Abstract

Two-dimensional (2D) periodical close-packed nanoring tube arrays (RTAs) composed of metal and dielectric materials with unique surface plasmon properties have been investigated. A new fabrication route, which uses conventional semiconductor fabrication methods, has been developed to produce large-area highly ordered close-packed RTAs in a controllable and inexpensive way. Optical properties of this structure, as well as its replica, are investigated by both the finite-difference-time-domain (FDTD) algorithm and experiments. The simulation results show that both BW-SPP modes and coupled cavity modes at separate wavelengths are excited in RTAs, in accordance with experimental results. These modes are dependent on the geometry of RTAs. Ag RTAs with high absorption over the visible and near IR range has been experimentally demonstrated, which can be used in solar cells and as chemical/biological sensors with miniature size. The RTAs can also be employed as templates for producing other nanostructures by the nano-imprint methods, such as non-close-packed cylindrical column arrays that can be applied to surface-enhanced Raman scattering (SERS) substrates.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Impact of ordering of gold nanohole arrays on refractive index sensing

Brindhu Malani S and P. Viswanath
J. Opt. Soc. Am. B 35(10) 2501-2508 (2018)

Fabrication process of a coaxial plasmonic metamaterial

Marie Anne van de Haar and Albert Polman
Opt. Mater. Express 6(3) 884-911 (2016)

Fabrication of peelable thin films containing crescent-shaped split-ring resonators for three-dimensional optical metamaterials

Kota Tanikawa, Toshihiro Okamoto, Shun Kamada, Ryota Matsumoto, Naoki Tamura, and Masanobu Haraguchi
Opt. Mater. Express 7(1) 1-7 (2017)

References

  • View by:
  • |
  • |
  • |

  1. B. Liu, S. Chen, J. Zhang, X. Yao, J. Zhong, H. Lin, T. Huang, Z. Yang, J. Zhu, S. Liu, C. Lienau, L. Wang, and B. Ren, “A Plasmonic Sensor Array with Ultrahigh Figures of Merit and Resonance Linewidths down to 3 nm,” Adv. Mater. 30(12), e1706031 (2018).
    [Crossref] [PubMed]
  2. M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured Plasmonic Sensors,” Chem. Rev. 108(2), 494–521 (2008).
    [Crossref] [PubMed]
  3. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3–4), 131–314 (2005).
    [Crossref]
  4. A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6(11), 709–713 (2012).
    [Crossref]
  5. M. W. Kim and P. C. Ku, “Semiconductor nanoring lasers,” Appl. Phys. Lett. 98(20), 201105 (2011).
    [Crossref]
  6. H.-Y. Wu, L. Liu, M. Lu, and B. T. Cunningham, “Lasing Emission from Plasmonic Nanodome Arrays,” Adv. Opt. Mater. 4(5), 708–714 (2016).
    [Crossref]
  7. G. Lozano, D. J. Louwers, S. R. K. Rodríguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2(5), e66 (2013).
    [Crossref]
  8. H. Gao, W. Zhou, and T. W. Odom, “Plasmonic Crystals: A Platform to Catalog Resonances from Ultraviolet to Near-Infrared Wavelengths in a Plasmonic Library,” Adv. Funct. Mater. 20(4), 529–539 (2010).
    [Crossref]
  9. C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4(1), 2891 (2013).
    [Crossref] [PubMed]
  10. M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
    [Crossref]
  11. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nat. Pub. Group 424(14), 824–830 (2003).
  12. S. Kasani, P. Zheng, and N. Wu, “Tailoring Optical Properties of a Large-Area Plasmonic Gold Nanoring Array Pattern,” J Phys Chem C Nanomater Interfaces 122(25), 13443–13449 (2018).
    [Crossref] [PubMed]
  13. J. M. McMahon, J. Henzie, T. W. Odom, G. C. Schatz, and S. K. Gray, “Tailoring the sensing capabilities of nanohole arrays in gold films with Rayleigh anomaly-surface plasmon polaritons,” Opt. Express 15(26), 18119–18129 (2007).
    [Crossref] [PubMed]
  14. A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
    [Crossref] [PubMed]
  15. Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental Realization of Subradiant, Superradiant, and Fano Resonances in Ring/Disk Plasmonic Nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
    [Crossref] [PubMed]
  16. N. Lawrence and L. Dal Negro, “Radiation rate enhancement in subwavelength plasmonic ring nanocavities,” Nano Lett. 13(8), 3709–3715 (2013).
    [Crossref] [PubMed]
  17. S. P. Burgos, R. de Waele, A. Polman, and H. A. Atwater, “A single-layer wide-angle negative-index metamaterial at visible frequencies,” Nat. Mater. 9(5), 407–412 (2010).
    [Crossref] [PubMed]
  18. H. Ni, M. Wang, H. Hao, and J. Zhou, “Integration of tunable two-dimensional nanostructures on a chip by an improved nanosphere lithography method,” Nanotechnology 27(22), 225301 (2016).
    [Crossref] [PubMed]
  19. X. Sun, Y. Li, T. H. Zhang, Y. Q. Ma, and Z. Zhang, “Fabrication of large two-dimensional colloidal crystals via self-assembly in an attractive force gradient,” Langmuir 29(24), 7216–7220 (2013).
    [Crossref] [PubMed]
  20. C. L. Haynes and R. P. V. Duyne, “Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics,” Am. Chem. Soc. 105(24), 5599–5611 (2001).
    [Crossref]
  21. H. Ni, M. Wang, T. Shen, and J. Zhou, “Self-assembled large-area annular cavity arrays with tunable cylindrical surface plasmons for sensing,” ACS Nano 9(2), 1913–1925 (2015).
    [Crossref] [PubMed]
  22. X. Ye and L. Qi, “Two-dimensionally patterned nanostructures based on monolayer colloidal crystals: Controllable fabrication, assembly, and applications,” Nano Today 6(6), 608–631 (2011).
    [Crossref]
  23. V. E. Bochenkov and D. S. Sutherland, “From rings to crescents: a novel fabrication technique uncovers the transition details,” Nano Lett. 13(3), 1216–1220 (2013).
    [Crossref] [PubMed]
  24. M. Couture, Y. Liang, H. P. Poirier Richard, R. Faid, W. Peng, and J. F. Masson, “Tuning the 3D plasmon field of nanohole arrays,” Nanoscale 5(24), 12399–12408 (2013).
    [Crossref] [PubMed]
  25. L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan, W. Cai, S. Zhu, and J. Zhu, “3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination,” Nat. Photonics 10(6), 393–398 (2016).
    [Crossref]
  26. S. Ye, X. Zhang, L. Chang, T. Wang, Z. Li, J. Zhang, and B. Yang, “High-Performance Plasmonic Sensors Based on Two-Dimensional Ag Nanowell Crystals,” Adv. Opt. Mater. 2(8), 779–787 (2014).
    [Crossref]

