Abstract

Thin films of arsenic triselenide (As2Se3) glass degrade significantly under ambient conditions in the presence of light. We investigate the mechanism of this degradation by maintaining thin film As2Se3 samples in a variety of environmental conditions for approximately one year and show that exposure to below-band gap light in the presence of oxygen and moisture lead to the formation of crystallites of arsenic oxide and selenium. Spectroscopic measurements, X-ray diffraction (XRD), and microscopy reveal that deposition of a thin (~10 nm) passivation layer together with preventing exposure to below-band gap light inhibits degradation. These results indicate that As2Se3 is a practical material for use in applications such as integrated optic waveguides or dielectric metasurfaces operating in wavelengths from the short-wave infrared through the long-wave infrared.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Photosensitivity of pulsed laser deposited Ge-Sb-Se thin films

M. Olivier, P. Němec, G. Boudebs, R. Boidin, C. Focsa, and V. Nazabal
Opt. Mater. Express 5(4) 781-793 (2015)

Transmission enhancement in chalco-halide glasses for multiband applications

Yannick Ledemi, Mohammed El Amraoui, and Younès Messaddeq
Opt. Mater. Express 4(8) 1725-1739 (2014)

As4S4 role on the photoinduced birefringence of silver-doped chalcogenide thin films

Sandra Helena Messaddeq, Olivier Boily, Silvia Helena Santagneli, Mohammed El-Amraoui, and Younès Messaddeq
Opt. Mater. Express 6(5) 1451-1463 (2016)

