Abstract

We investigate the interaction of ultrashort laser pulses with ternary zinc phosphate glasses. We explore the viability of ten different glass compositions with different levels of alumina to inscribe optical waveguides via the fs-laser direct writing technique, finding that only samples with [O]/[P] ratios of 3.25 are suitable candidates. We also test a zinc magnesium phosphate glass to fabricate waveguide Bragg gratings in order to generate filters and mirrors with specific spectral properties. Confocal Raman spectroscopy inspection shows that laser-damaged material exhibits a relative intensity decrease and a subtle blue-shift on the 1209 cm−1 Raman peak, which implies a relative reduction on the content of Q(2) tetrahedra species within the glass network thus suggesting a laser-induced depolymerization. In contrast, optical waveguides and smooth laser-induced changes do not exhibit such noticeable structural modifications.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Femtosecond laser writing of waveguides in zinc phosphate glasses [Invited]

Luke B. Fletcher, Jonathan J. Witcher, Neil Troy, Signo T. Reis, Richard K. Brow, Rebeca Martinez Vazquez, Roberto Osellame, and Denise M. Krol
Opt. Mater. Express 1(5) 845-855 (2011)

Direct femtosecond laser waveguide writing inside zinc phosphate glass

Luke B. Fletcher, Jon J. Witcher, Neil Troy, Signo T. Reis, Richard K. Brow, and Denise M. Krol
Opt. Express 19(9) 7929-7936 (2011)

Annealing dynamics of waveguide Bragg gratings: evidence of femtosecond laser induced colour centres

P. Dekker, M. Ams, G. D. Marshall, D. J. Little, and M. J. Withford
Opt. Express 18(4) 3274-3283 (2010)

References

  • View by:
  • |
  • |
  • |

  1. A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103, 577–644 (2003).
    [Crossref] [PubMed]
  2. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219 (2008).
    [Crossref]
  3. C. Wagner and N. Harned, “Euv lithography: Lithography gets extreme,” Nat. Photonics 4, 24 (2010).
    [Crossref]
  4. T. T. Fernandez, S. M. Eaton, G. D. Valle, R. M. Vazquez, M. Irannejad, G. Jose, A. Jha, G. Cerullo, R. Osellame, and P. Laporta, “Femtosecond laser written optical waveguide amplifier in phospho-tellurite glass,” Opt. Express 18, 20289–20297 (2010).
    [Crossref] [PubMed]
  5. B. Sotillo, V. Bharadwaj, J. Hadden, M. Sakakura, A. Chiappini, T. T. Fernandez, S. Longhi, O. Jedrkiewicz, Y. Shimotsuma, L. Criante, and et al., “Diamond photonics platform enabled by femtosecond laser writing,” Sci. reports 6, 35566 (2016).
    [Crossref]
  6. E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71, 882–884 (1997).
    [Crossref]
  7. C. Hnatovsky, R. Taylor, E. Simova, P. Rajeev, D. Rayner, V. Bhardwaj, and P. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys. A 84, 47–61 (2006).
    [Crossref]
  8. C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12, 1784 (2001).
    [Crossref]
  9. G. D. Marshall, A. Politi, J. C. Matthews, P. Dekker, M. Ams, M. J. Withford, and J. L. OâĂŹBrien, “Laser written waveguide photonic quantum circuits,” Opt. Express 17, 12546–12554 (2009).
    [Crossref] [PubMed]
  10. S. Taccheo, G. Della Valle, R. Osellame, G. Cerullo, N. Chiodo, P. Laporta, O. Svelto, A. Killi, U. Morgner, M. Lederer, and et al., “Er: Yb-doped waveguide laser fabricated by femtosecond laser pulses,” Opt. Lett. 29, 2626–2628 (2004).
    [Crossref]
  11. Q. Sun, H. Jiang, Y. Liu, Y. Zhou, H. Yang, and Q. Gong, “Effect of spherical aberration on the propagation of a tightly focused femtosecond laser pulse inside fused silica,” J. Opt. A: Pure Appl. Opt. 7, 655 (2005).
    [Crossref]
  12. A. Marcinkevičius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys. A 76, 257–260 (2003).
    [Crossref]
  13. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729–1731 (1996).
    [Crossref]
  14. K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329–3331 (1997).
    [Crossref]
  15. K. Hirao and K. Miura, “Writing waveguides and gratings in silica and related materials by a femtosecond laser,” J. non-crystalline solids 239, 91–95 (1998).
    [Crossref]
  16. N. Psaila, R. Thomson, H. Bookey, A. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er: Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett. 90, 131102 (2007).
    [Crossref]
  17. A. M. Streltsov and N. F. Borrelli, “Study of femtosecond-laser-written waveguides in glasses,” JOSA B 19, 2496–2504 (2002).
    [Crossref]
  18. J. Hernandez-Rueda, J. Clarijs, D. van Oosten, and D. M. Krol, “The influence of femtosecond laser wavelength on waveguide fabrication inside fused silica,” Appl. Phys. Lett. 110, 161109 (2017).
    [Crossref]
  19. J. J. Witcher, J. Hernandez-Rueda, and D. M. Krol, “Fs-laser processing of glass: Plasma dynamics and spectroscopy,” Int. J. Appl. Glass Sci. 6, 220–228 (2015).
    [Crossref]
  20. M. Ams, G. Marshall, D. Spence, and M. Withford, “Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses,” Opt. express 13, 5676–5681 (2005).
    [Crossref] [PubMed]
  21. T. T. Fernandez, B. Sotillo, J. d. Hoyo, J. Vallľs, R. M. Vązquez, P. Fernandez, and J. Solis, “Dual regimes of ion migration in high repetition rate femtosecond laser inscribed waveguides,” IEEE Photonics Technol. Lett. 27, 1068–1071 (2015).
    [Crossref]
  22. L. Englert, B. Rethfeld, L. Haag, M. Wollenhaupt, C. Sarpe-Tudoran, and T. Baumert, “Control of ionization processes in high band gap materials via tailored femtosecond pulses,” Opt. Express 15, 17855–17862 (2007).
    [Crossref] [PubMed]
  23. P. Salter, A. Jesacher, J. Spring, B. Metcalf, N. Thomas-Peter, R. D. Simmonds, N. Langford, I. Walmsley, and M. J. Booth, “Adaptive slit beam shaping for direct laser written waveguides,” Opt. Lett. 37, 470–472 (2012).
    [Crossref]
  24. J. Hernandez-Rueda, J. Siegel, M. Galvan-Sosa, A. R. de la Cruz, and J. Solis, “Surface structuring of fused silica with asymmetric femtosecond laser pulse bursts,” JOSA B 30, 1352–1356 (2013).
    [Crossref]
  25. M. Sakakura, T. Kurita, M. Shimizu, K. Yoshimura, Y. Shimotsuma, N. Fukuda, K. Hirao, and K. Miura, “Shape control of elemental distributions inside a glass by simultaneous femtosecond laser irradiation at multiple spots,” Opt. Lett. 38, 4939–4942 (2013).
    [Crossref] [PubMed]
  26. J. Hernandez-Rueda, J. Siegel, M. Galvan-Sosa, A. R. de la Cruz, M. Garcia-Lechuga, and J. Solis, “Controlling ablation mechanisms in sapphire by tuning the temporal shape of femtosecond laser pulses,” J. Opt. Soc. Am. B 32, 150–156 (2015).
    [Crossref]
  27. S. M. Eaton, H. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Y. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13, 4708–4716 (2005).
    [Crossref] [PubMed]
  28. R. Osellame, N. Chiodo, G. D. Valle, G. Cerullo, R. Ramponi, P. Laporta, A. Killi, U. Morgner, and O. Svelto, “Waveguide lasers in the c-band fabricated by laser inscription with a compact femtosecond oscillator,” IEEE J. Sel. Top. Quantum Electron. 12, 277–285 (2006).
    [Crossref]
  29. T. Fernandez, M. Sakakura, S. Eaton, B. Sotillo, J. Siegel, J. Solis, Y. Shimotsuma, and K. Miura, “Bespoke photonic devices using ultrafast laser driven ion migration in glasses,” Prog. Mater. Sci. 94, 68 – 113 (2018).
    [Crossref]
  30. A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped teo2 and geo2 glasses as laser materials,” Prog. Mater. Sci. 57, 1426–1491 (2012).
    [Crossref]
  31. T. T. Fernandez, G. D. Valle, R. Osellame, G. Jose, N. Chiodo, A. Jha, and P. Laporta, “Active waveguides written by femtosecond laser irradiation in an erbium-doped phospho-tellurite glass,” Opt. Express 16, 15198–15205 (2008).
    [Crossref] [PubMed]
  32. L. B. Fletcher, J. J. Witcher, N. Troy, R. K. Brow, and D. M. Krol, “Single-pass waveguide amplifiers in er-yb doped zinc polyphosphate glass fabricated with femtosecond laser pulses,” Opt. Lett. 37, 1148–1150 (2012).
    [Crossref]
  33. J. W. Chan, T. R. Huser, S. H. Risbud, J. S. Hayden, and D. M. Krol, “Waveguide fabrication in phosphate glasses using femtosecond laser pulses,” Appl. Phys. Lett. 82, 2371–2373 (2003).
    [Crossref]
  34. D. J. Little, M. Ams, P. Dekker, G. D. Marshall, and M. J. Withford, “Mechanism of femtosecond-laser induced refractive index change in phosphate glass under a low repetition-rate regime,” J. Appl. Phys. 108, 033110 (2010).
    [Crossref]
  35. Y. Duan, P. Dekker, M. Ams, G. Palmer, and M. J. Withford, “Time dependent study of femtosecond laser written waveguide lasers in yb-doped silicate and phosphate glass,” Opt. Mater. Express 5, 416–422 (2015).
    [Crossref]
  36. L. B. Fletcher, J. J. Witcher, N. Troy, S. T. Reis, R. K. Brow, and D. M. Krol, “Direct femtosecond laser waveguide writing inside zinc phosphate glass,” Opt. express 19, 7929–7936 (2011).
    [Crossref] [PubMed]
  37. L. B. Fletcher, J. J. Witcher, N. Troy, S. T. Reis, R. K. Brow, R. M. Vazquez, R. Osellame, and D. M. Krol, “Femtosecond laser writing of waveguides in zinc phosphate glasses,” Opt. Mater. Express 1, 845–855 (2011).
    [Crossref]
  38. L. B. Fletcher, J. J. Witcher, N. Troy, S. T. Reis, R. K. Brow, and D. M. Krol, “Effects of rare-earth doping on femtosecond laser waveguide writing in zinc polyphosphate glass,” J. Appl. Phys. 112, 023109 (2012).
    [Crossref]
  39. D. Krol, “Femtosecond laser modification of glass,” J. Non-Crystalline Solids 354, 416–424 (2008).
    [Crossref]
  40. G. D. Marshall, M. Ams, and M. J. Withford, “Direct laser written waveguide-Bragg gratings in bulk fused silica,” Opt. Lett. 31, 2690–2691 (2006).
    [Crossref] [PubMed]
  41. D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, K. Kuan, T. M. Monro, M. Ams, A. Fuerbach, and M. J. Withford, “Fifty percent internal slope efficiency femtosecond direct-written tm3+:zblan waveguide laser,” Opt. Lett. 36, 1587–1589 (2011).
    [Crossref] [PubMed]
  42. A. G. Okhrimchuk, A. V. Shestakov, I. Khrushchev, and J. Mitchell, “Depressed cladding, buried waveguide laser formed in a yag:nd3+ crystal by femtosecond laser writing,” Opt. Lett. 30, 2248–2250 (2005).
    [Crossref] [PubMed]
  43. J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured linbo3,” Appl. Phys. A 89, 127–132 (2007).
    [Crossref]
  44. T. Gorelik, M. Will, S. Nolte, A. Tuennermann, and U. Glatzel, “Transmission electron microscopy studies of femtosecond laser induced modifications in quartz,” Appl. Phys. A 76, 309–311 (2003).
    [Crossref]
  45. A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic nd:yag waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95, 85–96 (2009).
    [Crossref]
  46. J. Hernandez-Rueda, D. Puerto, J. Siegel, M. Galvan-Sosa, and J. Solis, “Plasma dynamics and structural modifications induced by femtosecond laser pulses in quartz,” Appl. Surf. Sci. 258, 9389–9393 (2012).
    [Crossref]
  47. J. Hernandez-Rueda, N. Goötte, J. Siegel, M. Soccio, B. Zielinski, C. Sarpe, M. Wollenhaupt, T. A. Ezquerra, T. Baumert, and J. Solis, “Nanofabrication of tailored surface structures in dielectrics using temporally shaped femtosecond-laser pulses,” ACS applied materials & interfaces 7, 6613–6619 (2015).
    [Crossref]
  48. B. Rethfeld, K. Sokolowski-Tinten, D. von der Linde, and S. Anisimov, “Timescales in the response of materials to femtosecond laser excitation,” Appl. Phys. A 79, 767–769 (2004).
    [Crossref]
  49. B. Rethfeld, “Unified model for the free-electron avalanche in laser-irradiated dielectrics,” Phys. Rev. Lett. 92, 187401 (2004).
    [Crossref] [PubMed]
  50. W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99, 123112 (2006).
    [Crossref]
  51. J. W. Chan, T. Huser, J. S. Hayden, S. H. Risbud, and D. M. Krol, “Fluorescence spectroscopy of color centers generated in phosphate glasses after exposure to femtosecond laser pulses,” J. Am. Ceram. Soc. 85, 1037–1040 (2002).
    [Crossref]
  52. R. K. Brow, D. R. Tallant, S. T. Myers, and C. C. Phifer, “The short-range structure of zinc polyphosphate glass,” J. Non-Crystalline Solids 191, 45–55 (1995).
    [Crossref]
  53. C. E. Smith, R. K. Brow, L. Montagne, and B. Revel, “The structure and properties of zinc aluminophosphate glasses,” J. Non-Crystalline Solids 386, 105 – 114 (2014).
    [Crossref]
  54. K. Hill, Y. Fujii, D. C. Johnson, and B. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
    [Crossref]
  55. O. M. Efimov, L. B. Glebov, L. N. Glebova, K. C. Richardson, and V. I. Smirnov, “High-efficiency Bragg gratings in photothermorefractive glass,” Appl. Opt. 38, 619–627 (1999).
    [Crossref]