2018 (2)

B. Liu, S. Chen, J. Zhang, X. Yao, J. Zhong, H. Lin, T. Huang, Z. Yang, J. Zhu, S. Liu, C. Lienau, L. Wang, and B. Ren, “A Plasmonic Sensor Array with Ultrahigh Figures of Merit and Resonance Linewidths down to 3 nm,” Adv. Mater. 30(12), e1706031 (2018).
[Crossref] [PubMed]

S. Kasani, P. Zheng, and N. Wu, “Tailoring Optical Properties of a Large-Area Plasmonic Gold Nanoring Array Pattern,” J Phys Chem C Nanomater Interfaces 122(25), 13443–13449 (2018).
[Crossref] [PubMed]

2016 (3)

H. Ni, M. Wang, H. Hao, and J. Zhou, “Integration of tunable two-dimensional nanostructures on a chip by an improved nanosphere lithography method,” Nanotechnology 27(22), 225301 (2016).
[Crossref] [PubMed]

H.-Y. Wu, L. Liu, M. Lu, and B. T. Cunningham, “Lasing Emission from Plasmonic Nanodome Arrays,” Adv. Opt. Mater. 4(5), 708–714 (2016).
[Crossref]

L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan, W. Cai, S. Zhu, and J. Zhu, “3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination,” Nat. Photonics 10(6), 393–398 (2016).
[Crossref]

2015 (1)

H. Ni, M. Wang, T. Shen, and J. Zhou, “Self-assembled large-area annular cavity arrays with tunable cylindrical surface plasmons for sensing,” ACS Nano 9(2), 1913–1925 (2015).
[Crossref] [PubMed]

2014 (1)

S. Ye, X. Zhang, L. Chang, T. Wang, Z. Li, J. Zhang, and B. Yang, “High-Performance Plasmonic Sensors Based on Two-Dimensional Ag Nanowell Crystals,” Adv. Opt. Mater. 2(8), 779–787 (2014).
[Crossref]

2013 (6)

V. E. Bochenkov and D. S. Sutherland, “From rings to crescents: a novel fabrication technique uncovers the transition details,” Nano Lett. 13(3), 1216–1220 (2013).
[Crossref] [PubMed]

M. Couture, Y. Liang, H. P. Poirier Richard, R. Faid, W. Peng, and J. F. Masson, “Tuning the 3D plasmon field of nanohole arrays,” Nanoscale 5(24), 12399–12408 (2013).
[Crossref] [PubMed]

G. Lozano, D. J. Louwers, S. R. K. Rodríguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2(5), e66 (2013).
[Crossref]

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4(1), 2891 (2013).
[Crossref] [PubMed]

X. Sun, Y. Li, T. H. Zhang, Y. Q. Ma, and Z. Zhang, “Fabrication of large two-dimensional colloidal crystals via self-assembly in an attractive force gradient,” Langmuir 29(24), 7216–7220 (2013).
[Crossref] [PubMed]

N. Lawrence and L. Dal Negro, “Radiation rate enhancement in subwavelength plasmonic ring nanocavities,” Nano Lett. 13(8), 3709–3715 (2013).
[Crossref] [PubMed]

2012 (1)

A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6(11), 709–713 (2012).
[Crossref]

2011 (3)

M. W. Kim and P. C. Ku, “Semiconductor nanoring lasers,” Appl. Phys. Lett. 98(20), 201105 (2011).
[Crossref]

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

X. Ye and L. Qi, “Two-dimensionally patterned nanostructures based on monolayer colloidal crystals: Controllable fabrication, assembly, and applications,” Nano Today 6(6), 608–631 (2011).
[Crossref]

2010 (3)

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental Realization of Subradiant, Superradiant, and Fano Resonances in Ring/Disk Plasmonic Nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
[Crossref] [PubMed]

S. P. Burgos, R. de Waele, A. Polman, and H. A. Atwater, “A single-layer wide-angle negative-index metamaterial at visible frequencies,” Nat. Mater. 9(5), 407–412 (2010).
[Crossref] [PubMed]

H. Gao, W. Zhou, and T. W. Odom, “Plasmonic Crystals: A Platform to Catalog Resonances from Ultraviolet to Near-Infrared Wavelengths in a Plasmonic Library,” Adv. Funct. Mater. 20(4), 529–539 (2010).
[Crossref]

2008 (1)

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured Plasmonic Sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

2007 (2)

2005 (1)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3–4), 131–314 (2005).
[Crossref]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nat. Pub. Group 424(14), 824–830 (2003).

2001 (1)

C. L. Haynes and R. P. V. Duyne, “Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics,” Am. Chem. Soc. 105(24), 5599–5611 (2001).
[Crossref]

Altug, H.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Anderton, C. R.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured Plasmonic Sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Artar, A.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Atwater, H. A.