References

  • View by:
  • |
  • |
  • |

  1. X. H. Zhang, Y. Guimond, and Y. Bellec, “Production of complex chalcogenide glass optics by molding for thermal imaging,” J. Non-Cryst. Solids 326–327, 519–523 (2003).
    [Crossref]
  2. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide Photonics,” Nat. Photonics 5(3), 141–148 (2011).
    [Crossref]
  3. J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, “Highly nonlinear Ge-As-Se and Ge-As-S-Se glasses for all-optical switching,” IEEE Photonics Technol. Lett. 14(6), 822–824 (2002).
    [Crossref]
  4. Y. Xu, J. Sun, J. Frantz, M. I. Shalaev, Wiktor Walasik, A. Pandey, J. D. Myers, R. Y. Bekele, A. Tsukernik, J. S. Sanghera, and N. M. Litchinitser, “Reconfiguring structured light beams using nonlinear metasurfaces,” arXiv 1805.07327 (2018).
  5. J. A. Frantz, J. D. Myers, R. Y. Bekele, Y. Xu, J. Sun, and M. Shalaev, “Chalcogenide Glass Films for Nonlinear Metasurface Applications,” Adv. Photonics Congr. 2 (2018).
  6. N. Ponnampalam, R. Decorby, H. Nguyen, P. Dwivedi, C. Haugen, J. McMullin, and S. Kasap, “Small core rib waveguides with embedded gratings in As2Se3 glass,” Opt. Express 12(25), 6270–6277 (2004).
    [Crossref] [PubMed]
  7. N. Hô, M. C. Phillips, H. Qiao, P. J. Allen, K. Krishnaswami, B. J. Riley, T. L. Myers, and N. C. Anheier, “Single-mode low-loss chalcogenide glass waveguides for the mid-infrared,” Opt. Lett. 31(12), 1860–1862 (2006).
    [Crossref] [PubMed]
  8. J. D. Myers, J. Frantz, C. Spillmann, R. Bekele, J. Kolacz, H. Gotjen, J. Naciri, B. Shaw, and J. Sanghera, “Refractive waveguide non-mechanical beam steering (NMBS) in the MWIR,” in Proc. of SPIE (2018), Vol. 10539, pp. 105390A–1–7.
  9. J. A. Frantz, J. D. Myers, R. Y. Bekele, C. M. Spillmann, J. Naciri, J. Kolacz, H. G. Gotjen, V. Q. Nguyen, C. C. McClain, L. B. Shaw, and J. S. Sanghera, “A Chip-Based Non-Mechanical Beam Steerer in the Mid-Wave Infrared,” JOSA B Rev. (2018).
  10. T. S. Saini, N. P. Trung Hoa, K. Nagasaka, X. Luo, T. H. Tuan, T. Suzuki, and Y. Ohishi, “Coherent midinfrared supercontinuum generation using a rib waveguide pumped with 200 fs laser pulses at 2.8 μm,” Appl. Opt. 57(7), 1689–1693 (2018).
    [Crossref] [PubMed]
  11. M. R. Karim, H. Ahmad, S. Ghosh, and B. M. A. Rahman, “Design of dispersion-engineered As 2 Se 3 channel waveguide for mid-infrared region supercontinuum generation,” J. Appl. Phys. 123(21), 213101 (2018).
    [Crossref]
  12. D. D. Hudson, S. Antipov, L. Li, I. Alamgir, M. El Amraoui, Y. Messaddeq, M. Rochette, S. Jackson, and A. Fuerbach, “Octave-spanning supercontinuum in the mid-IR with a 3 µm ultrafast fiber laser,” in Nonlinear Optics (OSA, 2017), p. NTu3A.3.
  13. H. Lin, L. Li, Y. Zou, S. Danto, J. D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P. T. Lin, V. Singh, A. Agarwal, L. C. Kimerling, and J. Hu, “Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators,” Opt. Lett. 38(9), 1470–1472 (2013).
    [Crossref] [PubMed]
  14. A. Tewari, A. Kumar, T. S. Saini, and R. K. Sinha, “Design of As2Se3 based chalcogenide ridge waveguide for generation of slow light,” Opt. - Int. J. Light Electron Opt. 127(24), 11816–11822 (2016).
    [Crossref]
  15. J. S. Berkes, S. W. Ing, and W. J. Hillegas, “Photodecomposition of Amorphous As 2Se3 and As2S3,” J. Appl. Phys. 42(12), 4908–4916 (1971).
    [Crossref]
  16. K. Ogusu, Y. Hosokawa, S. Maeda, M. Minakata, and H. Li, “Photo-oxidation of As2Se3, Ag–As2Se3, and Cu–As2Se3 chalcogenide films,” J. Non-Cryst. Solids 351(37-39), 3132–3138 (2005).
    [Crossref]
  17. J. S. Sanghera, J. D. Mackenzie, and F. Hulderman, “UV Radiation Damage of As2Se3 Glass Fibers,” Mater. Lett. 8(10), 409 (1989).
    [Crossref]
  18. F. Hulderman, J. S. Sanghera, and J. D. Mackenzie, “The effect of UV radiation on the mechanical strength of As2Se3 glass fibers,” J. Non-Cryst. Solids 127(3), 312–322 (1991).
    [Crossref]
  19. J. Dresner and G. B. Stringfellow, “Electronic Processes in the Photo-Crystallization of Vitreous Selenium,” J. Phys. Chem. Solids 29(2), 303–311 (1968).
    [Crossref]

2018 (2)

T. S. Saini, N. P. Trung Hoa, K. Nagasaka, X. Luo, T. H. Tuan, T. Suzuki, and Y. Ohishi, “Coherent midinfrared supercontinuum generation using a rib waveguide pumped with 200 fs laser pulses at 2.8 μm,” Appl. Opt. 57(7), 1689–1693 (2018).
[Crossref] [PubMed]

M. R. Karim, H. Ahmad, S. Ghosh, and B. M. A. Rahman, “Design of dispersion-engineered As 2 Se 3 channel waveguide for mid-infrared region supercontinuum generation,” J. Appl. Phys. 123(21), 213101 (2018).
[Crossref]

2016 (1)

A. Tewari, A. Kumar, T. S. Saini, and R. K. Sinha, “Design of As2Se3 based chalcogenide ridge waveguide for generation of slow light,” Opt. - Int. J. Light Electron Opt. 127(24), 11816–11822 (2016).
[Crossref]

2013 (1)

2011 (1)

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide Photonics,” Nat. Photonics 5(3), 141–148 (2011).
[Crossref]

2006 (1)

2005 (1)

