Abstract

High quality thulium doped Lu1.6Sc0.4O3 mixed sesquioxide laser ceramics were fabricated using a solid-state reactive sintering method. Optical and spectroscopic properties of the ceramics were studied. A high transmittance almost identical to the theoretical value of the ceramics was reached at the lasing wavelength. A large Stark splitting of 920 cm−1 for the ground states 3H6 and 472 cm−1 for the first excited states 3F4 of Tm3+ were observed, resulting in a long wavelength emission band around 2.09 μm with low reabsorption losses at this wavelength. CW laser operation at 2.09 μm pumped by a 796 nm laser diode was achieved with an output power of 11 W and an optical-to-optical conversion efficiency of 28.9%, both of which are the highest values reported so far for lasing around 2.1 μm in Tm3+ doped mixed sesquioxide ceramics.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Synthesis, spectroscopy, and efficient laser operation of “mixed” sesquioxide Tm:(Lu,Sc)2O3 transparent ceramics

Wei Jing, Pavel Loiko, Josep Maria Serres, Yicheng Wang, Elena Vilejshikova, Magdalena Aguiló, Francesc Díaz, Uwe Griebner, Hui Huang, Valentin Petrov, and Xavier Mateos
Opt. Mater. Express 7(11) 4192-4202 (2017)

Spectroscopy and mode-locking laser operation of Tm:LuYO3 mixed sesquioxide ceramic

Dongzhen Li, Lingchen Kong, Xiaodong Xu, Peng Liu, Guoqiang Xie, Jian Zhang, and Jun Xu
Opt. Express 27(17) 24416-24425 (2019)

Diode-pumped continuous-wave and Q-switched Tm:Y2O3 ceramic laser around 2050 nm

Hui Wang, Haitao Huang, Pian Liu, Lin Jin, Deyuan Shen, Jian Zhang, and Dingyuan Tang
Opt. Mater. Express 7(2) 296-303 (2017)