2018 (1)

T. Fernandez, M. Sakakura, S. Eaton, B. Sotillo, J. Siegel, J. Solis, Y. Shimotsuma, and K. Miura, “Bespoke photonic devices using ultrafast laser driven ion migration in glasses,” Prog. Mater. Sci. 94, 68 – 113 (2018).
[Crossref]

2017 (1)

J. Hernandez-Rueda, J. Clarijs, D. van Oosten, and D. M. Krol, “The influence of femtosecond laser wavelength on waveguide fabrication inside fused silica,” Appl. Phys. Lett. 110, 161109 (2017).
[Crossref]

2016 (1)

B. Sotillo, V. Bharadwaj, J. Hadden, M. Sakakura, A. Chiappini, T. T. Fernandez, S. Longhi, O. Jedrkiewicz, Y. Shimotsuma, L. Criante, and et al., “Diamond photonics platform enabled by femtosecond laser writing,” Sci. reports 6, 35566 (2016).
[Crossref]

2015 (5)

J. J. Witcher, J. Hernandez-Rueda, and D. M. Krol, “Fs-laser processing of glass: Plasma dynamics and spectroscopy,” Int. J. Appl. Glass Sci. 6, 220–228 (2015).
[Crossref]

T. T. Fernandez, B. Sotillo, J. d. Hoyo, J. Vallľs, R. M. Vązquez, P. Fernandez, and J. Solis, “Dual regimes of ion migration in high repetition rate femtosecond laser inscribed waveguides,” IEEE Photonics Technol. Lett. 27, 1068–1071 (2015).
[Crossref]

J. Hernandez-Rueda, J. Siegel, M. Galvan-Sosa, A. R. de la Cruz, M. Garcia-Lechuga, and J. Solis, “Controlling ablation mechanisms in sapphire by tuning the temporal shape of femtosecond laser pulses,” J. Opt. Soc. Am. B 32, 150–156 (2015).
[Crossref]

Y. Duan, P. Dekker, M. Ams, G. Palmer, and M. J. Withford, “Time dependent study of femtosecond laser written waveguide lasers in yb-doped silicate and phosphate glass,” Opt. Mater. Express 5, 416–422 (2015).
[Crossref]

J. Hernandez-Rueda, N. Goötte, J. Siegel, M. Soccio, B. Zielinski, C. Sarpe, M. Wollenhaupt, T. A. Ezquerra, T. Baumert, and J. Solis, “Nanofabrication of tailored surface structures in dielectrics using temporally shaped femtosecond-laser pulses,” ACS applied materials & interfaces 7, 6613–6619 (2015).
[Crossref]

2014 (1)

C. E. Smith, R. K. Brow, L. Montagne, and B. Revel, “The structure and properties of zinc aluminophosphate glasses,” J. Non-Crystalline Solids 386, 105 – 114 (2014).
[Crossref]

2013 (2)

J. Hernandez-Rueda, J. Siegel, M. Galvan-Sosa, A. R. de la Cruz, and J. Solis, “Surface structuring of fused silica with asymmetric femtosecond laser pulse bursts,” JOSA B 30, 1352–1356 (2013).
[Crossref]

M. Sakakura, T. Kurita, M. Shimizu, K. Yoshimura, Y. Shimotsuma, N. Fukuda, K. Hirao, and K. Miura, “Shape control of elemental distributions inside a glass by simultaneous femtosecond laser irradiation at multiple spots,” Opt. Lett. 38, 4939–4942 (2013).
[Crossref] [PubMed]

2012 (5)

L. B. Fletcher, J. J. Witcher, N. Troy, R. K. Brow, and D. M. Krol, “Single-pass waveguide amplifiers in er-yb doped zinc polyphosphate glass fabricated with femtosecond laser pulses,” Opt. Lett. 37, 1148–1150 (2012).
[Crossref]

A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped teo2 and geo2 glasses as laser materials,” Prog. Mater. Sci. 57, 1426–1491 (2012).
[Crossref]

P. Salter, A. Jesacher, J. Spring, B. Metcalf, N. Thomas-Peter, R. D. Simmonds, N. Langford, I. Walmsley, and M. J. Booth, “Adaptive slit beam shaping for direct laser written waveguides,” Opt. Lett. 37, 470–472 (2012).
[Crossref]

J. Hernandez-Rueda, D. Puerto, J. Siegel, M. Galvan-Sosa, and J. Solis, “Plasma dynamics and structural modifications induced by femtosecond laser pulses in quartz,” Appl. Surf. Sci. 258, 9389–9393 (2012).
[Crossref]

L. B. Fletcher, J. J. Witcher, N. Troy, S. T. Reis, R. K. Brow, and D. M. Krol, “Effects of rare-earth doping on femtosecond laser waveguide writing in zinc polyphosphate glass,” J. Appl. Phys. 112, 023109 (2012).
[Crossref]

2011 (3)

2010 (3)

C. Wagner and N. Harned, “Euv lithography: Lithography gets extreme,” Nat. Photonics 4, 24 (2010).
[Crossref]

T. T. Fernandez, S. M. Eaton, G. D. Valle, R. M. Vazquez, M. Irannejad, G. Jose, A. Jha, G. Cerullo, R. Osellame, and P. Laporta, “Femtosecond laser written optical waveguide amplifier in phospho-tellurite glass,” Opt. Express 18, 20289–20297 (2010).
[Crossref] [PubMed]

D. J. Little, M. Ams, P. Dekker, G. D. Marshall, and M. J. Withford, “Mechanism of femtosecond-laser induced refractive index change in phosphate glass under a low repetition-rate regime,” J. Appl. Phys. 108, 033110 (2010).
[Crossref]

2009 (2)

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic nd:yag waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95, 85–96 (2009).
[Crossref]

G. D. Marshall, A. Politi, J. C. Matthews, P. Dekker, M. Ams, M. J. Withford, and J. L. OâĂŹBrien, “Laser written waveguide photonic quantum circuits,” Opt. Express 17, 12546–12554 (2009).
[Crossref] [PubMed]

2008 (3)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219 (2008).
[Crossref]

T. T. Fernandez, G. D. Valle, R. Osellame, G. Jose, N. Chiodo, A. Jha, and P. Laporta, “Active waveguides written by femtosecond laser irradiation in an erbium-doped phospho-tellurite glass,” Opt. Express 16, 15198–15205 (2008).
[Crossref] [PubMed]

D. Krol, “Femtosecond laser modification of glass,” J. Non-Crystalline Solids 354, 416–424 (2008).
[Crossref]

2007 (3)

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured linbo3,” Appl. Phys. A 89, 127–132 (2007).
[Crossref]

L. Englert, B. Rethfeld, L. Haag, M. Wollenhaupt, C. Sarpe-Tudoran, and T. Baumert, “Control of ionization processes in high band gap materials via tailored femtosecond pulses,” Opt. Express 15, 17855–17862 (2007).
[Crossref] [PubMed]

N. Psaila, R. Thomson, H. Bookey, A. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er: Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett. 90, 131102 (2007).
[Crossref]

2006 (4)

C. Hnatovsky, R. Taylor, E. Simova, P. Rajeev, D. Rayner, V. Bhardwaj, and P. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys. A 84, 47–61 (2006).
[Crossref]

R. Osellame, N. Chiodo, G. D. Valle, G. Cerullo, R. Ramponi, P. Laporta, A. Killi, U. Morgner, and O. Svelto, “Waveguide lasers in the c-band fabricated by laser inscription with a compact femtosecond oscillator,” IEEE J. Sel. Top. Quantum Electron. 12, 277–285 (2006).
[Crossref]

G. D. Marshall, M. Ams, and M. J. Withford, “Direct laser written waveguide-Bragg gratings in bulk fused silica,” Opt. Lett. 31, 2690–2691 (2006).
[Crossref] [PubMed]

W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99, 123112 (2006).
[Crossref]

2005 (4)

2004 (3)

S. Taccheo, G. Della Valle, R. Osellame, G. Cerullo, N. Chiodo, P. Laporta, O. Svelto, A. Killi, U. Morgner, M. Lederer, and et al., “Er: Yb-doped waveguide laser fabricated by femtosecond laser pulses,” Opt. Lett. 29, 2626–2628 (2004).
[Crossref]

B. Rethfeld, K. Sokolowski-Tinten, D. von der Linde, and S. Anisimov, “Timescales in the response of materials to femtosecond laser excitation,” Appl. Phys. A 79, 767–769 (2004).
[Crossref]

B. Rethfeld, “Unified model for the free-electron avalanche in laser-irradiated dielectrics,” Phys. Rev. Lett. 92, 187401 (2004).
[Crossref] [PubMed]