K. Ogusu, Y. Hosokawa, S. Maeda, M. Minakata, and H. Li, “Photo-oxidation of As2Se3, Ag–As2Se3, and Cu–As2Se3 chalcogenide films,” J. Non-Cryst. Solids 351(37-39), 3132–3138 (2005).
[Crossref]

2004 (1)

2003 (1)

X. H. Zhang, Y. Guimond, and Y. Bellec, “Production of complex chalcogenide glass optics by molding for thermal imaging,” J. Non-Cryst. Solids 326–327, 519–523 (2003).
[Crossref]

2002 (1)

J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, “Highly nonlinear Ge-As-Se and Ge-As-S-Se glasses for all-optical switching,” IEEE Photonics Technol. Lett. 14(6), 822–824 (2002).
[Crossref]

1991 (1)

F. Hulderman, J. S. Sanghera, and J. D. Mackenzie, “The effect of UV radiation on the mechanical strength of As2Se3 glass fibers,” J. Non-Cryst. Solids 127(3), 312–322 (1991).
[Crossref]

1989 (1)

J. S. Sanghera, J. D. Mackenzie, and F. Hulderman, “UV Radiation Damage of As2Se3 Glass Fibers,” Mater. Lett. 8(10), 409 (1989).
[Crossref]

1971 (1)

J. S. Berkes, S. W. Ing, and W. J. Hillegas, “Photodecomposition of Amorphous As 2Se3 and As2S3,” J. Appl. Phys. 42(12), 4908–4916 (1971).
[Crossref]

1968 (1)

J. Dresner and G. B. Stringfellow, “Electronic Processes in the Photo-Crystallization of Vitreous Selenium,” J. Phys. Chem. Solids 29(2), 303–311 (1968).
[Crossref]

Agarwal, A.

Ahmad, H.

M. R. Karim, H. Ahmad, S. Ghosh, and B. M. A. Rahman, “Design of dispersion-engineered As 2 Se 3 channel waveguide for mid-infrared region supercontinuum generation,” J. Appl. Phys. 123(21), 213101 (2018).
[Crossref]

Aitken, B. G.

J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, “Highly nonlinear Ge-As-Se and Ge-As-S-Se glasses for all-optical switching,” IEEE Photonics Technol. Lett. 14(6), 822–824 (2002).
[Crossref]

Allen, P. J.

Anheier, N. C.

Bellec, Y.

X. H. Zhang, Y. Guimond, and Y. Bellec, “Production of complex chalcogenide glass optics by molding for thermal imaging,” J. Non-Cryst. Solids 326–327, 519–523 (2003).
[Crossref]

Berkes, J. S.

J. S. Berkes, S. W. Ing, and W. J. Hillegas, “Photodecomposition of Amorphous As 2Se3 and As2S3,” J. Appl. Phys. 42(12), 4908–4916 (1971).
[Crossref]

Danto, S.

Decorby, R.

Dresner, J.

J. Dresner and G. B. Stringfellow, “Electronic Processes in the Photo-Crystallization of Vitreous Selenium,” J. Phys. Chem. Solids 29(2), 303–311 (1968).
[Crossref]

Dwivedi, P.

Eggleton, B. J.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide Photonics,” Nat. Photonics 5(3), 141–148 (2011).
[Crossref]

Ghosh, S.

M. R. Karim, H. Ahmad, S. Ghosh, and B. M. A. Rahman, “Design of dispersion-engineered As 2 Se 3 channel waveguide for mid-infrared region supercontinuum generation,” J. Appl. Phys. 123(21), 213101 (2018).
[Crossref]

Guimond, Y.

X. H. Zhang, Y. Guimond, and Y. Bellec, “Production of complex chalcogenide glass optics by molding for thermal imaging,” J. Non-Cryst. Solids 326–327, 519–523 (2003).
[Crossref]

Harbold, J. M.

J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, “Highly nonlinear Ge-As-Se and Ge-As-S-Se glasses for all-optical switching,” IEEE Photonics Technol. Lett. 14(6), 822–824 (2002).
[Crossref]

Haugen, C.

Hillegas, W. J.

