, 8526–8537 (2018).

X. Wang, R. R. Valiev, T. Y. Ohulchanskyy, H. Ågren, C. Yang, and G. Chen, “Dye-sensitized lanthanide-doped upconversion nanoparticles,” Chem. Soc. Rev. 46, 4150–4167 (2017).
[Crossref] [PubMed]

G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion Nanoparticles: Design, Nanochemistry, and Applications in Theranostics,” Chem. Rev. 114, 5161–5214 (2014).
[Crossref] [PubMed]

Chen, J.

P. Alonso-González, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, and R. Hillenbrand, “Experimental Verification of the Spectral Shift between Near- and Far-Field Peak Intensities of Plasmonic Infrared Nanoantennas,” Phys. Rev. Lett. 110, 203902 (2013).
[Crossref] [PubMed]

Chen, R.

P. Kannan, F. A. Rahim, X. Teng, R. Chen, H. Sun, L. Huang, and D.-H. Kim, “Enhanced emission of NaYF4:Yb, Er/Tm nanoparticles by selective growth of Au and Ag nanoshells,” RSC Adv. 3, 7718 (2013).
[Crossref]

Chen, X.

D. Zhou, D. Liu, W. Xu, X. Chen, Z. Yin, X. Bai, B. Dong, L. Xu, and H. Song, “Synergistic Upconversion Enhancement Induced by Multiple Physical Effects and an Angle-Dependent Anticounterfeit Application,” Chem. Mater. 29, 6799–6809 (2017).
[Crossref]

D. Zhou, D. Liu, J. Jin, X. Chen, W. Xu, Z. Yin, G. Pan, D. Li, and H. Song, “Semiconductor plasmon-sensitized broadband upconversion and its enhancement effect on the power conversion efficiency of perovskite solar cells,” J. Mater. Chem. A 5, 16559–16567 (2017).
[Crossref]

D. Zhou, D. Li, X. Zhou, W. Xu, X. Chen, D. Liu, Y. Zhu, and H. Song, “Semiconductor Plasmon Induced Up-Conversion Enhancement in mCu 2- x S@SiO 2 @Y 2 O 3 :Yb 3+ /Er 3+ Core-Shell Nanocomposites,” ACS Appl. Mater. & Interfaces 9, 35226–35233 (2017).
[Crossref]

X. Chen, D. Zhou, W. Xu, J. Zhu, G. Pan, Z. Yin, H. Wang, Y. Zhu, C. Shaobo, and H. Song, “Fabrication of Au-Ag nanocage@NaYF4@NaYF4:Yb, Er Core-Shell Hybrid and its Tunable Upconversion Enhancement,” Sci. Reports 7, 41079 (2017).
[Crossref]

W. Xu, X. Chen, and H. Song, “Upconversion manipulation by local electromagnetic field,” Nano Today 17, 54–78 (2017).
[Crossref]

D. Zhou, D. Liu, W. Xu, Z. Yin, X. Chen, P. Zhou, S. Cui, Z. Chen, and H. Song, “Observation of Considerable Upconversion Enhancement Induced by Cu 2- x S Plasmon Nanoparticles,” ACS Nano 10, 5169–5179 (2016).
[Crossref] [PubMed]

Z. Yin, D. Zhou, W. Xu, S. Cui, X. Chen, H. Wang, S. Xu, and H. Song, “Plasmon-Enhanced Upconversion Luminescence on Vertically Aligned Gold Nanorod Monolayer Supercrystals,” ACS Appl. Mater. & Interfaces 8, 11667–11674 (2016).
[Crossref]

C.-W. Chen, P.-H. Lee, Y.-C. Chan, M. Hsiao, C.-H. Chen, P. C. Wu, P. R. Wu, D. P. Tsai, D. Tu, X. Chen, and R.-S. Liu, “Plasmon-induced hyperthermia: hybrid upconversion NaYF 4 :Yb/Er and gold nanomaterials for oral cancer photothermal therapy,” J. Mater. Chem. B 3, 8293–8302 (2015).
[Crossref]

G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion Nanoparticles: Design, Nanochemistry, and Applications in Theranostics,” Chem. Rev. 114, 5161–5214 (2014).
[Crossref] [PubMed]

Chen, Z.

D. Zhou, D. Liu, W. Xu, Z. Yin, X. Chen, P. Zhou, S. Cui, Z. Chen, and H. Song, “Observation of Considerable Upconversion Enhancement Induced by Cu 2- x S Plasmon Nanoparticles,” ACS Nano 10, 5169–5179 (2016).
[Crossref] [PubMed]

Chettiar, U. K.

M. Saboktakin, X. Ye, S. J. Oh, S.-H. Hong, A. T. Fafarman, U. K. Chettiar, N. Engheta, C. B. Murray, and C. R. Kagan, “Metal-Enhanced Upconversion Luminescence Tunable through Metal Nanoparticle-Nanophosphor Separation,” ACS Nano 6, 8758–8766 (2012).
[Crossref] [PubMed]

Chikkaraddy, R.

N. Kongsuwan, A. Demetriadou, R. Chikkaraddy, F. Benz, V. A. Turek, U. F. Keyser, J. J. Baumberg, and O. Hess, “Suppressed Quenching and Strong-Coupling of Purcell-Enhanced Single-Molecule Emission in Plasmonic Nanocavities,” ACS Photonics 5, 186–191 (2018).
[Crossref]

Chng, B. X. K.

B. X. K. Chng, T. van Dijk, R. Bhargava, and P. S. Carney, “Enhancement and extinction effects in surface-enhanced stimulated Raman spectroscopy,” Phys. Chem. Chem. Phys. 17, 21348–21355 (2015).
[Crossref] [PubMed]

Cho, S. K.

D. Lu, S. K. Cho, S. Ahn, L. Brun, C. J. Summers, and W. Park, “Plasmon Enhancement Mechanism for the Upconversion Processes in NaYF 4 :Yb 3+, Er 3+ Nanoparticles: Maxwell versus Förster,” ACS Nano 8, 7780–7792 (2014).
[Crossref] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Chung, K.

Y. H. Jang, Y. J. Jang, S. Kim, L. N. Quan, K. Chung, and D. H. Kim, “Plasmonic Solar Cells: From Rational Design to Mechanism Overview,” Chem. Rev. 116, 14982–15034 (2016).
[Crossref] [PubMed]

Clarke, C.

J. Zhou, S. Wen, J. Liao, C. Clarke, S. A. Tawfik, W. Ren, C. Mi, F. Wang, and D. Jin, “Activation of the surface dark-layer to enhance upconversion in a thermal field,” Nat. Photonics 12, 154–158 (2018).
[Crossref]

Cohen, B. E.

D. J. Garfield, N. J. Borys, S. M. Hamed, N. A. Torquato, C. A. Tajon, B. Tian, B. Shevitski, E. S. Barnard, Y. D. Suh, S. Aloni, J. B. Neaton, E. M. Chan, B. E. Cohen, and P. J. Schuck, “Enrichment of molecular antenna triplets amplifies upconverting nanoparticle emission,” Nat. Photonics 12, 402–407 (2018).
[Crossref]

Crozier, K. B.

W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, P. Nordlander, H. J. Lezec, J. Aizpurua, and K. B. Crozier, “Quantum mechanical effects in plasmonic structures with subnanometre gaps,” Nat. Commun. 7, 11495 (2016).
[Crossref] [PubMed]

Cui, S.

Z. Yin, D. Zhou, W. Xu, S. Cui, X. Chen, H. Wang, S. Xu, and H. Song, “Plasmon-Enhanced Upconversion Luminescence on Vertically Aligned Gold Nanorod Monolayer Supercrystals,” ACS Appl. Mater. & Interfaces 8, 11667–11674 (2016).
[Crossref]

D. Zhou, D. Liu, W. Xu, Z. Yin, X. Chen, P. Zhou, S. Cui, Z. Chen, and H. Song, “Observation of Considerable Upconversion Enhancement Induced by Cu 2- x S Plasmon Nanoparticles,” ACS Nano 10, 5169–5179 (2016).
[Crossref] [PubMed]

Dawes, J. M.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8, 729–734 (2013).
[Crossref] [PubMed]

Demetriadou, A.

N. Kongsuwan, A. Demetriadou, R. Chikkaraddy, F. Benz, V. A. Turek, U. F. Keyser, J. J. Baumberg, and O. Hess, “Suppressed Quenching and Strong-Coupling of Purcell-Enhanced Single-Molecule Emission in Plasmonic Nanocavities,” ACS Photonics 5, 186–191 (2018).
[Crossref]

Deutsch, B.

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical Antennas,” Adv. Opt. Photonics 1, 438 (2009).
[Crossref]

DeVetter, B. M.

S. T. Sivapalan, B. M. DeVetter, T. K. Yang, T. van Dijk, M. V. Schulmerich, P. S. Carney, R. Bhargava, and C. J. Murphy, “Off-Resonance Surface-Enhanced Raman Spectroscopy from Gold Nanorod Suspensions as a Function of Aspect Ratio: Not What We Thought,” ACS Nano 7, 2099–2105 (2013).
[Crossref] [PubMed]

T. van Dijk, S. T. Sivapalan, B. M. DeVetter, T. K. Yang, M. V. Schulmerich, C. J. Murphy, R. Bhargava, and P. S. Carney, “Competition Between Extinction and Enhancement in Surface-Enhanced Raman Spectroscopy,” The J. Phys. Chem. Lett. 4, 1193–1196 (2013).
[Crossref]

Dezawa, T.

N. Sakamoto, T. Onodera, T. Dezawa, Y. Shibata, and H. Oikawa, “Highly Enhanced Emission of Visible Light from Core-Dual-Shell-Type Hybridized Nanoparticles,” Part. & Part. Syst. Charact. 34, 1700258 (2017).
[Crossref]

Ding, Y.

Y. Ding, X. Zhang, H. Gao, S. Xu, C. Wei, and Y. Zhao, “Plasmonic enhanced upconversion luminescence of β-NaYF4:Yb3+/Er3+ with Ag@SiO2 core-shell nanoparticles,” J. Lumin. 147, 72–76 (2014).
[Crossref]

Dionne, J. A.

D. M. Wu, A. García-Etxarri, A. Salleo, and J. A. Dionne, “Plasmon-Enhanced Upconversion,” The J. Phys. Chem. Lett. 5, 4020–4031 (2014).
[Crossref]

Dong, B.

D. Zhou, D. Liu, W. Xu, X. Chen, Z. Yin, X. Bai, B. Dong, L. Xu, and H. Song, “Synergistic Upconversion Enhancement Induced by Multiple Physical Effects and an Angle-Dependent Anticounterfeit Application,” Chem. Mater. 29, 6799–6809 (2017).
[Crossref]

W. Xu, S. Xu, Y. Zhu, T. Liu, X. Bai, B. Dong, L. Xu, and H. Song, “Ultra-broad plasma resonance enhanced multicolor emissions in an assembled Ag/NaYF4:Yb, Er nano-film,” Nanoscale 4, 6971 (2012).
[Crossref] [PubMed]

Dong, J.

Z. Wang, W. Gao, R. Wang, J. Shao, Q. Han, C. Wang, J. Zhang, T. Zhang, J. Dong, and H. Zheng, “Influence of SiO2 layer on the plasmon quenched upconversion luminescence emission of core-shell NaYF4:Yb, Er@SiO2@Ag nanocomposites,” Mater. Res. Bull. 83, 515–521 (2016).
[Crossref]

Dong, Z.

Duan, C.

X. Wu, Y. Zhang, K. Takle, O. Bilsel, Z. Li, H. Lee, Z. Zhang, D. Li, W. Fan, C. Duan, E. M. Chan, C. Lois, Y. Xiang, and G. Han, “Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications,” ACS Nano 10, 1060–1066 (2016).
[Crossref] [PubMed]

Duan, X.

H. Zhang, Y. Li, I. A. Ivanov, Y. Qu, Y. Huang, and X. Duan, “Plasmonic Modulation of the Upconversion Fluorescence in NaYF4:Yb/Tm Hexaplate Nanocrystals Using Gold Nanoparticles or Nanoshells,” Angewandte Chemie Int. Ed. 49, 2865–2868 (2010).
[Crossref]

Duan, Z.

A. L. Feng, M. L. You, L. Tian, S. Singamaneni, M. Liu, Z. Duan, T. J. Lu, F. Xu, and M. Lin, “Distance-Dependent Plasmon-Enhanced Fluorescence of Upconversion Nanoparticles using Polyelectrolyte Multilayers as Tunable Spacers,” Sci. Reports 5, 7779 (2015).
[Crossref]

Eichelkraut, T.

Engheta, N.

M. Saboktakin, X. Ye, S. J. Oh, S.-H. Hong, A. T. Fafarman, U. K. Chettiar, N. Engheta, C. B. Murray, and C. R. Kagan, “Metal-Enhanced Upconversion Luminescence Tunable through Metal Nanoparticle-Nanophosphor Separation,” ACS Nano 6, 8758–8766 (2012).
[Crossref] [PubMed]

Ershov, A. E.

Esteban, R.

W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, P. Nordlander, H. J. Lezec, J. Aizpurua, and K. B. Crozier, “Quantum mechanical effects in plasmonic structures with subnanometre gaps,” Nat. Commun. 7, 11495 (2016).
[Crossref] [PubMed]

R. Esteban, M. Laroche, and J.-J. Greffet, “Influence of metallic nanoparticles on upconversion processes,” J. Appl. Phys. 105, 033107 (2009).
[Crossref]

Everitt, H. O.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for Plasmonics,” ACS Nano 8, 834–840 (2014).
[Crossref]

Fafarman, A. T.

M. Saboktakin, X. Ye, S. J. Oh, S.-H. Hong, A. T. Fafarman, U. K. Chettiar, N. Engheta, C. B. Murray, and C. R. Kagan, “Metal-Enhanced Upconversion Luminescence Tunable through Metal Nanoparticle-Nanophosphor Separation,” ACS Nano 6, 8758–8766 (2012).
[Crossref] [PubMed]

Faggiani, R.

R. Faggiani, J. Yang, and P. Lalanne, “Quenching, Plasmonic, and Radiative Decays in Nanogap Emitting Devices,” ACS Photonics 2, 1739–1744 (2015).
[Crossref]

Fan, W.

X. Wu, Y. Zhang, K. Takle, O. Bilsel, Z. Li, H. Lee, Z. Zhang, D. Li, W. Fan, C. Duan, E. M. Chan, C. Lois, Y. Xiang, and G. Han, “Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications,” ACS Nano 10, 1060–1066 (2016).
[Crossref] [PubMed]

Feldmann, J.

G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kürzinger, “Gold Nanoshells Improve Single Nanoparticle Molecular Sensors,” Nano Lett. 4, 1853–1857 (2004).
[Crossref]

Feng, A. L.

A. L. Feng, M. L. You, L. Tian, S. Singamaneni, M. Liu, Z. Duan, T. J. Lu, F. Xu, and M. Lin, “Distance-Dependent Plasmon-Enhanced Fluorescence of Upconversion Nanoparticles using Polyelectrolyte Multilayers as Tunable Spacers,” Sci. Reports 5, 7779 (2015).
[Crossref]

Fieres, B.

G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kürzinger, “Gold Nanoshells Improve Single Nanoparticle Molecular Sensors,” Nano Lett. 4, 1853–1857 (2004).
[Crossref]

Fischer, S.

Fujita, K.

R. Kamakura, S. Murai, S. Ishii, T. Nagao, K. Fujita, and K. Tanaka, “Plasmonic-Photonic Hybrid Modes Excited on a Titanium Nitride Nanoparticle Array in the Visible Region,” ACS Photonics 4, 815–822 (2017).
[Crossref]

Gao, H.

Y. Ding, X. Zhang, H. Gao, S. Xu, C. Wei, and Y. Zhao, “Plasmonic enhanced upconversion luminescence of β-NaYF4:Yb3+/Er3+ with Ag@SiO2 core-shell nanoparticles,” J. Lumin. 147, 72–76 (2014).
[Crossref]

Gao, W.

Z. Wang, W. Gao, R. Wang, J. Shao, Q. Han, C. Wang, J. Zhang, T. Zhang, J. Dong, and H. Zheng, “Influence of SiO2 layer on the plasmon quenched upconversion luminescence emission of core-shell NaYF4:Yb, Er@SiO2@Ag nanocomposites,” Mater. Res. Bull. 83, 515–521 (2016).
[Crossref]

García de Abajo, F. J.

L. Meng, R. Yu, M. Qiu, and F. J. García de Abajo, “Plasmonic Nano-Oven by Concatenation of Multishell Photothermal Enhancement,” ACS Nano 11, 7915–7924 (2017).
[Crossref] [PubMed]

García-Etxarri, A.

D. M. Wu, A. García-Etxarri, A. Salleo, and J. A. Dionne, “Plasmon-Enhanced Upconversion,” The J. Phys. Chem. Lett. 5, 4020–4031 (2014).
[Crossref]

Garfield, D. J.

D. J. Garfield, N. J. Borys, S. M. Hamed, N. A. Torquato, C. A. Tajon, B. Tian, B. Shevitski, E. S. Barnard, Y. D. Suh, S. Aloni, J. B. Neaton, E. M. Chan, B. E. Cohen, and P. J. Schuck, “Enrichment of molecular antenna triplets amplifies upconverting nanoparticle emission,” Nat. Photonics 12, 402–407 (2018).
[Crossref]

Gavrilyuk, A. P.

George, T. F.

Y. S. Kim, P. Leung, and T. F. George, “Classical decay rates for molecules in the presence of a spherical surface: A complete treatment,” Surf. Sci. 195, 1–14 (1988).
[Crossref]

Gerasimov, V. S.

Gnanasammandhan, M. K.

P. Yuan, Y. H. Lee, M. K. Gnanasammandhan, Z. Guan, Y. Zhang, and Q.-H. Xu, “Plasmon enhanced upconversion luminescence of NaYF4:Yb, Er@SiO2@Ag core-shell nanocomposites for cell imaging,” Nanoscale 4, 5132 (2012).
[Crossref] [PubMed]

Goldschmidt, J. C.

Goldys, E. M.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8, 729–734 (2013).
[Crossref] [PubMed]

Golmar, F.

P. Alonso-González, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, and R. Hillenbrand, “Experimental Verification of the Spectral Shift between Near- and Far-Field Peak Intensities of Plasmonic Infrared Nanoantennas,” Phys. Rev. Lett. 110, 203902 (2013).
[Crossref] [PubMed]

Granqvist, C. G.

C. G. Granqvist and O. Hunderi, “Optical absorption of ultrafine metal spheres with dielectric cores,” Zeitschrift fur Physik B Condens. Matter Quanta 30, 47–51 (1978).
[Crossref]

Greffet, J.-J.

R. Esteban, M. Laroche, and J.-J. Greffet, “Influence of metallic nanoparticles on upconversion processes,” J. Appl. Phys. 105, 033107 (2009).
[Crossref]

Gruenke, N. L.

N. L. Gruenke, M. O. McAnally, G. C. Schatz, and R. P. Van Duyne, “Balancing the Effects of Extinction and Enhancement for Optimal Signal in Surface-Enhanced Femtosecond Stimulated Raman Spectroscopy,” The J. Phys. Chem. C 120, 29449–29454 (2016).
[Crossref]

Guan, Z.

P. Yuan, Y. H. Lee, M. K. Gnanasammandhan, Z. Guan, Y. Zhang, and Q.-H. Xu, “Plasmon enhanced upconversion luminescence of NaYF4:Yb, Er@SiO2@Ag core-shell nanocomposites for cell imaging,” Nanoscale 4, 5132 (2012).
[Crossref] [PubMed]

Guo, H.