2003 (4)

T. Gorelik, M. Will, S. Nolte, A. Tuennermann, and U. Glatzel, “Transmission electron microscopy studies of femtosecond laser induced modifications in quartz,” Appl. Phys. A 76, 309–311 (2003).
[Crossref]

A. Marcinkevičius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys. A 76, 257–260 (2003).
[Crossref]

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103, 577–644 (2003).
[Crossref] [PubMed]

J. W. Chan, T. R. Huser, S. H. Risbud, J. S. Hayden, and D. M. Krol, “Waveguide fabrication in phosphate glasses using femtosecond laser pulses,” Appl. Phys. Lett. 82, 2371–2373 (2003).
[Crossref]

2002 (2)

A. M. Streltsov and N. F. Borrelli, “Study of femtosecond-laser-written waveguides in glasses,” JOSA B 19, 2496–2504 (2002).
[Crossref]

J. W. Chan, T. Huser, J. S. Hayden, S. H. Risbud, and D. M. Krol, “Fluorescence spectroscopy of color centers generated in phosphate glasses after exposure to femtosecond laser pulses,” J. Am. Ceram. Soc. 85, 1037–1040 (2002).
[Crossref]

2001 (1)

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12, 1784 (2001).
[Crossref]

1999 (1)

1998 (1)

K. Hirao and K. Miura, “Writing waveguides and gratings in silica and related materials by a femtosecond laser,” J. non-crystalline solids 239, 91–95 (1998).
[Crossref]

1997 (2)

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329–3331 (1997).
[Crossref]

E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71, 882–884 (1997).
[Crossref]

1996 (1)

1995 (1)

R. K. Brow, D. R. Tallant, S. T. Myers, and C. C. Phifer, “The short-range structure of zinc polyphosphate glass,” J. Non-Crystalline Solids 191, 45–55 (1995).
[Crossref]

1978 (1)

K. Hill, Y. Fujii, D. C. Johnson, and B. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[Crossref]

Ams, M.

Anisimov, S.

B. Rethfeld, K. Sokolowski-Tinten, D. von der Linde, and S. Anisimov, “Timescales in the response of materials to femtosecond laser excitation,” Appl. Phys. A 79, 767–769 (2004).
[Crossref]

Arai, A.

W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99, 123112 (2006).
[Crossref]

Arai, A. Y.

Baumert, T.

J. Hernandez-Rueda, N. Goötte, J. Siegel, M. Soccio, B. Zielinski, C. Sarpe, M. Wollenhaupt, T. A. Ezquerra, T. Baumert, and J. Solis, “Nanofabrication of tailored surface structures in dielectrics using temporally shaped femtosecond-laser pulses,” ACS applied materials & interfaces 7, 6613–6619 (2015).
[Crossref]

L. Englert, B. Rethfeld, L. Haag, M. Wollenhaupt, C. Sarpe-Tudoran, and T. Baumert, “Control of ionization processes in high band gap materials via tailored femtosecond pulses,” Opt. Express 15, 17855–17862 (2007).
[Crossref] [PubMed]

Bharadwaj, V.

B. Sotillo, V. Bharadwaj, J. Hadden, M. Sakakura, A. Chiappini, T. T. Fernandez, S. Longhi, O. Jedrkiewicz, Y. Shimotsuma, L. Criante, and et al., “Diamond photonics platform enabled by femtosecond laser writing,” Sci. reports 6, 35566 (2016).
[Crossref]

Bhardwaj, V.

C. Hnatovsky, R. Taylor, E. Simova, P. Rajeev, D. Rayner, V. Bhardwaj, and P. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys. A 84, 47–61 (2006).
[Crossref]

Bookey, H.

N. Psaila, R. Thomson, H. Bookey, A. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er: Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett. 90, 131102 (2007).
[Crossref]

Booth, M. J.

Borrelli, N. F.

A. M. Streltsov and N. F. Borrelli, “Study of femtosecond-laser-written waveguides in glasses,” JOSA B 19, 2496–2504 (2002).
[Crossref]

Bovatsek, J.

Brodeur, A.

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12, 1784 (2001).
[Crossref]

Brow, R. K.

C. E. Smith, R. K. Brow, L. Montagne, and B. Revel, “The structure and properties of zinc aluminophosphate glasses,” J. Non-Crystalline Solids 386, 105 – 114 (2014).
[Crossref]

L. B. Fletcher, J. J. Witcher, N. Troy, S. T. Reis, R. K. Brow, and D. M. Krol, “Effects of rare-earth doping on femtosecond laser waveguide writing in zinc polyphosphate glass,” J. Appl. Phys. 112, 023109 (2012).
[Crossref]

L. B. Fletcher, J. J. Witcher, N. Troy, R. K. Brow, and D. M. Krol, “Single-pass waveguide amplifiers in er-yb doped zinc polyphosphate glass fabricated with femtosecond laser pulses,” Opt. Lett. 37, 1148–1150 (2012).
[Crossref]

L. B. Fletcher, J. J. Witcher, N. Troy, S. T. Reis, R. K. Brow, and D. M. Krol, “Direct femtosecond laser waveguide writing inside zinc phosphate glass,” Opt. express 19, 7929–7936 (2011).
[Crossref] [PubMed]

L. B. Fletcher, J. J. Witcher, N. Troy, S. T. Reis, R. K. Brow, R. M. Vazquez, R. Osellame, and D. M. Krol, “Femtosecond laser writing of waveguides in zinc phosphate glasses,” Opt. Mater. Express 1, 845–855 (2011).
[Crossref]

R. K. Brow, D. R. Tallant, S. T. Myers, and C. C. Phifer, “The short-range structure of zinc polyphosphate glass,” J. Non-Crystalline Solids 191, 45–55 (1995).
[Crossref]

Burghoff, J.

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured linbo3,” Appl. Phys. A 89, 127–132 (2007).
[Crossref]

Cantelar, E.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic nd:yag waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95, 85–96 (2009).
[Crossref]

Cerullo, G.

T. T. Fernandez, S. M. Eaton, G. D. Valle, R. M. Vazquez, M. Irannejad, G. Jose, A. Jha, G. Cerullo, R. Osellame, and P. Laporta, “Femtosecond laser written optical waveguide amplifier in phospho-tellurite glass,” Opt. Express 18, 20289–20297 (2010).
[Crossref] [PubMed]

N. Psaila, R. Thomson, H. Bookey, A. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er: Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett. 90, 131102 (2007).
[Crossref]

R. Osellame, N. Chiodo, G. D. Valle, G. Cerullo, R. Ramponi, P. Laporta, A. Killi, U. Morgner, and O. Svelto, “Waveguide lasers in the c-band fabricated by laser inscription with a compact femtosecond oscillator,” IEEE J. Sel. Top. Quantum Electron. 12, 277–285 (2006).
[Crossref]

S. Taccheo, G. Della Valle, R. Osellame, G. Cerullo, N. Chiodo, P. Laporta, O. Svelto, A. Killi, U. Morgner, M. Lederer, and et al., “Er: Yb-doped waveguide laser fabricated by femtosecond laser pulses,” Opt. Lett. 29, 2626–2628 (2004).
[Crossref]

Chan, J. W.

J. W. Chan, T. R. Huser, S. H. Risbud, J. S. Hayden, and D. M. Krol, “Waveguide fabrication in phosphate glasses using femtosecond laser pulses,” Appl. Phys. Lett. 82, 2371–2373 (2003).
[Crossref]

J. W. Chan, T. Huser, J. S. Hayden, S. H. Risbud, and D. M. Krol, “Fluorescence spectroscopy of color centers generated in phosphate glasses after exposure to femtosecond laser pulses,” J. Am. Ceram. Soc. 85, 1037–1040 (2002).
[Crossref]

Chiappini, A.

B. Sotillo, V. Bharadwaj, J. Hadden, M. Sakakura, A. Chiappini, T. T. Fernandez, S. Longhi, O. Jedrkiewicz, Y. Shimotsuma, L. Criante, and et al., “Diamond photonics platform enabled by femtosecond laser writing,” Sci. reports 6, 35566 (2016).
[Crossref]

Chiodo, N.

T. T. Fernandez, G. D. Valle, R. Osellame, G. Jose, N. Chiodo, A. Jha, and P. Laporta, “Active waveguides written by femtosecond laser irradiation in an erbium-doped phospho-tellurite glass,” Opt. Express 16, 15198–15205 (2008).
[Crossref] [PubMed]

N. Psaila, R. Thomson, H. Bookey, A. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er: Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett. 90, 131102 (2007).
[Crossref]

R. Osellame, N. Chiodo, G. D. Valle, G. Cerullo, R. Ramponi, P. Laporta, A. Killi, U. Morgner, and O. Svelto, “Waveguide lasers in the c-band fabricated by laser inscription with a compact femtosecond oscillator,” IEEE J. Sel. Top. Quantum Electron. 12, 277–285 (2006).
[Crossref]

S. Taccheo, G. Della Valle, R. Osellame, G. Cerullo, N. Chiodo, P. Laporta, O. Svelto, A. Killi, U. Morgner, M. Lederer, and et al., “Er: Yb-doped waveguide laser fabricated by femtosecond laser pulses,” Opt. Lett. 29, 2626–2628 (2004).
[Crossref]

Clarijs, J.

J. Hernandez-Rueda, J. Clarijs, D. van Oosten, and D. M. Krol, “The influence of femtosecond laser wavelength on waveguide fabrication inside fused silica,” Appl. Phys. Lett. 110, 161109 (2017).
[Crossref]

Corkum, P.

C. Hnatovsky, R. Taylor, E. Simova, P. Rajeev, D. Rayner, V. Bhardwaj, and P. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys. A 84, 47–61 (2006).
[Crossref]

Criante, L.

B. Sotillo, V. Bharadwaj, J. Hadden, M. Sakakura, A. Chiappini, T. T. Fernandez, S. Longhi, O. Jedrkiewicz, Y. Shimotsuma, L. Criante, and et al., “Diamond photonics platform enabled by femtosecond laser writing,” Sci. reports 6, 35566 (2016).
[Crossref]

Davis, K. M.

de la Cruz, A. R.

J. Hernandez-Rueda, J. Siegel, M. Galvan-Sosa, A. R. de la Cruz, M. Garcia-Lechuga, and J. Solis, “Controlling ablation mechanisms in sapphire by tuning the temporal shape of femtosecond laser pulses,” J. Opt. Soc. Am. B 32, 150–156 (2015).
[Crossref]

J. Hernandez-Rueda, J. Siegel, M. Galvan-Sosa, A. R. de la Cruz, and J. Solis, “Surface structuring of fused silica with asymmetric femtosecond laser pulse bursts,” JOSA B 30, 1352–1356 (2013).
[Crossref]

Dekker, P.

Della Valle, G.

Duan, Y.

Eaton, S.

T. Fernandez, M. Sakakura, S. Eaton, B. Sotillo, J. Siegel, J. Solis, Y. Shimotsuma, and K. Miura, “Bespoke photonic devices using ultrafast laser driven ion migration in glasses,” Prog. Mater. Sci. 94, 68 – 113 (2018).
[Crossref]

Eaton, S. M.

Ebendorff-Heidepriem, H.

Efimov, O. M.

Englert, L.

Ezquerra, T. A.