J. S. Berkes, S. W. Ing, and W. J. Hillegas, “Photodecomposition of Amorphous As 2Se3 and As2S3,” J. Appl. Phys. 42(12), 4908–4916 (1971).
[Crossref]

Hô, N.

Hosokawa, Y.

K. Ogusu, Y. Hosokawa, S. Maeda, M. Minakata, and H. Li, “Photo-oxidation of As2Se3, Ag–As2Se3, and Cu–As2Se3 chalcogenide films,” J. Non-Cryst. Solids 351(37-39), 3132–3138 (2005).
[Crossref]

Hu, J.

Hulderman, F.

F. Hulderman, J. S. Sanghera, and J. D. Mackenzie, “The effect of UV radiation on the mechanical strength of As2Se3 glass fibers,” J. Non-Cryst. Solids 127(3), 312–322 (1991).
[Crossref]

J. S. Sanghera, J. D. Mackenzie, and F. Hulderman, “UV Radiation Damage of As2Se3 Glass Fibers,” Mater. Lett. 8(10), 409 (1989).
[Crossref]

Ilday, F. O.

J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, “Highly nonlinear Ge-As-Se and Ge-As-S-Se glasses for all-optical switching,” IEEE Photonics Technol. Lett. 14(6), 822–824 (2002).
[Crossref]

Ing, S. W.

J. S. Berkes, S. W. Ing, and W. J. Hillegas, “Photodecomposition of Amorphous As 2Se3 and As2S3,” J. Appl. Phys. 42(12), 4908–4916 (1971).
[Crossref]

Karim, M. R.

M. R. Karim, H. Ahmad, S. Ghosh, and B. M. A. Rahman, “Design of dispersion-engineered As 2 Se 3 channel waveguide for mid-infrared region supercontinuum generation,” J. Appl. Phys. 123(21), 213101 (2018).
[Crossref]

Kasap, S.

Kimerling, L. C.

Kozacik, S.

Krishnaswami, K.

Kumar, A.

A. Tewari, A. Kumar, T. S. Saini, and R. K. Sinha, “Design of As2Se3 based chalcogenide ridge waveguide for generation of slow light,” Opt. - Int. J. Light Electron Opt. 127(24), 11816–11822 (2016).
[Crossref]

Li, H.

K. Ogusu, Y. Hosokawa, S. Maeda, M. Minakata, and H. Li, “Photo-oxidation of As2Se3, Ag–As2Se3, and Cu–As2Se3 chalcogenide films,” J. Non-Cryst. Solids 351(37-39), 3132–3138 (2005).
[Crossref]

Li, L.

Lin, H.

Lin, P. T.

Luo, X.

Luther-Davies, B.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide Photonics,” Nat. Photonics 5(3), 141–148 (2011).
[Crossref]

Mackenzie, J. D.

F. Hulderman, J. S. Sanghera, and J. D. Mackenzie, “The effect of UV radiation on the mechanical strength of As2Se3 glass fibers,” J. Non-Cryst. Solids 127(3), 312–322 (1991).
[Crossref]

J. S. Sanghera, J. D. Mackenzie, and F. Hulderman, “UV Radiation Damage of As2Se3 Glass Fibers,” Mater. Lett. 8(10), 409 (1989).
[Crossref]

Maeda, S.

K. Ogusu, Y. Hosokawa, S. Maeda, M. Minakata, and H. Li, “Photo-oxidation of As2Se3, Ag–As2Se3, and Cu–As2Se3 chalcogenide films,” J. Non-Cryst. Solids 351(37-39), 3132–3138 (2005).
[Crossref]

McMullin, J.

Minakata, M.

K. Ogusu, Y. Hosokawa, S. Maeda, M. Minakata, and H. Li, “Photo-oxidation of As2Se3, Ag–As2Se3, and Cu–As2Se3 chalcogenide films,” J. Non-Cryst. Solids 351(37-39), 3132–3138 (2005).
[Crossref]

Murakowski, M.

Musgraves, J. D.

Myers, T. L.

Nagasaka, K.

Nguyen, H.

Ogusu, K.