J. Zhao, S. Ji, and H. Guo, “Triplet-triplet annihilation based upconversion: from triplet sensitizers and triplet acceptors to upconversion quantum yields,” RSC Adv. 1, 937 (2011).
[Crossref]

Halas, N. J.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for Plasmonics,” ACS Nano 8, 834–840 (2014).
[Crossref]

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
[Crossref]

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. 100, 13549–13554 (2003).
[Crossref] [PubMed]

Hallermann, F.

Hamed, S. M.

D. J. Garfield, N. J. Borys, S. M. Hamed, N. A. Torquato, C. A. Tajon, B. Tian, B. Shevitski, E. S. Barnard, Y. D. Suh, S. Aloni, J. B. Neaton, E. M. Chan, B. E. Cohen, and P. J. Schuck, “Enrichment of molecular antenna triplets amplifies upconverting nanoparticle emission,” Nat. Photonics 12, 402–407 (2018).
[Crossref]

Han, G.

X. Wu, Y. Zhang, K. Takle, O. Bilsel, Z. Li, H. Lee, Z. Zhang, D. Li, W. Fan, C. Duan, E. M. Chan, C. Lois, Y. Xiang, and G. Han, “Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications,” ACS Nano 10, 1060–1066 (2016).
[Crossref] [PubMed]

Han, Q.

Z. Wang, W. Gao, R. Wang, J. Shao, Q. Han, C. Wang, J. Zhang, T. Zhang, J. Dong, and H. Zheng, “Influence of SiO2 layer on the plasmon quenched upconversion luminescence emission of core-shell NaYF4:Yb, Er@SiO2@Ag nanocomposites,” Mater. Res. Bull. 83, 515–521 (2016).
[Crossref]

Hazle, J. D.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. 100, 13549–13554 (2003).
[Crossref] [PubMed]

He, H.

F. Wang, S. Wen, H. He, B. Wang, Z. Zhou, O. Shimoni, and D. Jin, “Microscopic inspection and tracking of single upconversion nanoparticles in living cells,” Light. Sci. & Appl. 7, 18007 (2018).
[Crossref]

He, Q.

H. Xing, W. Bu, S. Zhang, X. Zheng, M. Li, F. Chen, Q. He, L. Zhou, W. Peng, Y. Hua, and J. Shi, “Multifunctional nanoprobes for upconversion fluorescence, MR and CT trimodal imaging,” Biomaterials 33, 1079–1089 (2012).
[Crossref]

He, S.

Q. Zhan, H. Liu, B. Wang, Q. Wu, R. Pu, C. Zhou, B. Huang, X. Peng, H. Ågren, and S. He, “Achieving high-efficiency emission depletion nanoscopy by employing cross relaxation in upconversion nanoparticles,” Nat. Commun. 8, 1058 (2017).
[Crossref] [PubMed]

Q. Zhan, X. Zhang, Y. Zhao, J. Liu, and S. He, “Tens of thousands-fold upconversion luminescence enhancement induced by a single gold nanorod,” Laser & Photonics Rev. 9, 479–487 (2015).
[Crossref]

Hermle, M.

Hess, O.

N. Kongsuwan, A. Demetriadou, R. Chikkaraddy, F. Benz, V. A. Turek, U. F. Keyser, J. J. Baumberg, and O. Hess, “Suppressed Quenching and Strong-Coupling of Purcell-Enhanced Single-Molecule Emission in Plasmonic Nanocavities,” ACS Photonics 5, 186–191 (2018).
[Crossref]

Hillenbrand, R.

P. Alonso-González, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, and R. Hillenbrand, “Experimental Verification of the Spectral Shift between Near- and Far-Field Peak Intensities of Plasmonic Infrared Nanoantennas,” Phys. Rev. Lett. 110, 203902 (2013).
[Crossref] [PubMed]

Hirsch, L. R.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. 100, 13549–13554 (2003).
[Crossref] [PubMed]

Hong, S.-H.

M. Saboktakin, X. Ye, S. J. Oh, S.-H. Hong, A. T. Fafarman, U. K. Chettiar, N. Engheta, C. B. Murray, and C. R. Kagan, “Metal-Enhanced Upconversion Luminescence Tunable through Metal Nanoparticle-Nanophosphor Separation,” ACS Nano 6, 8758–8766 (2012).
[Crossref] [PubMed]

Hsiao, M.

C.-W. Chen, P.-H. Lee, Y.-C. Chan, M. Hsiao, C.-H. Chen, P. C. Wu, P. R. Wu, D. P. Tsai, D. Tu, X. Chen, and R.-S. Liu, “Plasmon-induced hyperthermia: hybrid upconversion NaYF 4 :Yb/Er and gold nanomaterials for oral cancer photothermal therapy,” J. Mater. Chem. B 3, 8293–8302 (2015).
[Crossref]

Hua, Y.

H. Xing, W. Bu, S. Zhang, X. Zheng, M. Li, F. Chen, Q. He, L. Zhou, W. Peng, Y. Hua, and J. Shi, “Multifunctional nanoprobes for upconversion fluorescence, MR and CT trimodal imaging,” Biomaterials 33, 1079–1089 (2012).
[Crossref]

Huang, B.

Q. Zhan, H. Liu, B. Wang, Q. Wu, R. Pu, C. Zhou, B. Huang, X. Peng, H. Ågren, and S. He, “Achieving high-efficiency emission depletion nanoscopy by employing cross relaxation in upconversion nanoparticles,” Nat. Commun. 8, 1058 (2017).
[Crossref] [PubMed]

Huang, L.

P. Kannan, F. A. Rahim, X. Teng, R. Chen, H. Sun, L. Huang, and D.-H. Kim, “Enhanced emission of NaYF4:Yb, Er/Tm nanoparticles by selective growth of Au and Ag nanoshells,” RSC Adv. 3, 7718 (2013).
[Crossref]

Huang, Y.

H. Zhang, Y. Li, I. A. Ivanov, Y. Qu, Y. Huang, and X. Duan, “Plasmonic Modulation of the Upconversion Fluorescence in NaYF4:Yb/Tm Hexaplate Nanocrystals Using Gold Nanoparticles or Nanoshells,” Angewandte Chemie Int. Ed. 49, 2865–2868 (2010).
[Crossref]

Huck, C.

P. Alonso-González, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, and R. Hillenbrand, “Experimental Verification of the Spectral Shift between Near- and Far-Field Peak Intensities of Plasmonic Infrared Nanoantennas,” Phys. Rev. Lett. 110, 203902 (2013).
[Crossref] [PubMed]

Hueso, L. E.

P. Alonso-González, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, and R. Hillenbrand, “Experimental Verification of the Spectral Shift between Near- and Far-Field Peak Intensities of Plasmonic Infrared Nanoantennas,” Phys. Rev. Lett. 110, 203902 (2013).
[Crossref] [PubMed]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH Verlag GmbH, Weinheim, Germany, 1998).
[Crossref]

Hummelen, J. C.

W. Zou, C. Visser, J. A. Maduro, M. S. Pshenichnikov, and J. C. Hummelen, “Broadband dye-sensitized upconversion of near-infrared light,” Nat. Photonics 6, 560–564 (2012).
[Crossref]

Hunderi, O.

C. G. Granqvist and O. Hunderi, “Optical absorption of ultrafine metal spheres with dielectric cores,” Zeitschrift fur Physik B Condens. Matter Quanta 30, 47–51 (1978).
[Crossref]

Huot, L.

Ishii, S.

R. Kamakura, S. Murai, S. Ishii, T. Nagao, K. Fujita, and K. Tanaka, “Plasmonic-Photonic Hybrid Modes Excited on a Titanium Nitride Nanoparticle Array in the Visible Region,” ACS Photonics 4, 815–822 (2017).
[Crossref]

Ivanov, I. A.

H. Zhang, Y. Li, I. A. Ivanov, Y. Qu, Y. Huang, and X. Duan, “Plasmonic Modulation of the Upconversion Fluorescence in NaYF4:Yb/Tm Hexaplate Nanocrystals Using Gold Nanoparticles or Nanoshells,” Angewandte Chemie Int. Ed. 49, 2865–2868 (2010).
[Crossref]

Jang, Y. H.

Y. H. Jang, Y. J. Jang, S. Kim, L. N. Quan, K. Chung, and D. H. Kim, “Plasmonic Solar Cells: From Rational Design to Mechanism Overview,” Chem. Rev. 116, 14982–15034 (2016).
[Crossref] [PubMed]

Jang, Y. J.

Y. H. Jang, Y. J. Jang, S. Kim, L. N. Quan, K. Chung, and D. H. Kim, “Plasmonic Solar Cells: From Rational Design to Mechanism Overview,” Chem. Rev. 116, 14982–15034 (2016).
[Crossref] [PubMed]

Ji, S.

J. Zhao, S. Ji, and H. Guo, “Triplet-triplet annihilation based upconversion: from triplet sensitizers and triplet acceptors to upconversion quantum yields,” RSC Adv. 1, 937 (2011).
[Crossref]

Jin, D.

J. Zhou, S. Wen, J. Liao, C. Clarke, S. A. Tawfik, W. Ren, C. Mi, F. Wang, and D. Jin, “Activation of the surface dark-layer to enhance upconversion in a thermal field,” Nat. Photonics 12, 154–158 (2018).
[Crossref]

F. Wang, S. Wen, H. He, B. Wang, Z. Zhou, O. Shimoni, and D. Jin, “Microscopic inspection and tracking of single upconversion nanoparticles in living cells,” Light. Sci. & Appl. 7, 18007 (2018).
[Crossref]

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543, 229–233 (2017).
[Crossref] [PubMed]

B. Zhou, B. Shi, D. Jin, and X. Liu, “Controlling upconversion nanocrystals for emerging applications,” Nat. Nanotechnol. 10, 924–936 (2015).
[Crossref] [PubMed]

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8, 729–734 (2013).
[Crossref] [PubMed]

Jin, J.

D. Zhou, D. Liu, J. Jin, X. Chen, W. Xu, Z. Yin, G. Pan, D. Li, and H. Song, “Semiconductor plasmon-sensitized broadband upconversion and its enhancement effect on the power conversion efficiency of perovskite solar cells,” J. Mater. Chem. A 5, 16559–16567 (2017).
[Crossref]

Jin, Z.

J. Wang, T. Ming, Z. Jin, J. Wang, L.-D. Sun, and C.-H. Yan, “Photon energy upconversion through thermal radiation with the power efficiency reaching 16%,” Nat. Commun. 5, 5669 (2014).
[Crossref]

Johnson, A.

Y.-L. Wang, N. Mohammadi Estakhri, A. Johnson, H.-Y. Li, L.-X. Xu, Z. Zhang, A. Alù, Q.-Q. Wang, and C.-K. K. Shih, “Tailoring Plasmonic Enhanced Upconversion in Single NaYF4:Yb3+/Er3+ Nanocrystals,” Sci. Reports 5, 10196 (2015).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Kagan, C. R.

M. Saboktakin, X. Ye, S. J. Oh, S.-H. Hong, A. T. Fafarman, U. K. Chettiar, N. Engheta, C. B. Murray, and C. R. Kagan, “Metal-Enhanced Upconversion Luminescence Tunable through Metal Nanoparticle-Nanophosphor Separation,” ACS Nano 6, 8758–8766 (2012).
[Crossref] [PubMed]

Kamakura, R.

R. Kamakura, S. Murai, S. Ishii, T. Nagao, K. Fujita, and K. Tanaka, “Plasmonic-Photonic Hybrid Modes Excited on a Titanium Nitride Nanoparticle Array in the Visible Region,” ACS Photonics 4, 815–822 (2017).
[Crossref]

Kannan, P.

P. Kannan, F. A. Rahim, X. Teng, R. Chen, H. Sun, L. Huang, and D.-H. Kim, “Enhanced emission of NaYF4:Yb, Er/Tm nanoparticles by selective growth of Au and Ag nanoshells,” RSC Adv. 3, 7718 (2013).
[Crossref]

Karpov, S. V.

V. I. Zakomirnyi, I. L. Rasskazov, S. V. Karpov, and S. P. Polyutov, “New ideally absorbing Au plasmonic nanostructures for biomedical applications,” J. Quant. Spectrosc. Radiat. Transf. 187, 54–61 (2017).
[Crossref]

V. S. Gerasimov, A. E. Ershov, S. V. Karpov, A. P. Gavrilyuk, V. I. Zakomirnyi, I. L. Rasskazov, H. Ågren, and S. P. Polyutov, “Thermal effects in systems of colloidal plasmonic nanoparticles in high-intensity pulsed laser fields [Invited],” Opt. Mater. Express 7, 555 (2017).
[Crossref]

Keyser, U. F.

N. Kongsuwan, A. Demetriadou, R. Chikkaraddy, F. Benz, V. A. Turek, U. F. Keyser, J. J. Baumberg, and O. Hess, “Suppressed Quenching and Strong-Coupling of Purcell-Enhanced Single-Molecule Emission in Plasmonic Nanocavities,” ACS Photonics 5, 186–191 (2018).
[Crossref]

Khlebtsov, B. N.

B. N. Khlebtsov and N. G. Khlebtsov, “Biosensing potential of silica/gold nanoshells: Sensitivity of plasmon resonance to the local dielectric environment,” J. Quant. Spectrosc. Radiat. Transf. 106, 154–169 (2007).
[Crossref]

Khlebtsov, N. G.

B. N. Khlebtsov and N. G. Khlebtsov, “Biosensing potential of silica/gold nanoshells: Sensitivity of plasmon resonance to the local dielectric environment,” J. Quant. Spectrosc. Radiat. Transf. 106, 154–169 (2007).
[Crossref]

Kildishev, A. V.

Kim, D. H.

Y. H. Jang, Y. J. Jang, S. Kim, L. N. Quan, K. Chung, and D. H. Kim, “Plasmonic Solar Cells: From Rational Design to Mechanism Overview,” Chem. Rev. 116, 14982–15034 (2016).
[Crossref] [PubMed]

Kim, D.-H.

P. Kannan, F. A. Rahim, X. Teng, R. Chen, H. Sun, L. Huang, and D.-H. Kim, “Enhanced emission of NaYF4:Yb, Er/Tm nanoparticles by selective growth of Au and Ag nanoshells,” RSC Adv. 3, 7718 (2013).
[Crossref]

Kim, S.

Y. H. Jang, Y. J. Jang, S. Kim, L. N. Quan, K. Chung, and D. H. Kim, “Plasmonic Solar Cells: From Rational Design to Mechanism Overview,” Chem. Rev. 116, 14982–15034 (2016).
[Crossref] [PubMed]

Kim, Y. S.

Y. S. Kim, P. Leung, and T. F. George, “Classical decay rates for molecules in the presence of a spherical surface: A complete treatment,” Surf. Sci. 195, 1–14 (1988).
[Crossref]

King, N. S.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for Plasmonics,” ACS Nano 8, 834–840 (2014).
[Crossref]

Klar, T. A.

G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kürzinger, “Gold Nanoshells Improve Single Nanoparticle Molecular Sensors,” Nano Lett. 4, 1853–1857 (2004).
[Crossref]

Knight, M. W.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for Plasmonics,” ACS Nano 8, 834–840 (2014).
[Crossref]

Kodali, A. K.

A. K. Kodali, X. Llora, and R. Bhargava, “Optimally designed nanolayered metal-dielectric particles as probes for massively multiplexed and ultrasensitive molecular assays,” Proc. Natl. Acad. Sci. 107, 13620–13625 (2010).
[Crossref] [PubMed]

Kongsuwan, N.

N. Kongsuwan, A. Demetriadou, R. Chikkaraddy, F. Benz, V. A. Turek, U. F. Keyser, J. J. Baumberg, and O. Hess, “Suppressed Quenching and Strong-Coupling of Purcell-Enhanced Single-Molecule Emission in Plasmonic Nanocavities,” ACS Photonics 5, 186–191 (2018).
[Crossref]

Krämer, K. W.

Kreibig, U.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, vol. 25 of Springer Series in Materials Science (Springer Berlin Heidelberg, Berlin, Heidelberg, 1995).
[Crossref]

Kürzinger, K.

G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kürzinger, “Gold Nanoshells Improve Single Nanoparticle Molecular Sensors,” Nano Lett. 4, 1853–1857 (2004).
[Crossref]

Lakowicz, J. R.

J. R. Lakowicz, “Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission,” Anal. Biochem. 337, 171–194 (2005).
[Crossref] [PubMed]

Lal, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
[Crossref]

Lalanne, P.

R. Faggiani, J. Yang, and P. Lalanne, “Quenching, Plasmonic, and Radiative Decays in Nanogap Emitting Devices,” ACS Photonics 2, 1739–1744 (2015).
[Crossref]

Lalisse, A.

A. Lalisse, G. Tessier, J. Plain, and G. Baffou, “Quantifying the Efficiency of Plasmonic Materials for Near-Field Enhancement and Photothermal Conversion,” The J. Phys. Chem. C 119, 25518–25528 (2015).
[Crossref]

Laroche, M.

R. Esteban, M. Laroche, and J.-J. Greffet, “Influence of metallic nanoparticles on upconversion processes,” J. Appl. Phys. 105, 033107 (2009).
[Crossref]

Le Ru, E. C.

Lee, H.

X. Wu, Y. Zhang, K. Takle, O. Bilsel, Z. Li, H. Lee, Z. Zhang, D. Li, W. Fan, C. Duan, E. M. Chan, C. Lois, Y. Xiang, and G. Han, “Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications,” ACS Nano 10, 1060–1066 (2016).
[Crossref] [PubMed]

Lee, P.-H.

C.-W. Chen, P.-H. Lee, Y.-C. Chan, M. Hsiao, C.-H. Chen, P. C. Wu, P. R. Wu, D. P. Tsai, D. Tu, X. Chen, and R.-S. Liu, “Plasmon-induced hyperthermia: hybrid upconversion NaYF 4 :Yb/Er and gold nanomaterials for oral cancer photothermal therapy,” J. Mater. Chem. B 3, 8293–8302 (2015).
[Crossref]

Lee, Y. H.

P. Yuan, Y. H. Lee, M. K. Gnanasammandhan, Z. Guan, Y. Zhang, and Q.-H. Xu, “Plasmon enhanced upconversion luminescence of NaYF4:Yb, Er@SiO2@Ag core-shell nanocomposites for cell imaging,” Nanoscale 4, 5132 (2012).
[Crossref] [PubMed]

Leick, L.

Leung, P.

Y. S. Kim, P. Leung, and T. F. George, “Classical decay rates for molecules in the presence of a spherical surface: A complete treatment,” Surf. Sci. 195, 1–14 (1988).
[Crossref]

Lezec, H. J.

W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, P. Nordlander, H. J. Lezec, J. Aizpurua, and K. B. Crozier, “Quantum mechanical effects in plasmonic structures with subnanometre gaps,” Nat. Commun. 7, 11495 (2016).
[Crossref] [PubMed]

Li, D.

D. Li, H. Ågren, and G. Chen, “Near infrared harvesting dye-sensitized solar cells enabled by rare-earth upconversion materials,” Dalton Transactions 47, 8526–8537 (2018).

D. Zhou, D. Liu, J. Jin, X. Chen, W. Xu, Z. Yin, G. Pan, D. Li, and H. Song, “Semiconductor plasmon-sensitized broadband upconversion and its enhancement effect on the power conversion efficiency of perovskite solar cells,” J. Mater. Chem. A 5, 16559–16567 (2017).
[Crossref]

D. Zhou, D. Li, X. Zhou, W. Xu, X. Chen, D. Liu, Y. Zhu, and H. Song, “Semiconductor Plasmon Induced Up-Conversion Enhancement in mCu 2- x S@SiO 2 @Y 2 O 3 :Yb 3+ /Er 3+ Core-Shell Nanocomposites,” ACS Appl. Mater. & Interfaces 9, 35226–35233 (2017).
[Crossref]

X. Wu, Y. Zhang, K. Takle, O. Bilsel, Z. Li, H. Lee, Z. Zhang, D. Li, W. Fan, C. Duan, E. M. Chan, C. Lois, Y. Xiang, and G. Han, “Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications,” ACS Nano 10, 1060–1066 (2016).
[Crossref] [PubMed]

Li, H.-Y.