J. Hernandez-Rueda, N. Goötte, J. Siegel, M. Soccio, B. Zielinski, C. Sarpe, M. Wollenhaupt, T. A. Ezquerra, T. Baumert, and J. Solis, “Nanofabrication of tailored surface structures in dielectrics using temporally shaped femtosecond-laser pulses,” ACS applied materials & interfaces 7, 6613–6619 (2015).
[Crossref]

Fernandez, P.

T. T. Fernandez, B. Sotillo, J. d. Hoyo, J. Vallľs, R. M. Vązquez, P. Fernandez, and J. Solis, “Dual regimes of ion migration in high repetition rate femtosecond laser inscribed waveguides,” IEEE Photonics Technol. Lett. 27, 1068–1071 (2015).
[Crossref]

Fernandez, T.

T. Fernandez, M. Sakakura, S. Eaton, B. Sotillo, J. Siegel, J. Solis, Y. Shimotsuma, and K. Miura, “Bespoke photonic devices using ultrafast laser driven ion migration in glasses,” Prog. Mater. Sci. 94, 68 – 113 (2018).
[Crossref]

Fernandez, T. T.

B. Sotillo, V. Bharadwaj, J. Hadden, M. Sakakura, A. Chiappini, T. T. Fernandez, S. Longhi, O. Jedrkiewicz, Y. Shimotsuma, L. Criante, and et al., “Diamond photonics platform enabled by femtosecond laser writing,” Sci. reports 6, 35566 (2016).
[Crossref]

T. T. Fernandez, B. Sotillo, J. d. Hoyo, J. Vallľs, R. M. Vązquez, P. Fernandez, and J. Solis, “Dual regimes of ion migration in high repetition rate femtosecond laser inscribed waveguides,” IEEE Photonics Technol. Lett. 27, 1068–1071 (2015).
[Crossref]

T. T. Fernandez, S. M. Eaton, G. D. Valle, R. M. Vazquez, M. Irannejad, G. Jose, A. Jha, G. Cerullo, R. Osellame, and P. Laporta, “Femtosecond laser written optical waveguide amplifier in phospho-tellurite glass,” Opt. Express 18, 20289–20297 (2010).
[Crossref] [PubMed]

T. T. Fernandez, G. D. Valle, R. Osellame, G. Jose, N. Chiodo, A. Jha, and P. Laporta, “Active waveguides written by femtosecond laser irradiation in an erbium-doped phospho-tellurite glass,” Opt. Express 16, 15198–15205 (2008).
[Crossref] [PubMed]

Fletcher, L. B.

Fuerbach, A.

Fujii, Y.

K. Hill, Y. Fujii, D. C. Johnson, and B. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[Crossref]

Fukuda, N.

Galvan-Sosa, M.

J. Hernandez-Rueda, J. Siegel, M. Galvan-Sosa, A. R. de la Cruz, M. Garcia-Lechuga, and J. Solis, “Controlling ablation mechanisms in sapphire by tuning the temporal shape of femtosecond laser pulses,” J. Opt. Soc. Am. B 32, 150–156 (2015).
[Crossref]

J. Hernandez-Rueda, J. Siegel, M. Galvan-Sosa, A. R. de la Cruz, and J. Solis, “Surface structuring of fused silica with asymmetric femtosecond laser pulse bursts,” JOSA B 30, 1352–1356 (2013).
[Crossref]

J. Hernandez-Rueda, D. Puerto, J. Siegel, M. Galvan-Sosa, and J. Solis, “Plasma dynamics and structural modifications induced by femtosecond laser pulses in quartz,” Appl. Surf. Sci. 258, 9389–9393 (2012).
[Crossref]

Garcia-Lechuga, M.

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219 (2008).
[Crossref]

Glatzel, U.

T. Gorelik, M. Will, S. Nolte, A. Tuennermann, and U. Glatzel, “Transmission electron microscopy studies of femtosecond laser induced modifications in quartz,” Appl. Phys. A 76, 309–311 (2003).
[Crossref]

Glebov, L. B.

Glebova, L. N.

Glezer, E. N.

E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71, 882–884 (1997).
[Crossref]

Gong, Q.

Q. Sun, H. Jiang, Y. Liu, Y. Zhou, H. Yang, and Q. Gong, “Effect of spherical aberration on the propagation of a tightly focused femtosecond laser pulse inside fused silica,” J. Opt. A: Pure Appl. Opt. 7, 655 (2005).
[Crossref]

Goötte, N.

J. Hernandez-Rueda, N. Goötte, J. Siegel, M. Soccio, B. Zielinski, C. Sarpe, M. Wollenhaupt, T. A. Ezquerra, T. Baumert, and J. Solis, “Nanofabrication of tailored surface structures in dielectrics using temporally shaped femtosecond-laser pulses,” ACS applied materials & interfaces 7, 6613–6619 (2015).
[Crossref]

Gorelik, T.

T. Gorelik, M. Will, S. Nolte, A. Tuennermann, and U. Glatzel, “Transmission electron microscopy studies of femtosecond laser induced modifications in quartz,” Appl. Phys. A 76, 309–311 (2003).
[Crossref]

Gross, S.

Haag, L.

Hadden, J.

B. Sotillo, V. Bharadwaj, J. Hadden, M. Sakakura, A. Chiappini, T. T. Fernandez, S. Longhi, O. Jedrkiewicz, Y. Shimotsuma, L. Criante, and et al., “Diamond photonics platform enabled by femtosecond laser writing,” Sci. reports 6, 35566 (2016).
[Crossref]

Harned, N.

C. Wagner and N. Harned, “Euv lithography: Lithography gets extreme,” Nat. Photonics 4, 24 (2010).
[Crossref]

Hayden, J. S.

J. W. Chan, T. R. Huser, S. H. Risbud, J. S. Hayden, and D. M. Krol, “Waveguide fabrication in phosphate glasses using femtosecond laser pulses,” Appl. Phys. Lett. 82, 2371–2373 (2003).
[Crossref]

J. W. Chan, T. Huser, J. S. Hayden, S. H. Risbud, and D. M. Krol, “Fluorescence spectroscopy of color centers generated in phosphate glasses after exposure to femtosecond laser pulses,” J. Am. Ceram. Soc. 85, 1037–1040 (2002).
[Crossref]

Herman, P. R.

W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99, 123112 (2006).
[Crossref]

S. M. Eaton, H. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Y. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13, 4708–4716 (2005).
[Crossref] [PubMed]

Hernandez-Rueda, J.

J. Hernandez-Rueda, J. Clarijs, D. van Oosten, and D. M. Krol, “The influence of femtosecond laser wavelength on waveguide fabrication inside fused silica,” Appl. Phys. Lett. 110, 161109 (2017).
[Crossref]

J. J. Witcher, J. Hernandez-Rueda, and D. M. Krol, “Fs-laser processing of glass: Plasma dynamics and spectroscopy,” Int. J. Appl. Glass Sci. 6, 220–228 (2015).
[Crossref]

J. Hernandez-Rueda, J. Siegel, M. Galvan-Sosa, A. R. de la Cruz, M. Garcia-Lechuga, and J. Solis, “Controlling ablation mechanisms in sapphire by tuning the temporal shape of femtosecond laser pulses,” J. Opt. Soc. Am. B 32, 150–156 (2015).
[Crossref]

J. Hernandez-Rueda, N. Goötte, J. Siegel, M. Soccio, B. Zielinski, C. Sarpe, M. Wollenhaupt, T. A. Ezquerra, T. Baumert, and J. Solis, “Nanofabrication of tailored surface structures in dielectrics using temporally shaped femtosecond-laser pulses,” ACS applied materials & interfaces 7, 6613–6619 (2015).
[Crossref]

J. Hernandez-Rueda, J. Siegel, M. Galvan-Sosa, A. R. de la Cruz, and J. Solis, “Surface structuring of fused silica with asymmetric femtosecond laser pulse bursts,” JOSA B 30, 1352–1356 (2013).
[Crossref]

J. Hernandez-Rueda, D. Puerto, J. Siegel, M. Galvan-Sosa, and J. Solis, “Plasma dynamics and structural modifications induced by femtosecond laser pulses in quartz,” Appl. Surf. Sci. 258, 9389–9393 (2012).
[Crossref]

Hill, K.

K. Hill, Y. Fujii, D. C. Johnson, and B. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[Crossref]

Hirao, K.

M. Sakakura, T. Kurita, M. Shimizu, K. Yoshimura, Y. Shimotsuma, N. Fukuda, K. Hirao, and K. Miura, “Shape control of elemental distributions inside a glass by simultaneous femtosecond laser irradiation at multiple spots,” Opt. Lett. 38, 4939–4942 (2013).
[Crossref] [PubMed]

K. Hirao and K. Miura, “Writing waveguides and gratings in silica and related materials by a femtosecond laser,” J. non-crystalline solids 239, 91–95 (1998).
[Crossref]

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329–3331 (1997).
[Crossref]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729–1731 (1996).
[Crossref]

Hnatovsky, C.

C. Hnatovsky, R. Taylor, E. Simova, P. Rajeev, D. Rayner, V. Bhardwaj, and P. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys. A 84, 47–61 (2006).
[Crossref]

Hoyo, J. d.

T. T. Fernandez, B. Sotillo, J. d. Hoyo, J. Vallľs, R. M. Vązquez, P. Fernandez, and J. Solis, “Dual regimes of ion migration in high repetition rate femtosecond laser inscribed waveguides,” IEEE Photonics Technol. Lett. 27, 1068–1071 (2015).
[Crossref]

Huser, T.

J. W. Chan, T. Huser, J. S. Hayden, S. H. Risbud, and D. M. Krol, “Fluorescence spectroscopy of color centers generated in phosphate glasses after exposure to femtosecond laser pulses,” J. Am. Ceram. Soc. 85, 1037–1040 (2002).
[Crossref]

Huser, T. R.

J. W. Chan, T. R. Huser, S. H. Risbud, J. S. Hayden, and D. M. Krol, “Waveguide fabrication in phosphate glasses using femtosecond laser pulses,” Appl. Phys. Lett. 82, 2371–2373 (2003).
[Crossref]

Inouye, H.

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329–3331 (1997).
[Crossref]

Irannejad, M.

Jaque, D.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic nd:yag waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95, 85–96 (2009).
[Crossref]

Jaque, F.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic nd:yag waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95, 85–96 (2009).
[Crossref]

Jedrkiewicz, O.

B. Sotillo, V. Bharadwaj, J. Hadden, M. Sakakura, A. Chiappini, T. T. Fernandez, S. Longhi, O. Jedrkiewicz, Y. Shimotsuma, L. Criante, and et al., “Diamond photonics platform enabled by femtosecond laser writing,” Sci. reports 6, 35566 (2016).
[Crossref]

Jesacher, A.

Jha, A.

A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped teo2 and geo2 glasses as laser materials,” Prog. Mater. Sci. 57, 1426–1491 (2012).
[Crossref]

T. T. Fernandez, S. M. Eaton, G. D. Valle, R. M. Vazquez, M. Irannejad, G. Jose, A. Jha, G. Cerullo, R. Osellame, and P. Laporta, “Femtosecond laser written optical waveguide amplifier in phospho-tellurite glass,” Opt. Express 18, 20289–20297 (2010).
[Crossref] [PubMed]

T. T. Fernandez, G. D. Valle, R. Osellame, G. Jose, N. Chiodo, A. Jha, and P. Laporta, “Active waveguides written by femtosecond laser irradiation in an erbium-doped phospho-tellurite glass,” Opt. Express 16, 15198–15205 (2008).
[Crossref] [PubMed]

N. Psaila, R. Thomson, H. Bookey, A. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er: Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett. 90, 131102 (2007).
[Crossref]

Jiang, H.