References

  • View by:
  • |
  • |
  • |

  1. K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2 mm Laser Sources and Their Possible Applications,” in Frontiers in Guided Wave Optics and Optoelectronics, E. D. Bishnu Pal, ed. (INTECH, 2010)
  2. A. Hemming, J. Richards, A. Davidson, N. Carmody, S. Bennetts, N. Simakov, and J. Haub, “99 W mid-IR operation of a ZGP OPO at 25% duty cycle,” Opt. Express 21(8), 10062–10069 (2013).
    [Crossref] [PubMed]
  3. P. A. Budni, L. A. Pomeranz, M. L. Lemons, C. A. Miller, J. R. Mosto, and E. P. Chicklis, “Efficient midinfrared laser using 1.9-µm-pumped Ho:YAG and ZnGeP2 optical parametric oscillators,” J. Opt. Soc. Am. B 17(5), 723–728 (2000).
    [Crossref]
  4. Y. J. Shen, B. Q. Yao, X. M. Duan, T. Y. Dai, Y. L. Ju, and Y. Z. Wang, “Resonantly pumped high efficiency Ho:YAG laser,” Appl. Opt. 51(33), 7887–7890 (2012).
    [Crossref] [PubMed]
  5. Y. J. Shen, B. Q. Yao, X. M. Duan, G. L. Zhu, W. Wang, Y. L. Ju, and Y. Z. Wang, “103 W in-band dual-end-pumped Ho:YAG laser,” Opt. Lett. 37(17), 3558–3560 (2012).
    [Crossref] [PubMed]
  6. J. Sanghera, W. Kim, G. Villalobos, B. Shaw, C. Baker, J. Frantz, B. Sadowski, and I. Aggarwal, “Ceramic laser materials,” Materials (Basel) 5(12), 258–277 (2012).
    [Crossref] [PubMed]
  7. P. Koopmann, S. Lamrini, K. Scholle, P. Fuhrberg, K. Petermann, and G. Huber, “Efficient diode-pumped laser operation of Tm:Lu2O3 around 2 μm,” Opt. Lett. 36(6), 948–950 (2011).
    [Crossref] [PubMed]
  8. P. Koopmann, R. Peters, K. Petermann, and G. Huber, “Crystal growth, spectroscopy, and highly efficient laser operation of thulium-doped Lu2O3 around 2 µm,” Appl. Phys. B 102(1), 19–24 (2011).
    [Crossref]
  9. P. Koopmann, S. Lamrini, K. Scholle, P. Fuhrberg, and K. Petermann, “Long wavelength laser operation of Tm:Sc2O3 at 2116 nm and beyond,” in Advances in Optical Materials, OSA Technical Digest (Optical Society of America, 2011), paper ATuA5.
  10. A. Brenier, C. Pedrini, B. Moine, J. L. Adam, and C. Pledel, “Fluorescence mechanisms in Tm3+ singly doped and Tm3+, Ho3+ doubly doped indium-based fluoride glasses,” Phys. Rev. B Condens. Matter 41(8), 5364–5371 (1990).
    [Crossref] [PubMed]
  11. V. Lupei, A. Lupei, and A. Ikesue, “Single crystal and transparent ceramic Nd-doped oxide laser materials: a comparative spectroscopic investigation,” J. Alloys Compd. 380(1), 61–70 (2004).
    [Crossref]
  12. G. A. Newburgh, A. Word-Daniels, A. Michael, L. D. Merkle, A. Ikesue, and M. Dubinskii, “Resonantly diode-pumped Ho3+:Y2O3 ceramic 2.1 µm laser,” Opt. Express 19(4), 3604–3611 (2011).
    [Crossref] [PubMed]
  13. O. L. Antipov, S. Y. Golovkin, O. N. Gorshkov, N. G. Zakharov, and A. P. Zinoviev, “Structural, optical, and spectroscopic properties and efficient two-micron lasing of new Tm3+:Lu2O3 ceramics,” Quantum Electron. 41(10), 863–868 (2011).
    [Crossref]
  14. O. L. Antipov, A. A. Novikov, N. G. Zakharov, and A. P. Zinoviev, “Optical properties and efficient laser oscillation at 2066 nm of novel Tm:Lu2O3 ceramics,” Opt. Mater. Express 2(2), 183–189 (2012).
    [Crossref]
  15. O. L. Antipov, A. A. Novikov, N. G. Zakharov, A. P. Zinoviev, H. Yagi, N. V. Sakharov, M. V. Kruglova, M. O. Marychev, O. N. Gorshkov, and A. A. Lagatskii, “Efficient 2.1-μm lasers based on Tm3+:Lu2O3 ceramics pumped by 800–nm laser diodes,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 10(6), 969–973 (2013).
    [Crossref]
  16. P. Koopmann, S. Lamrini, K. Scholle, P. Fuhrberg, and K. Petermann, “Laser Operation and Spectroscopic Investigations of Tm:LuScO3,” in CLEO/Europe and EQEC 2011 Conference Digiest, OSA Technical Digest (Optical Society of America, 2011), paper CA1_4.
  17. X. Xu, Z. Hu, D. Li, P. Liu, J. Zhang, B. Xu, and J. Xu, “First laser oscillation of diode-pumped Tm3+-doped LuScO3 mixed sesquioxide ceramic,” Opt. Express 25(13), 15322–15329 (2017).
    [Crossref] [PubMed]
  18. W. Jing, P. Loiko, J. M. Serres, Y. Wang, E. Vilejshikova, M. Aguiló, F. Díaz, U. Griebner, H. Huang, V. Petrov, and X. Mateos, “Synthesis, spectroscopy, and efficient laser operation of “mixed” sesquioxide Tm:(Lu,Sc)2O3 transparent ceramics,” Opt. Mater. Express 7(11), 4192–4202 (2017).
    [Crossref]
  19. Z. Zhou, X. Guan, X. Huang, B. Xu, H. Xu, Z. Cai, X. Xu, P. Liu, D. Li, J. Zhang, and J. Xu, “Tm3+-doped LuYO3 mixed sesquioxide ceramic laser: effective 2.05 μm source operating in continuous-wave and passive Q-switching regimes,” Opt. Lett. 42(19), 3781–3784 (2017).
    [Crossref] [PubMed]
  20. L. B. Kong, Y. Z. Huang, W. X. Que, T. S. Zhang, and S. Li, “Transparent Ceramics,” in Topics in Mining, Metallurgy and Materials Engineering, E. D. Carlos,P. Bergmann, ed. (Springer, 2015).
  21. C. Kränkel, “High-Power Lasers in the 1-, 2-, and 3-μm Spectral Range High-Power Lasers in the 1-, 2-, and 3-μm Spectral Range,” IEEE J. Sel. Top. Quantum Electron. 21(1), 250–262 (2015).
    [Crossref]