Y.-L. Wang, N. Mohammadi Estakhri, A. Johnson, H.-Y. Li, L.-X. Xu, Z. Zhang, A. Alù, Q.-Q. Wang, and C.-K. K. Shih, “Tailoring Plasmonic Enhanced Upconversion in Single NaYF4:Yb3+/Er3+ Nanocrystals,” Sci. Reports 5, 10196 (2015).
[Crossref]

Li, J.

Li, M.

H. Xing, W. Bu, S. Zhang, X. Zheng, M. Li, F. Chen, Q. He, L. Zhou, W. Peng, Y. Hua, and J. Shi, “Multifunctional nanoprobes for upconversion fluorescence, MR and CT trimodal imaging,” Biomaterials 33, 1079–1089 (2012).
[Crossref]

Li, X.

L. Zhou, R. Wang, C. Yao, X. Li, C. Wang, X. Zhang, C. Xu, A. Zeng, D. Zhao, and F. Zhang, “Single-band upconversion nanoprobes for multiplexed simultaneous in situ molecular mapping of cancer biomarkers,” Nat. Commun. 6, 6938 (2015).
[Crossref] [PubMed]

X. Li, F. Zhang, and D. Zhao, “Highly efficient lanthanide upconverting nanomaterials: Progresses and challenges,” Nano Today 8, 643–676 (2013).
[Crossref]

Li, Y.

H. Zhang, Y. Li, I. A. Ivanov, Y. Qu, Y. Huang, and X. Duan, “Plasmonic Modulation of the Upconversion Fluorescence in NaYF4:Yb/Tm Hexaplate Nanocrystals Using Gold Nanoparticles or Nanoshells,” Angewandte Chemie Int. Ed. 49, 2865–2868 (2010).
[Crossref]

Li, Z.

X. Wu, Y. Zhang, K. Takle, O. Bilsel, Z. Li, H. Lee, Z. Zhang, D. Li, W. Fan, C. Duan, E. M. Chan, C. Lois, Y. Xiang, and G. Han, “Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications,” ACS Nano 10, 1060–1066 (2016).
[Crossref] [PubMed]

Liao, J.

J. Zhou, S. Wen, J. Liao, C. Clarke, S. A. Tawfik, W. Ren, C. Mi, F. Wang, and D. Jin, “Activation of the surface dark-layer to enhance upconversion in a thermal field,” Nat. Photonics 12, 154–158 (2018).
[Crossref]

Lin, M.

A. L. Feng, M. L. You, L. Tian, S. Singamaneni, M. Liu, Z. Duan, T. J. Lu, F. Xu, and M. Lin, “Distance-Dependent Plasmon-Enhanced Fluorescence of Upconversion Nanoparticles using Polyelectrolyte Multilayers as Tunable Spacers,” Sci. Reports 5, 7779 (2015).
[Crossref]

Link, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
[Crossref]

Liu, D.

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543, 229–233 (2017).
[Crossref] [PubMed]

D. Zhou, D. Liu, W. Xu, X. Chen, Z. Yin, X. Bai, B. Dong, L. Xu, and H. Song, “Synergistic Upconversion Enhancement Induced by Multiple Physical Effects and an Angle-Dependent Anticounterfeit Application,” Chem. Mater. 29, 6799–6809 (2017).
[Crossref]

D. Zhou, D. Li, X. Zhou, W. Xu, X. Chen, D. Liu, Y. Zhu, and H. Song, “Semiconductor Plasmon Induced Up-Conversion Enhancement in mCu 2- x S@SiO 2 @Y 2 O 3 :Yb 3+ /Er 3+ Core-Shell Nanocomposites,” ACS Appl. Mater. & Interfaces 9, 35226–35233 (2017).
[Crossref]

D. Zhou, D. Liu, J. Jin, X. Chen, W. Xu, Z. Yin, G. Pan, D. Li, and H. Song, “Semiconductor plasmon-sensitized broadband upconversion and its enhancement effect on the power conversion efficiency of perovskite solar cells,” J. Mater. Chem. A 5, 16559–16567 (2017).
[Crossref]

D. Zhou, D. Liu, W. Xu, Z. Yin, X. Chen, P. Zhou, S. Cui, Z. Chen, and H. Song, “Observation of Considerable Upconversion Enhancement Induced by Cu 2- x S Plasmon Nanoparticles,” ACS Nano 10, 5169–5179 (2016).
[Crossref] [PubMed]

Liu, H.

Q. Zhan, H. Liu, B. Wang, Q. Wu, R. Pu, C. Zhou, B. Huang, X. Peng, H. Ågren, and S. He, “Achieving high-efficiency emission depletion nanoscopy by employing cross relaxation in upconversion nanoparticles,” Nat. Commun. 8, 1058 (2017).
[Crossref] [PubMed]

Liu, J.

Q. Zhan, X. Zhang, Y. Zhao, J. Liu, and S. He, “Tens of thousands-fold upconversion luminescence enhancement induced by a single gold nanorod,” Laser & Photonics Rev. 9, 479–487 (2015).
[Crossref]

Liu, L.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for Plasmonics,” ACS Nano 8, 834–840 (2014).
[Crossref]

Liu, M.

A. L. Feng, M. L. You, L. Tian, S. Singamaneni, M. Liu, Z. Duan, T. J. Lu, F. Xu, and M. Lin, “Distance-Dependent Plasmon-Enhanced Fluorescence of Upconversion Nanoparticles using Polyelectrolyte Multilayers as Tunable Spacers,” Sci. Reports 5, 7779 (2015).
[Crossref]

Liu, R.-S.

C.-W. Chen, P.-H. Lee, Y.-C. Chan, M. Hsiao, C.-H. Chen, P. C. Wu, P. R. Wu, D. P. Tsai, D. Tu, X. Chen, and R.-S. Liu, “Plasmon-induced hyperthermia: hybrid upconversion NaYF 4 :Yb/Er and gold nanomaterials for oral cancer photothermal therapy,” J. Mater. Chem. B 3, 8293–8302 (2015).
[Crossref]

Liu, T.

W. Xu, S. Xu, Y. Zhu, T. Liu, X. Bai, B. Dong, L. Xu, and H. Song, “Ultra-broad plasma resonance enhanced multicolor emissions in an assembled Ag/NaYF4:Yb, Er nano-film,” Nanoscale 4, 6971 (2012).
[Crossref] [PubMed]

Liu, X.

X. Liu and D. Yuan Lei, “Simultaneous excitation and emission enhancements in upconversion luminescence using plasmonic double-resonant gold nanorods,” Sci. Reports 5, 15235 (2015).
[Crossref]

B. Zhou, B. Shi, D. Jin, and X. Liu, “Controlling upconversion nanocrystals for emerging applications,” Nat. Nanotechnol. 10, 924–936 (2015).
[Crossref] [PubMed]

Liu, Y.

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543, 229–233 (2017).
[Crossref] [PubMed]

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8, 729–734 (2013).
[Crossref] [PubMed]

Llora, X.

A. K. Kodali, X. Llora, and R. Bhargava, “Optimally designed nanolayered metal-dielectric particles as probes for massively multiplexed and ultrasensitive molecular assays,” Proc. Natl. Acad. Sci. 107, 13620–13625 (2010).
[Crossref] [PubMed]

Lois, C.

X. Wu, Y. Zhang, K. Takle, O. Bilsel, Z. Li, H. Lee, Z. Zhang, D. Li, W. Fan, C. Duan, E. M. Chan, C. Lois, Y. Xiang, and G. Han, “Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications,” ACS Nano 10, 1060–1066 (2016).
[Crossref] [PubMed]

Lu, D.

W. Park, D. Lu, and S. Ahn, “Plasmon enhancement of luminescence upconversion,” Chem. Soc. Rev. 44, 2940–2962 (2015).
[Crossref] [PubMed]

D. Lu, S. K. Cho, S. Ahn, L. Brun, C. J. Summers, and W. Park, “Plasmon Enhancement Mechanism for the Upconversion Processes in NaYF 4 :Yb 3+, Er 3+ Nanoparticles: Maxwell versus Förster,” ACS Nano 8, 7780–7792 (2014).
[Crossref] [PubMed]

Lu, T. J.

A. L. Feng, M. L. You, L. Tian, S. Singamaneni, M. Liu, Z. Duan, T. J. Lu, F. Xu, and M. Lin, “Distance-Dependent Plasmon-Enhanced Fluorescence of Upconversion Nanoparticles using Polyelectrolyte Multilayers as Tunable Spacers,” Sci. Reports 5, 7779 (2015).
[Crossref]

Lu, Y.

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543, 229–233 (2017).
[Crossref] [PubMed]

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8, 729–734 (2013).
[Crossref] [PubMed]

Luo, Y.

F. Meng, Y. Luo, Y. Zhou, J. Zhang, Y. Zheng, G. Cao, and X. Tao, “Integrated plasmonic and upconversion starlike Y2O3:Er/Au@TiO2 composite for enhanced photon harvesting in dye-sensitized solar cells,” J. Power Sources 316, 207–214 (2016).
[Crossref]

Ma, C.

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543, 229–233 (2017).
[Crossref] [PubMed]

Maduro, J. A.

W. Zou, C. Visser, J. A. Maduro, M. S. Pshenichnikov, and J. C. Hummelen, “Broadband dye-sensitized upconversion of near-infrared light,” Nat. Photonics 6, 560–564 (2012).
[Crossref]

McAnally, M. O.

N. L. Gruenke, M. O. McAnally, G. C. Schatz, and R. P. Van Duyne, “Balancing the Effects of Extinction and Enhancement for Optimal Signal in Surface-Enhanced Femtosecond Stimulated Raman Spectroscopy,” The J. Phys. Chem. C 120, 29449–29454 (2016).
[Crossref]

Meng, F.

F. Meng, Y. Luo, Y. Zhou, J. Zhang, Y. Zheng, G. Cao, and X. Tao, “Integrated plasmonic and upconversion starlike Y2O3:Er/Au@TiO2 composite for enhanced photon harvesting in dye-sensitized solar cells,” J. Power Sources 316, 207–214 (2016).
[Crossref]

Meng, L.

L. Meng, R. Yu, M. Qiu, and F. J. García de Abajo, “Plasmonic Nano-Oven by Concatenation of Multishell Photothermal Enhancement,” ACS Nano 11, 7915–7924 (2017).
[Crossref] [PubMed]

Mi, C.

J. Zhou, S. Wen, J. Liao, C. Clarke, S. A. Tawfik, W. Ren, C. Mi, F. Wang, and D. Jin, “Activation of the surface dark-layer to enhance upconversion in a thermal field,” Nat. Photonics 12, 154–158 (2018).
[Crossref]

Ming, T.

J. Wang, T. Ming, Z. Jin, J. Wang, L.-D. Sun, and C.-H. Yan, “Photon energy upconversion through thermal radiation with the power efficiency reaching 16%,” Nat. Commun. 5, 5669 (2014).
[Crossref]

Mohammadi Estakhri, N.

Y.-L. Wang, N. Mohammadi Estakhri, A. Johnson, H.-Y. Li, L.-X. Xu, Z. Zhang, A. Alù, Q.-Q. Wang, and C.-K. K. Shih, “Tailoring Plasmonic Enhanced Upconversion in Single NaYF4:Yb3+/Er3+ Nanocrystals,” Sci. Reports 5, 10196 (2015).
[Crossref]

Monro, T. M.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8, 729–734 (2013).
[Crossref] [PubMed]

Montaño-Priede, J. L.

J. L. Montaño-Priede, O. Peña-Rodríguez, and U. Pal, “Near-Electric-Field Tuned Plasmonic Au@SiO 2 and Ag@SiO 2 Nanoparticles for Efficient Utilization in Luminescence Enhancement and Surface-Enhanced Spectroscopy,” The J. Phys. Chem. C 121, 23062–23071 (2017).
[Crossref]

Moroz, A.

A. Moroz, “A recursive transfer-matrix solution for a dipole radiating inside and outside a stratified sphere,” Annals Phys. 315, 352–418 (2005).
[Crossref]

Moselund, P. M.

Mundoor, H.

Q.-C. Sun, H. Mundoor, J. C. Ribot, V. Singh, I. I. Smalyukh, and P. Nagpal, “Plasmon-Enhanced Energy Transfer for Improved Upconversion of Infrared Radiation in Doped-Lanthanide Nanocrystals,” Nano Lett. 14, 101–106 (2014).
[Crossref]

Murai, S.

R. Kamakura, S. Murai, S. Ishii, T. Nagao, K. Fujita, and K. Tanaka, “Plasmonic-Photonic Hybrid Modes Excited on a Titanium Nitride Nanoparticle Array in the Visible Region,” ACS Photonics 4, 815–822 (2017).
[Crossref]

Murphy, C. J.

N. S. Abadeer, M. R. Brennan, W. L. Wilson, and C. J. Murphy, “Distance and Plasmon Wavelength Dependent Fluorescence of Molecules Bound to Silica-Coated Gold Nanorods,” ACS Nano 8, 8392–8406 (2014).
[Crossref] [PubMed]

S. T. Sivapalan, B. M. DeVetter, T. K. Yang, T. van Dijk, M. V. Schulmerich, P. S. Carney, R. Bhargava, and C. J. Murphy, “Off-Resonance Surface-Enhanced Raman Spectroscopy from Gold Nanorod Suspensions as a Function of Aspect Ratio: Not What We Thought,” ACS Nano 7, 2099–2105 (2013).
[Crossref] [PubMed]

T. van Dijk, S. T. Sivapalan, B. M. DeVetter, T. K. Yang, M. V. Schulmerich, C. J. Murphy, R. Bhargava, and P. S. Carney, “Competition Between Extinction and Enhancement in Surface-Enhanced Raman Spectroscopy,” The J. Phys. Chem. Lett. 4, 1193–1196 (2013).
[Crossref]

Murray, C. B.

M. Saboktakin, X. Ye, S. J. Oh, S.-H. Hong, A. T. Fafarman, U. K. Chettiar, N. Engheta, C. B. Murray, and C. R. Kagan, “Metal-Enhanced Upconversion Luminescence Tunable through Metal Nanoparticle-Nanophosphor Separation,” ACS Nano 6, 8758–8766 (2012).
[Crossref] [PubMed]

Nagao, T.

R. Kamakura, S. Murai, S. Ishii, T. Nagao, K. Fujita, and K. Tanaka, “Plasmonic-Photonic Hybrid Modes Excited on a Titanium Nitride Nanoparticle Array in the Visible Region,” ACS Photonics 4, 815–822 (2017).
[Crossref]

Nagpal, P.

Q.-C. Sun, H. Mundoor, J. C. Ribot, V. Singh, I. I. Smalyukh, and P. Nagpal, “Plasmon-Enhanced Energy Transfer for Improved Upconversion of Infrared Radiation in Doped-Lanthanide Nanocrystals,” Nano Lett. 14, 101–106 (2014).
[Crossref]

Naik, G. V.

Neaton, J. B.

D. J. Garfield, N. J. Borys, S. M. Hamed, N. A. Torquato, C. A. Tajon, B. Tian, B. Shevitski, E. S. Barnard, Y. D. Suh, S. Aloni, J. B. Neaton, E. M. Chan, B. E. Cohen, and P. J. Schuck, “Enrichment of molecular antenna triplets amplifies upconverting nanoparticle emission,” Nat. Photonics 12, 402–407 (2018).
[Crossref]

Neubrech, F.

P. Alonso-González, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, and R. Hillenbrand, “Experimental Verification of the Spectral Shift between Near- and Far-Field Peak Intensities of Plasmonic Infrared Nanoantennas,” Phys. Rev. Lett. 110, 203902 (2013).
[Crossref] [PubMed]

Ni, X.

Nichtl, A.

G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kürzinger, “Gold Nanoshells Improve Single Nanoparticle Molecular Sensors,” Nano Lett. 4, 1853–1857 (2004).
[Crossref]

Nordlander, P.

W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, P. Nordlander, H. J. Lezec, J. Aizpurua, and K. B. Crozier, “Quantum mechanical effects in plasmonic structures with subnanometre gaps,” Nat. Commun. 7, 11495 (2016).
[Crossref] [PubMed]

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for Plasmonics,” ACS Nano 8, 834–840 (2014).
[Crossref]

Novotny, L.

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical Antennas,” Adv. Opt. Photonics 1, 438 (2009).
[Crossref]

Oh, S. J.

M. Saboktakin, X. Ye, S. J. Oh, S.-H. Hong, A. T. Fafarman, U. K. Chettiar, N. Engheta, C. B. Murray, and C. R. Kagan, “Metal-Enhanced Upconversion Luminescence Tunable through Metal Nanoparticle-Nanophosphor Separation,” ACS Nano 6, 8758–8766 (2012).
[Crossref] [PubMed]

Ohulchanskyy, T. Y.

X. Wang, R. R. Valiev, T. Y. Ohulchanskyy, H. Ågren, C. Yang, and G. Chen, “Dye-sensitized lanthanide-doped upconversion nanoparticles,” Chem. Soc. Rev. 46, 4150–4167 (2017).
[Crossref] [PubMed]

Oikawa, H.

N. Sakamoto, T. Onodera, T. Dezawa, Y. Shibata, and H. Oikawa, “Highly Enhanced Emission of Visible Light from Core-Dual-Shell-Type Hybridized Nanoparticles,” Part. & Part. Syst. Charact. 34, 1700258 (2017).
[Crossref]

Onodera, T.

N. Sakamoto, T. Onodera, T. Dezawa, Y. Shibata, and H. Oikawa, “Highly Enhanced Emission of Visible Light from Core-Dual-Shell-Type Hybridized Nanoparticles,” Part. & Part. Syst. Charact. 34, 1700258 (2017).
[Crossref]

Pal, U.

J. L. Montaño-Priede, O. Peña-Rodríguez, and U. Pal, “Near-Electric-Field Tuned Plasmonic Au@SiO 2 and Ag@SiO 2 Nanoparticles for Efficient Utilization in Luminescence Enhancement and Surface-Enhanced Spectroscopy,” The J. Phys. Chem. C 121, 23062–23071 (2017).
[Crossref]

Pan, G.

X. Chen, D. Zhou, W. Xu, J. Zhu, G. Pan, Z. Yin, H. Wang, Y. Zhu, C. Shaobo, and H. Song, “Fabrication of Au-Ag nanocage@NaYF4@NaYF4:Yb, Er Core-Shell Hybrid and its Tunable Upconversion Enhancement,” Sci. Reports 7, 41079 (2017).
[Crossref]

D. Zhou, D. Liu, J. Jin, X. Chen, W. Xu, Z. Yin, G. Pan, D. Li, and H. Song, “Semiconductor plasmon-sensitized broadband upconversion and its enhancement effect on the power conversion efficiency of perovskite solar cells,” J. Mater. Chem. A 5, 16559–16567 (2017).
[Crossref]

Park, W.

W. Park, D. Lu, and S. Ahn, “Plasmon enhancement of luminescence upconversion,” Chem. Soc. Rev. 44, 2940–2962 (2015).
[Crossref] [PubMed]

D. Lu, S. K. Cho, S. Ahn, L. Brun, C. J. Summers, and W. Park, “Plasmon Enhancement Mechanism for the Upconversion Processes in NaYF 4 :Yb 3+, Er 3+ Nanoparticles: Maxwell versus Förster,” ACS Nano 8, 7780–7792 (2014).
[Crossref] [PubMed]

Pedersen, C.