S. P. Burgos, R. de Waele, A. Polman, and H. A. Atwater, “A single-layer wide-angle negative-index metamaterial at visible frequencies,” Nat. Mater. 9(5), 407–412 (2010).
[Crossref] [PubMed]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nat. Pub. Group 424(14), 824–830 (2003).

Bochenkov, V. E.

V. E. Bochenkov and D. S. Sutherland, “From rings to crescents: a novel fabrication technique uncovers the transition details,” Nano Lett. 13(3), 1216–1220 (2013).
[Crossref] [PubMed]

Brolo, A. G.

A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6(11), 709–713 (2012).
[Crossref]

Burgos, S. P.

S. P. Burgos, R. de Waele, A. Polman, and H. A. Atwater, “A single-layer wide-angle negative-index metamaterial at visible frequencies,” Nat. Mater. 9(5), 407–412 (2010).
[Crossref] [PubMed]

Cai, W.

L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan, W. Cai, S. Zhu, and J. Zhu, “3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination,” Nat. Photonics 10(6), 393–398 (2016).
[Crossref]

Cetin, A. E.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Chang, L.

S. Ye, X. Zhang, L. Chang, T. Wang, Z. Li, J. Zhang, and B. Yang, “High-Performance Plasmonic Sensors Based on Two-Dimensional Ag Nanowell Crystals,” Adv. Opt. Mater. 2(8), 779–787 (2014).
[Crossref]

Chen, S.

B. Liu, S. Chen, J. Zhang, X. Yao, J. Zhong, H. Lin, T. Huang, Z. Yang, J. Zhu, S. Liu, C. Lienau, L. Wang, and B. Ren, “A Plasmonic Sensor Array with Ultrahigh Figures of Merit and Resonance Linewidths down to 3 nm,” Adv. Mater. 30(12), e1706031 (2018).
[Crossref] [PubMed]

Connor, J. H.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Couture, M.

M. Couture, Y. Liang, H. P. Poirier Richard, R. Faid, W. Peng, and J. F. Masson, “Tuning the 3D plasmon field of nanohole arrays,” Nanoscale 5(24), 12399–12408 (2013).
[Crossref] [PubMed]

Cunningham, B. T.

H.-Y. Wu, L. Liu, M. Lu, and B. T. Cunningham, “Lasing Emission from Plasmonic Nanodome Arrays,” Adv. Opt. Mater. 4(5), 708–714 (2016).
[Crossref]

Dal Negro, L.

N. Lawrence and L. Dal Negro, “Radiation rate enhancement in subwavelength plasmonic ring nanocavities,” Nano Lett. 13(8), 3709–3715 (2013).
[Crossref] [PubMed]

de Waele, R.

S. P. Burgos, R. de Waele, A. Polman, and H. A. Atwater, “A single-layer wide-angle negative-index metamaterial at visible frequencies,” Nat. Mater. 9(5), 407–412 (2010).
[Crossref] [PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nat. Pub. Group 424(14), 824–830 (2003).

Du, L.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4(1), 2891 (2013).
[Crossref] [PubMed]

Duyne, R. P. V.

C. L. Haynes and R. P. V. Duyne, “Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics,” Am. Chem. Soc. 105(24), 5599–5611 (2001).
[Crossref]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nat. Pub. Group 424(14), 824–830 (2003).

Faid, R.

M. Couture, Y. Liang, H. P. Poirier Richard, R. Faid, W. Peng, and J. F. Masson, “Tuning the 3D plasmon field of nanohole arrays,” Nanoscale 5(24), 12399–12408 (2013).
[Crossref] [PubMed]

Fang, H.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4(1), 2891 (2013).
[Crossref] [PubMed]

Gao, H.

H. Gao, W. Zhou, and T. W. Odom, “Plasmonic Crystals: A Platform to Catalog Resonances from Ultraviolet to Near-Infrared Wavelengths in a Plasmonic Library,” Adv. Funct. Mater. 20(4), 529–539 (2010).
[Crossref]

Girard, C.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
[Crossref]

Gómez Rivas, J.

G. Lozano, D. J. Louwers, S. R. K. Rodríguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2(5), e66 (2013).
[Crossref]

Gray, S. K.

Hao, H.

H. Ni, M. Wang, H. Hao, and J. Zhou, “Integration of tunable two-dimensional nanostructures on a chip by an improved nanosphere lithography method,” Nanotechnology 27(22), 225301 (2016).
[Crossref] [PubMed]

Haynes, C. L.

C. L. Haynes and R. P. V. Duyne, “Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics,” Am. Chem. Soc. 105(24), 5599–5611 (2001).
[Crossref]

Henzie, J.

Huang, M.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Huang, T.

B. Liu, S. Chen, J. Zhang, X. Yao, J. Zhong, H. Lin, T. Huang, Z. Yang, J. Zhu, S. Liu, C. Lienau, L. Wang, and B. Ren, “A Plasmonic Sensor Array with Ultrahigh Figures of Merit and Resonance Linewidths down to 3 nm,” Adv. Mater. 30(12), e1706031 (2018).
[Crossref] [PubMed]

Jansen, O. T. A.

G. Lozano, D. J. Louwers, S. R. K. Rodríguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2(5), e66 (2013).
[Crossref]

Kasani, S.

S. Kasani, P. Zheng, and N. Wu, “Tailoring Optical Properties of a Large-Area Plasmonic Gold Nanoring Array Pattern,” J Phys Chem C Nanomater Interfaces 122(25), 13443–13449 (2018).
[Crossref] [PubMed]

Khanikaev, A.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Kim, M. W.

M. W. Kim and P. C. Ku, “Semiconductor nanoring lasers,” Appl. Phys. Lett. 98(20), 201105 (2011).
[Crossref]

Ku, P. C.