K. Ogusu, Y. Hosokawa, S. Maeda, M. Minakata, and H. Li, “Photo-oxidation of As2Se3, Ag–As2Se3, and Cu–As2Se3 chalcogenide films,” J. Non-Cryst. Solids 351(37-39), 3132–3138 (2005).
[Crossref]

Ohishi, Y.

Phillips, M. C.

Ponnampalam, N.

Prather, D.

Qiao, H.

Rahman, B. M. A.

M. R. Karim, H. Ahmad, S. Ghosh, and B. M. A. Rahman, “Design of dispersion-engineered As 2 Se 3 channel waveguide for mid-infrared region supercontinuum generation,” J. Appl. Phys. 123(21), 213101 (2018).
[Crossref]

Richardson, K.

Riley, B. J.

Saini, T. S.

T. S. Saini, N. P. Trung Hoa, K. Nagasaka, X. Luo, T. H. Tuan, T. Suzuki, and Y. Ohishi, “Coherent midinfrared supercontinuum generation using a rib waveguide pumped with 200 fs laser pulses at 2.8 μm,” Appl. Opt. 57(7), 1689–1693 (2018).
[Crossref] [PubMed]

A. Tewari, A. Kumar, T. S. Saini, and R. K. Sinha, “Design of As2Se3 based chalcogenide ridge waveguide for generation of slow light,” Opt. - Int. J. Light Electron Opt. 127(24), 11816–11822 (2016).
[Crossref]

Sanghera, J. S.

F. Hulderman, J. S. Sanghera, and J. D. Mackenzie, “The effect of UV radiation on the mechanical strength of As2Se3 glass fibers,” J. Non-Cryst. Solids 127(3), 312–322 (1991).
[Crossref]

J. S. Sanghera, J. D. Mackenzie, and F. Hulderman, “UV Radiation Damage of As2Se3 Glass Fibers,” Mater. Lett. 8(10), 409 (1989).
[Crossref]

Singh, V.

Sinha, R. K.

A. Tewari, A. Kumar, T. S. Saini, and R. K. Sinha, “Design of As2Se3 based chalcogenide ridge waveguide for generation of slow light,” Opt. - Int. J. Light Electron Opt. 127(24), 11816–11822 (2016).
[Crossref]

Stringfellow, G. B.

J. Dresner and G. B. Stringfellow, “Electronic Processes in the Photo-Crystallization of Vitreous Selenium,” J. Phys. Chem. Solids 29(2), 303–311 (1968).
[Crossref]

Suzuki, T.

Tewari, A.

A. Tewari, A. Kumar, T. S. Saini, and R. K. Sinha, “Design of As2Se3 based chalcogenide ridge waveguide for generation of slow light,” Opt. - Int. J. Light Electron Opt. 127(24), 11816–11822 (2016).
[Crossref]

Trung Hoa, N. P.

Tuan, T. H.

Wise, F. W.

J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, “Highly nonlinear Ge-As-Se and Ge-As-S-Se glasses for all-optical switching,” IEEE Photonics Technol. Lett. 14(6), 822–824 (2002).
[Crossref]

Zhang, X. H.

X. H. Zhang, Y. Guimond, and Y. Bellec, “Production of complex chalcogenide glass optics by molding for thermal imaging,” J. Non-Cryst. Solids 326–327, 519–523 (2003).
[Crossref]

Zou, Y.

Appl. Opt. (1)

IEEE Photonics Technol. Lett. (1)

J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, “Highly nonlinear Ge-As-Se and Ge-As-S-Se glasses for all-optical switching,” IEEE Photonics Technol. Lett. 14(6), 822–824 (2002).
[Crossref]

J. Appl. Phys. (2)

M. R. Karim, H. Ahmad, S. Ghosh, and B. M. A. Rahman, “Design of dispersion-engineered As 2 Se 3 channel waveguide for mid-infrared region supercontinuum generation,” J. Appl. Phys. 123(21), 213101 (2018).
[Crossref]

J. S. Berkes, S. W. Ing, and W. J. Hillegas, “Photodecomposition of Amorphous As 2Se3 and As2S3,” J. Appl. Phys. 42(12), 4908–4916 (1971).
[Crossref]