Peña-Rodríguez, O.

J. L. Montaño-Priede, O. Peña-Rodríguez, and U. Pal, “Near-Electric-Field Tuned Plasmonic Au@SiO 2 and Ag@SiO 2 Nanoparticles for Efficient Utilization in Luminescence Enhancement and Surface-Enhanced Spectroscopy,” The J. Phys. Chem. C 121, 23062–23071 (2017).
[Crossref]

Peng, W.

H. Xing, W. Bu, S. Zhang, X. Zheng, M. Li, F. Chen, Q. He, L. Zhou, W. Peng, Y. Hua, and J. Shi, “Multifunctional nanoprobes for upconversion fluorescence, MR and CT trimodal imaging,” Biomaterials 33, 1079–1089 (2012).
[Crossref]

Peng, X.

Q. Zhan, H. Liu, B. Wang, Q. Wu, R. Pu, C. Zhou, B. Huang, X. Peng, H. Ågren, and S. He, “Achieving high-efficiency emission depletion nanoscopy by employing cross relaxation in upconversion nanoparticles,” Nat. Commun. 8, 1058 (2017).
[Crossref] [PubMed]

Petkov, N.

G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kürzinger, “Gold Nanoshells Improve Single Nanoparticle Molecular Sensors,” Nano Lett. 4, 1853–1857 (2004).
[Crossref]

Piper, J. A.

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543, 229–233 (2017).
[Crossref] [PubMed]

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8, 729–734 (2013).
[Crossref] [PubMed]

Plain, J.

A. Lalisse, G. Tessier, J. Plain, and G. Baffou, “Quantifying the Efficiency of Plasmonic Materials for Near-Field Enhancement and Photothermal Conversion,” The J. Phys. Chem. C 119, 25518–25528 (2015).
[Crossref]

Polyutov, S. P.

V. S. Gerasimov, A. E. Ershov, S. V. Karpov, A. P. Gavrilyuk, V. I. Zakomirnyi, I. L. Rasskazov, H. Ågren, and S. P. Polyutov, “Thermal effects in systems of colloidal plasmonic nanoparticles in high-intensity pulsed laser fields [Invited],” Opt. Mater. Express 7, 555 (2017).
[Crossref]

V. I. Zakomirnyi, I. L. Rasskazov, S. V. Karpov, and S. P. Polyutov, “New ideally absorbing Au plasmonic nanostructures for biomedical applications,” J. Quant. Spectrosc. Radiat. Transf. 187, 54–61 (2017).
[Crossref]

Prasad, P. N.

G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion Nanoparticles: Design, Nanochemistry, and Applications in Theranostics,” Chem. Rev. 114, 5161–5214 (2014).
[Crossref] [PubMed]

Price, R. E.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. 100, 13549–13554 (2003).
[Crossref] [PubMed]

Pshenichnikov, M. S.

W. Zou, C. Visser, J. A. Maduro, M. S. Pshenichnikov, and J. C. Hummelen, “Broadband dye-sensitized upconversion of near-infrared light,” Nat. Photonics 6, 560–564 (2012).
[Crossref]

Pu, R.

Q. Zhan, H. Liu, B. Wang, Q. Wu, R. Pu, C. Zhou, B. Huang, X. Peng, H. Ågren, and S. He, “Achieving high-efficiency emission depletion nanoscopy by employing cross relaxation in upconversion nanoparticles,” Nat. Commun. 8, 1058 (2017).
[Crossref] [PubMed]

Pucci, A.

P. Alonso-González, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, and R. Hillenbrand, “Experimental Verification of the Spectral Shift between Near- and Far-Field Peak Intensities of Plasmonic Infrared Nanoantennas,” Phys. Rev. Lett. 110, 203902 (2013).
[Crossref] [PubMed]

Qin, Y.

Qiu, H.

G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion Nanoparticles: Design, Nanochemistry, and Applications in Theranostics,” Chem. Rev. 114, 5161–5214 (2014).
[Crossref] [PubMed]

Qiu, J.

Qiu, M.

L. Meng, R. Yu, M. Qiu, and F. J. García de Abajo, “Plasmonic Nano-Oven by Concatenation of Multishell Photothermal Enhancement,” ACS Nano 11, 7915–7924 (2017).
[Crossref] [PubMed]

Qu, Y.

H. Zhang, Y. Li, I. A. Ivanov, Y. Qu, Y. Huang, and X. Duan, “Plasmonic Modulation of the Upconversion Fluorescence in NaYF4:Yb/Tm Hexaplate Nanocrystals Using Gold Nanoparticles or Nanoshells,” Angewandte Chemie Int. Ed. 49, 2865–2868 (2010).
[Crossref]

Quan, L. N.

Y. H. Jang, Y. J. Jang, S. Kim, L. N. Quan, K. Chung, and D. H. Kim, “Plasmonic Solar Cells: From Rational Design to Mechanism Overview,” Chem. Rev. 116, 14982–15034 (2016).
[Crossref] [PubMed]

Rahim, F. A.

P. Kannan, F. A. Rahim, X. Teng, R. Chen, H. Sun, L. Huang, and D.-H. Kim, “Enhanced emission of NaYF4:Yb, Er/Tm nanoparticles by selective growth of Au and Ag nanoshells,” RSC Adv. 3, 7718 (2013).
[Crossref]

Raschke, G.

G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kürzinger, “Gold Nanoshells Improve Single Nanoparticle Molecular Sensors,” Nano Lett. 4, 1853–1857 (2004).
[Crossref]

Rasskazov, I. L.

V. I. Zakomirnyi, I. L. Rasskazov, S. V. Karpov, and S. P. Polyutov, “New ideally absorbing Au plasmonic nanostructures for biomedical applications,” J. Quant. Spectrosc. Radiat. Transf. 187, 54–61 (2017).
[Crossref]

V. S. Gerasimov, A. E. Ershov, S. V. Karpov, A. P. Gavrilyuk, V. I. Zakomirnyi, I. L. Rasskazov, H. Ågren, and S. P. Polyutov, “Thermal effects in systems of colloidal plasmonic nanoparticles in high-intensity pulsed laser fields [Invited],” Opt. Mater. Express 7, 555 (2017).
[Crossref]

Ren, W.

J. Zhou, S. Wen, J. Liao, C. Clarke, S. A. Tawfik, W. Ren, C. Mi, F. Wang, and D. Jin, “Activation of the surface dark-layer to enhance upconversion in a thermal field,” Nat. Photonics 12, 154–158 (2018).
[Crossref]

Ribot, J. C.

Q.-C. Sun, H. Mundoor, J. C. Ribot, V. Singh, I. I. Smalyukh, and P. Nagpal, “Plasmon-Enhanced Energy Transfer for Improved Upconversion of Infrared Radiation in Doped-Lanthanide Nanocrystals,” Nano Lett. 14, 101–106 (2014).
[Crossref]

Rivera, B.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. 100, 13549–13554 (2003).
[Crossref] [PubMed]

Rogach, A. L.

G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kürzinger, “Gold Nanoshells Improve Single Nanoparticle Molecular Sensors,” Nano Lett. 4, 1853–1857 (2004).
[Crossref]

Saboktakin, M.

M. Saboktakin, X. Ye, S. J. Oh, S.-H. Hong, A. T. Fafarman, U. K. Chettiar, N. Engheta, C. B. Murray, and C. R. Kagan, “Metal-Enhanced Upconversion Luminescence Tunable through Metal Nanoparticle-Nanophosphor Separation,” ACS Nano 6, 8758–8766 (2012).
[Crossref] [PubMed]

Sakamoto, N.

N. Sakamoto, T. Onodera, T. Dezawa, Y. Shibata, and H. Oikawa, “Highly Enhanced Emission of Visible Light from Core-Dual-Shell-Type Hybridized Nanoparticles,” Part. & Part. Syst. Charact. 34, 1700258 (2017).
[Crossref]

Salleo, A.

D. M. Wu, A. García-Etxarri, A. Salleo, and J. A. Dionne, “Plasmon-Enhanced Upconversion,” The J. Phys. Chem. Lett. 5, 4020–4031 (2014).
[Crossref]

Sands, T. D.

Schartner, E. P.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8, 729–734 (2013).
[Crossref] [PubMed]

Schatz, G. C.

N. L. Gruenke, M. O. McAnally, G. C. Schatz, and R. P. Van Duyne, “Balancing the Effects of Extinction and Enhancement for Optimal Signal in Surface-Enhanced Femtosecond Stimulated Raman Spectroscopy,” The J. Phys. Chem. C 120, 29449–29454 (2016).
[Crossref]

Schroeder, J. L.

Schuck, P. J.

D. J. Garfield, N. J. Borys, S. M. Hamed, N. A. Torquato, C. A. Tajon, B. Tian, B. Shevitski, E. S. Barnard, Y. D. Suh, S. Aloni, J. B. Neaton, E. M. Chan, B. E. Cohen, and P. J. Schuck, “Enrichment of molecular antenna triplets amplifies upconverting nanoparticle emission,” Nat. Photonics 12, 402–407 (2018).
[Crossref]

Schulmerich, M. V.

S. T. Sivapalan, B. M. DeVetter, T. K. Yang, T. van Dijk, M. V. Schulmerich, P. S. Carney, R. Bhargava, and C. J. Murphy, “Off-Resonance Surface-Enhanced Raman Spectroscopy from Gold Nanorod Suspensions as a Function of Aspect Ratio: Not What We Thought,” ACS Nano 7, 2099–2105 (2013).
[Crossref] [PubMed]

T. van Dijk, S. T. Sivapalan, B. M. DeVetter, T. K. Yang, M. V. Schulmerich, C. J. Murphy, R. Bhargava, and P. S. Carney, “Competition Between Extinction and Enhancement in Surface-Enhanced Raman Spectroscopy,” The J. Phys. Chem. Lett. 4, 1193–1196 (2013).
[Crossref]

Sershen, S. R.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. 100, 13549–13554 (2003).
[Crossref] [PubMed]

Shalaev, V. M.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative Plasmonic Materials: Beyond Gold and Silver,” Adv. Mater. 25, 3264–3294 (2013).
[Crossref] [PubMed]

Shao, B.

Shao, J.

Z. Wang, W. Gao, R. Wang, J. Shao, Q. Han, C. Wang, J. Zhang, T. Zhang, J. Dong, and H. Zheng, “Influence of SiO2 layer on the plasmon quenched upconversion luminescence emission of core-shell NaYF4:Yb, Er@SiO2@Ag nanocomposites,” Mater. Res. Bull. 83, 515–521 (2016).
[Crossref]

Shaobo, C.

X. Chen, D. Zhou, W. Xu, J. Zhu, G. Pan, Z. Yin, H. Wang, Y. Zhu, C. Shaobo, and H. Song, “Fabrication of Au-Ag nanocage@NaYF4@NaYF4:Yb, Er Core-Shell Hybrid and its Tunable Upconversion Enhancement,” Sci. Reports 7, 41079 (2017).
[Crossref]

Shevitski, B.

D. J. Garfield, N. J. Borys, S. M. Hamed, N. A. Torquato, C. A. Tajon, B. Tian, B. Shevitski, E. S. Barnard, Y. D. Suh, S. Aloni, J. B. Neaton, E. M. Chan, B. E. Cohen, and P. J. Schuck, “Enrichment of molecular antenna triplets amplifies upconverting nanoparticle emission,” Nat. Photonics 12, 402–407 (2018).
[Crossref]

Shi, B.

B. Zhou, B. Shi, D. Jin, and X. Liu, “Controlling upconversion nanocrystals for emerging applications,” Nat. Nanotechnol. 10, 924–936 (2015).
[Crossref] [PubMed]

Shi, J.

H. Xing, W. Bu, S. Zhang, X. Zheng, M. Li, F. Chen, Q. He, L. Zhou, W. Peng, Y. Hua, and J. Shi, “Multifunctional nanoprobes for upconversion fluorescence, MR and CT trimodal imaging,” Biomaterials 33, 1079–1089 (2012).
[Crossref]

Shibata, Y.

N. Sakamoto, T. Onodera, T. Dezawa, Y. Shibata, and H. Oikawa, “Highly Enhanced Emission of Visible Light from Core-Dual-Shell-Type Hybridized Nanoparticles,” Part. & Part. Syst. Charact. 34, 1700258 (2017).
[Crossref]

Shih, C.-K. K.

Y.-L. Wang, N. Mohammadi Estakhri, A. Johnson, H.-Y. Li, L.-X. Xu, Z. Zhang, A. Alù, Q.-Q. Wang, and C.-K. K. Shih, “Tailoring Plasmonic Enhanced Upconversion in Single NaYF4:Yb3+/Er3+ Nanocrystals,” Sci. Reports 5, 10196 (2015).
[Crossref]

Shimoni, O.

F. Wang, S. Wen, H. He, B. Wang, Z. Zhou, O. Shimoni, and D. Jin, “Microscopic inspection and tracking of single upconversion nanoparticles in living cells,” Light. Sci. & Appl. 7, 18007 (2018).
[Crossref]

Simon, Y. C.

Y. C. Simon and C. Weder, “Low-power photon upconversion through triplet-triplet annihilation in polymers,” J. Mater. Chem. 22, 20817 (2012).
[Crossref]

Singamaneni, S.

A. L. Feng, M. L. You, L. Tian, S. Singamaneni, M. Liu, Z. Duan, T. J. Lu, F. Xu, and M. Lin, “Distance-Dependent Plasmon-Enhanced Fluorescence of Upconversion Nanoparticles using Polyelectrolyte Multilayers as Tunable Spacers,” Sci. Reports 5, 7779 (2015).
[Crossref]

Singh, V.

Q.-C. Sun, H. Mundoor, J. C. Ribot, V. Singh, I. I. Smalyukh, and P. Nagpal, “Plasmon-Enhanced Energy Transfer for Improved Upconversion of Infrared Radiation in Doped-Lanthanide Nanocrystals,” Nano Lett. 14, 101–106 (2014).
[Crossref]

Sivapalan, S. T.

T. van Dijk, S. T. Sivapalan, B. M. DeVetter, T. K. Yang, M. V. Schulmerich, C. J. Murphy, R. Bhargava, and P. S. Carney, “Competition Between Extinction and Enhancement in Surface-Enhanced Raman Spectroscopy,” The J. Phys. Chem. Lett. 4, 1193–1196 (2013).
[Crossref]

S. T. Sivapalan, B. M. DeVetter, T. K. Yang, T. van Dijk, M. V. Schulmerich, P. S. Carney, R. Bhargava, and C. J. Murphy, “Off-Resonance Surface-Enhanced Raman Spectroscopy from Gold Nanorod Suspensions as a Function of Aspect Ratio: Not What We Thought,” ACS Nano 7, 2099–2105 (2013).
[Crossref] [PubMed]

Smalyukh, I. I.

Q.-C. Sun, H. Mundoor, J. C. Ribot, V. Singh, I. I. Smalyukh, and P. Nagpal, “Plasmon-Enhanced Energy Transfer for Improved Upconversion of Infrared Radiation in Doped-Lanthanide Nanocrystals,” Nano Lett. 14, 101–106 (2014).
[Crossref]

Song, H.

X. Chen, D. Zhou, W. Xu, J. Zhu, G. Pan, Z. Yin, H. Wang, Y. Zhu, C. Shaobo, and H. Song, “Fabrication of Au-Ag nanocage@NaYF4@NaYF4:Yb, Er Core-Shell Hybrid and its Tunable Upconversion Enhancement,” Sci. Reports 7, 41079 (2017).
[Crossref]

W. Xu, X. Chen, and H. Song, “Upconversion manipulation by local electromagnetic field,” Nano Today 17, 54–78 (2017).
[Crossref]

D. Zhou, D. Liu, J. Jin, X. Chen, W. Xu, Z. Yin, G. Pan, D. Li, and H. Song, “Semiconductor plasmon-sensitized broadband upconversion and its enhancement effect on the power conversion efficiency of perovskite solar cells,” J. Mater. Chem. A 5, 16559–16567 (2017).
[Crossref]

D. Zhou, D. Li, X. Zhou, W. Xu, X. Chen, D. Liu, Y. Zhu, and H. Song, “Semiconductor Plasmon Induced Up-Conversion Enhancement in mCu 2- x S@SiO 2 @Y 2 O 3 :Yb 3+ /Er 3+ Core-Shell Nanocomposites,” ACS Appl. Mater. & Interfaces 9, 35226–35233 (2017).
[Crossref]

D. Zhou, D. Liu, W. Xu, X. Chen, Z. Yin, X. Bai, B. Dong, L. Xu, and H. Song, “Synergistic Upconversion Enhancement Induced by Multiple Physical Effects and an Angle-Dependent Anticounterfeit Application,” Chem. Mater. 29, 6799–6809 (2017).
[Crossref]

D. Zhou, D. Liu, W. Xu, Z. Yin, X. Chen, P. Zhou, S. Cui, Z. Chen, and H. Song, “Observation of Considerable Upconversion Enhancement Induced by Cu 2- x S Plasmon Nanoparticles,” ACS Nano 10, 5169–5179 (2016).
[Crossref] [PubMed]

Z. Yin, D. Zhou, W. Xu, S. Cui, X. Chen, H. Wang, S. Xu, and H. Song, “Plasmon-Enhanced Upconversion Luminescence on Vertically Aligned Gold Nanorod Monolayer Supercrystals,” ACS Appl. Mater. & Interfaces 8, 11667–11674 (2016).
[Crossref]

W. Xu, S. Xu, Y. Zhu, T. Liu, X. Bai, B. Dong, L. Xu, and H. Song, “Ultra-broad plasma resonance enhanced multicolor emissions in an assembled Ag/NaYF4:Yb, Er nano-film,” Nanoscale 4, 6971 (2012).
[Crossref] [PubMed]

Song, Z.

Stafford, R. J.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. 100, 13549–13554 (2003).
[Crossref] [PubMed]

Steinkemper, H.

Suh, Y. D.

D. J. Garfield, N. J. Borys, S. M. Hamed, N. A. Torquato, C. A. Tajon, B. Tian, B. Shevitski, E. S. Barnard, Y. D. Suh, S. Aloni, J. B. Neaton, E. M. Chan, B. E. Cohen, and P. J. Schuck, “Enrichment of molecular antenna triplets amplifies upconverting nanoparticle emission,” Nat. Photonics 12, 402–407 (2018).
[Crossref]

Summers, C. J.

D. Lu, S. K. Cho, S. Ahn, L. Brun, C. J. Summers, and W. Park, “Plasmon Enhancement Mechanism for the Upconversion Processes in NaYF 4 :Yb 3+, Er 3+ Nanoparticles: Maxwell versus Förster,” ACS Nano 8, 7780–7792 (2014).
[Crossref] [PubMed]

Sun, H.

P. Kannan, F. A. Rahim, X. Teng, R. Chen, H. Sun, L. Huang, and D.-H. Kim, “Enhanced emission of NaYF4:Yb, Er/Tm nanoparticles by selective growth of Au and Ag nanoshells,” RSC Adv. 3, 7718 (2013).
[Crossref]

Sun, L.-D.

J. Wang, T. Ming, Z. Jin, J. Wang, L.-D. Sun, and C.-H. Yan, “Photon energy upconversion through thermal radiation with the power efficiency reaching 16%,” Nat. Commun. 5, 5669 (2014).
[Crossref]

Sun, Q.-C.

Q.-C. Sun, H. Mundoor, J. C. Ribot, V. Singh, I. I. Smalyukh, and P. Nagpal, “Plasmon-Enhanced Energy Transfer for Improved Upconversion of Infrared Radiation in Doped-Lanthanide Nanocrystals,” Nano Lett. 14, 101–106 (2014).
[Crossref]

Susha, A. S.