Q. Sun, H. Jiang, Y. Liu, Y. Zhou, H. Yang, and Q. Gong, “Effect of spherical aberration on the propagation of a tightly focused femtosecond laser pulse inside fused silica,” J. Opt. A: Pure Appl. Opt. 7, 655 (2005).
[Crossref]

Jiang, X.

A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped teo2 and geo2 glasses as laser materials,” Prog. Mater. Sci. 57, 1426–1491 (2012).
[Crossref]

Johnson, D. C.

K. Hill, Y. Fujii, D. C. Johnson, and B. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[Crossref]

Jose, G.

Joshi, P.

A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped teo2 and geo2 glasses as laser materials,” Prog. Mater. Sci. 57, 1426–1491 (2012).
[Crossref]

Juodkazis, S.

A. Marcinkevičius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys. A 76, 257–260 (2003).
[Crossref]

Kar, A.

N. Psaila, R. Thomson, H. Bookey, A. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er: Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett. 90, 131102 (2007).
[Crossref]

Kawasaki, B.

K. Hill, Y. Fujii, D. C. Johnson, and B. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[Crossref]

Khrushchev, I.

Killi, A.

R. Osellame, N. Chiodo, G. D. Valle, G. Cerullo, R. Ramponi, P. Laporta, A. Killi, U. Morgner, and O. Svelto, “Waveguide lasers in the c-band fabricated by laser inscription with a compact femtosecond oscillator,” IEEE J. Sel. Top. Quantum Electron. 12, 277–285 (2006).
[Crossref]

S. Taccheo, G. Della Valle, R. Osellame, G. Cerullo, N. Chiodo, P. Laporta, O. Svelto, A. Killi, U. Morgner, M. Lederer, and et al., “Er: Yb-doped waveguide laser fabricated by femtosecond laser pulses,” Opt. Lett. 29, 2626–2628 (2004).
[Crossref]

Krol, D.

D. Krol, “Femtosecond laser modification of glass,” J. Non-Crystalline Solids 354, 416–424 (2008).
[Crossref]

Krol, D. M.

J. Hernandez-Rueda, J. Clarijs, D. van Oosten, and D. M. Krol, “The influence of femtosecond laser wavelength on waveguide fabrication inside fused silica,” Appl. Phys. Lett. 110, 161109 (2017).
[Crossref]

J. J. Witcher, J. Hernandez-Rueda, and D. M. Krol, “Fs-laser processing of glass: Plasma dynamics and spectroscopy,” Int. J. Appl. Glass Sci. 6, 220–228 (2015).
[Crossref]

L. B. Fletcher, J. J. Witcher, N. Troy, S. T. Reis, R. K. Brow, and D. M. Krol, “Effects of rare-earth doping on femtosecond laser waveguide writing in zinc polyphosphate glass,” J. Appl. Phys. 112, 023109 (2012).
[Crossref]

L. B. Fletcher, J. J. Witcher, N. Troy, R. K. Brow, and D. M. Krol, “Single-pass waveguide amplifiers in er-yb doped zinc polyphosphate glass fabricated with femtosecond laser pulses,” Opt. Lett. 37, 1148–1150 (2012).
[Crossref]

L. B. Fletcher, J. J. Witcher, N. Troy, S. T. Reis, R. K. Brow, and D. M. Krol, “Direct femtosecond laser waveguide writing inside zinc phosphate glass,” Opt. express 19, 7929–7936 (2011).
[Crossref] [PubMed]

L. B. Fletcher, J. J. Witcher, N. Troy, S. T. Reis, R. K. Brow, R. M. Vazquez, R. Osellame, and D. M. Krol, “Femtosecond laser writing of waveguides in zinc phosphate glasses,” Opt. Mater. Express 1, 845–855 (2011).
[Crossref]

W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99, 123112 (2006).
[Crossref]

J. W. Chan, T. R. Huser, S. H. Risbud, J. S. Hayden, and D. M. Krol, “Waveguide fabrication in phosphate glasses using femtosecond laser pulses,” Appl. Phys. Lett. 82, 2371–2373 (2003).
[Crossref]

J. W. Chan, T. Huser, J. S. Hayden, S. H. Risbud, and D. M. Krol, “Fluorescence spectroscopy of color centers generated in phosphate glasses after exposure to femtosecond laser pulses,” J. Am. Ceram. Soc. 85, 1037–1040 (2002).
[Crossref]

Kuan, K.

Kurita, T.

Lamela, J.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic nd:yag waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95, 85–96 (2009).
[Crossref]

Lancaster, D. G.

Langford, N.

Laporta, P.

Lederer, M.

Lifante, G.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic nd:yag waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95, 85–96 (2009).
[Crossref]

Little, D. J.

D. J. Little, M. Ams, P. Dekker, G. D. Marshall, and M. J. Withford, “Mechanism of femtosecond-laser induced refractive index change in phosphate glass under a low repetition-rate regime,” J. Appl. Phys. 108, 033110 (2010).
[Crossref]

Liu, Y.

Q. Sun, H. Jiang, Y. Liu, Y. Zhou, H. Yang, and Q. Gong, “Effect of spherical aberration on the propagation of a tightly focused femtosecond laser pulse inside fused silica,” J. Opt. A: Pure Appl. Opt. 7, 655 (2005).
[Crossref]

Longhi, S.

B. Sotillo, V. Bharadwaj, J. Hadden, M. Sakakura, A. Chiappini, T. T. Fernandez, S. Longhi, O. Jedrkiewicz, Y. Shimotsuma, L. Criante, and et al., “Diamond photonics platform enabled by femtosecond laser writing,” Sci. reports 6, 35566 (2016).
[Crossref]

Lousteau, J.

A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped teo2 and geo2 glasses as laser materials,” Prog. Mater. Sci. 57, 1426–1491 (2012).
[Crossref]

Marcinkevicius, A.

A. Marcinkevičius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys. A 76, 257–260 (2003).
[Crossref]

Marshall, G.

Marshall, G. D.

Matsuo, S.

A. Marcinkevičius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys. A 76, 257–260 (2003).
[Crossref]

Matthews, J. C.

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219 (2008).
[Crossref]

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12, 1784 (2001).
[Crossref]

E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71, 882–884 (1997).
[Crossref]

Metcalf, B.

Misawa, H.

A. Marcinkevičius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys. A 76, 257–260 (2003).
[Crossref]

Mitchell, J.

Mitsuyu, T.

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329–3331 (1997).
[Crossref]

Miura, K.

T. Fernandez, M. Sakakura, S. Eaton, B. Sotillo, J. Siegel, J. Solis, Y. Shimotsuma, and K. Miura, “Bespoke photonic devices using ultrafast laser driven ion migration in glasses,” Prog. Mater. Sci. 94, 68 – 113 (2018).
[Crossref]

M. Sakakura, T. Kurita, M. Shimizu, K. Yoshimura, Y. Shimotsuma, N. Fukuda, K. Hirao, and K. Miura, “Shape control of elemental distributions inside a glass by simultaneous femtosecond laser irradiation at multiple spots,” Opt. Lett. 38, 4939–4942 (2013).
[Crossref] [PubMed]

K. Hirao and K. Miura, “Writing waveguides and gratings in silica and related materials by a femtosecond laser,” J. non-crystalline solids 239, 91–95 (1998).
[Crossref]

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329–3331 (1997).
[Crossref]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729–1731 (1996).
[Crossref]

Mizeikis, V.

A. Marcinkevičius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys. A 76, 257–260 (2003).
[Crossref]

Monro, T. M.

Montagne, L.

C. E. Smith, R. K. Brow, L. Montagne, and B. Revel, “The structure and properties of zinc aluminophosphate glasses,” J. Non-Crystalline Solids 386, 105 – 114 (2014).
[Crossref]

Morgner, U.

R. Osellame, N. Chiodo, G. D. Valle, G. Cerullo, R. Ramponi, P. Laporta, A. Killi, U. Morgner, and O. Svelto, “Waveguide lasers in the c-band fabricated by laser inscription with a compact femtosecond oscillator,” IEEE J. Sel. Top. Quantum Electron. 12, 277–285 (2006).
[Crossref]

S. Taccheo, G. Della Valle, R. Osellame, G. Cerullo, N. Chiodo, P. Laporta, O. Svelto, A. Killi, U. Morgner, M. Lederer, and et al., “Er: Yb-doped waveguide laser fabricated by femtosecond laser pulses,” Opt. Lett. 29, 2626–2628 (2004).
[Crossref]

Myers, S. T.

R. K. Brow, D. R. Tallant, S. T. Myers, and C. C. Phifer, “The short-range structure of zinc polyphosphate glass,” J. Non-Crystalline Solids 191, 45–55 (1995).
[Crossref]

Nolte, S.

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured linbo3,” Appl. Phys. A 89, 127–132 (2007).
[Crossref]

T. Gorelik, M. Will, S. Nolte, A. Tuennermann, and U. Glatzel, “Transmission electron microscopy studies of femtosecond laser induced modifications in quartz,” Appl. Phys. A 76, 309–311 (2003).
[Crossref]

OâAZBrien, J. L.

Okhrimchuk, A. G.

Osellame, R.

L. B. Fletcher, J. J. Witcher, N. Troy, S. T. Reis, R. K. Brow, R. M. Vazquez, R. Osellame, and D. M. Krol, “Femtosecond laser writing of waveguides in zinc phosphate glasses,” Opt. Mater. Express 1, 845–855 (2011).
[Crossref]

T. T. Fernandez, S. M. Eaton, G. D. Valle, R. M. Vazquez, M. Irannejad, G. Jose, A. Jha, G. Cerullo, R. Osellame, and P. Laporta, “Femtosecond laser written optical waveguide amplifier in phospho-tellurite glass,” Opt. Express 18, 20289–20297 (2010).
[Crossref] [PubMed]

T. T. Fernandez, G. D. Valle, R. Osellame, G. Jose, N. Chiodo, A. Jha, and P. Laporta, “Active waveguides written by femtosecond laser irradiation in an erbium-doped phospho-tellurite glass,” Opt. Express 16, 15198–15205 (2008).
[Crossref] [PubMed]

N. Psaila, R. Thomson, H. Bookey, A. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er: Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett. 90, 131102 (2007).
[Crossref]

R. Osellame, N. Chiodo, G. D. Valle, G. Cerullo, R. Ramponi, P. Laporta, A. Killi, U. Morgner, and O. Svelto, “Waveguide lasers in the c-band fabricated by laser inscription with a compact femtosecond oscillator,” IEEE J. Sel. Top. Quantum Electron. 12, 277–285 (2006).
[Crossref]

S. Taccheo, G. Della Valle, R. Osellame, G. Cerullo, N. Chiodo, P. Laporta, O. Svelto, A. Killi, U. Morgner, M. Lederer, and et al., “Er: Yb-doped waveguide laser fabricated by femtosecond laser pulses,” Opt. Lett. 29, 2626–2628 (2004).
[Crossref]

Palmer, G.

Phifer, C. C.

R. K. Brow, D. R. Tallant, S. T. Myers, and C. C. Phifer, “The short-range structure of zinc polyphosphate glass,” J. Non-Crystalline Solids 191, 45–55 (1995).
[Crossref]

Politi, A.

Psaila, N.