M. W. Kim and P. C. Ku, “Semiconductor nanoring lasers,” Appl. Phys. Lett. 98(20), 201105 (2011).
[Crossref]

Lawrence, N.

N. Lawrence and L. Dal Negro, “Radiation rate enhancement in subwavelength plasmonic ring nanocavities,” Nano Lett. 13(8), 3709–3715 (2013).
[Crossref] [PubMed]

Lei, T.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4(1), 2891 (2013).
[Crossref] [PubMed]

Li, Y.

X. Sun, Y. Li, T. H. Zhang, Y. Q. Ma, and Z. Zhang, “Fabrication of large two-dimensional colloidal crystals via self-assembly in an attractive force gradient,” Langmuir 29(24), 7216–7220 (2013).
[Crossref] [PubMed]

Li, Z.

S. Ye, X. Zhang, L. Chang, T. Wang, Z. Li, J. Zhang, and B. Yang, “High-Performance Plasmonic Sensors Based on Two-Dimensional Ag Nanowell Crystals,” Adv. Opt. Mater. 2(8), 779–787 (2014).
[Crossref]

Liang, Y.

M. Couture, Y. Liang, H. P. Poirier Richard, R. Faid, W. Peng, and J. F. Masson, “Tuning the 3D plasmon field of nanohole arrays,” Nanoscale 5(24), 12399–12408 (2013).
[Crossref] [PubMed]

Lienau, C.

B. Liu, S. Chen, J. Zhang, X. Yao, J. Zhong, H. Lin, T. Huang, Z. Yang, J. Zhu, S. Liu, C. Lienau, L. Wang, and B. Ren, “A Plasmonic Sensor Array with Ultrahigh Figures of Merit and Resonance Linewidths down to 3 nm,” Adv. Mater. 30(12), e1706031 (2018).
[Crossref] [PubMed]

Lin, H.

B. Liu, S. Chen, J. Zhang, X. Yao, J. Zhong, H. Lin, T. Huang, Z. Yang, J. Zhu, S. Liu, C. Lienau, L. Wang, and B. Ren, “A Plasmonic Sensor Array with Ultrahigh Figures of Merit and Resonance Linewidths down to 3 nm,” Adv. Mater. 30(12), e1706031 (2018).
[Crossref] [PubMed]

Liu, B.

B. Liu, S. Chen, J. Zhang, X. Yao, J. Zhong, H. Lin, T. Huang, Z. Yang, J. Zhu, S. Liu, C. Lienau, L. Wang, and B. Ren, “A Plasmonic Sensor Array with Ultrahigh Figures of Merit and Resonance Linewidths down to 3 nm,” Adv. Mater. 30(12), e1706031 (2018).
[Crossref] [PubMed]

Liu, L.

H.-Y. Wu, L. Liu, M. Lu, and B. T. Cunningham, “Lasing Emission from Plasmonic Nanodome Arrays,” Adv. Opt. Mater. 4(5), 708–714 (2016).
[Crossref]

Liu, S.

B. Liu, S. Chen, J. Zhang, X. Yao, J. Zhong, H. Lin, T. Huang, Z. Yang, J. Zhu, S. Liu, C. Lienau, L. Wang, and B. Ren, “A Plasmonic Sensor Array with Ultrahigh Figures of Merit and Resonance Linewidths down to 3 nm,” Adv. Mater. 30(12), e1706031 (2018).
[Crossref] [PubMed]

Louwers, D. J.

G. Lozano, D. J. Louwers, S. R. K. Rodríguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2(5), e66 (2013).
[Crossref]

Lozano, G.

G. Lozano, D. J. Louwers, S. R. K. Rodríguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2(5), e66 (2013).
[Crossref]

Lu, M.

H.-Y. Wu, L. Liu, M. Lu, and B. T. Cunningham, “Lasing Emission from Plasmonic Nanodome Arrays,” Adv. Opt. Mater. 4(5), 708–714 (2016).
[Crossref]

Ma, Y. Q.

X. Sun, Y. Li, T. H. Zhang, Y. Q. Ma, and Z. Zhang, “Fabrication of large two-dimensional colloidal crystals via self-assembly in an attractive force gradient,” Langmuir 29(24), 7216–7220 (2013).
[Crossref] [PubMed]

Maier, S. A.

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental Realization of Subradiant, Superradiant, and Fano Resonances in Ring/Disk Plasmonic Nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
[Crossref] [PubMed]

Maradudin, A. A.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3–4), 131–314 (2005).
[Crossref]

Maria, J.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured Plasmonic Sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Masson, J. F.

M. Couture, Y. Liang, H. P. Poirier Richard, R. Faid, W. Peng, and J. F. Masson, “Tuning the 3D plasmon field of nanohole arrays,” Nanoscale 5(24), 12399–12408 (2013).
[Crossref] [PubMed]

McMahon, J. M.

Min, C.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4(1), 2891 (2013).
[Crossref] [PubMed]

Moshchalkov, V. V.

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental Realization of Subradiant, Superradiant, and Fano Resonances in Ring/Disk Plasmonic Nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
[Crossref] [PubMed]

Mousavi, S. H.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Murai, S.

G. Lozano, D. J. Louwers, S. R. K. Rodríguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2(5), e66 (2013).
[Crossref]

Ni, H.

H. Ni, M. Wang, H. Hao, and J. Zhou, “Integration of tunable two-dimensional nanostructures on a chip by an improved nanosphere lithography method,” Nanotechnology 27(22), 225301 (2016).
[Crossref] [PubMed]

H. Ni, M. Wang, T. Shen, and J. Zhou, “Self-assembled large-area annular cavity arrays with tunable cylindrical surface plasmons for sensing,” ACS Nano 9(2), 1913–1925 (2015).
[Crossref] [PubMed]

Nordlander, P.