G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kürzinger, “Gold Nanoshells Improve Single Nanoparticle Molecular Sensors,” Nano Lett. 4, 1853–1857 (2004).
[Crossref]

Tajon, C. A.

D. J. Garfield, N. J. Borys, S. M. Hamed, N. A. Torquato, C. A. Tajon, B. Tian, B. Shevitski, E. S. Barnard, Y. D. Suh, S. Aloni, J. B. Neaton, E. M. Chan, B. E. Cohen, and P. J. Schuck, “Enrichment of molecular antenna triplets amplifies upconverting nanoparticle emission,” Nat. Photonics 12, 402–407 (2018).
[Crossref]

Takle, K.

X. Wu, Y. Zhang, K. Takle, O. Bilsel, Z. Li, H. Lee, Z. Zhang, D. Li, W. Fan, C. Duan, E. M. Chan, C. Lois, Y. Xiang, and G. Han, “Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications,” ACS Nano 10, 1060–1066 (2016).
[Crossref] [PubMed]

Tanaka, K.

R. Kamakura, S. Murai, S. Ishii, T. Nagao, K. Fujita, and K. Tanaka, “Plasmonic-Photonic Hybrid Modes Excited on a Titanium Nitride Nanoparticle Array in the Visible Region,” ACS Photonics 4, 815–822 (2017).
[Crossref]

Tao, X.

F. Meng, Y. Luo, Y. Zhou, J. Zhang, Y. Zheng, G. Cao, and X. Tao, “Integrated plasmonic and upconversion starlike Y2O3:Er/Au@TiO2 composite for enhanced photon harvesting in dye-sensitized solar cells,” J. Power Sources 316, 207–214 (2016).
[Crossref]

Tawfik, S. A.

J. Zhou, S. Wen, J. Liao, C. Clarke, S. A. Tawfik, W. Ren, C. Mi, F. Wang, and D. Jin, “Activation of the surface dark-layer to enhance upconversion in a thermal field,” Nat. Photonics 12, 154–158 (2018).
[Crossref]

Teng, X.

P. Kannan, F. A. Rahim, X. Teng, R. Chen, H. Sun, L. Huang, and D.-H. Kim, “Enhanced emission of NaYF4:Yb, Er/Tm nanoparticles by selective growth of Au and Ag nanoshells,” RSC Adv. 3, 7718 (2013).
[Crossref]

Tessier, G.

A. Lalisse, G. Tessier, J. Plain, and G. Baffou, “Quantifying the Efficiency of Plasmonic Materials for Near-Field Enhancement and Photothermal Conversion,” The J. Phys. Chem. C 119, 25518–25528 (2015).
[Crossref]

Tian, B.

D. J. Garfield, N. J. Borys, S. M. Hamed, N. A. Torquato, C. A. Tajon, B. Tian, B. Shevitski, E. S. Barnard, Y. D. Suh, S. Aloni, J. B. Neaton, E. M. Chan, B. E. Cohen, and P. J. Schuck, “Enrichment of molecular antenna triplets amplifies upconverting nanoparticle emission,” Nat. Photonics 12, 402–407 (2018).
[Crossref]

Tian, L.

A. L. Feng, M. L. You, L. Tian, S. Singamaneni, M. Liu, Z. Duan, T. J. Lu, F. Xu, and M. Lin, “Distance-Dependent Plasmon-Enhanced Fluorescence of Upconversion Nanoparticles using Polyelectrolyte Multilayers as Tunable Spacers,” Sci. Reports 5, 7779 (2015).
[Crossref]

Tidemand-Lichtenberg, P.

Torquato, N. A.

D. J. Garfield, N. J. Borys, S. M. Hamed, N. A. Torquato, C. A. Tajon, B. Tian, B. Shevitski, E. S. Barnard, Y. D. Suh, S. Aloni, J. B. Neaton, E. M. Chan, B. E. Cohen, and P. J. Schuck, “Enrichment of molecular antenna triplets amplifies upconverting nanoparticle emission,” Nat. Photonics 12, 402–407 (2018).
[Crossref]

Tsai, D. P.

C.-W. Chen, P.-H. Lee, Y.-C. Chan, M. Hsiao, C.-H. Chen, P. C. Wu, P. R. Wu, D. P. Tsai, D. Tu, X. Chen, and R.-S. Liu, “Plasmon-induced hyperthermia: hybrid upconversion NaYF 4 :Yb/Er and gold nanomaterials for oral cancer photothermal therapy,” J. Mater. Chem. B 3, 8293–8302 (2015).
[Crossref]

Tu, D.

C.-W. Chen, P.-H. Lee, Y.-C. Chan, M. Hsiao, C.-H. Chen, P. C. Wu, P. R. Wu, D. P. Tsai, D. Tu, X. Chen, and R.-S. Liu, “Plasmon-induced hyperthermia: hybrid upconversion NaYF 4 :Yb/Er and gold nanomaterials for oral cancer photothermal therapy,” J. Mater. Chem. B 3, 8293–8302 (2015).
[Crossref]

Turek, V. A.

N. Kongsuwan, A. Demetriadou, R. Chikkaraddy, F. Benz, V. A. Turek, U. F. Keyser, J. J. Baumberg, and O. Hess, “Suppressed Quenching and Strong-Coupling of Purcell-Enhanced Single-Molecule Emission in Plasmonic Nanocavities,” ACS Photonics 5, 186–191 (2018).
[Crossref]

Valiev, R. R.

X. Wang, R. R. Valiev, T. Y. Ohulchanskyy, H. Ågren, C. Yang, and G. Chen, “Dye-sensitized lanthanide-doped upconversion nanoparticles,” Chem. Soc. Rev. 46, 4150–4167 (2017).
[Crossref] [PubMed]

van Dijk, T.

B. X. K. Chng, T. van Dijk, R. Bhargava, and P. S. Carney, “Enhancement and extinction effects in surface-enhanced stimulated Raman spectroscopy,” Phys. Chem. Chem. Phys. 17, 21348–21355 (2015).
[Crossref] [PubMed]

S. T. Sivapalan, B. M. DeVetter, T. K. Yang, T. van Dijk, M. V. Schulmerich, P. S. Carney, R. Bhargava, and C. J. Murphy, “Off-Resonance Surface-Enhanced Raman Spectroscopy from Gold Nanorod Suspensions as a Function of Aspect Ratio: Not What We Thought,” ACS Nano 7, 2099–2105 (2013).
[Crossref] [PubMed]

T. van Dijk, S. T. Sivapalan, B. M. DeVetter, T. K. Yang, M. V. Schulmerich, C. J. Murphy, R. Bhargava, and P. S. Carney, “Competition Between Extinction and Enhancement in Surface-Enhanced Raman Spectroscopy,” The J. Phys. Chem. Lett. 4, 1193–1196 (2013).
[Crossref]

Van Duyne, R. P.

N. L. Gruenke, M. O. McAnally, G. C. Schatz, and R. P. Van Duyne, “Balancing the Effects of Extinction and Enhancement for Optimal Signal in Surface-Enhanced Femtosecond Stimulated Raman Spectroscopy,” The J. Phys. Chem. C 120, 29449–29454 (2016).
[Crossref]

Vidal, X.

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543, 229–233 (2017).
[Crossref] [PubMed]

Visser, C.

W. Zou, C. Visser, J. A. Maduro, M. S. Pshenichnikov, and J. C. Hummelen, “Broadband dye-sensitized upconversion of near-infrared light,” Nat. Photonics 6, 560–564 (2012).
[Crossref]

Vollmer, M.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, vol. 25 of Springer Series in Materials Science (Springer Berlin Heidelberg, Berlin, Heidelberg, 1995).
[Crossref]

von Plessen, G.

Wang, B.

F. Wang, S. Wen, H. He, B. Wang, Z. Zhou, O. Shimoni, and D. Jin, “Microscopic inspection and tracking of single upconversion nanoparticles in living cells,” Light. Sci. & Appl. 7, 18007 (2018).
[Crossref]

Q. Zhan, H. Liu, B. Wang, Q. Wu, R. Pu, C. Zhou, B. Huang, X. Peng, H. Ågren, and S. He, “Achieving high-efficiency emission depletion nanoscopy by employing cross relaxation in upconversion nanoparticles,” Nat. Commun. 8, 1058 (2017).
[Crossref] [PubMed]

Wang, C.

Z. Wang, W. Gao, R. Wang, J. Shao, Q. Han, C. Wang, J. Zhang, T. Zhang, J. Dong, and H. Zheng, “Influence of SiO2 layer on the plasmon quenched upconversion luminescence emission of core-shell NaYF4:Yb, Er@SiO2@Ag nanocomposites,” Mater. Res. Bull. 83, 515–521 (2016).
[Crossref]

L. Zhou, R. Wang, C. Yao, X. Li, C. Wang, X. Zhang, C. Xu, A. Zeng, D. Zhao, and F. Zhang, “Single-band upconversion nanoprobes for multiplexed simultaneous in situ molecular mapping of cancer biomarkers,” Nat. Commun. 6, 6938 (2015).
[Crossref] [PubMed]

Wang, F.

F. Wang, S. Wen, H. He, B. Wang, Z. Zhou, O. Shimoni, and D. Jin, “Microscopic inspection and tracking of single upconversion nanoparticles in living cells,” Light. Sci. & Appl. 7, 18007 (2018).
[Crossref]

J. Zhou, S. Wen, J. Liao, C. Clarke, S. A. Tawfik, W. Ren, C. Mi, F. Wang, and D. Jin, “Activation of the surface dark-layer to enhance upconversion in a thermal field,” Nat. Photonics 12, 154–158 (2018).
[Crossref]

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543, 229–233 (2017).
[Crossref] [PubMed]

Wang, H.

X. Chen, D. Zhou, W. Xu, J. Zhu, G. Pan, Z. Yin, H. Wang, Y. Zhu, C. Shaobo, and H. Song, “Fabrication of Au-Ag nanocage@NaYF4@NaYF4:Yb, Er Core-Shell Hybrid and its Tunable Upconversion Enhancement,” Sci. Reports 7, 41079 (2017).
[Crossref]

Z. Yin, D. Zhou, W. Xu, S. Cui, X. Chen, H. Wang, S. Xu, and H. Song, “Plasmon-Enhanced Upconversion Luminescence on Vertically Aligned Gold Nanorod Monolayer Supercrystals,” ACS Appl. Mater. & Interfaces 8, 11667–11674 (2016).
[Crossref]

Wang, J.

J. Wang, T. Ming, Z. Jin, J. Wang, L.-D. Sun, and C.-H. Yan, “Photon energy upconversion through thermal radiation with the power efficiency reaching 16%,” Nat. Commun. 5, 5669 (2014).
[Crossref]

J. Wang, T. Ming, Z. Jin, J. Wang, L.-D. Sun, and C.-H. Yan, “Photon energy upconversion through thermal radiation with the power efficiency reaching 16%,” Nat. Commun. 5, 5669 (2014).
[Crossref]

Wang, Q.-Q.

Y.-L. Wang, N. Mohammadi Estakhri, A. Johnson, H.-Y. Li, L.-X. Xu, Z. Zhang, A. Alù, Q.-Q. Wang, and C.-K. K. Shih, “Tailoring Plasmonic Enhanced Upconversion in Single NaYF4:Yb3+/Er3+ Nanocrystals,” Sci. Reports 5, 10196 (2015).
[Crossref]

Wang, R.

Z. Wang, W. Gao, R. Wang, J. Shao, Q. Han, C. Wang, J. Zhang, T. Zhang, J. Dong, and H. Zheng, “Influence of SiO2 layer on the plasmon quenched upconversion luminescence emission of core-shell NaYF4:Yb, Er@SiO2@Ag nanocomposites,” Mater. Res. Bull. 83, 515–521 (2016).
[Crossref]

L. Zhou, R. Wang, C. Yao, X. Li, C. Wang, X. Zhang, C. Xu, A. Zeng, D. Zhao, and F. Zhang, “Single-band upconversion nanoprobes for multiplexed simultaneous in situ molecular mapping of cancer biomarkers,” Nat. Commun. 6, 6938 (2015).
[Crossref] [PubMed]

Wang, X.

X. Wang, R. R. Valiev, T. Y. Ohulchanskyy, H. Ågren, C. Yang, and G. Chen, “Dye-sensitized lanthanide-doped upconversion nanoparticles,” Chem. Soc. Rev. 46, 4150–4167 (2017).
[Crossref] [PubMed]

Wang, Y.

Wang, Y.-L.

Y.-L. Wang, N. Mohammadi Estakhri, A. Johnson, H.-Y. Li, L.-X. Xu, Z. Zhang, A. Alù, Q.-Q. Wang, and C.-K. K. Shih, “Tailoring Plasmonic Enhanced Upconversion in Single NaYF4:Yb3+/Er3+ Nanocrystals,” Sci. Reports 5, 10196 (2015).
[Crossref]

Wang, Z.

Z. Wang, W. Gao, R. Wang, J. Shao, Q. Han, C. Wang, J. Zhang, T. Zhang, J. Dong, and H. Zheng, “Influence of SiO2 layer on the plasmon quenched upconversion luminescence emission of core-shell NaYF4:Yb, Er@SiO2@Ag nanocomposites,” Mater. Res. Bull. 83, 515–521 (2016).
[Crossref]

Weder, C.

Y. C. Simon and C. Weder, “Low-power photon upconversion through triplet-triplet annihilation in polymers,” J. Mater. Chem. 22, 20817 (2012).
[Crossref]

Wei, C.

Y. Ding, X. Zhang, H. Gao, S. Xu, C. Wei, and Y. Zhao, “Plasmonic enhanced upconversion luminescence of β-NaYF4:Yb3+/Er3+ with Ag@SiO2 core-shell nanoparticles,” J. Lumin. 147, 72–76 (2014).
[Crossref]

Wen, S.

J. Zhou, S. Wen, J. Liao, C. Clarke, S. A. Tawfik, W. Ren, C. Mi, F. Wang, and D. Jin, “Activation of the surface dark-layer to enhance upconversion in a thermal field,” Nat. Photonics 12, 154–158 (2018).
[Crossref]

F. Wang, S. Wen, H. He, B. Wang, Z. Zhou, O. Shimoni, and D. Jin, “Microscopic inspection and tracking of single upconversion nanoparticles in living cells,” Light. Sci. & Appl. 7, 18007 (2018).
[Crossref]

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543, 229–233 (2017).
[Crossref] [PubMed]

West, J. L.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. 100, 13549–13554 (2003).
[Crossref] [PubMed]

Wilson, W. L.

N. S. Abadeer, M. R. Brennan, W. L. Wilson, and C. J. Murphy, “Distance and Plasmon Wavelength Dependent Fluorescence of Molecules Bound to Silica-Coated Gold Nanorods,” ACS Nano 8, 8392–8406 (2014).
[Crossref] [PubMed]

Wu, D. M.

D. M. Wu, A. García-Etxarri, A. Salleo, and J. A. Dionne, “Plasmon-Enhanced Upconversion,” The J. Phys. Chem. Lett. 5, 4020–4031 (2014).
[Crossref]

Wu, P. C.

C.-W. Chen, P.-H. Lee, Y.-C. Chan, M. Hsiao, C.-H. Chen, P. C. Wu, P. R. Wu, D. P. Tsai, D. Tu, X. Chen, and R.-S. Liu, “Plasmon-induced hyperthermia: hybrid upconversion NaYF 4 :Yb/Er and gold nanomaterials for oral cancer photothermal therapy,” J. Mater. Chem. B 3, 8293–8302 (2015).
[Crossref]

Wu, P. R.

C.-W. Chen, P.-H. Lee, Y.-C. Chan, M. Hsiao, C.-H. Chen, P. C. Wu, P. R. Wu, D. P. Tsai, D. Tu, X. Chen, and R.-S. Liu, “Plasmon-induced hyperthermia: hybrid upconversion NaYF 4 :Yb/Er and gold nanomaterials for oral cancer photothermal therapy,” J. Mater. Chem. B 3, 8293–8302 (2015).
[Crossref]

Wu, Q.

Q. Zhan, H. Liu, B. Wang, Q. Wu, R. Pu, C. Zhou, B. Huang, X. Peng, H. Ågren, and S. He, “Achieving high-efficiency emission depletion nanoscopy by employing cross relaxation in upconversion nanoparticles,” Nat. Commun. 8, 1058 (2017).
[Crossref] [PubMed]

Wu, X.

X. Wu, Y. Zhang, K. Takle, O. Bilsel, Z. Li, H. Lee, Z. Zhang, D. Li, W. Fan, C. Duan, E. M. Chan, C. Lois, Y. Xiang, and G. Han, “Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications,” ACS Nano 10, 1060–1066 (2016).
[Crossref] [PubMed]

Xi, P.

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543, 229–233 (2017).
[Crossref] [PubMed]

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8, 729–734 (2013).
[Crossref] [PubMed]

Xiang, Y.

X. Wu, Y. Zhang, K. Takle, O. Bilsel, Z. Li, H. Lee, Z. Zhang, D. Li, W. Fan, C. Duan, E. M. Chan, C. Lois, Y. Xiang, and G. Han, “Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications,” ACS Nano 10, 1060–1066 (2016).
[Crossref] [PubMed]

Xing, H.

H. Xing, W. Bu, S. Zhang, X. Zheng, M. Li, F. Chen, Q. He, L. Zhou, W. Peng, Y. Hua, and J. Shi, “Multifunctional nanoprobes for upconversion fluorescence, MR and CT trimodal imaging,” Biomaterials 33, 1079–1089 (2012).
[Crossref]

Xu, C.

L. Zhou, R. Wang, C. Yao, X. Li, C. Wang, X. Zhang, C. Xu, A. Zeng, D. Zhao, and F. Zhang, “Single-band upconversion nanoprobes for multiplexed simultaneous in situ molecular mapping of cancer biomarkers,” Nat. Commun. 6, 6938 (2015).
[Crossref] [PubMed]

Xu, F.

A. L. Feng, M. L. You, L. Tian, S. Singamaneni, M. Liu, Z. Duan, T. J. Lu, F. Xu, and M. Lin, “Distance-Dependent Plasmon-Enhanced Fluorescence of Upconversion Nanoparticles using Polyelectrolyte Multilayers as Tunable Spacers,” Sci. Reports 5, 7779 (2015).
[Crossref]

Xu, L.

D. Zhou, D. Liu, W. Xu, X. Chen, Z. Yin, X. Bai, B. Dong, L. Xu, and H. Song, “Synergistic Upconversion Enhancement Induced by Multiple Physical Effects and an Angle-Dependent Anticounterfeit Application,” Chem. Mater. 29, 6799–6809 (2017).
[Crossref]

W. Xu, S. Xu, Y. Zhu, T. Liu, X. Bai, B. Dong, L. Xu, and H. Song, “Ultra-broad plasma resonance enhanced multicolor emissions in an assembled Ag/NaYF4:Yb, Er nano-film,” Nanoscale 4, 6971 (2012).
[Crossref] [PubMed]

Xu, L.-X.

Y.-L. Wang, N. Mohammadi Estakhri, A. Johnson, H.-Y. Li, L.-X. Xu, Z. Zhang, A. Alù, Q.-Q. Wang, and C.-K. K. Shih, “Tailoring Plasmonic Enhanced Upconversion in Single NaYF4:Yb3+/Er3+ Nanocrystals,” Sci. Reports 5, 10196 (2015).
[Crossref]

Xu, Q.-H.

P. Yuan, Y. H. Lee, M. K. Gnanasammandhan, Z. Guan, Y. Zhang, and Q.-H. Xu, “Plasmon enhanced upconversion luminescence of NaYF4:Yb, Er@SiO2@Ag core-shell nanocomposites for cell imaging,” Nanoscale 4, 5132 (2012).
[Crossref] [PubMed]

Xu, S.