N. Psaila, R. Thomson, H. Bookey, A. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er: Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett. 90, 131102 (2007).
[Crossref]

Puerto, D.

J. Hernandez-Rueda, D. Puerto, J. Siegel, M. Galvan-Sosa, and J. Solis, “Plasma dynamics and structural modifications induced by femtosecond laser pulses in quartz,” Appl. Surf. Sci. 258, 9389–9393 (2012).
[Crossref]

Qiu, J.

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329–3331 (1997).
[Crossref]

Rajeev, P.

C. Hnatovsky, R. Taylor, E. Simova, P. Rajeev, D. Rayner, V. Bhardwaj, and P. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys. A 84, 47–61 (2006).
[Crossref]

Ramponi, R.

R. Osellame, N. Chiodo, G. D. Valle, G. Cerullo, R. Ramponi, P. Laporta, A. Killi, U. Morgner, and O. Svelto, “Waveguide lasers in the c-band fabricated by laser inscription with a compact femtosecond oscillator,” IEEE J. Sel. Top. Quantum Electron. 12, 277–285 (2006).
[Crossref]

Rayner, D.

C. Hnatovsky, R. Taylor, E. Simova, P. Rajeev, D. Rayner, V. Bhardwaj, and P. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys. A 84, 47–61 (2006).
[Crossref]

Reichman, W. J.

W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99, 123112 (2006).
[Crossref]

Reis, S. T.

Rethfeld, B.

L. Englert, B. Rethfeld, L. Haag, M. Wollenhaupt, C. Sarpe-Tudoran, and T. Baumert, “Control of ionization processes in high band gap materials via tailored femtosecond pulses,” Opt. Express 15, 17855–17862 (2007).
[Crossref] [PubMed]

B. Rethfeld, K. Sokolowski-Tinten, D. von der Linde, and S. Anisimov, “Timescales in the response of materials to femtosecond laser excitation,” Appl. Phys. A 79, 767–769 (2004).
[Crossref]

B. Rethfeld, “Unified model for the free-electron avalanche in laser-irradiated dielectrics,” Phys. Rev. Lett. 92, 187401 (2004).
[Crossref] [PubMed]

Revel, B.

C. E. Smith, R. K. Brow, L. Montagne, and B. Revel, “The structure and properties of zinc aluminophosphate glasses,” J. Non-Crystalline Solids 386, 105 – 114 (2014).
[Crossref]

Richards, B.

A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped teo2 and geo2 glasses as laser materials,” Prog. Mater. Sci. 57, 1426–1491 (2012).
[Crossref]

Richardson, K. C.

Risbud, S. H.

J. W. Chan, T. R. Huser, S. H. Risbud, J. S. Hayden, and D. M. Krol, “Waveguide fabrication in phosphate glasses using femtosecond laser pulses,” Appl. Phys. Lett. 82, 2371–2373 (2003).
[Crossref]

J. W. Chan, T. Huser, J. S. Hayden, S. H. Risbud, and D. M. Krol, “Fluorescence spectroscopy of color centers generated in phosphate glasses after exposure to femtosecond laser pulses,” J. Am. Ceram. Soc. 85, 1037–1040 (2002).
[Crossref]

Ródenas, A.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic nd:yag waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95, 85–96 (2009).
[Crossref]

Roso, L.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic nd:yag waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95, 85–96 (2009).
[Crossref]

Sakakura, M.

T. Fernandez, M. Sakakura, S. Eaton, B. Sotillo, J. Siegel, J. Solis, Y. Shimotsuma, and K. Miura, “Bespoke photonic devices using ultrafast laser driven ion migration in glasses,” Prog. Mater. Sci. 94, 68 – 113 (2018).
[Crossref]

B. Sotillo, V. Bharadwaj, J. Hadden, M. Sakakura, A. Chiappini, T. T. Fernandez, S. Longhi, O. Jedrkiewicz, Y. Shimotsuma, L. Criante, and et al., “Diamond photonics platform enabled by femtosecond laser writing,” Sci. reports 6, 35566 (2016).
[Crossref]

M. Sakakura, T. Kurita, M. Shimizu, K. Yoshimura, Y. Shimotsuma, N. Fukuda, K. Hirao, and K. Miura, “Shape control of elemental distributions inside a glass by simultaneous femtosecond laser irradiation at multiple spots,” Opt. Lett. 38, 4939–4942 (2013).
[Crossref] [PubMed]

Salter, P.

Sarpe, C.

J. Hernandez-Rueda, N. Goötte, J. Siegel, M. Soccio, B. Zielinski, C. Sarpe, M. Wollenhaupt, T. A. Ezquerra, T. Baumert, and J. Solis, “Nanofabrication of tailored surface structures in dielectrics using temporally shaped femtosecond-laser pulses,” ACS applied materials & interfaces 7, 6613–6619 (2015).
[Crossref]

Sarpe-Tudoran, C.

Schaffer, C. B.

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12, 1784 (2001).
[Crossref]

Shah, L.

W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99, 123112 (2006).
[Crossref]

S. M. Eaton, H. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Y. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13, 4708–4716 (2005).
[Crossref] [PubMed]

Shen, S.

N. Psaila, R. Thomson, H. Bookey, A. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er: Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett. 90, 131102 (2007).
[Crossref]

Shestakov, A. V.

Shimizu, M.

Shimotsuma, Y.

T. Fernandez, M. Sakakura, S. Eaton, B. Sotillo, J. Siegel, J. Solis, Y. Shimotsuma, and K. Miura, “Bespoke photonic devices using ultrafast laser driven ion migration in glasses,” Prog. Mater. Sci. 94, 68 – 113 (2018).
[Crossref]

B. Sotillo, V. Bharadwaj, J. Hadden, M. Sakakura, A. Chiappini, T. T. Fernandez, S. Longhi, O. Jedrkiewicz, Y. Shimotsuma, L. Criante, and et al., “Diamond photonics platform enabled by femtosecond laser writing,” Sci. reports 6, 35566 (2016).
[Crossref]

M. Sakakura, T. Kurita, M. Shimizu, K. Yoshimura, Y. Shimotsuma, N. Fukuda, K. Hirao, and K. Miura, “Shape control of elemental distributions inside a glass by simultaneous femtosecond laser irradiation at multiple spots,” Opt. Lett. 38, 4939–4942 (2013).
[Crossref] [PubMed]

Siegel, J.

T. Fernandez, M. Sakakura, S. Eaton, B. Sotillo, J. Siegel, J. Solis, Y. Shimotsuma, and K. Miura, “Bespoke photonic devices using ultrafast laser driven ion migration in glasses,” Prog. Mater. Sci. 94, 68 – 113 (2018).
[Crossref]

J. Hernandez-Rueda, J. Siegel, M. Galvan-Sosa, A. R. de la Cruz, M. Garcia-Lechuga, and J. Solis, “Controlling ablation mechanisms in sapphire by tuning the temporal shape of femtosecond laser pulses,” J. Opt. Soc. Am. B 32, 150–156 (2015).
[Crossref]

J. Hernandez-Rueda, N. Goötte, J. Siegel, M. Soccio, B. Zielinski, C. Sarpe, M. Wollenhaupt, T. A. Ezquerra, T. Baumert, and J. Solis, “Nanofabrication of tailored surface structures in dielectrics using temporally shaped femtosecond-laser pulses,” ACS applied materials & interfaces 7, 6613–6619 (2015).
[Crossref]

J. Hernandez-Rueda, J. Siegel, M. Galvan-Sosa, A. R. de la Cruz, and J. Solis, “Surface structuring of fused silica with asymmetric femtosecond laser pulse bursts,” JOSA B 30, 1352–1356 (2013).
[Crossref]

J. Hernandez-Rueda, D. Puerto, J. Siegel, M. Galvan-Sosa, and J. Solis, “Plasma dynamics and structural modifications induced by femtosecond laser pulses in quartz,” Appl. Surf. Sci. 258, 9389–9393 (2012).
[Crossref]

Simmonds, R. D.

Simova, E.

C. Hnatovsky, R. Taylor, E. Simova, P. Rajeev, D. Rayner, V. Bhardwaj, and P. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys. A 84, 47–61 (2006).
[Crossref]

Smirnov, V. I.

Smith, C. E.

C. E. Smith, R. K. Brow, L. Montagne, and B. Revel, “The structure and properties of zinc aluminophosphate glasses,” J. Non-Crystalline Solids 386, 105 – 114 (2014).
[Crossref]

Soccio, M.

J. Hernandez-Rueda, N. Goötte, J. Siegel, M. Soccio, B. Zielinski, C. Sarpe, M. Wollenhaupt, T. A. Ezquerra, T. Baumert, and J. Solis, “Nanofabrication of tailored surface structures in dielectrics using temporally shaped femtosecond-laser pulses,” ACS applied materials & interfaces 7, 6613–6619 (2015).
[Crossref]

Sokolowski-Tinten, K.

B. Rethfeld, K. Sokolowski-Tinten, D. von der Linde, and S. Anisimov, “Timescales in the response of materials to femtosecond laser excitation,” Appl. Phys. A 79, 767–769 (2004).
[Crossref]

Solis, J.

T. Fernandez, M. Sakakura, S. Eaton, B. Sotillo, J. Siegel, J. Solis, Y. Shimotsuma, and K. Miura, “Bespoke photonic devices using ultrafast laser driven ion migration in glasses,” Prog. Mater. Sci. 94, 68 – 113 (2018).
[Crossref]

J. Hernandez-Rueda, J. Siegel, M. Galvan-Sosa, A. R. de la Cruz, M. Garcia-Lechuga, and J. Solis, “Controlling ablation mechanisms in sapphire by tuning the temporal shape of femtosecond laser pulses,” J. Opt. Soc. Am. B 32, 150–156 (2015).
[Crossref]

J. Hernandez-Rueda, N. Goötte, J. Siegel, M. Soccio, B. Zielinski, C. Sarpe, M. Wollenhaupt, T. A. Ezquerra, T. Baumert, and J. Solis, “Nanofabrication of tailored surface structures in dielectrics using temporally shaped femtosecond-laser pulses,” ACS applied materials & interfaces 7, 6613–6619 (2015).
[Crossref]

T. T. Fernandez, B. Sotillo, J. d. Hoyo, J. Vallľs, R. M. Vązquez, P. Fernandez, and J. Solis, “Dual regimes of ion migration in high repetition rate femtosecond laser inscribed waveguides,” IEEE Photonics Technol. Lett. 27, 1068–1071 (2015).
[Crossref]

J. Hernandez-Rueda, J. Siegel, M. Galvan-Sosa, A. R. de la Cruz, and J. Solis, “Surface structuring of fused silica with asymmetric femtosecond laser pulse bursts,” JOSA B 30, 1352–1356 (2013).
[Crossref]

J. Hernandez-Rueda, D. Puerto, J. Siegel, M. Galvan-Sosa, and J. Solis, “Plasma dynamics and structural modifications induced by femtosecond laser pulses in quartz,” Appl. Surf. Sci. 258, 9389–9393 (2012).
[Crossref]

Sotillo, B.