2017 (3)

2015 (1)

C. Kränkel, “High-Power Lasers in the 1-, 2-, and 3-μm Spectral Range High-Power Lasers in the 1-, 2-, and 3-μm Spectral Range,” IEEE J. Sel. Top. Quantum Electron. 21(1), 250–262 (2015).
[Crossref]

2013 (2)

O. L. Antipov, A. A. Novikov, N. G. Zakharov, A. P. Zinoviev, H. Yagi, N. V. Sakharov, M. V. Kruglova, M. O. Marychev, O. N. Gorshkov, and A. A. Lagatskii, “Efficient 2.1-μm lasers based on Tm3+:Lu2O3 ceramics pumped by 800–nm laser diodes,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 10(6), 969–973 (2013).
[Crossref]

A. Hemming, J. Richards, A. Davidson, N. Carmody, S. Bennetts, N. Simakov, and J. Haub, “99 W mid-IR operation of a ZGP OPO at 25% duty cycle,” Opt. Express 21(8), 10062–10069 (2013).
[Crossref] [PubMed]

2012 (4)

2011 (4)

O. L. Antipov, S. Y. Golovkin, O. N. Gorshkov, N. G. Zakharov, and A. P. Zinoviev, “Structural, optical, and spectroscopic properties and efficient two-micron lasing of new Tm3+:Lu2O3 ceramics,” Quantum Electron. 41(10), 863–868 (2011).
[Crossref]

P. Koopmann, R. Peters, K. Petermann, and G. Huber, “Crystal growth, spectroscopy, and highly efficient laser operation of thulium-doped Lu2O3 around 2 µm,” Appl. Phys. B 102(1), 19–24 (2011).
[Crossref]

G. A. Newburgh, A. Word-Daniels, A. Michael, L. D. Merkle, A. Ikesue, and M. Dubinskii, “Resonantly diode-pumped Ho3+:Y2O3 ceramic 2.1 µm laser,” Opt. Express 19(4), 3604–3611 (2011).
[Crossref] [PubMed]

P. Koopmann, S. Lamrini, K. Scholle, P. Fuhrberg, K. Petermann, and G. Huber, “Efficient diode-pumped laser operation of Tm:Lu2O3 around 2 μm,” Opt. Lett. 36(6), 948–950 (2011).
[Crossref] [PubMed]

2004 (1)

V. Lupei, A. Lupei, and A. Ikesue, “Single crystal and transparent ceramic Nd-doped oxide laser materials: a comparative spectroscopic investigation,” J. Alloys Compd. 380(1), 61–70 (2004).
[Crossref]

2000 (1)

1990 (1)

A. Brenier, C. Pedrini, B. Moine, J. L. Adam, and C. Pledel, “Fluorescence mechanisms in Tm3+ singly doped and Tm3+, Ho3+ doubly doped indium-based fluoride glasses,” Phys. Rev. B Condens. Matter 41(8), 5364–5371 (1990).
[Crossref] [PubMed]

Adam, J. L.

A. Brenier, C. Pedrini, B. Moine, J. L. Adam, and C. Pledel, “Fluorescence mechanisms in Tm3+ singly doped and Tm3+, Ho3+ doubly doped indium-based fluoride glasses,” Phys. Rev. B Condens. Matter 41(8), 5364–5371 (1990).
[Crossref] [PubMed]

Aggarwal, I.

J. Sanghera, W. Kim, G. Villalobos, B. Shaw, C. Baker, J. Frantz, B. Sadowski, and I. Aggarwal, “Ceramic laser materials,” Materials (Basel) 5(12), 258–277 (2012).
[Crossref] [PubMed]

Aguiló, M.

Antipov, O. L.