Z. Yin, D. Zhou, W. Xu, S. Cui, X. Chen, H. Wang, S. Xu, and H. Song, “Plasmon-Enhanced Upconversion Luminescence on Vertically Aligned Gold Nanorod Monolayer Supercrystals,” ACS Appl. Mater. & Interfaces 8, 11667–11674 (2016).
[Crossref]

Y. Ding, X. Zhang, H. Gao, S. Xu, C. Wei, and Y. Zhao, “Plasmonic enhanced upconversion luminescence of β-NaYF4:Yb3+/Er3+ with Ag@SiO2 core-shell nanoparticles,” J. Lumin. 147, 72–76 (2014).
[Crossref]

W. Xu, S. Xu, Y. Zhu, T. Liu, X. Bai, B. Dong, L. Xu, and H. Song, “Ultra-broad plasma resonance enhanced multicolor emissions in an assembled Ag/NaYF4:Yb, Er nano-film,” Nanoscale 4, 6971 (2012).
[Crossref] [PubMed]

Xu, W.

X. Chen, D. Zhou, W. Xu, J. Zhu, G. Pan, Z. Yin, H. Wang, Y. Zhu, C. Shaobo, and H. Song, “Fabrication of Au-Ag nanocage@NaYF4@NaYF4:Yb, Er Core-Shell Hybrid and its Tunable Upconversion Enhancement,” Sci. Reports 7, 41079 (2017).
[Crossref]

W. Xu, X. Chen, and H. Song, “Upconversion manipulation by local electromagnetic field,” Nano Today 17, 54–78 (2017).
[Crossref]

D. Zhou, D. Liu, W. Xu, X. Chen, Z. Yin, X. Bai, B. Dong, L. Xu, and H. Song, “Synergistic Upconversion Enhancement Induced by Multiple Physical Effects and an Angle-Dependent Anticounterfeit Application,” Chem. Mater. 29, 6799–6809 (2017).
[Crossref]

D. Zhou, D. Li, X. Zhou, W. Xu, X. Chen, D. Liu, Y. Zhu, and H. Song, “Semiconductor Plasmon Induced Up-Conversion Enhancement in mCu 2- x S@SiO 2 @Y 2 O 3 :Yb 3+ /Er 3+ Core-Shell Nanocomposites,” ACS Appl. Mater. & Interfaces 9, 35226–35233 (2017).
[Crossref]

D. Zhou, D. Liu, J. Jin, X. Chen, W. Xu, Z. Yin, G. Pan, D. Li, and H. Song, “Semiconductor plasmon-sensitized broadband upconversion and its enhancement effect on the power conversion efficiency of perovskite solar cells,” J. Mater. Chem. A 5, 16559–16567 (2017).
[Crossref]

D. Zhou, D. Liu, W. Xu, Z. Yin, X. Chen, P. Zhou, S. Cui, Z. Chen, and H. Song, “Observation of Considerable Upconversion Enhancement Induced by Cu 2- x S Plasmon Nanoparticles,” ACS Nano 10, 5169–5179 (2016).
[Crossref] [PubMed]

Z. Yin, D. Zhou, W. Xu, S. Cui, X. Chen, H. Wang, S. Xu, and H. Song, “Plasmon-Enhanced Upconversion Luminescence on Vertically Aligned Gold Nanorod Monolayer Supercrystals,” ACS Appl. Mater. & Interfaces 8, 11667–11674 (2016).
[Crossref]

W. Xu, S. Xu, Y. Zhu, T. Liu, X. Bai, B. Dong, L. Xu, and H. Song, “Ultra-broad plasma resonance enhanced multicolor emissions in an assembled Ag/NaYF4:Yb, Er nano-film,” Nanoscale 4, 6971 (2012).
[Crossref] [PubMed]

Xu, X.

Yan, C.-H.

J. Wang, T. Ming, Z. Jin, J. Wang, L.-D. Sun, and C.-H. Yan, “Photon energy upconversion through thermal radiation with the power efficiency reaching 16%,” Nat. Commun. 5, 5669 (2014).
[Crossref]

Yang, C.

X. Wang, R. R. Valiev, T. Y. Ohulchanskyy, H. Ågren, C. Yang, and G. Chen, “Dye-sensitized lanthanide-doped upconversion nanoparticles,” Chem. Soc. Rev. 46, 4150–4167 (2017).
[Crossref] [PubMed]

Yang, J.

B. Shao, Z. Yang, J. Li, J. Yang, Y. Wang, J. Qiu, and Z. Song, “Upconversion emission enhancement by porous silver films with ultra-broad plasmon absorption,” Opt. Mater. Express 7, 1188 (2017).
[Crossref]

R. Faggiani, J. Yang, and P. Lalanne, “Quenching, Plasmonic, and Radiative Decays in Nanogap Emitting Devices,” ACS Photonics 2, 1739–1744 (2015).
[Crossref]

Yang, T. K.

S. T. Sivapalan, B. M. DeVetter, T. K. Yang, T. van Dijk, M. V. Schulmerich, P. S. Carney, R. Bhargava, and C. J. Murphy, “Off-Resonance Surface-Enhanced Raman Spectroscopy from Gold Nanorod Suspensions as a Function of Aspect Ratio: Not What We Thought,” ACS Nano 7, 2099–2105 (2013).
[Crossref] [PubMed]

T. van Dijk, S. T. Sivapalan, B. M. DeVetter, T. K. Yang, M. V. Schulmerich, C. J. Murphy, R. Bhargava, and P. S. Carney, “Competition Between Extinction and Enhancement in Surface-Enhanced Raman Spectroscopy,” The J. Phys. Chem. Lett. 4, 1193–1196 (2013).
[Crossref]

Yang, X.

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543, 229–233 (2017).
[Crossref] [PubMed]

Yang, Y.

Yang, Z.

Yao, C.

L. Zhou, R. Wang, C. Yao, X. Li, C. Wang, X. Zhang, C. Xu, A. Zeng, D. Zhao, and F. Zhang, “Single-band upconversion nanoprobes for multiplexed simultaneous in situ molecular mapping of cancer biomarkers,” Nat. Commun. 6, 6938 (2015).
[Crossref] [PubMed]

Ye, X.

M. Saboktakin, X. Ye, S. J. Oh, S.-H. Hong, A. T. Fafarman, U. K. Chettiar, N. Engheta, C. B. Murray, and C. R. Kagan, “Metal-Enhanced Upconversion Luminescence Tunable through Metal Nanoparticle-Nanophosphor Separation,” ACS Nano 6, 8758–8766 (2012).
[Crossref] [PubMed]

Yin, Z.

X. Chen, D. Zhou, W. Xu, J. Zhu, G. Pan, Z. Yin, H. Wang, Y. Zhu, C. Shaobo, and H. Song, “Fabrication of Au-Ag nanocage@NaYF4@NaYF4:Yb, Er Core-Shell Hybrid and its Tunable Upconversion Enhancement,” Sci. Reports 7, 41079 (2017).
[Crossref]

D. Zhou, D. Liu, W. Xu, X. Chen, Z. Yin, X. Bai, B. Dong, L. Xu, and H. Song, “Synergistic Upconversion Enhancement Induced by Multiple Physical Effects and an Angle-Dependent Anticounterfeit Application,” Chem. Mater. 29, 6799–6809 (2017).
[Crossref]

D. Zhou, D. Liu, J. Jin, X. Chen, W. Xu, Z. Yin, G. Pan, D. Li, and H. Song, “Semiconductor plasmon-sensitized broadband upconversion and its enhancement effect on the power conversion efficiency of perovskite solar cells,” J. Mater. Chem. A 5, 16559–16567 (2017).
[Crossref]

D. Zhou, D. Liu, W. Xu, Z. Yin, X. Chen, P. Zhou, S. Cui, Z. Chen, and H. Song, “Observation of Considerable Upconversion Enhancement Induced by Cu 2- x S Plasmon Nanoparticles,” ACS Nano 10, 5169–5179 (2016).
[Crossref] [PubMed]

Z. Yin, D. Zhou, W. Xu, S. Cui, X. Chen, H. Wang, S. Xu, and H. Song, “Plasmon-Enhanced Upconversion Luminescence on Vertically Aligned Gold Nanorod Monolayer Supercrystals,” ACS Appl. Mater. & Interfaces 8, 11667–11674 (2016).
[Crossref]

You, M. L.

A. L. Feng, M. L. You, L. Tian, S. Singamaneni, M. Liu, Z. Duan, T. J. Lu, F. Xu, and M. Lin, “Distance-Dependent Plasmon-Enhanced Fluorescence of Upconversion Nanoparticles using Polyelectrolyte Multilayers as Tunable Spacers,” Sci. Reports 5, 7779 (2015).
[Crossref]

Yu, R.

L. Meng, R. Yu, M. Qiu, and F. J. García de Abajo, “Plasmonic Nano-Oven by Concatenation of Multishell Photothermal Enhancement,” ACS Nano 11, 7915–7924 (2017).
[Crossref] [PubMed]

Yuan, P.

P. Yuan, Y. H. Lee, M. K. Gnanasammandhan, Z. Guan, Y. Zhang, and Q.-H. Xu, “Plasmon enhanced upconversion luminescence of NaYF4:Yb, Er@SiO2@Ag core-shell nanocomposites for cell imaging,” Nanoscale 4, 5132 (2012).
[Crossref] [PubMed]

Yuan Lei, D.

X. Liu and D. Yuan Lei, “Simultaneous excitation and emission enhancements in upconversion luminescence using plasmonic double-resonant gold nanorods,” Sci. Reports 5, 15235 (2015).
[Crossref]

Zakomirnyi, V. I.

V. I. Zakomirnyi, I. L. Rasskazov, S. V. Karpov, and S. P. Polyutov, “New ideally absorbing Au plasmonic nanostructures for biomedical applications,” J. Quant. Spectrosc. Radiat. Transf. 187, 54–61 (2017).
[Crossref]

V. S. Gerasimov, A. E. Ershov, S. V. Karpov, A. P. Gavrilyuk, V. I. Zakomirnyi, I. L. Rasskazov, H. Ågren, and S. P. Polyutov, “Thermal effects in systems of colloidal plasmonic nanoparticles in high-intensity pulsed laser fields [Invited],” Opt. Mater. Express 7, 555 (2017).
[Crossref]

Zeng, A.

L. Zhou, R. Wang, C. Yao, X. Li, C. Wang, X. Zhang, C. Xu, A. Zeng, D. Zhao, and F. Zhang, “Single-band upconversion nanoprobes for multiplexed simultaneous in situ molecular mapping of cancer biomarkers,” Nat. Commun. 6, 6938 (2015).
[Crossref] [PubMed]

Zhan, Q.

Q. Zhan, H. Liu, B. Wang, Q. Wu, R. Pu, C. Zhou, B. Huang, X. Peng, H. Ågren, and S. He, “Achieving high-efficiency emission depletion nanoscopy by employing cross relaxation in upconversion nanoparticles,” Nat. Commun. 8, 1058 (2017).
[Crossref] [PubMed]

Q. Zhan, X. Zhang, Y. Zhao, J. Liu, and S. He, “Tens of thousands-fold upconversion luminescence enhancement induced by a single gold nanorod,” Laser & Photonics Rev. 9, 479–487 (2015).
[Crossref]

Zhang, F.

L. Zhou, R. Wang, C. Yao, X. Li, C. Wang, X. Zhang, C. Xu, A. Zeng, D. Zhao, and F. Zhang, “Single-band upconversion nanoprobes for multiplexed simultaneous in situ molecular mapping of cancer biomarkers,” Nat. Commun. 6, 6938 (2015).
[Crossref] [PubMed]

X. Li, F. Zhang, and D. Zhao, “Highly efficient lanthanide upconverting nanomaterials: Progresses and challenges,” Nano Today 8, 643–676 (2013).
[Crossref]

Zhang, H.

H. Zhang, Y. Li, I. A. Ivanov, Y. Qu, Y. Huang, and X. Duan, “Plasmonic Modulation of the Upconversion Fluorescence in NaYF4:Yb/Tm Hexaplate Nanocrystals Using Gold Nanoparticles or Nanoshells,” Angewandte Chemie Int. Ed. 49, 2865–2868 (2010).
[Crossref]

Zhang, J.

F. Meng, Y. Luo, Y. Zhou, J. Zhang, Y. Zheng, G. Cao, and X. Tao, “Integrated plasmonic and upconversion starlike Y2O3:Er/Au@TiO2 composite for enhanced photon harvesting in dye-sensitized solar cells,” J. Power Sources 316, 207–214 (2016).
[Crossref]

Z. Wang, W. Gao, R. Wang, J. Shao, Q. Han, C. Wang, J. Zhang, T. Zhang, J. Dong, and H. Zheng, “Influence of SiO2 layer on the plasmon quenched upconversion luminescence emission of core-shell NaYF4:Yb, Er@SiO2@Ag nanocomposites,” Mater. Res. Bull. 83, 515–521 (2016).
[Crossref]

Zhang, L.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8, 729–734 (2013).
[Crossref] [PubMed]

Zhang, S.

H. Xing, W. Bu, S. Zhang, X. Zheng, M. Li, F. Chen, Q. He, L. Zhou, W. Peng, Y. Hua, and J. Shi, “Multifunctional nanoprobes for upconversion fluorescence, MR and CT trimodal imaging,” Biomaterials 33, 1079–1089 (2012).
[Crossref]

Zhang, T.

Z. Wang, W. Gao, R. Wang, J. Shao, Q. Han, C. Wang, J. Zhang, T. Zhang, J. Dong, and H. Zheng, “Influence of SiO2 layer on the plasmon quenched upconversion luminescence emission of core-shell NaYF4:Yb, Er@SiO2@Ag nanocomposites,” Mater. Res. Bull. 83, 515–521 (2016).
[Crossref]

Zhang, X.

Q. Zhan, X. Zhang, Y. Zhao, J. Liu, and S. He, “Tens of thousands-fold upconversion luminescence enhancement induced by a single gold nanorod,” Laser & Photonics Rev. 9, 479–487 (2015).
[Crossref]

L. Zhou, R. Wang, C. Yao, X. Li, C. Wang, X. Zhang, C. Xu, A. Zeng, D. Zhao, and F. Zhang, “Single-band upconversion nanoprobes for multiplexed simultaneous in situ molecular mapping of cancer biomarkers,” Nat. Commun. 6, 6938 (2015).
[Crossref] [PubMed]

Y. Ding, X. Zhang, H. Gao, S. Xu, C. Wei, and Y. Zhao, “Plasmonic enhanced upconversion luminescence of β-NaYF4:Yb3+/Er3+ with Ag@SiO2 core-shell nanoparticles,” J. Lumin. 147, 72–76 (2014).
[Crossref]

Zhang, Y.

X. Wu, Y. Zhang, K. Takle, O. Bilsel, Z. Li, H. Lee, Z. Zhang, D. Li, W. Fan, C. Duan, E. M. Chan, C. Lois, Y. Xiang, and G. Han, “Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications,” ACS Nano 10, 1060–1066 (2016).
[Crossref] [PubMed]

P. Yuan, Y. H. Lee, M. K. Gnanasammandhan, Z. Guan, Y. Zhang, and Q.-H. Xu, “Plasmon enhanced upconversion luminescence of NaYF4:Yb, Er@SiO2@Ag core-shell nanocomposites for cell imaging,” Nanoscale 4, 5132 (2012).
[Crossref] [PubMed]

Zhang, Z.

X. Wu, Y. Zhang, K. Takle, O. Bilsel, Z. Li, H. Lee, Z. Zhang, D. Li, W. Fan, C. Duan, E. M. Chan, C. Lois, Y. Xiang, and G. Han, “Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications,” ACS Nano 10, 1060–1066 (2016).
[Crossref] [PubMed]

Y.-L. Wang, N. Mohammadi Estakhri, A. Johnson, H.-Y. Li, L.-X. Xu, Z. Zhang, A. Alù, Q.-Q. Wang, and C.-K. K. Shih, “Tailoring Plasmonic Enhanced Upconversion in Single NaYF4:Yb3+/Er3+ Nanocrystals,” Sci. Reports 5, 10196 (2015).
[Crossref]

Zhao, D.

L. Zhou, R. Wang, C. Yao, X. Li, C. Wang, X. Zhang, C. Xu, A. Zeng, D. Zhao, and F. Zhang, “Single-band upconversion nanoprobes for multiplexed simultaneous in situ molecular mapping of cancer biomarkers,” Nat. Commun. 6, 6938 (2015).
[Crossref] [PubMed]

X. Li, F. Zhang, and D. Zhao, “Highly efficient lanthanide upconverting nanomaterials: Progresses and challenges,” Nano Today 8, 643–676 (2013).
[Crossref]

Zhao, J.

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543, 229–233 (2017).
[Crossref] [PubMed]

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8, 729–734 (2013).
[Crossref] [PubMed]

J. Zhao, S. Ji, and H. Guo, “Triplet-triplet annihilation based upconversion: from triplet sensitizers and triplet acceptors to upconversion quantum yields,” RSC Adv. 1, 937 (2011).
[Crossref]

Zhao, Y.

Q. Zhan, X. Zhang, Y. Zhao, J. Liu, and S. He, “Tens of thousands-fold upconversion luminescence enhancement induced by a single gold nanorod,” Laser & Photonics Rev. 9, 479–487 (2015).
[Crossref]

Y. Ding, X. Zhang, H. Gao, S. Xu, C. Wei, and Y. Zhao, “Plasmonic enhanced upconversion luminescence of β-NaYF4:Yb3+/Er3+ with Ag@SiO2 core-shell nanoparticles,” J. Lumin. 147, 72–76 (2014).
[Crossref]

Zheng, H.

Z. Wang, W. Gao, R. Wang, J. Shao, Q. Han, C. Wang, J. Zhang, T. Zhang, J. Dong, and H. Zheng, “Influence of SiO2 layer on the plasmon quenched upconversion luminescence emission of core-shell NaYF4:Yb, Er@SiO2@Ag nanocomposites,” Mater. Res. Bull. 83, 515–521 (2016).
[Crossref]

Zheng, X.

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543, 229–233 (2017).
[Crossref] [PubMed]

H. Xing, W. Bu, S. Zhang, X. Zheng, M. Li, F. Chen, Q. He, L. Zhou, W. Peng, Y. Hua, and J. Shi, “Multifunctional nanoprobes for upconversion fluorescence, MR and CT trimodal imaging,” Biomaterials 33, 1079–1089 (2012).
[Crossref]

Zheng, Y.

F. Meng, Y. Luo, Y. Zhou, J. Zhang, Y. Zheng, G. Cao, and X. Tao, “Integrated plasmonic and upconversion starlike Y2O3:Er/Au@TiO2 composite for enhanced photon harvesting in dye-sensitized solar cells,” J. Power Sources 316, 207–214 (2016).
[Crossref]

Zhou, B.

B. Zhou, B. Shi, D. Jin, and X. Liu, “Controlling upconversion nanocrystals for emerging applications,” Nat. Nanotechnol. 10, 924–936 (2015).
[Crossref] [PubMed]

Zhou, C.

Q. Zhan, H. Liu, B. Wang, Q. Wu, R. Pu, C. Zhou, B. Huang, X. Peng, H. Ågren, and S. He, “Achieving high-efficiency emission depletion nanoscopy by employing cross relaxation in upconversion nanoparticles,” Nat. Commun. 8, 1058 (2017).
[Crossref] [PubMed]

Zhou, D.