T. Fernandez, M. Sakakura, S. Eaton, B. Sotillo, J. Siegel, J. Solis, Y. Shimotsuma, and K. Miura, “Bespoke photonic devices using ultrafast laser driven ion migration in glasses,” Prog. Mater. Sci. 94, 68 – 113 (2018).
[Crossref]

B. Sotillo, V. Bharadwaj, J. Hadden, M. Sakakura, A. Chiappini, T. T. Fernandez, S. Longhi, O. Jedrkiewicz, Y. Shimotsuma, L. Criante, and et al., “Diamond photonics platform enabled by femtosecond laser writing,” Sci. reports 6, 35566 (2016).
[Crossref]

T. T. Fernandez, B. Sotillo, J. d. Hoyo, J. Vallľs, R. M. Vązquez, P. Fernandez, and J. Solis, “Dual regimes of ion migration in high repetition rate femtosecond laser inscribed waveguides,” IEEE Photonics Technol. Lett. 27, 1068–1071 (2015).
[Crossref]

Spence, D.

Spring, J.

Streltsov, A. M.

A. M. Streltsov and N. F. Borrelli, “Study of femtosecond-laser-written waveguides in glasses,” JOSA B 19, 2496–2504 (2002).
[Crossref]

Sugimoto, N.

Sun, Q.

Q. Sun, H. Jiang, Y. Liu, Y. Zhou, H. Yang, and Q. Gong, “Effect of spherical aberration on the propagation of a tightly focused femtosecond laser pulse inside fused silica,” J. Opt. A: Pure Appl. Opt. 7, 655 (2005).
[Crossref]

Svelto, O.

R. Osellame, N. Chiodo, G. D. Valle, G. Cerullo, R. Ramponi, P. Laporta, A. Killi, U. Morgner, and O. Svelto, “Waveguide lasers in the c-band fabricated by laser inscription with a compact femtosecond oscillator,” IEEE J. Sel. Top. Quantum Electron. 12, 277–285 (2006).
[Crossref]

S. Taccheo, G. Della Valle, R. Osellame, G. Cerullo, N. Chiodo, P. Laporta, O. Svelto, A. Killi, U. Morgner, M. Lederer, and et al., “Er: Yb-doped waveguide laser fabricated by femtosecond laser pulses,” Opt. Lett. 29, 2626–2628 (2004).
[Crossref]

Taccheo, S.

Tallant, D. R.

R. K. Brow, D. R. Tallant, S. T. Myers, and C. C. Phifer, “The short-range structure of zinc polyphosphate glass,” J. Non-Crystalline Solids 191, 45–55 (1995).
[Crossref]

Taylor, R.

C. Hnatovsky, R. Taylor, E. Simova, P. Rajeev, D. Rayner, V. Bhardwaj, and P. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys. A 84, 47–61 (2006).
[Crossref]

Teddy-Fernandez, T.

A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped teo2 and geo2 glasses as laser materials,” Prog. Mater. Sci. 57, 1426–1491 (2012).
[Crossref]

Thomas-Peter, N.

Thomson, R.

N. Psaila, R. Thomson, H. Bookey, A. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er: Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett. 90, 131102 (2007).
[Crossref]

Torchia, G. A.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic nd:yag waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95, 85–96 (2009).
[Crossref]

Troy, N.

Tuennermann, A.

T. Gorelik, M. Will, S. Nolte, A. Tuennermann, and U. Glatzel, “Transmission electron microscopy studies of femtosecond laser induced modifications in quartz,” Appl. Phys. A 76, 309–311 (2003).
[Crossref]

Tünnermann, A.

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured linbo3,” Appl. Phys. A 89, 127–132 (2007).
[Crossref]

Valle, G. D.

Vallls, J.

T. T. Fernandez, B. Sotillo, J. d. Hoyo, J. Vallľs, R. M. Vązquez, P. Fernandez, and J. Solis, “Dual regimes of ion migration in high repetition rate femtosecond laser inscribed waveguides,” IEEE Photonics Technol. Lett. 27, 1068–1071 (2015).
[Crossref]

van Oosten, D.

J. Hernandez-Rueda, J. Clarijs, D. van Oosten, and D. M. Krol, “The influence of femtosecond laser wavelength on waveguide fabrication inside fused silica,” Appl. Phys. Lett. 110, 161109 (2017).
[Crossref]

Vazquez, R. M.

Venugopalan, V.

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103, 577–644 (2003).
[Crossref] [PubMed]

Vogel, A.

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103, 577–644 (2003).
[Crossref] [PubMed]

von der Linde, D.

B. Rethfeld, K. Sokolowski-Tinten, D. von der Linde, and S. Anisimov, “Timescales in the response of materials to femtosecond laser excitation,” Appl. Phys. A 79, 767–769 (2004).
[Crossref]

Wagner, C.

C. Wagner and N. Harned, “Euv lithography: Lithography gets extreme,” Nat. Photonics 4, 24 (2010).
[Crossref]

Walmsley, I.

Will, M.

T. Gorelik, M. Will, S. Nolte, A. Tuennermann, and U. Glatzel, “Transmission electron microscopy studies of femtosecond laser induced modifications in quartz,” Appl. Phys. A 76, 309–311 (2003).
[Crossref]

Witcher, J. J.

Withford, M.

Withford, M. J.

Wollenhaupt, M.

J. Hernandez-Rueda, N. Goötte, J. Siegel, M. Soccio, B. Zielinski, C. Sarpe, M. Wollenhaupt, T. A. Ezquerra, T. Baumert, and J. Solis, “Nanofabrication of tailored surface structures in dielectrics using temporally shaped femtosecond-laser pulses,” ACS applied materials & interfaces 7, 6613–6619 (2015).
[Crossref]

L. Englert, B. Rethfeld, L. Haag, M. Wollenhaupt, C. Sarpe-Tudoran, and T. Baumert, “Control of ionization processes in high band gap materials via tailored femtosecond pulses,” Opt. Express 15, 17855–17862 (2007).
[Crossref] [PubMed]

Yang, H.

Q. Sun, H. Jiang, Y. Liu, Y. Zhou, H. Yang, and Q. Gong, “Effect of spherical aberration on the propagation of a tightly focused femtosecond laser pulse inside fused silica,” J. Opt. A: Pure Appl. Opt. 7, 655 (2005).
[Crossref]

Yoshimura, K.

Yoshino, F.

W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99, 123112 (2006).
[Crossref]

S. M. Eaton, H. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Y. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13, 4708–4716 (2005).
[Crossref] [PubMed]

Zhang, H.

Zhou, Y.

Q. Sun, H. Jiang, Y. Liu, Y. Zhou, H. Yang, and Q. Gong, “Effect of spherical aberration on the propagation of a tightly focused femtosecond laser pulse inside fused silica,” J. Opt. A: Pure Appl. Opt. 7, 655 (2005).
[Crossref]

Zielinski, B.

J. Hernandez-Rueda, N. Goötte, J. Siegel, M. Soccio, B. Zielinski, C. Sarpe, M. Wollenhaupt, T. A. Ezquerra, T. Baumert, and J. Solis, “Nanofabrication of tailored surface structures in dielectrics using temporally shaped femtosecond-laser pulses,” ACS applied materials & interfaces 7, 6613–6619 (2015).
[Crossref]

ACS applied materials & interfaces (1)

J. Hernandez-Rueda, N. Goötte, J. Siegel, M. Soccio, B. Zielinski, C. Sarpe, M. Wollenhaupt, T. A. Ezquerra, T. Baumert, and J. Solis, “Nanofabrication of tailored surface structures in dielectrics using temporally shaped femtosecond-laser pulses,” ACS applied materials & interfaces 7, 6613–6619 (2015).
[Crossref]

Appl. Opt. (1)

Appl. Phys. A (5)

B. Rethfeld, K. Sokolowski-Tinten, D. von der Linde, and S. Anisimov, “Timescales in the response of materials to femtosecond laser excitation,” Appl. Phys. A 79, 767–769 (2004).
[Crossref]

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured linbo3,” Appl. Phys. A 89, 127–132 (2007).
[Crossref]

T. Gorelik, M. Will, S. Nolte, A. Tuennermann, and U. Glatzel, “Transmission electron microscopy studies of femtosecond laser induced modifications in quartz,” Appl. Phys. A 76, 309–311 (2003).
[Crossref]

C. Hnatovsky, R. Taylor, E. Simova, P. Rajeev, D. Rayner, V. Bhardwaj, and P. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys. A 84, 47–61 (2006).
[Crossref]

A. Marcinkevičius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys. A 76, 257–260 (2003).
[Crossref]

Appl. Phys. B (1)

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic nd:yag waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95, 85–96 (2009).
[Crossref]

Appl. Phys. Lett. (6)

J. W. Chan, T. R. Huser, S. H. Risbud, J. S. Hayden, and D. M. Krol, “Waveguide fabrication in phosphate glasses using femtosecond laser pulses,” Appl. Phys. Lett. 82, 2371–2373 (2003).
[Crossref]

E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71, 882–884 (1997).
[Crossref]

N. Psaila, R. Thomson, H. Bookey, A. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er: Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett. 90, 131102 (2007).
[Crossref]

J. Hernandez-Rueda, J. Clarijs, D. van Oosten, and D. M. Krol, “The influence of femtosecond laser wavelength on waveguide fabrication inside fused silica,” Appl. Phys. Lett. 110, 161109 (2017).
[Crossref]

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329–3331 (1997).
[Crossref]

K. Hill, Y. Fujii, D. C. Johnson, and B. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[Crossref]

Appl. Surf. Sci. (1)

J. Hernandez-Rueda, D. Puerto, J. Siegel, M. Galvan-Sosa, and J. Solis, “Plasma dynamics and structural modifications induced by femtosecond laser pulses in quartz,” Appl. Surf. Sci. 258, 9389–9393 (2012).
[Crossref]

Chem. Rev. (1)

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103, 577–644 (2003).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

R. Osellame, N. Chiodo, G. D. Valle, G. Cerullo, R. Ramponi, P. Laporta, A. Killi, U. Morgner, and O. Svelto, “Waveguide lasers in the c-band fabricated by laser inscription with a compact femtosecond oscillator,” IEEE J. Sel. Top. Quantum Electron. 12, 277–285 (2006).
[Crossref]

IEEE Photonics Technol. Lett. (1)

T. T. Fernandez, B. Sotillo, J. d. Hoyo, J. Vallľs, R. M. Vązquez, P. Fernandez, and J. Solis, “Dual regimes of ion migration in high repetition rate femtosecond laser inscribed waveguides,” IEEE Photonics Technol. Lett. 27, 1068–1071 (2015).
[Crossref]

Int. J. Appl. Glass Sci. (1)

J. J. Witcher, J. Hernandez-Rueda, and D. M. Krol, “Fs-laser processing of glass: Plasma dynamics and spectroscopy,” Int. J. Appl. Glass Sci. 6, 220–228 (2015).
[Crossref]

J. Am. Ceram. Soc. (1)

J. W. Chan, T. Huser, J. S. Hayden, S. H. Risbud, and D. M. Krol, “Fluorescence spectroscopy of color centers generated in phosphate glasses after exposure to femtosecond laser pulses,” J. Am. Ceram. Soc. 85, 1037–1040 (2002).
[Crossref]

J. Appl. Phys. (3)

W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99, 123112 (2006).
[Crossref]

D. J. Little, M. Ams, P. Dekker, G. D. Marshall, and M. J. Withford, “Mechanism of femtosecond-laser induced refractive index change in phosphate glass under a low repetition-rate regime,” J. Appl. Phys. 108, 033110 (2010).
[Crossref]

L. B. Fletcher, J. J. Witcher, N. Troy, S. T. Reis, R. K. Brow, and D. M. Krol, “Effects of rare-earth doping on femtosecond laser waveguide writing in zinc polyphosphate glass,” J. Appl. Phys. 112, 023109 (2012).
[Crossref]