O. L. Antipov, A. A. Novikov, N. G. Zakharov, A. P. Zinoviev, H. Yagi, N. V. Sakharov, M. V. Kruglova, M. O. Marychev, O. N. Gorshkov, and A. A. Lagatskii, “Efficient 2.1-μm lasers based on Tm3+:Lu2O3 ceramics pumped by 800–nm laser diodes,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 10(6), 969–973 (2013).
[Crossref]

O. L. Antipov, A. A. Novikov, N. G. Zakharov, and A. P. Zinoviev, “Optical properties and efficient laser oscillation at 2066 nm of novel Tm:Lu2O3 ceramics,” Opt. Mater. Express 2(2), 183–189 (2012).
[Crossref]

O. L. Antipov, S. Y. Golovkin, O. N. Gorshkov, N. G. Zakharov, and A. P. Zinoviev, “Structural, optical, and spectroscopic properties and efficient two-micron lasing of new Tm3+:Lu2O3 ceramics,” Quantum Electron. 41(10), 863–868 (2011).
[Crossref]

Baker, C.

J. Sanghera, W. Kim, G. Villalobos, B. Shaw, C. Baker, J. Frantz, B. Sadowski, and I. Aggarwal, “Ceramic laser materials,” Materials (Basel) 5(12), 258–277 (2012).
[Crossref] [PubMed]

Bennetts, S.

Brenier, A.

A. Brenier, C. Pedrini, B. Moine, J. L. Adam, and C. Pledel, “Fluorescence mechanisms in Tm3+ singly doped and Tm3+, Ho3+ doubly doped indium-based fluoride glasses,” Phys. Rev. B Condens. Matter 41(8), 5364–5371 (1990).
[Crossref] [PubMed]

Budni, P. A.

Cai, Z.

Carmody, N.

Chicklis, E. P.

Dai, T. Y.

Davidson, A.

Díaz, F.

Duan, X. M.

Dubinskii, M.

Frantz, J.

J. Sanghera, W. Kim, G. Villalobos, B. Shaw, C. Baker, J. Frantz, B. Sadowski, and I. Aggarwal, “Ceramic laser materials,” Materials (Basel) 5(12), 258–277 (2012).
[Crossref] [PubMed]

Fuhrberg, P.

Golovkin, S. Y.

O. L. Antipov, S. Y. Golovkin, O. N. Gorshkov, N. G. Zakharov, and A. P. Zinoviev, “Structural, optical, and spectroscopic properties and efficient two-micron lasing of new Tm3+:Lu2O3 ceramics,” Quantum Electron. 41(10), 863–868 (2011).
[Crossref]

Gorshkov, O. N.

O. L. Antipov, A. A. Novikov, N. G. Zakharov, A. P. Zinoviev, H. Yagi, N. V. Sakharov, M. V. Kruglova, M. O. Marychev, O. N. Gorshkov, and A. A. Lagatskii, “Efficient 2.1-μm lasers based on Tm3+:Lu2O3 ceramics pumped by 800–nm laser diodes,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 10(6), 969–973 (2013).
[Crossref]

O. L. Antipov, S. Y. Golovkin, O. N. Gorshkov, N. G. Zakharov, and A. P. Zinoviev, “Structural, optical, and spectroscopic properties and efficient two-micron lasing of new Tm3+:Lu2O3 ceramics,” Quantum Electron. 41(10), 863–868 (2011).
[Crossref]

Griebner, U.

Guan, X.

Haub, J.

Hemming, A.

Hu, Z.

Huang, H.

Huang, X.

Huber, G.

P. Koopmann, S. Lamrini, K. Scholle, P. Fuhrberg, K. Petermann, and G. Huber, “Efficient diode-pumped laser operation of Tm:Lu2O3 around 2 μm,” Opt. Lett. 36(6), 948–950 (2011).
[Crossref] [PubMed]

P. Koopmann, R. Peters, K. Petermann, and G. Huber, “Crystal growth, spectroscopy, and highly efficient laser operation of thulium-doped Lu2O3 around 2 µm,” Appl. Phys. B 102(1), 19–24 (2011).
[Crossref]

Ikesue, A.

G. A. Newburgh, A. Word-Daniels, A. Michael, L. D. Merkle, A. Ikesue, and M. Dubinskii, “Resonantly diode-pumped Ho3+:Y2O3 ceramic 2.1 µm laser,” Opt. Express 19(4), 3604–3611 (2011).
[Crossref] [PubMed]

V. Lupei, A. Lupei, and A. Ikesue, “Single crystal and transparent ceramic Nd-doped oxide laser materials: a comparative spectroscopic investigation,” J. Alloys Compd. 380(1), 61–70 (2004).
[Crossref]

Jing, W.

Ju, Y. L.