X. Chen, D. Zhou, W. Xu, J. Zhu, G. Pan, Z. Yin, H. Wang, Y. Zhu, C. Shaobo, and H. Song, “Fabrication of Au-Ag nanocage@NaYF4@NaYF4:Yb, Er Core-Shell Hybrid and its Tunable Upconversion Enhancement,” Sci. Reports 7, 41079 (2017).
[Crossref]

D. Zhou, D. Liu, J. Jin, X. Chen, W. Xu, Z. Yin, G. Pan, D. Li, and H. Song, “Semiconductor plasmon-sensitized broadband upconversion and its enhancement effect on the power conversion efficiency of perovskite solar cells,” J. Mater. Chem. A 5, 16559–16567 (2017).
[Crossref]

D. Zhou, D. Liu, W. Xu, X. Chen, Z. Yin, X. Bai, B. Dong, L. Xu, and H. Song, “Synergistic Upconversion Enhancement Induced by Multiple Physical Effects and an Angle-Dependent Anticounterfeit Application,” Chem. Mater. 29, 6799–6809 (2017).
[Crossref]

D. Zhou, D. Li, X. Zhou, W. Xu, X. Chen, D. Liu, Y. Zhu, and H. Song, “Semiconductor Plasmon Induced Up-Conversion Enhancement in mCu 2- x S@SiO 2 @Y 2 O 3 :Yb 3+ /Er 3+ Core-Shell Nanocomposites,” ACS Appl. Mater. & Interfaces 9, 35226–35233 (2017).
[Crossref]

Y. Qin, Z. Dong, D. Zhou, Y. Yang, X. Xu, and J. Qiu, “Modification on populating paths of β-NaYF_4:Nd/Yb/Ho@SiO_2@Ag core/double-shell nanocomposites with plasmon enhanced upconversion emission,” Opt. Mater. Express 6, 1942 (2016).
[Crossref]

Z. Yin, D. Zhou, W. Xu, S. Cui, X. Chen, H. Wang, S. Xu, and H. Song, “Plasmon-Enhanced Upconversion Luminescence on Vertically Aligned Gold Nanorod Monolayer Supercrystals,” ACS Appl. Mater. & Interfaces 8, 11667–11674 (2016).
[Crossref]

D. Zhou, D. Liu, W. Xu, Z. Yin, X. Chen, P. Zhou, S. Cui, Z. Chen, and H. Song, “Observation of Considerable Upconversion Enhancement Induced by Cu 2- x S Plasmon Nanoparticles,” ACS Nano 10, 5169–5179 (2016).
[Crossref] [PubMed]

Zhou, J.

J. Zhou, S. Wen, J. Liao, C. Clarke, S. A. Tawfik, W. Ren, C. Mi, F. Wang, and D. Jin, “Activation of the surface dark-layer to enhance upconversion in a thermal field,” Nat. Photonics 12, 154–158 (2018).
[Crossref]

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543, 229–233 (2017).
[Crossref] [PubMed]

Zhou, L.

L. Zhou, R. Wang, C. Yao, X. Li, C. Wang, X. Zhang, C. Xu, A. Zeng, D. Zhao, and F. Zhang, “Single-band upconversion nanoprobes for multiplexed simultaneous in situ molecular mapping of cancer biomarkers,” Nat. Commun. 6, 6938 (2015).
[Crossref] [PubMed]

H. Xing, W. Bu, S. Zhang, X. Zheng, M. Li, F. Chen, Q. He, L. Zhou, W. Peng, Y. Hua, and J. Shi, “Multifunctional nanoprobes for upconversion fluorescence, MR and CT trimodal imaging,” Biomaterials 33, 1079–1089 (2012).
[Crossref]

Zhou, P.

D. Zhou, D. Liu, W. Xu, Z. Yin, X. Chen, P. Zhou, S. Cui, Z. Chen, and H. Song, “Observation of Considerable Upconversion Enhancement Induced by Cu 2- x S Plasmon Nanoparticles,” ACS Nano 10, 5169–5179 (2016).
[Crossref] [PubMed]

Zhou, X.

D. Zhou, D. Li, X. Zhou, W. Xu, X. Chen, D. Liu, Y. Zhu, and H. Song, “Semiconductor Plasmon Induced Up-Conversion Enhancement in mCu 2- x S@SiO 2 @Y 2 O 3 :Yb 3+ /Er 3+ Core-Shell Nanocomposites,” ACS Appl. Mater. & Interfaces 9, 35226–35233 (2017).
[Crossref]

Zhou, Y.

F. Meng, Y. Luo, Y. Zhou, J. Zhang, Y. Zheng, G. Cao, and X. Tao, “Integrated plasmonic and upconversion starlike Y2O3:Er/Au@TiO2 composite for enhanced photon harvesting in dye-sensitized solar cells,” J. Power Sources 316, 207–214 (2016).
[Crossref]

Zhou, Z.

F. Wang, S. Wen, H. He, B. Wang, Z. Zhou, O. Shimoni, and D. Jin, “Microscopic inspection and tracking of single upconversion nanoparticles in living cells,” Light. Sci. & Appl. 7, 18007 (2018).
[Crossref]

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543, 229–233 (2017).
[Crossref] [PubMed]

Zhu, J.

X. Chen, D. Zhou, W. Xu, J. Zhu, G. Pan, Z. Yin, H. Wang, Y. Zhu, C. Shaobo, and H. Song, “Fabrication of Au-Ag nanocage@NaYF4@NaYF4:Yb, Er Core-Shell Hybrid and its Tunable Upconversion Enhancement,” Sci. Reports 7, 41079 (2017).
[Crossref]

Zhu, W.

W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, P. Nordlander, H. J. Lezec, J. Aizpurua, and K. B. Crozier, “Quantum mechanical effects in plasmonic structures with subnanometre gaps,” Nat. Commun. 7, 11495 (2016).
[Crossref] [PubMed]

Zhu, Y.

D. Zhou, D. Li, X. Zhou, W. Xu, X. Chen, D. Liu, Y. Zhu, and H. Song, “Semiconductor Plasmon Induced Up-Conversion Enhancement in mCu 2- x S@SiO 2 @Y 2 O 3 :Yb 3+ /Er 3+ Core-Shell Nanocomposites,” ACS Appl. Mater. & Interfaces 9, 35226–35233 (2017).
[Crossref]

X. Chen, D. Zhou, W. Xu, J. Zhu, G. Pan, Z. Yin, H. Wang, Y. Zhu, C. Shaobo, and H. Song, “Fabrication of Au-Ag nanocage@NaYF4@NaYF4:Yb, Er Core-Shell Hybrid and its Tunable Upconversion Enhancement,” Sci. Reports 7, 41079 (2017).
[Crossref]

W. Xu, S. Xu, Y. Zhu, T. Liu, X. Bai, B. Dong, L. Xu, and H. Song, “Ultra-broad plasma resonance enhanced multicolor emissions in an assembled Ag/NaYF4:Yb, Er nano-film,” Nanoscale 4, 6971 (2012).
[Crossref] [PubMed]

Zou, W.

W. Zou, C. Visser, J. A. Maduro, M. S. Pshenichnikov, and J. C. Hummelen, “Broadband dye-sensitized upconversion of near-infrared light,” Nat. Photonics 6, 560–564 (2012).
[Crossref]

Zvyagin, A. V.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8, 729–734 (2013).
[Crossref] [PubMed]

ACS Appl. Mater. & Interfaces (2)

Z. Yin, D. Zhou, W. Xu, S. Cui, X. Chen, H. Wang, S. Xu, and H. Song, “Plasmon-Enhanced Upconversion Luminescence on Vertically Aligned Gold Nanorod Monolayer Supercrystals,” ACS Appl. Mater. & Interfaces 8, 11667–11674 (2016).
[Crossref]

D. Zhou, D. Li, X. Zhou, W. Xu, X. Chen, D. Liu, Y. Zhu, and H. Song, “Semiconductor Plasmon Induced Up-Conversion Enhancement in mCu 2- x S@SiO 2 @Y 2 O 3 :Yb 3+ /Er 3+ Core-Shell Nanocomposites,” ACS Appl. Mater. & Interfaces 9, 35226–35233 (2017).
[Crossref]

ACS Nano (8)

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for Plasmonics,” ACS Nano 8, 834–840 (2014).
[Crossref]

D. Zhou, D. Liu, W. Xu, Z. Yin, X. Chen, P. Zhou, S. Cui, Z. Chen, and H. Song, “Observation of Considerable Upconversion Enhancement Induced by Cu 2- x S Plasmon Nanoparticles,” ACS Nano 10, 5169–5179 (2016).
[Crossref] [PubMed]

M. Saboktakin, X. Ye, S. J. Oh, S.-H. Hong, A. T. Fafarman, U. K. Chettiar, N. Engheta, C. B. Murray, and C. R. Kagan, “Metal-Enhanced Upconversion Luminescence Tunable through Metal Nanoparticle-Nanophosphor Separation,” ACS Nano 6, 8758–8766 (2012).
[Crossref] [PubMed]

S. T. Sivapalan, B. M. DeVetter, T. K. Yang, T. van Dijk, M. V. Schulmerich, P. S. Carney, R. Bhargava, and C. J. Murphy, “Off-Resonance Surface-Enhanced Raman Spectroscopy from Gold Nanorod Suspensions as a Function of Aspect Ratio: Not What We Thought,” ACS Nano 7, 2099–2105 (2013).
[Crossref] [PubMed]

D. Lu, S. K. Cho, S. Ahn, L. Brun, C. J. Summers, and W. Park, “Plasmon Enhancement Mechanism for the Upconversion Processes in NaYF 4 :Yb 3+, Er 3+ Nanoparticles: Maxwell versus Förster,” ACS Nano 8, 7780–7792 (2014).
[Crossref] [PubMed]

L. Meng, R. Yu, M. Qiu, and F. J. García de Abajo, “Plasmonic Nano-Oven by Concatenation of Multishell Photothermal Enhancement,” ACS Nano 11, 7915–7924 (2017).
[Crossref] [PubMed]

X. Wu, Y. Zhang, K. Takle, O. Bilsel, Z. Li, H. Lee, Z. Zhang, D. Li, W. Fan, C. Duan, E. M. Chan, C. Lois, Y. Xiang, and G. Han, “Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications,” ACS Nano 10, 1060–1066 (2016).
[Crossref] [PubMed]

N. S. Abadeer, M. R. Brennan, W. L. Wilson, and C. J. Murphy, “Distance and Plasmon Wavelength Dependent Fluorescence of Molecules Bound to Silica-Coated Gold Nanorods,” ACS Nano 8, 8392–8406 (2014).
[Crossref] [PubMed]

ACS Photonics (3)

N. Kongsuwan, A. Demetriadou, R. Chikkaraddy, F. Benz, V. A. Turek, U. F. Keyser, J. J. Baumberg, and O. Hess, “Suppressed Quenching and Strong-Coupling of Purcell-Enhanced Single-Molecule Emission in Plasmonic Nanocavities,” ACS Photonics 5, 186–191 (2018).
[Crossref]

R. Faggiani, J. Yang, and P. Lalanne, “Quenching, Plasmonic, and Radiative Decays in Nanogap Emitting Devices,” ACS Photonics 2, 1739–1744 (2015).
[Crossref]

R. Kamakura, S. Murai, S. Ishii, T. Nagao, K. Fujita, and K. Tanaka, “Plasmonic-Photonic Hybrid Modes Excited on a Titanium Nitride Nanoparticle Array in the Visible Region,” ACS Photonics 4, 815–822 (2017).
[Crossref]

Adv. Mater. (1)

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative Plasmonic Materials: Beyond Gold and Silver,” Adv. Mater. 25, 3264–3294 (2013).
[Crossref] [PubMed]

Adv. Opt. Photonics (1)

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical Antennas,” Adv. Opt. Photonics 1, 438 (2009).
[Crossref]

Anal. Biochem. (1)

J. R. Lakowicz, “Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission,” Anal. Biochem. 337, 171–194 (2005).
[Crossref] [PubMed]

Angewandte Chemie Int. Ed. (1)

H. Zhang, Y. Li, I. A. Ivanov, Y. Qu, Y. Huang, and X. Duan, “Plasmonic Modulation of the Upconversion Fluorescence in NaYF4:Yb/Tm Hexaplate Nanocrystals Using Gold Nanoparticles or Nanoshells,” Angewandte Chemie Int. Ed. 49, 2865–2868 (2010).
[Crossref]

Annals Phys. (1)

A. Moroz, “A recursive transfer-matrix solution for a dipole radiating inside and outside a stratified sphere,” Annals Phys. 315, 352–418 (2005).
[Crossref]

Appl. Opt. (1)

Biomaterials (1)

H. Xing, W. Bu, S. Zhang, X. Zheng, M. Li, F. Chen, Q. He, L. Zhou, W. Peng, Y. Hua, and J. Shi, “Multifunctional nanoprobes for upconversion fluorescence, MR and CT trimodal imaging,” Biomaterials 33, 1079–1089 (2012).
[Crossref]

Chem. Mater. (1)

D. Zhou, D. Liu, W. Xu, X. Chen, Z. Yin, X. Bai, B. Dong, L. Xu, and H. Song, “Synergistic Upconversion Enhancement Induced by Multiple Physical Effects and an Angle-Dependent Anticounterfeit Application,” Chem. Mater. 29, 6799–6809 (2017).
[Crossref]

Chem. Rev. (3)

Y. H. Jang, Y. J. Jang, S. Kim, L. N. Quan, K. Chung, and D. H. Kim, “Plasmonic Solar Cells: From Rational Design to Mechanism Overview,” Chem. Rev. 116, 14982–15034 (2016).
[Crossref] [PubMed]

F. Auzel, “Upconversion and Anti-Stokes Processes with f and d Ions in Solids,” Chem. Rev. 104, 139–174 (2004).
[Crossref] [PubMed]

G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion Nanoparticles: Design, Nanochemistry, and Applications in Theranostics,” Chem. Rev. 114, 5161–5214 (2014).
[Crossref] [PubMed]

Chem. Soc. Rev. (2)

W. Park, D. Lu, and S. Ahn, “Plasmon enhancement of luminescence upconversion,” Chem. Soc. Rev. 44, 2940–2962 (2015).
[Crossref] [PubMed]

X. Wang, R. R. Valiev, T. Y. Ohulchanskyy, H. Ågren, C. Yang, and G. Chen, “Dye-sensitized lanthanide-doped upconversion nanoparticles,” Chem. Soc. Rev. 46, 4150–4167 (2017).
[Crossref] [PubMed]

Dalton Transactions (1)

D. Li, H. Ågren, and G. Chen, “Near infrared harvesting dye-sensitized solar cells enabled by rare-earth upconversion materials,” Dalton Transactions 47, 8526–8537 (2018).

J. Appl. Phys. (1)

R. Esteban, M. Laroche, and J.-J. Greffet, “Influence of metallic nanoparticles on upconversion processes,” J. Appl. Phys. 105, 033107 (2009).
[Crossref]

J. Lumin. (1)

Y. Ding, X. Zhang, H. Gao, S. Xu, C. Wei, and Y. Zhao, “Plasmonic enhanced upconversion luminescence of β-NaYF4:Yb3+/Er3+ with Ag@SiO2 core-shell nanoparticles,” J. Lumin. 147, 72–76 (2014).
[Crossref]

J. Mater. Chem. (1)

Y. C. Simon and C. Weder, “Low-power photon upconversion through triplet-triplet annihilation in polymers,” J. Mater. Chem. 22, 20817 (2012).
[Crossref]

J. Mater. Chem. A (1)

D. Zhou, D. Liu, J. Jin, X. Chen, W. Xu, Z. Yin, G. Pan, D. Li, and H. Song, “Semiconductor plasmon-sensitized broadband upconversion and its enhancement effect on the power conversion efficiency of perovskite solar cells,” J. Mater. Chem. A 5, 16559–16567 (2017).
[Crossref]

J. Mater. Chem. B (1)

C.-W. Chen, P.-H. Lee, Y.-C. Chan, M. Hsiao, C.-H. Chen, P. C. Wu, P. R. Wu, D. P. Tsai, D. Tu, X. Chen, and R.-S. Liu, “Plasmon-induced hyperthermia: hybrid upconversion NaYF 4 :Yb/Er and gold nanomaterials for oral cancer photothermal therapy,” J. Mater. Chem. B 3, 8293–8302 (2015).
[Crossref]

J. Power Sources (1)

F. Meng, Y. Luo, Y. Zhou, J. Zhang, Y. Zheng, G. Cao, and X. Tao, “Integrated plasmonic and upconversion starlike Y2O3:Er/Au@TiO2 composite for enhanced photon harvesting in dye-sensitized solar cells,” J. Power Sources 316, 207–214 (2016).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (2)

V. I. Zakomirnyi, I. L. Rasskazov, S. V. Karpov, and S. P. Polyutov, “New ideally absorbing Au plasmonic nanostructures for biomedical applications,” J. Quant. Spectrosc. Radiat. Transf. 187, 54–61 (2017).
[Crossref]

B. N. Khlebtsov and N. G. Khlebtsov, “Biosensing potential of silica/gold nanoshells: Sensitivity of plasmon resonance to the local dielectric environment,” J. Quant. Spectrosc. Radiat. Transf. 106, 154–169 (2007).
[Crossref]

Laser & Photonics Rev. (1)

Q. Zhan, X. Zhang, Y. Zhao, J. Liu, and S. He, “Tens of thousands-fold upconversion luminescence enhancement induced by a single gold nanorod,” Laser & Photonics Rev. 9, 479–487 (2015).
[Crossref]

Light. Sci. & Appl. (1)

F. Wang, S. Wen, H. He, B. Wang, Z. Zhou, O. Shimoni, and D. Jin, “Microscopic inspection and tracking of single upconversion nanoparticles in living cells,” Light. Sci. & Appl. 7, 18007 (2018).
[Crossref]

Mater. Res. Bull. (1)

Z. Wang, W. Gao, R. Wang, J. Shao, Q. Han, C. Wang, J. Zhang, T. Zhang, J. Dong, and H. Zheng, “Influence of SiO2 layer on the plasmon quenched upconversion luminescence emission of core-shell NaYF4:Yb, Er@SiO2@Ag nanocomposites,” Mater. Res. Bull. 83, 515–521 (2016).
[Crossref]

Nano Lett. (2)

G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kürzinger, “Gold Nanoshells Improve Single Nanoparticle Molecular Sensors,” Nano Lett. 4, 1853–1857 (2004).
[Crossref]

Q.-C. Sun, H. Mundoor, J. C. Ribot, V. Singh, I. I. Smalyukh, and P. Nagpal, “Plasmon-Enhanced Energy Transfer for Improved Upconversion of Infrared Radiation in Doped-Lanthanide Nanocrystals,” Nano Lett. 14, 101–106 (2014).
[Crossref]

Nano Today (2)

W. Xu, X. Chen, and H. Song, “Upconversion manipulation by local electromagnetic field,” Nano Today 17, 54–78 (2017).
[Crossref]

X. Li, F. Zhang, and D. Zhao, “Highly efficient lanthanide upconverting nanomaterials: Progresses and challenges,” Nano Today 8, 643–676 (2013).
[Crossref]

Nanoscale (2)

P. Yuan, Y. H. Lee, M. K. Gnanasammandhan, Z. Guan, Y. Zhang, and Q.-H. Xu, “Plasmon enhanced upconversion luminescence of NaYF4:Yb, Er@SiO2@Ag core-shell nanocomposites for cell imaging,” Nanoscale 4, 5132 (2012).
[Crossref] [PubMed]

W. Xu, S. Xu, Y. Zhu, T. Liu, X. Bai, B. Dong, L. Xu, and H. Song, “Ultra-broad plasma resonance enhanced multicolor emissions in an assembled Ag/NaYF4:Yb, Er nano-film,” Nanoscale 4, 6971 (2012).
[Crossref] [PubMed]