J. Non-Cryst. Solids (3)

K. Ogusu, Y. Hosokawa, S. Maeda, M. Minakata, and H. Li, “Photo-oxidation of As2Se3, Ag–As2Se3, and Cu–As2Se3 chalcogenide films,” J. Non-Cryst. Solids 351(37-39), 3132–3138 (2005).
[Crossref]

F. Hulderman, J. S. Sanghera, and J. D. Mackenzie, “The effect of UV radiation on the mechanical strength of As2Se3 glass fibers,” J. Non-Cryst. Solids 127(3), 312–322 (1991).
[Crossref]

X. H. Zhang, Y. Guimond, and Y. Bellec, “Production of complex chalcogenide glass optics by molding for thermal imaging,” J. Non-Cryst. Solids 326–327, 519–523 (2003).
[Crossref]

J. Phys. Chem. Solids (1)

J. Dresner and G. B. Stringfellow, “Electronic Processes in the Photo-Crystallization of Vitreous Selenium,” J. Phys. Chem. Solids 29(2), 303–311 (1968).
[Crossref]

Mater. Lett. (1)

J. S. Sanghera, J. D. Mackenzie, and F. Hulderman, “UV Radiation Damage of As2Se3 Glass Fibers,” Mater. Lett. 8(10), 409 (1989).
[Crossref]

Nat. Photonics (1)

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide Photonics,” Nat. Photonics 5(3), 141–148 (2011).
[Crossref]

Opt. - Int. J. Light Electron Opt. (1)

A. Tewari, A. Kumar, T. S. Saini, and R. K. Sinha, “Design of As2Se3 based chalcogenide ridge waveguide for generation of slow light,” Opt. - Int. J. Light Electron Opt. 127(24), 11816–11822 (2016).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Other (5)

D. D. Hudson, S. Antipov, L. Li, I. Alamgir, M. El Amraoui, Y. Messaddeq, M. Rochette, S. Jackson, and A. Fuerbach, “Octave-spanning supercontinuum in the mid-IR with a 3 µm ultrafast fiber laser,” in Nonlinear Optics (OSA, 2017), p. NTu3A.3.

J. D. Myers, J. Frantz, C. Spillmann, R. Bekele, J. Kolacz, H. Gotjen, J. Naciri, B. Shaw, and J. Sanghera, “Refractive waveguide non-mechanical beam steering (NMBS) in the MWIR,” in Proc. of SPIE (2018), Vol. 10539, pp. 105390A–1–7.

J. A. Frantz, J. D. Myers, R. Y. Bekele, C. M. Spillmann, J. Naciri, J. Kolacz, H. G. Gotjen, V. Q. Nguyen, C. C. McClain, L. B. Shaw, and J. S. Sanghera, “A Chip-Based Non-Mechanical Beam Steerer in the Mid-Wave Infrared,” JOSA B Rev. (2018).

Y. Xu, J. Sun, J. Frantz, M. I. Shalaev, Wiktor Walasik, A. Pandey, J. D. Myers, R. Y. Bekele, A. Tsukernik, J. S. Sanghera, and N. M. Litchinitser, “Reconfiguring structured light beams using nonlinear metasurfaces,” arXiv 1805.07327 (2018).

J. A. Frantz, J. D. Myers, R. Y. Bekele, Y. Xu, J. Sun, and M. Shalaev, “Chalcogenide Glass Films for Nonlinear Metasurface Applications,” Adv. Photonics Congr. 2 (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Optical microscope images of films at different times.
Fig. 2
Fig. 2 XRD results for (a) films kept under each condition after 344 days (insets: photographs of the Vacuum sample and the Ambient/light sample after 344 days), and (b) the ambient/light film as a function of time with peaks indexed.
Fig. 3
Fig. 3 FTIR data for the Ambient/light sample as a function of time.

Tables (1)

Tables Icon

Table 1 Names and storage conditions of As2Se3 film samples

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

As 2 Se 3 xAs+ As 2x Se 3 ,
4As+3 O 2 H 2 O As 2 O 3
As 2 Se 3 xAs+y Se+As 2x Se 3y .