Kim, W.

J. Sanghera, W. Kim, G. Villalobos, B. Shaw, C. Baker, J. Frantz, B. Sadowski, and I. Aggarwal, “Ceramic laser materials,” Materials (Basel) 5(12), 258–277 (2012).
[Crossref] [PubMed]

Koopmann, P.

P. Koopmann, R. Peters, K. Petermann, and G. Huber, “Crystal growth, spectroscopy, and highly efficient laser operation of thulium-doped Lu2O3 around 2 µm,” Appl. Phys. B 102(1), 19–24 (2011).
[Crossref]

P. Koopmann, S. Lamrini, K. Scholle, P. Fuhrberg, K. Petermann, and G. Huber, “Efficient diode-pumped laser operation of Tm:Lu2O3 around 2 μm,” Opt. Lett. 36(6), 948–950 (2011).
[Crossref] [PubMed]

Kränkel, C.

C. Kränkel, “High-Power Lasers in the 1-, 2-, and 3-μm Spectral Range High-Power Lasers in the 1-, 2-, and 3-μm Spectral Range,” IEEE J. Sel. Top. Quantum Electron. 21(1), 250–262 (2015).
[Crossref]

Kruglova, M. V.

O. L. Antipov, A. A. Novikov, N. G. Zakharov, A. P. Zinoviev, H. Yagi, N. V. Sakharov, M. V. Kruglova, M. O. Marychev, O. N. Gorshkov, and A. A. Lagatskii, “Efficient 2.1-μm lasers based on Tm3+:Lu2O3 ceramics pumped by 800–nm laser diodes,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 10(6), 969–973 (2013).
[Crossref]

Lagatskii, A. A.

O. L. Antipov, A. A. Novikov, N. G. Zakharov, A. P. Zinoviev, H. Yagi, N. V. Sakharov, M. V. Kruglova, M. O. Marychev, O. N. Gorshkov, and A. A. Lagatskii, “Efficient 2.1-μm lasers based on Tm3+:Lu2O3 ceramics pumped by 800–nm laser diodes,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 10(6), 969–973 (2013).
[Crossref]

Lamrini, S.

Lemons, M. L.

Li, D.

Liu, P.

Loiko, P.

Lupei, A.

V. Lupei, A. Lupei, and A. Ikesue, “Single crystal and transparent ceramic Nd-doped oxide laser materials: a comparative spectroscopic investigation,” J. Alloys Compd. 380(1), 61–70 (2004).
[Crossref]

Lupei, V.

V. Lupei, A. Lupei, and A. Ikesue, “Single crystal and transparent ceramic Nd-doped oxide laser materials: a comparative spectroscopic investigation,” J. Alloys Compd. 380(1), 61–70 (2004).
[Crossref]

Marychev, M. O.

O. L. Antipov, A. A. Novikov, N. G. Zakharov, A. P. Zinoviev, H. Yagi, N. V. Sakharov, M. V. Kruglova, M. O. Marychev, O. N. Gorshkov, and A. A. Lagatskii, “Efficient 2.1-μm lasers based on Tm3+:Lu2O3 ceramics pumped by 800–nm laser diodes,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 10(6), 969–973 (2013).
[Crossref]

Mateos, X.

Merkle, L. D.

Michael, A.

Miller, C. A.

Moine, B.

A. Brenier, C. Pedrini, B. Moine, J. L. Adam, and C. Pledel, “Fluorescence mechanisms in Tm3+ singly doped and Tm3+, Ho3+ doubly doped indium-based fluoride glasses,” Phys. Rev. B Condens. Matter 41(8), 5364–5371 (1990).
[Crossref] [PubMed]

Mosto, J. R.

Newburgh, G. A.

Novikov, A. A.

O. L. Antipov, A. A. Novikov, N. G. Zakharov, A. P. Zinoviev, H. Yagi, N. V. Sakharov, M. V. Kruglova, M. O. Marychev, O. N. Gorshkov, and A. A. Lagatskii, “Efficient 2.1-μm lasers based on Tm3+:Lu2O3 ceramics pumped by 800–nm laser diodes,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 10(6), 969–973 (2013).
[Crossref]

O. L. Antipov, A. A. Novikov, N. G. Zakharov, and A. P. Zinoviev, “Optical properties and efficient laser oscillation at 2066 nm of novel Tm:Lu2O3 ceramics,” Opt. Mater. Express 2(2), 183–189 (2012).
[Crossref]

Pedrini, C.