Nat. Commun. (4)

W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, P. Nordlander, H. J. Lezec, J. Aizpurua, and K. B. Crozier, “Quantum mechanical effects in plasmonic structures with subnanometre gaps,” Nat. Commun. 7, 11495 (2016).
[Crossref] [PubMed]

L. Zhou, R. Wang, C. Yao, X. Li, C. Wang, X. Zhang, C. Xu, A. Zeng, D. Zhao, and F. Zhang, “Single-band upconversion nanoprobes for multiplexed simultaneous in situ molecular mapping of cancer biomarkers,” Nat. Commun. 6, 6938 (2015).
[Crossref] [PubMed]

J. Wang, T. Ming, Z. Jin, J. Wang, L.-D. Sun, and C.-H. Yan, “Photon energy upconversion through thermal radiation with the power efficiency reaching 16%,” Nat. Commun. 5, 5669 (2014).
[Crossref]

Q. Zhan, H. Liu, B. Wang, Q. Wu, R. Pu, C. Zhou, B. Huang, X. Peng, H. Ågren, and S. He, “Achieving high-efficiency emission depletion nanoscopy by employing cross relaxation in upconversion nanoparticles,” Nat. Commun. 8, 1058 (2017).
[Crossref] [PubMed]

Nat. Nanotechnol. (2)

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8, 729–734 (2013).
[Crossref] [PubMed]

B. Zhou, B. Shi, D. Jin, and X. Liu, “Controlling upconversion nanocrystals for emerging applications,” Nat. Nanotechnol. 10, 924–936 (2015).
[Crossref] [PubMed]

Nat. Photonics (4)

D. J. Garfield, N. J. Borys, S. M. Hamed, N. A. Torquato, C. A. Tajon, B. Tian, B. Shevitski, E. S. Barnard, Y. D. Suh, S. Aloni, J. B. Neaton, E. M. Chan, B. E. Cohen, and P. J. Schuck, “Enrichment of molecular antenna triplets amplifies upconverting nanoparticle emission,” Nat. Photonics 12, 402–407 (2018).
[Crossref]

J. Zhou, S. Wen, J. Liao, C. Clarke, S. A. Tawfik, W. Ren, C. Mi, F. Wang, and D. Jin, “Activation of the surface dark-layer to enhance upconversion in a thermal field,” Nat. Photonics 12, 154–158 (2018).
[Crossref]

W. Zou, C. Visser, J. A. Maduro, M. S. Pshenichnikov, and J. C. Hummelen, “Broadband dye-sensitized upconversion of near-infrared light,” Nat. Photonics 6, 560–564 (2012).
[Crossref]

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
[Crossref]

Nature (1)

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543, 229–233 (2017).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Opt. Mater. Express (5)

Part. & Part. Syst. Charact. (1)

N. Sakamoto, T. Onodera, T. Dezawa, Y. Shibata, and H. Oikawa, “Highly Enhanced Emission of Visible Light from Core-Dual-Shell-Type Hybridized Nanoparticles,” Part. & Part. Syst. Charact. 34, 1700258 (2017).
[Crossref]

Phys. Chem. Chem. Phys. (1)

B. X. K. Chng, T. van Dijk, R. Bhargava, and P. S. Carney, “Enhancement and extinction effects in surface-enhanced stimulated Raman spectroscopy,” Phys. Chem. Chem. Phys. 17, 21348–21355 (2015).
[Crossref] [PubMed]

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (1)

P. Alonso-González, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, and R. Hillenbrand, “Experimental Verification of the Spectral Shift between Near- and Far-Field Peak Intensities of Plasmonic Infrared Nanoantennas,” Phys. Rev. Lett. 110, 203902 (2013).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. (2)

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. 100, 13549–13554 (2003).
[Crossref] [PubMed]

A. K. Kodali, X. Llora, and R. Bhargava, “Optimally designed nanolayered metal-dielectric particles as probes for massively multiplexed and ultrasensitive molecular assays,” Proc. Natl. Acad. Sci. 107, 13620–13625 (2010).
[Crossref] [PubMed]

RSC Adv. (2)

P. Kannan, F. A. Rahim, X. Teng, R. Chen, H. Sun, L. Huang, and D.-H. Kim, “Enhanced emission of NaYF4:Yb, Er/Tm nanoparticles by selective growth of Au and Ag nanoshells,” RSC Adv. 3, 7718 (2013).
[Crossref]

J. Zhao, S. Ji, and H. Guo, “Triplet-triplet annihilation based upconversion: from triplet sensitizers and triplet acceptors to upconversion quantum yields,” RSC Adv. 1, 937 (2011).
[Crossref]

Sci. Reports (4)

X. Liu and D. Yuan Lei, “Simultaneous excitation and emission enhancements in upconversion luminescence using plasmonic double-resonant gold nanorods,” Sci. Reports 5, 15235 (2015).
[Crossref]

Y.-L. Wang, N. Mohammadi Estakhri, A. Johnson, H.-Y. Li, L.-X. Xu, Z. Zhang, A. Alù, Q.-Q. Wang, and C.-K. K. Shih, “Tailoring Plasmonic Enhanced Upconversion in Single NaYF4:Yb3+/Er3+ Nanocrystals,” Sci. Reports 5, 10196 (2015).
[Crossref]

X. Chen, D. Zhou, W. Xu, J. Zhu, G. Pan, Z. Yin, H. Wang, Y. Zhu, C. Shaobo, and H. Song, “Fabrication of Au-Ag nanocage@NaYF4@NaYF4:Yb, Er Core-Shell Hybrid and its Tunable Upconversion Enhancement,” Sci. Reports 7, 41079 (2017).
[Crossref]

A. L. Feng, M. L. You, L. Tian, S. Singamaneni, M. Liu, Z. Duan, T. J. Lu, F. Xu, and M. Lin, “Distance-Dependent Plasmon-Enhanced Fluorescence of Upconversion Nanoparticles using Polyelectrolyte Multilayers as Tunable Spacers,” Sci. Reports 5, 7779 (2015).
[Crossref]

Surf. Sci. (1)

Y. S. Kim, P. Leung, and T. F. George, “Classical decay rates for molecules in the presence of a spherical surface: A complete treatment,” Surf. Sci. 195, 1–14 (1988).
[Crossref]

The J. Phys. Chem. C (3)

N. L. Gruenke, M. O. McAnally, G. C. Schatz, and R. P. Van Duyne, “Balancing the Effects of Extinction and Enhancement for Optimal Signal in Surface-Enhanced Femtosecond Stimulated Raman Spectroscopy,” The J. Phys. Chem. C 120, 29449–29454 (2016).
[Crossref]

J. L. Montaño-Priede, O. Peña-Rodríguez, and U. Pal, “Near-Electric-Field Tuned Plasmonic Au@SiO 2 and Ag@SiO 2 Nanoparticles for Efficient Utilization in Luminescence Enhancement and Surface-Enhanced Spectroscopy,” The J. Phys. Chem. C 121, 23062–23071 (2017).
[Crossref]

A. Lalisse, G. Tessier, J. Plain, and G. Baffou, “Quantifying the Efficiency of Plasmonic Materials for Near-Field Enhancement and Photothermal Conversion,” The J. Phys. Chem. C 119, 25518–25528 (2015).
[Crossref]

The J. Phys. Chem. Lett. (2)

D. M. Wu, A. García-Etxarri, A. Salleo, and J. A. Dionne, “Plasmon-Enhanced Upconversion,” The J. Phys. Chem. Lett. 5, 4020–4031 (2014).
[Crossref]

T. van Dijk, S. T. Sivapalan, B. M. DeVetter, T. K. Yang, M. V. Schulmerich, C. J. Murphy, R. Bhargava, and P. S. Carney, “Competition Between Extinction and Enhancement in Surface-Enhanced Raman Spectroscopy,” The J. Phys. Chem. Lett. 4, 1193–1196 (2013).
[Crossref]

Zeitschrift fur Physik B Condens. Matter Quanta (1)

C. G. Granqvist and O. Hunderi, “Optical absorption of ultrafine metal spheres with dielectric cores,” Zeitschrift fur Physik B Condens. Matter Quanta 30, 47–51 (1978).
[Crossref]

Other (2)

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, vol. 25 of Springer Series in Materials Science (Springer Berlin Heidelberg, Berlin, Heidelberg, 1995).
[Crossref]

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH Verlag GmbH, Weinheim, Germany, 1998).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Plasmon-enhanced UC process. (a) Simplified energy diagram for energy-transfer UC between Yb3+ and Er3+. Solid arrows denote absorption and emission, dotted red arrows denote interspecies energy transfer, and dotted blue arrows denote nonradiative relaxation; (b) Excitation enhancement of UC process for UC material embedded in the metal shell; (c) Emission enhancement of UC process for UC material attached to MNP. Dielectric spacer layer introduced in both cases to suppress quenching of UC; (d) Schematic representation of signal propagation through the slab of plasmonically enhanced UC material.
Fig. 2
Fig. 2 Extinction efficiency Qext, electric field enhancement |E′|4/|E|4, total decay rate enhancement γ′tot/γtot, and excitation enhancement fex for multilayered MNPs: UC core / SiO2 spacer / metal shell. Shells are chosen to be Ag (top panels) and Au (bottom panels). The thickness of SiO2 spacer layer is fixed to be 10 nm in all cases. Excitation wavelength is λex = 976 nm. Dotted lines in right panels correspond to fex = 1.
Fig. 3
Fig. 3 Extinction efficiency Qext, and emission enhancement fem for multilayered MNPs with Ag core / SiO2 shell geometry at two wavelengths: λ = 540 nm (top panels) and λ = 650 nm (bottom panels), and for different initial quantum yields η0: 0.1%, 1%, 10%. The UC material is located directly on SiO2 shell, and the distance between the surface of SiO2 shell and the center of UC particle is 2 nm. Dotted lines correspond to fem = 1.
Fig. 4
Fig. 4 The same as in Fig. 3, but for multilayered MNPs with Au core / SiO2 shell geometry.
Fig. 5
Fig. 5 Extinction efficiency Qext for MNPs with the following geometry: (a) MNP-1 - three-layered sphere as in Fig. 1(b) with UC core radius 31 nm, SiO2 spacer thickness 10 nm and Ag shell thickness 3.82 nm, MNP-2 - two-layered sphere as depicted in Fig. 1(c) with Ag core radius 42 nm and SiO2 shell thickness 3 nm, MNP-3 - the same as MNP-2, but for Ag core with radius 57 nm. (b) MNP-1 - three-layered sphere as in Fig. 1(b) with UC core radius 27 nm, SiO2 spacer thickness 10 nm and Au shell thickness 3.01 nm, MNP-2 - two-layered sphere as depicted in Fig. 1(c) with Au core radius 33 nm and SiO2 shell thickness 3 nm, MNP-3 - the same as MNP-2, but for Au core with radius 56 nm. Vertical dashed lines correspond to 540 nm, 650 nm and 976 nm.
Fig. 6
Fig. 6 Normalized upconverted signal in a slab of different Ag (top row) and Au (bottom row) MNPs as a function of concentration ρ measured in transmission mode at λem = 540 nm and λem = 650 nm for various values of path length h from 1 mm to 10 mm with 1 mm increment. Calculations are performed with Eq. (12) for solutions of MNP-1, MNP-2 and MNP-3. Initial quantum yield is assumed to be η0 = 10% in all cases.
Fig. 7
Fig. 7 Schematic representation of the multilayered spherical particle with N layers embedded in a host medium with mb.

Equations (40)

Equations on this page are rendered with MathJax. Learn more.

γ 01 = 2 π | 1 | E p | 0 | 2 ρ 1 ,
f ex = | E p | 4 γ tot | E p | 4 γ tot ,
f em = η η 0 .
f em = 1 ( 1 η 0 ) / F + η 0 / η a .
I ( h ) = I ( 0 ) exp ( α h ) ,
m ˜ = m b [ 1 + i 2 π ρ k 3 S ( 0 ) ] ,
I ( h ) = I ( 0 ) exp ( m b ρ h C ext ) .
C ext = 2 π k 2 l = 1 ( 2 l + 1 ) Re ( a l + b l ) ,
S loc ( z ) = N S 0 A f loc ρ ( z ) exp [ 0 z d z ρ ( z ) m b C ext ( ω ex ) ] ,
S uc exp [ z h d z ρ ( z ) m b C ext ( ω e m ) ] .
S uc ( z ) = N S 0 A f loc 0 h d z ρ ( z ) exp [ 0 z d z ρ ( z ) m b C ext ( ω ex ) ] exp [ z h d z ρ ( z ) m b C ext ( ω em ) ] ,
S uc = N S 0 A f loc exp [ m b C ext ( ω ex ) ρ h ] exp [ m b C ext ( ω em ) ρ h ] m b C ext ( ω em ) m b C ext ( ω ex ) .
ε ( ω ) ε ( ω ) + ω p 2 ω 2 + i Γ bulk ω ω p 2 ω 2 + i Γ fin ω ,
Γ fin = Γ bulk + A L υ F L eff ,
T Ml ( j ) = i ( ξ l ( k j r j ) ψ l ( k j + 1 r j ) / m ¯ j + 1 ξ l ( k j r j ) ψ l ( k j + 1 r j ) ξ l ( k j r j ) ξ l ( k j + 1 r j ) / m ¯ j + 1 ξ l ( k j r j ) ξ l ( k j + 1 r j ) ψ l ( k j r j ) ψ l ( k j + 1 r j ) / m ¯ j + 1 + ψ l ( k j r j ) ψ l ( k j + 1 r j ) ψ l ( k j r j ) ξ l ( k j + 1 r j ) / m ¯ j + 1 + ψ l ( k j r j ) ξ l ( k j + 1 r j ) )
T Ml + ( j ) = i ( m ¯ j + 1 ξ l ( k j + 1 r j ) ψ l ( k j r j ) ξ l ( k j + 1 r j ) ψ l ( k j r j ) m ¯ j + 1 ξ l ( k j + 1 r j ) ξ l ( k j r j ) ξ l ( k j + 1 r j ) ξ l ( k j r j ) m ¯ j + 1 ψ l ( k j + 1 r j ) ψ l ( k j r j ) + ψ l ( k j + 1 r j ) ψ l ( k j r j ) m ¯ j + 1 ψ l ( k j + 1 r j ) ξ l ( k j r j ) + ψ l ( k j + 1 r j ) ξ l ( k j r j ) )
T El ( j ) = i ( ξ l ( k j r j ) ψ l ( k j + 1 r j ) ξ l ( k j r j ) ψ l ( k j + 1 r j ) / m ¯ j + 1 ξ l ( k j r j ) ξ l ( k j + 1 r j ) ξ l ( k j r j ) ξ l ( k j + 1 r j ) / m ¯ j + 1 ψ l ( k j r j ) ψ l ( k j + 1 r j ) + ψ l ( k j r j ) ψ l ( k j + 1 r j ) / m ¯ j + 1 ψ l ( k j r j ) ξ l ( k j + 1 r j ) + ψ l ( k j r j ) ξ l ( k j + 1 r j ) / m ¯ j + 1 )
T El + ( j ) = i ( ξ l ( k j + 1 r j ) ψ l ( k j r j ) m ¯ j + 1 ξ l ( k j + 1 r j ) ψ l ( k j r j ) ξ l ( k j + 1 r j ) ξ l ( k j r j ) m ¯ j + 1 ξ l ( k j + 1 r j ) ξ l ( k j r j ) ψ l ( k j + 1 r j ) ψ j ( k j r j ) + m ¯ j + 1 ψ l ( k j + 1 r j ) ψ l ( k j r j ) ψ l ( k j + 1 r j ) ξ l ( k j r j ) + m ¯ j + 1 ψ l ( k j + 1 r j ) ξ l ( k j r j ) , )
𝒯 Ml ( n ) = j = 1 n 1 T Ml + ( j ) , Ml ( n ) = j = n N T Ml ( j ) ,
𝒯 El ( n ) = j = 1 n 1 T El + ( j ) , El ( n ) = j = n N T El ( j ) .
a l = 𝒯 21 ; E l ( N + 1 ) / 𝒯 11 ; E l ( N + 1 ) ,
b l = 𝒯 21 ; M l ( N + 1 ) / 𝒯 11 ; M l ( N + 1 ) ,
γ rad , nrad γ 0 = γ rad , nrad + 2 γ rad , nrad 3 γ 0 ,
γ rad γ 0 = 3 2 ( k b r d ) 4 l l ( l + 1 ) ( 2 l + 1 ) | ψ l ( k b r d ) + 𝒯 21 ; E l 𝒯 11 ; E l ξ l ( k b r d ) | 2 ,
γ rad γ 0 = 3 4 ( k b r ) 2 l ( 2 l + 1 ) [ | ψ l ( k b r d ) + 𝒯 21 ; M l 𝒯 11 ; M l ξ l ( k b r d ) | 2 + | ψ l ( k h r d ) + 𝒯 21 ; E l 𝒯 11 ; E l ξ l ( k b r d ) | 2 ] ,
γ nrad γ 0 = 3 k b 3 2 ( k b r d ) 4 1 m b 2 Im [ m a 2 ] l l ( l + 1 ) ( 2 l + 1 ) I El | ξ l ( k b r d ) | 2 ,
γ nrad γ 0 = 3 k h 3 4 ( k b r d ) 2 1 m b 2 Im [ m a 2 ] l ( 2 l + 1 ) [ I Ml | ξ l ( k b r d ) | 2 + I El | ξ l ( k b r d ) | 2 ] ,
γ rad γ 0 = 3 2 ( k l r d ) 4 m l m b l l ( l + 1 ) ( 2 l + 1 ) | ψ l ( k 1 r d ) 22 ; E l ( 1 ) | 2 ,
γ rad γ 0 = 3 4 ( k 1 r d ) 2 m 1 m b l ( 2 l + 1 ) [ | ψ l ( k 1 r d ) 22 ; M l ( 1 ) | 2 + | ψ l ( k 1 r d ) 22 ; E l ( 1 ) | 2 ] ,
γ nrad γ 0 = 3 k 1 3 2 ( k 1 r d ) 4 1 m 1 2 Im [ m a 2 ] l l ( l + 1 ) ( 2 l + 1 ) I El | ψ l ( k l r d ) 22 ; E l ( 1 ) | 2 ,
γ nrad γ 0 = 3 k 1 3 4 ( k 1 r d ) 2 1 m 1 2 Im [ m a 2 ] l ( 2 l + 1 ) [ I Ml | ψ l ( k 1 r d ) 22 ; M l ( 1 ) | 2 + I El | ψ l ( k 1 r d ) 22 ; E l ( 1 ) | 2 ] ,
I Ml = 1 | k a | 2 a | a Ml ψ l ( k a r ) + b Ml ξ l ( k a r ) | 2 d r ,
I El ( 1 ) = l ( l + 1 ) | k a | 4 a | a El ψ l ( k a r ) + b El ξ l ( k a r ) | 2 d r r 2 ,
I El ( 2 ) = 1 | k a | 2 a | a El ψ l ( k a r ) + b El ξ l ( k a r ) | 2 d r .
a β l = 11 ; β l ( l a ) + 12 ; β l ( l a ) 𝒯 21 ; β l ( N + 1 ) / 𝒯 11 ; β l ( N + 1 ) ,
b β l = 21 ; β l ( l a ) + 22 ; β l ( l a ) 𝒯 21 ; β l ( N + 1 ) / 𝒯 11 ; β l ( N + 1 ) ,
a β l = 12 ; β l ( l a ) ,
b β l = 22 ; β l ( l a ) ,
γ tot γ 0 = γ rad γ 0 + γ nrad γ 0 ,
l max = ( k 1 r d ) + 4.05 ( k 1 r d ) 1 / 3 + 2 ,

Metrics