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental Realization of Subradiant, Superradiant, and Fano Resonances in Ring/Disk Plasmonic Nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
[Crossref] [PubMed]

Nuzzo, R. G.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured Plasmonic Sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Odom, T. W.

H. Gao, W. Zhou, and T. W. Odom, “Plasmonic Crystals: A Platform to Catalog Resonances from Ultraviolet to Near-Infrared Wavelengths in a Plasmonic Library,” Adv. Funct. Mater. 20(4), 529–539 (2010).
[Crossref]

J. M. McMahon, J. Henzie, T. W. Odom, G. C. Schatz, and S. K. Gray, “Tailoring the sensing capabilities of nanohole arrays in gold films with Rayleigh anomaly-surface plasmon polaritons,” Opt. Express 15(26), 18119–18129 (2007).
[Crossref] [PubMed]

Peng, W.

M. Couture, Y. Liang, H. P. Poirier Richard, R. Faid, W. Peng, and J. F. Masson, “Tuning the 3D plasmon field of nanohole arrays,” Nanoscale 5(24), 12399–12408 (2013).
[Crossref] [PubMed]

Poirier Richard, H. P.

M. Couture, Y. Liang, H. P. Poirier Richard, R. Faid, W. Peng, and J. F. Masson, “Tuning the 3D plasmon field of nanohole arrays,” Nanoscale 5(24), 12399–12408 (2013).
[Crossref] [PubMed]

Polman, A.

S. P. Burgos, R. de Waele, A. Polman, and H. A. Atwater, “A single-layer wide-angle negative-index metamaterial at visible frequencies,” Nat. Mater. 9(5), 407–412 (2010).
[Crossref] [PubMed]

Qi, L.

X. Ye and L. Qi, “Two-dimensionally patterned nanostructures based on monolayer colloidal crystals: Controllable fabrication, assembly, and applications,” Nano Today 6(6), 608–631 (2011).
[Crossref]

Quidant, R.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
[Crossref]

Ren, B.

B. Liu, S. Chen, J. Zhang, X. Yao, J. Zhong, H. Lin, T. Huang, Z. Yang, J. Zhu, S. Liu, C. Lienau, L. Wang, and B. Ren, “A Plasmonic Sensor Array with Ultrahigh Figures of Merit and Resonance Linewidths down to 3 nm,” Adv. Mater. 30(12), e1706031 (2018).
[Crossref] [PubMed]

Righini, M.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
[Crossref]

Rodríguez, S. R. K.

G. Lozano, D. J. Louwers, S. R. K. Rodríguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2(5), e66 (2013).
[Crossref]

Rogers, J. A.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured Plasmonic Sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Schatz, G. C.

Shen, J.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4(1), 2891 (2013).
[Crossref] [PubMed]

Shen, T.

H. Ni, M. Wang, T. Shen, and J. Zhou, “Self-assembled large-area annular cavity arrays with tunable cylindrical surface plasmons for sensing,” ACS Nano 9(2), 1913–1925 (2015).
[Crossref] [PubMed]

Shen, Z.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4(1), 2891 (2013).
[Crossref] [PubMed]

Shvets, G.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Smolyaninov, I. I.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3–4), 131–314 (2005).
[Crossref]

Sobhani, H.

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental Realization of Subradiant, Superradiant, and Fano Resonances in Ring/Disk Plasmonic Nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
[Crossref] [PubMed]

Sonnefraud, Y.

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental Realization of Subradiant, Superradiant, and Fano Resonances in Ring/Disk Plasmonic Nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
[Crossref] [PubMed]

Stewart, M. E.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured Plasmonic Sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Sun, X.

X. Sun, Y. Li, T. H. Zhang, Y. Q. Ma, and Z. Zhang, “Fabrication of large two-dimensional colloidal crystals via self-assembly in an attractive force gradient,” Langmuir 29(24), 7216–7220 (2013).
[Crossref] [PubMed]

Sutherland, D. S.

V. E. Bochenkov and D. S. Sutherland, “From rings to crescents: a novel fabrication technique uncovers the transition details,” Nano Lett. 13(3), 1216–1220 (2013).
[Crossref] [PubMed]

Tan, Y.

L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan, W. Cai, S. Zhu, and J. Zhu, “3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination,” Nat. Photonics 10(6), 393–398 (2016).
[Crossref]

Thompson, L. B.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured Plasmonic Sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Van Dorpe, P.

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental Realization of Subradiant, Superradiant, and Fano Resonances in Ring/Disk Plasmonic Nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
[Crossref] [PubMed]

Vandenbosch, G. A. E.

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental Realization of Subradiant, Superradiant, and Fano Resonances in Ring/Disk Plasmonic Nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
[Crossref] [PubMed]

Verellen, N.

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental Realization of Subradiant, Superradiant, and Fano Resonances in Ring/Disk Plasmonic Nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
[Crossref] [PubMed]

Verschuuren, M. A.

G. Lozano, D. J. Louwers, S. R. K. Rodríguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2(5), e66 (2013).
[Crossref]

Wang, J.

L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan, W. Cai, S. Zhu, and J. Zhu, “3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination,” Nat. Photonics 10(6), 393–398 (2016).
[Crossref]

Wang, L.

B. Liu, S. Chen, J. Zhang, X. Yao, J. Zhong, H. Lin, T. Huang, Z. Yang, J. Zhu, S. Liu, C. Lienau, L. Wang, and B. Ren, “A Plasmonic Sensor Array with Ultrahigh Figures of Merit and Resonance Linewidths down to 3 nm,” Adv. Mater. 30(12), e1706031 (2018).
[Crossref] [PubMed]

Wang, M.