J. Non-Crystalline Solids (3)

D. Krol, “Femtosecond laser modification of glass,” J. Non-Crystalline Solids 354, 416–424 (2008).
[Crossref]

R. K. Brow, D. R. Tallant, S. T. Myers, and C. C. Phifer, “The short-range structure of zinc polyphosphate glass,” J. Non-Crystalline Solids 191, 45–55 (1995).
[Crossref]

C. E. Smith, R. K. Brow, L. Montagne, and B. Revel, “The structure and properties of zinc aluminophosphate glasses,” J. Non-Crystalline Solids 386, 105 – 114 (2014).
[Crossref]

K. Hirao and K. Miura, “Writing waveguides and gratings in silica and related materials by a femtosecond laser,” J. non-crystalline solids 239, 91–95 (1998).
[Crossref]

J. Opt. A: Pure Appl. Opt. (1)

Q. Sun, H. Jiang, Y. Liu, Y. Zhou, H. Yang, and Q. Gong, “Effect of spherical aberration on the propagation of a tightly focused femtosecond laser pulse inside fused silica,” J. Opt. A: Pure Appl. Opt. 7, 655 (2005).
[Crossref]

J. Opt. Soc. Am. B (1)

JOSA B (2)

A. M. Streltsov and N. F. Borrelli, “Study of femtosecond-laser-written waveguides in glasses,” JOSA B 19, 2496–2504 (2002).
[Crossref]

J. Hernandez-Rueda, J. Siegel, M. Galvan-Sosa, A. R. de la Cruz, and J. Solis, “Surface structuring of fused silica with asymmetric femtosecond laser pulse bursts,” JOSA B 30, 1352–1356 (2013).
[Crossref]

Meas. Sci. Technol. (1)

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12, 1784 (2001).
[Crossref]

Nat. Photonics (2)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219 (2008).
[Crossref]

C. Wagner and N. Harned, “Euv lithography: Lithography gets extreme,” Nat. Photonics 4, 24 (2010).
[Crossref]

Opt. Express (5)

S. M. Eaton, H. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Y. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13, 4708–4716 (2005).
[Crossref] [PubMed]

M. Ams, G. Marshall, D. Spence, and M. Withford, “Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses,” Opt. express 13, 5676–5681 (2005).
[Crossref] [PubMed]

L. Englert, B. Rethfeld, L. Haag, M. Wollenhaupt, C. Sarpe-Tudoran, and T. Baumert, “Control of ionization processes in high band gap materials via tailored femtosecond pulses,” Opt. Express 15, 17855–17862 (2007).
[Crossref] [PubMed]

T. T. Fernandez, G. D. Valle, R. Osellame, G. Jose, N. Chiodo, A. Jha, and P. Laporta, “Active waveguides written by femtosecond laser irradiation in an erbium-doped phospho-tellurite glass,” Opt. Express 16, 15198–15205 (2008).
[Crossref] [PubMed]

G. D. Marshall, A. Politi, J. C. Matthews, P. Dekker, M. Ams, M. J. Withford, and J. L. OâĂŹBrien, “Laser written waveguide photonic quantum circuits,” Opt. Express 17, 12546–12554 (2009).
[Crossref] [PubMed]

T. T. Fernandez, S. M. Eaton, G. D. Valle, R. M. Vazquez, M. Irannejad, G. Jose, A. Jha, G. Cerullo, R. Osellame, and P. Laporta, “Femtosecond laser written optical waveguide amplifier in phospho-tellurite glass,” Opt. Express 18, 20289–20297 (2010).
[Crossref] [PubMed]

L. B. Fletcher, J. J. Witcher, N. Troy, S. T. Reis, R. K. Brow, and D. M. Krol, “Direct femtosecond laser waveguide writing inside zinc phosphate glass,” Opt. express 19, 7929–7936 (2011).
[Crossref] [PubMed]

Opt. Lett. (8)

D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, K. Kuan, T. M. Monro, M. Ams, A. Fuerbach, and M. J. Withford, “Fifty percent internal slope efficiency femtosecond direct-written tm3+:zblan waveguide laser,” Opt. Lett. 36, 1587–1589 (2011).
[Crossref] [PubMed]

G. D. Marshall, M. Ams, and M. J. Withford, “Direct laser written waveguide-Bragg gratings in bulk fused silica,” Opt. Lett. 31, 2690–2691 (2006).
[Crossref] [PubMed]

A. G. Okhrimchuk, A. V. Shestakov, I. Khrushchev, and J. Mitchell, “Depressed cladding, buried waveguide laser formed in a yag:nd3+ crystal by femtosecond laser writing,” Opt. Lett. 30, 2248–2250 (2005).
[Crossref] [PubMed]

P. Salter, A. Jesacher, J. Spring, B. Metcalf, N. Thomas-Peter, R. D. Simmonds, N. Langford, I. Walmsley, and M. J. Booth, “Adaptive slit beam shaping for direct laser written waveguides,” Opt. Lett. 37, 470–472 (2012).
[Crossref]

L. B. Fletcher, J. J. Witcher, N. Troy, R. K. Brow, and D. M. Krol, “Single-pass waveguide amplifiers in er-yb doped zinc polyphosphate glass fabricated with femtosecond laser pulses,” Opt. Lett. 37, 1148–1150 (2012).
[Crossref]

M. Sakakura, T. Kurita, M. Shimizu, K. Yoshimura, Y. Shimotsuma, N. Fukuda, K. Hirao, and K. Miura, “Shape control of elemental distributions inside a glass by simultaneous femtosecond laser irradiation at multiple spots,” Opt. Lett. 38, 4939–4942 (2013).
[Crossref] [PubMed]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729–1731 (1996).
[Crossref]

S. Taccheo, G. Della Valle, R. Osellame, G. Cerullo, N. Chiodo, P. Laporta, O. Svelto, A. Killi, U. Morgner, M. Lederer, and et al., “Er: Yb-doped waveguide laser fabricated by femtosecond laser pulses,” Opt. Lett. 29, 2626–2628 (2004).
[Crossref]

Opt. Mater. Express (2)

Phys. Rev. Lett. (1)

B. Rethfeld, “Unified model for the free-electron avalanche in laser-irradiated dielectrics,” Phys. Rev. Lett. 92, 187401 (2004).
[Crossref] [PubMed]

Prog. Mater. Sci. (2)

T. Fernandez, M. Sakakura, S. Eaton, B. Sotillo, J. Siegel, J. Solis, Y. Shimotsuma, and K. Miura, “Bespoke photonic devices using ultrafast laser driven ion migration in glasses,” Prog. Mater. Sci. 94, 68 – 113 (2018).
[Crossref]

A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped teo2 and geo2 glasses as laser materials,” Prog. Mater. Sci. 57, 1426–1491 (2012).
[Crossref]

Sci. reports (1)

B. Sotillo, V. Bharadwaj, J. Hadden, M. Sakakura, A. Chiappini, T. T. Fernandez, S. Longhi, O. Jedrkiewicz, Y. Shimotsuma, L. Criante, and et al., “Diamond photonics platform enabled by femtosecond laser writing,” Sci. reports 6, 35566 (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Experimental setup for waveguide writing, frontal and lateral optical microscopy inspection and near field characterization.
Fig. 2
Fig. 2 White light microscopy images of the cross section of a fs-laser machined waveguide (left, E = 0.5 µJ) and a track of damaged material (center, E = 2.5 µJ) produced in the sample with a composition of a 5 % Al2O3, 51 % ZnO and 44 % P2O5. Two parallel adjacent tracks of damage (right, E = 2.0 µJ) are also shown to guide light in the glass sample with a 60 % ZnO and 40 % P2O5. These lines were inscribed using a repetition rate of 1 kHz and a writing speed of 50 µm/s. The insets show WLM images of the lateral view and the near field profiles of the waveguides at 660 nm. Note that the image size and grey-scale are the same for all the images.
Fig. 3
Fig. 3 The top row shows white light microscopy images of the cross section of fs-laser machined lines within glass samples with compositions (a) 30 % ZnO 60 % P2O5 10 % Al2O3 (b) 42 % ZnO 48 % P2O5 10 % Al2O3 (c) 51 % ZnO 44 % P2O5 5 % Al2O3 and (d) 50 % ZnO and 40 % P2O5 10 % Al2O3. The [O]/[P] ratio is specified on the WLM images. The lower row shows the near field profiles measured for each line using a CW laser at 660 nm. The laser processing conditions were set the same for the four glass compositions, namely a pulse energy of 0.5 µJ, a repetition rate of 1 kHz and a writing speed of 50 µm/s.
Fig. 4
Fig. 4 WLM images of the cross section of fs-laser machined lines of modified glass using a variety of energies and 200 fs (a) and 400 fs (b) laser pulses inside sample 42 % ZnO 48 % P2O5 10 % Al2O3. The processing speed was kept constant to be 50 µm/s while using a repetition rate of 1 kHz.
Fig. 5
Fig. 5 (a) Raman spectra of the unmodified set of glasses along with composition and [O]/[P] ratios. The main Raman bands and their relation with the vibrational modes are indicated. (b) Q(i) terminology cartoons.
Fig. 6
Fig. 6 Raman spectra of unprocessed (orange) and laser-processed (blue) ternary zinc aluminum phosphate glass sample with a 10 % Al2O3, 45 % ZnO and 45 % P2O5. The arrows show the position for different relevant peaks associated to different vibrational modes, i.e. blue Q(1) and red Q(2). The schematics near the Raman bands indicate the depolymerization of Q(2) tetrahedra into Q(1). The track of damage studied here was produced by using a laser pulse energy of 5 µJ, a repetition rate of 1 kHz and a writing speed of 50µm/s.
Fig. 7
Fig. 7 Optical microscopy (a) and Raman spectral microscopy characterization (b)–(c) of laser fabricated lines inside zinc aluminum phosphate glasses. The images in the first column correspond to sample 60 % ZnO 40 % P2O5 with an [O]/[P] ratio of 3.25, the second and third columns correspond to sample 42 % ZnO 48 % P2O5 10 % Al2O3 with an [O]/[P] ratio of 3.25, the fourth column correspond to sample 45 % ZnO 45 % P2O5 10 % Al2O3 with an [O]/[P] ratio of 3.33. The false color maps in (b) present the relative amplitude change (a.u.) between 1209 cm−1/1000 cm−1 Raman peaks. The false color maps in (c) illustrate the Shift of the 1209 cm−1 Raman peak (δcm−1). Note that the whole set of images share the same lateral size. The machined lines studied here were produced by using various laser pulse energies (specified on the optical micrographs), a repetition rate of 1 kHz and a writing speed of 50µm/s.
Fig. 8
Fig. 8 (a) Waveguide Bragg grating schematic. (b) output modes of the WBGs inscribed using two processing speeds inside glass sample with composition 28 % ZnO, 28 % MgO, 42 % P2O5, 1.3 % Yb2O3 and 0.7 % Yb2O3. (c) Transmission spectra of the laser-fabricated WBGs filters. The filters inscribed using writing speeds of 210.2 µm/s and 212.2 µm/have transmission loss of −2.1 dB and −1.9 dB, respectively.

Tables (1)

Tables Icon

Table 1 Zinc alumina phosphate glass sample compositions (mole %), [O]/[P] ratios (with the EDS analyzed ratio in parenthesis), waveguide operation, refractive index change and waveguiding upper threshold. These samples are used to study optical waveguiding suitability.

Metrics