A. Brenier, C. Pedrini, B. Moine, J. L. Adam, and C. Pledel, “Fluorescence mechanisms in Tm3+ singly doped and Tm3+, Ho3+ doubly doped indium-based fluoride glasses,” Phys. Rev. B Condens. Matter 41(8), 5364–5371 (1990).
[Crossref] [PubMed]

Petermann, K.

P. Koopmann, S. Lamrini, K. Scholle, P. Fuhrberg, K. Petermann, and G. Huber, “Efficient diode-pumped laser operation of Tm:Lu2O3 around 2 μm,” Opt. Lett. 36(6), 948–950 (2011).
[Crossref] [PubMed]

P. Koopmann, R. Peters, K. Petermann, and G. Huber, “Crystal growth, spectroscopy, and highly efficient laser operation of thulium-doped Lu2O3 around 2 µm,” Appl. Phys. B 102(1), 19–24 (2011).
[Crossref]

Peters, R.

P. Koopmann, R. Peters, K. Petermann, and G. Huber, “Crystal growth, spectroscopy, and highly efficient laser operation of thulium-doped Lu2O3 around 2 µm,” Appl. Phys. B 102(1), 19–24 (2011).
[Crossref]

Petrov, V.

Pledel, C.

A. Brenier, C. Pedrini, B. Moine, J. L. Adam, and C. Pledel, “Fluorescence mechanisms in Tm3+ singly doped and Tm3+, Ho3+ doubly doped indium-based fluoride glasses,” Phys. Rev. B Condens. Matter 41(8), 5364–5371 (1990).
[Crossref] [PubMed]

Pomeranz, L. A.

Richards, J.

Sadowski, B.

J. Sanghera, W. Kim, G. Villalobos, B. Shaw, C. Baker, J. Frantz, B. Sadowski, and I. Aggarwal, “Ceramic laser materials,” Materials (Basel) 5(12), 258–277 (2012).
[Crossref] [PubMed]

Sakharov, N. V.

O. L. Antipov, A. A. Novikov, N. G. Zakharov, A. P. Zinoviev, H. Yagi, N. V. Sakharov, M. V. Kruglova, M. O. Marychev, O. N. Gorshkov, and A. A. Lagatskii, “Efficient 2.1-μm lasers based on Tm3+:Lu2O3 ceramics pumped by 800–nm laser diodes,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 10(6), 969–973 (2013).
[Crossref]

Sanghera, J.

J. Sanghera, W. Kim, G. Villalobos, B. Shaw, C. Baker, J. Frantz, B. Sadowski, and I. Aggarwal, “Ceramic laser materials,” Materials (Basel) 5(12), 258–277 (2012).
[Crossref] [PubMed]

Scholle, K.

Serres, J. M.

Shaw, B.

J. Sanghera, W. Kim, G. Villalobos, B. Shaw, C. Baker, J. Frantz, B. Sadowski, and I. Aggarwal, “Ceramic laser materials,” Materials (Basel) 5(12), 258–277 (2012).
[Crossref] [PubMed]

Shen, Y. J.

Simakov, N.

Vilejshikova, E.

Villalobos, G.

J. Sanghera, W. Kim, G. Villalobos, B. Shaw, C. Baker, J. Frantz, B. Sadowski, and I. Aggarwal, “Ceramic laser materials,” Materials (Basel) 5(12), 258–277 (2012).
[Crossref] [PubMed]

Wang, W.

Wang, Y.

Wang, Y. Z.

Word-Daniels, A.

Xu, B.

Xu, H.

Xu, J.

Xu, X.

Yagi, H.

O. L. Antipov, A. A. Novikov, N. G. Zakharov, A. P. Zinoviev, H. Yagi, N. V. Sakharov, M. V. Kruglova, M. O. Marychev, O. N. Gorshkov, and A. A. Lagatskii, “Efficient 2.1-μm lasers based on Tm3+:Lu2O3 ceramics pumped by 800–nm laser diodes,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 10(6), 969–973 (2013).
[Crossref]

Yao, B. Q.

Zakharov, N. G.