H. Ni, M. Wang, H. Hao, and J. Zhou, “Integration of tunable two-dimensional nanostructures on a chip by an improved nanosphere lithography method,” Nanotechnology 27(22), 225301 (2016).
[Crossref] [PubMed]

H. Ni, M. Wang, T. Shen, and J. Zhou, “Self-assembled large-area annular cavity arrays with tunable cylindrical surface plasmons for sensing,” ACS Nano 9(2), 1913–1925 (2015).
[Crossref] [PubMed]

Wang, T.

S. Ye, X. Zhang, L. Chang, T. Wang, Z. Li, J. Zhang, and B. Yang, “High-Performance Plasmonic Sensors Based on Two-Dimensional Ag Nanowell Crystals,” Adv. Opt. Mater. 2(8), 779–787 (2014).
[Crossref]

Wu, H.-Y.

H.-Y. Wu, L. Liu, M. Lu, and B. T. Cunningham, “Lasing Emission from Plasmonic Nanodome Arrays,” Adv. Opt. Mater. 4(5), 708–714 (2016).
[Crossref]

Wu, N.

S. Kasani, P. Zheng, and N. Wu, “Tailoring Optical Properties of a Large-Area Plasmonic Gold Nanoring Array Pattern,” J Phys Chem C Nanomater Interfaces 122(25), 13443–13449 (2018).
[Crossref] [PubMed]

Xu, W.

L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan, W. Cai, S. Zhu, and J. Zhu, “3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination,” Nat. Photonics 10(6), 393–398 (2016).
[Crossref]

Yang, B.

S. Ye, X. Zhang, L. Chang, T. Wang, Z. Li, J. Zhang, and B. Yang, “High-Performance Plasmonic Sensors Based on Two-Dimensional Ag Nanowell Crystals,” Adv. Opt. Mater. 2(8), 779–787 (2014).
[Crossref]

Yang, Z.

B. Liu, S. Chen, J. Zhang, X. Yao, J. Zhong, H. Lin, T. Huang, Z. Yang, J. Zhu, S. Liu, C. Lienau, L. Wang, and B. Ren, “A Plasmonic Sensor Array with Ultrahigh Figures of Merit and Resonance Linewidths down to 3 nm,” Adv. Mater. 30(12), e1706031 (2018).
[Crossref] [PubMed]

Yanik, A. A.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Yao, X.

B. Liu, S. Chen, J. Zhang, X. Yao, J. Zhong, H. Lin, T. Huang, Z. Yang, J. Zhu, S. Liu, C. Lienau, L. Wang, and B. Ren, “A Plasmonic Sensor Array with Ultrahigh Figures of Merit and Resonance Linewidths down to 3 nm,” Adv. Mater. 30(12), e1706031 (2018).
[Crossref] [PubMed]

Ye, S.

S. Ye, X. Zhang, L. Chang, T. Wang, Z. Li, J. Zhang, and B. Yang, “High-Performance Plasmonic Sensors Based on Two-Dimensional Ag Nanowell Crystals,” Adv. Opt. Mater. 2(8), 779–787 (2014).
[Crossref]

Ye, X.

X. Ye and L. Qi, “Two-dimensionally patterned nanostructures based on monolayer colloidal crystals: Controllable fabrication, assembly, and applications,” Nano Today 6(6), 608–631 (2011).
[Crossref]

Yuan, G.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4(1), 2891 (2013).
[Crossref] [PubMed]

Yuan, X.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4(1), 2891 (2013).
[Crossref] [PubMed]

Yuan, Y.

L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan, W. Cai, S. Zhu, and J. Zhu, “3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination,” Nat. Photonics 10(6), 393–398 (2016).
[Crossref]

Zayats, A. V.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3–4), 131–314 (2005).
[Crossref]

Zelenina, A. S.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
[Crossref]

Zhang, J.

B. Liu, S. Chen, J. Zhang, X. Yao, J. Zhong, H. Lin, T. Huang, Z. Yang, J. Zhu, S. Liu, C. Lienau, L. Wang, and B. Ren, “A Plasmonic Sensor Array with Ultrahigh Figures of Merit and Resonance Linewidths down to 3 nm,” Adv. Mater. 30(12), e1706031 (2018).
[Crossref] [PubMed]

S. Ye, X. Zhang, L. Chang, T. Wang, Z. Li, J. Zhang, and B. Yang, “High-Performance Plasmonic Sensors Based on Two-Dimensional Ag Nanowell Crystals,” Adv. Opt. Mater. 2(8), 779–787 (2014).
[Crossref]

Zhang, T. H.

X. Sun, Y. Li, T. H. Zhang, Y. Q. Ma, and Z. Zhang, “Fabrication of large two-dimensional colloidal crystals via self-assembly in an attractive force gradient,” Langmuir 29(24), 7216–7220 (2013).
[Crossref] [PubMed]

Zhang, X.

S. Ye, X. Zhang, L. Chang, T. Wang, Z. Li, J. Zhang, and B. Yang, “High-Performance Plasmonic Sensors Based on Two-Dimensional Ag Nanowell Crystals,” Adv. Opt. Mater. 2(8), 779–787 (2014).
[Crossref]

Zhang, Y.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4(1), 2891 (2013).
[Crossref] [PubMed]

Zhang, Z.

X. Sun, Y. Li, T. H. Zhang, Y. Q. Ma, and Z. Zhang, “Fabrication of large two-dimensional colloidal crystals via self-assembly in an attractive force gradient,” Langmuir 29(24), 7216–7220 (2013).
[Crossref] [PubMed]

Zheng, P.

S. Kasani, P. Zheng, and N. Wu, “Tailoring Optical Properties of a Large-Area Plasmonic Gold Nanoring Array Pattern,” J Phys Chem C Nanomater Interfaces 122(25), 13443–13449 (2018).
[Crossref] [PubMed]

Zhong, J.

B. Liu, S. Chen, J. Zhang, X. Yao, J. Zhong, H. Lin, T. Huang, Z. Yang, J. Zhu, S. Liu, C. Lienau, L. Wang, and B. Ren, “A Plasmonic Sensor Array with Ultrahigh Figures of Merit and Resonance Linewidths down to 3 nm,” Adv. Mater. 30(12), e1706031 (2018).
[Crossref] [PubMed]

Zhou, J.

H. Ni, M. Wang, H. Hao, and J. Zhou, “Integration of tunable two-dimensional nanostructures on a chip by an improved nanosphere lithography method,” Nanotechnology 27(22), 225301 (2016).
[Crossref] [PubMed]

H. Ni, M. Wang, T. Shen, and J. Zhou, “Self-assembled large-area annular cavity arrays with tunable cylindrical surface plasmons for sensing,” ACS Nano 9(2), 1913–1925 (2015).
[Crossref] [PubMed]

Zhou, L.

L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan, W. Cai, S. Zhu, and J. Zhu, “3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination,” Nat. Photonics 10(6), 393–398 (2016).
[Crossref]

Zhou, W.

H. Gao, W. Zhou, and T. W. Odom, “Plasmonic Crystals: A Platform to Catalog Resonances from Ultraviolet to Near-Infrared Wavelengths in a Plasmonic Library,” Adv. Funct. Mater. 20(4), 529–539 (2010).
[Crossref]

Zhu, J.

B. Liu, S. Chen, J. Zhang, X. Yao, J. Zhong, H. Lin, T. Huang, Z. Yang, J. Zhu, S. Liu, C. Lienau, L. Wang, and B. Ren, “A Plasmonic Sensor Array with Ultrahigh Figures of Merit and Resonance Linewidths down to 3 nm,” Adv. Mater. 30(12), e1706031 (2018).
[Crossref] [PubMed]

L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan, W. Cai, S. Zhu, and J. Zhu, “3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination,” Nat. Photonics 10(6), 393–398 (2016).
[Crossref]

Zhu, S.

L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan, W. Cai, S. Zhu, and J. Zhu, “3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination,” Nat. Photonics 10(6), 393–398 (2016).
[Crossref]

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4(1), 2891 (2013).
[Crossref] [PubMed]

ACS Nano (2)

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental Realization of Subradiant, Superradiant, and Fano Resonances in Ring/Disk Plasmonic Nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
[Crossref] [PubMed]

H. Ni, M. Wang, T. Shen, and J. Zhou, “Self-assembled large-area annular cavity arrays with tunable cylindrical surface plasmons for sensing,” ACS Nano 9(2), 1913–1925 (2015).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

H. Gao, W. Zhou, and T. W. Odom, “Plasmonic Crystals: A Platform to Catalog Resonances from Ultraviolet to Near-Infrared Wavelengths in a Plasmonic Library,” Adv. Funct. Mater. 20(4), 529–539 (2010).
[Crossref]

Adv. Mater. (1)

B. Liu, S. Chen, J. Zhang, X. Yao, J. Zhong, H. Lin, T. Huang, Z. Yang, J. Zhu, S. Liu, C. Lienau, L. Wang, and B. Ren, “A Plasmonic Sensor Array with Ultrahigh Figures of Merit and Resonance Linewidths down to 3 nm,” Adv. Mater. 30(12), e1706031 (2018).
[Crossref] [PubMed]

Adv. Opt. Mater. (2)

H.-Y. Wu, L. Liu, M. Lu, and B. T. Cunningham, “Lasing Emission from Plasmonic Nanodome Arrays,” Adv. Opt. Mater. 4(5), 708–714 (2016).
[Crossref]

S. Ye, X. Zhang, L. Chang, T. Wang, Z. Li, J. Zhang, and B. Yang, “High-Performance Plasmonic Sensors Based on Two-Dimensional Ag Nanowell Crystals,” Adv. Opt. Mater. 2(8), 779–787 (2014).
[Crossref]

Am. Chem. Soc. (1)

C. L. Haynes and R. P. V. Duyne, “Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics,” Am. Chem. Soc. 105(24), 5599–5611 (2001).
[Crossref]

Appl. Phys. Lett. (1)

M. W. Kim and P. C. Ku, “Semiconductor nanoring lasers,” Appl. Phys. Lett. 98(20), 201105 (2011).
[Crossref]

Chem. Rev. (1)

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured Plasmonic Sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

J Phys Chem C Nanomater Interfaces (1)

S. Kasani, P. Zheng, and N. Wu, “Tailoring Optical Properties of a Large-Area Plasmonic Gold Nanoring Array Pattern,” J Phys Chem C Nanomater Interfaces 122(25), 13443–13449 (2018).
[Crossref] [PubMed]

Langmuir (1)

X. Sun, Y. Li, T. H. Zhang, Y. Q. Ma, and Z. Zhang, “Fabrication of large two-dimensional colloidal crystals via self-assembly in an attractive force gradient,” Langmuir 29(24), 7216–7220 (2013).
[Crossref] [PubMed]

Light Sci. Appl. (1)

G. Lozano, D. J. Louwers, S. R. K. Rodríguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2(5), e66 (2013).
[Crossref]

Nano Lett. (2)

N. Lawrence and L. Dal Negro, “Radiation rate enhancement in subwavelength plasmonic ring nanocavities,” Nano Lett. 13(8), 3709–3715 (2013).
[Crossref] [PubMed]

V. E. Bochenkov and D. S. Sutherland, “From rings to crescents: a novel fabrication technique uncovers the transition details,” Nano Lett. 13(3), 1216–1220 (2013).
[Crossref] [PubMed]

Nano Today (1)

X. Ye and L. Qi, “Two-dimensionally patterned nanostructures based on monolayer colloidal crystals: Controllable fabrication, assembly, and applications,” Nano Today 6(6), 608–631 (2011).
[Crossref]

Nanoscale (1)

M. Couture, Y. Liang, H. P. Poirier Richard, R. Faid, W. Peng, and J. F. Masson, “Tuning the 3D plasmon field of nanohole arrays,” Nanoscale 5(24), 12399–12408 (2013).
[Crossref] [PubMed]

Nanotechnology (1)

H. Ni, M. Wang, H. Hao, and J. Zhou, “Integration of tunable two-dimensional nanostructures on a chip by an improved nanosphere lithography method,” Nanotechnology 27(22), 225301 (2016).
[Crossref] [PubMed]

Nat. Commun. (1)

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4(1), 2891 (2013).
[Crossref] [PubMed]

Nat. Mater. (1)

S. P. Burgos, R. de Waele, A. Polman, and H. A. Atwater, “A single-layer wide-angle negative-index metamaterial at visible frequencies,” Nat. Mater. 9(5), 407–412 (2010).
[Crossref] [PubMed]

Nat. Photonics (2)

A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6(11), 709–713 (2012).
[Crossref]

L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan, W. Cai, S. Zhu, and J. Zhu, “3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination,” Nat. Photonics 10(6), 393–398 (2016).
[Crossref]

Nat. Phys. (1)

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
[Crossref]

Nat. Pub. Group (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nat. Pub. Group 424(14), 824–830 (2003).

Opt. Express (1)

Phys. Rep. (1)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3–4), 131–314 (2005).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 (a) Schematic diagram of the fabrication processes to produce close-packed nanoring tube arrays (RTAs) and A, B, C represent different RIE etching rates, which results in the RTAs from concave array. (b) Top view SME image of close-packed RTAs. (c) SME image of close-packed nanoring tube arrays coated with Ag. Scale bar in images (b) and (c) are 1μm, respectively.
Fig. 2
Fig. 2 FDTD simulated optical properties of Ag close-packed RTAs. (a) The simulated reflectance spectrum of close-packed RTAs. Calculated electric field and charge density distributions at the wavelengths of 425 nm, 614 nm, 780 nm. (b - d) the electric field distribution at XOZ plane. (e - g) the electric field distribution at XOY plane with Z = 380 nm. (h - j) charge density distributions calculated from the electric field distribution shown in (b - d). Length unit of X and Y axis in (a - g) are m and nm in (h - j).
Fig. 3
Fig. 3 (a) Simulated reflection spectra for the close-packed RTA with Ag film thickness d = 100 nm of varying height for h = 100 nm, 150 nm, 200 nm, 250 nm, and 440 nm. (b) Dependence of the plasmon resonance dip on the RTAs height h. Blue arrow denotes the Wood’s anomaly and the dotted line indicates the evolution of the cavity mode position versus height variation.
Fig. 4
Fig. 4 (a - d) Measured reflectance spectra of close-packed RTAs with a layer of varying Ag film thickness under etching time of t = 3, 7, 10, 16 min. (e) Measured angle-resolved reflectance spectra of Ag close-packed RTAs with t = 10 min, d = 175 nm for TM-polarized incident light. (f) Measured angle-resolved reflectance spectra of Ag close-packed RTAs with t = 10 min, d = 175 nm for TE-polarized incident light. The dotted line in (f) shows the broadened cavity mode as incident light angle increase.
Fig. 5
Fig. 5 (a) SEM image of the non-close-packed CCAs. (b) Simulated reflection spectra for the Ag non-close-packed CCAs. The three dark circles in the image are three broken cylindrical columns formed at the peeling off process. (c - g) Simulated electric field distributions for the dips respectively. (h - l) charge density distribution calculated from the electric field distribution shown in (c - g). The dielectric column radius is 245 nm, the side wall of the dielectric column is coated with 30 nm Ag, the Ag film thickness is 100 nm, the cylindrical column height is 440 nm, and the periodicity is 690 nm.
Fig. 6
Fig. 6 Schematic diagram of the fabrication process of non-close-packed CCAs: (1) PU drop cast on RTAs, (2) ultra-violet (UV) curing and peel off from the RATs template, (3) coating silver film.
Fig. 7
Fig. 7 (a) FDTD simulated optical properties of Ag close-packed RTAs. (b - g) Calculated the electric field and charge density distributions at the wavelengths of 425 nm, 452 nm, and 471 nm.
Fig. 8
Fig. 8 (a) and (b) Simulated reflection spectra of the close-packed RTAs with Ag film thickness d = 100nm and with varying height for h = 50 nm, 150 nm, 300 nm, 350 nm, and 440 nm. (c - f) Calculated the electric fields corresponding to the wavelengths of the cavity mode for tube height of h = 50 nm, 150 nm, 300 nm, 350 nm, and 440 nm at XOZ plane.
Fig. 9
Fig. 9 (a - d) SEM images of RTA before metal deposition fabricated from the same optimized self-assembly and etching parameters. The wall thickness of the RTAs is about 65 ± 10 nm. Scale bar in (a - d) is 100 nm. (e) Simulated reflection spectra of the Ag close-packed RTAs with SiO2 wall thickness varying from 60 nm to 110 nm.
Fig. 10
Fig. 10 (a) Reflectance spectra of RTAs with increased silver film thickness at t = 3 min. (b) the electric field distribution at wavelength of 759 nm with 100 nm thick silver film. (c) the electric field distribution at wavelength of 755 nm with 150 nm thick silver film.
Fig. 11
Fig. 11 (a) Simulated reflectance spectra of close-packed RTAs for TM- and TE-polarized incident light, h = 440 nm, d = 100 nm. (b) Experimentally measured reflectance spectra of close-packed RTAs for TM- and TE-polarized incident light, t = 10 min, d = 175 nm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

λ spp = P 4 3 ( i 2 + j 2 +ij) [ ( ε m ε d ε m + ε d ) 1 2 +sinθ ]
λ RA = P 4 3 ( i 2 + j 2 +ij) ( ε d ±sinθ )