O. L. Antipov, A. A. Novikov, N. G. Zakharov, A. P. Zinoviev, H. Yagi, N. V. Sakharov, M. V. Kruglova, M. O. Marychev, O. N. Gorshkov, and A. A. Lagatskii, “Efficient 2.1-μm lasers based on Tm3+:Lu2O3 ceramics pumped by 800–nm laser diodes,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 10(6), 969–973 (2013).
[Crossref]

O. L. Antipov, A. A. Novikov, N. G. Zakharov, and A. P. Zinoviev, “Optical properties and efficient laser oscillation at 2066 nm of novel Tm:Lu2O3 ceramics,” Opt. Mater. Express 2(2), 183–189 (2012).
[Crossref]

O. L. Antipov, S. Y. Golovkin, O. N. Gorshkov, N. G. Zakharov, and A. P. Zinoviev, “Structural, optical, and spectroscopic properties and efficient two-micron lasing of new Tm3+:Lu2O3 ceramics,” Quantum Electron. 41(10), 863–868 (2011).
[Crossref]

Zhang, J.

Zhou, Z.

Zhu, G. L.

Zinoviev, A. P.

O. L. Antipov, A. A. Novikov, N. G. Zakharov, A. P. Zinoviev, H. Yagi, N. V. Sakharov, M. V. Kruglova, M. O. Marychev, O. N. Gorshkov, and A. A. Lagatskii, “Efficient 2.1-μm lasers based on Tm3+:Lu2O3 ceramics pumped by 800–nm laser diodes,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 10(6), 969–973 (2013).
[Crossref]

O. L. Antipov, A. A. Novikov, N. G. Zakharov, and A. P. Zinoviev, “Optical properties and efficient laser oscillation at 2066 nm of novel Tm:Lu2O3 ceramics,” Opt. Mater. Express 2(2), 183–189 (2012).
[Crossref]

O. L. Antipov, S. Y. Golovkin, O. N. Gorshkov, N. G. Zakharov, and A. P. Zinoviev, “Structural, optical, and spectroscopic properties and efficient two-micron lasing of new Tm3+:Lu2O3 ceramics,” Quantum Electron. 41(10), 863–868 (2011).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

P. Koopmann, R. Peters, K. Petermann, and G. Huber, “Crystal growth, spectroscopy, and highly efficient laser operation of thulium-doped Lu2O3 around 2 µm,” Appl. Phys. B 102(1), 19–24 (2011).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

C. Kränkel, “High-Power Lasers in the 1-, 2-, and 3-μm Spectral Range High-Power Lasers in the 1-, 2-, and 3-μm Spectral Range,” IEEE J. Sel. Top. Quantum Electron. 21(1), 250–262 (2015).
[Crossref]

J. Alloys Compd. (1)

V. Lupei, A. Lupei, and A. Ikesue, “Single crystal and transparent ceramic Nd-doped oxide laser materials: a comparative spectroscopic investigation,” J. Alloys Compd. 380(1), 61–70 (2004).
[Crossref]

J. Opt. Soc. Am. B (1)

Materials (Basel) (1)

J. Sanghera, W. Kim, G. Villalobos, B. Shaw, C. Baker, J. Frantz, B. Sadowski, and I. Aggarwal, “Ceramic laser materials,” Materials (Basel) 5(12), 258–277 (2012).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (3)

Opt. Mater. Express (2)

Phys. Rev. B Condens. Matter (1)

A. Brenier, C. Pedrini, B. Moine, J. L. Adam, and C. Pledel, “Fluorescence mechanisms in Tm3+ singly doped and Tm3+, Ho3+ doubly doped indium-based fluoride glasses,” Phys. Rev. B Condens. Matter 41(8), 5364–5371 (1990).
[Crossref] [PubMed]

Phys. Status Solidi., C Curr. Top. Solid State Phys. (1)

O. L. Antipov, A. A. Novikov, N. G. Zakharov, A. P. Zinoviev, H. Yagi, N. V. Sakharov, M. V. Kruglova, M. O. Marychev, O. N. Gorshkov, and A. A. Lagatskii, “Efficient 2.1-μm lasers based on Tm3+:Lu2O3 ceramics pumped by 800–nm laser diodes,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 10(6), 969–973 (2013).
[Crossref]

Quantum Electron. (1)

O. L. Antipov, S. Y. Golovkin, O. N. Gorshkov, N. G. Zakharov, and A. P. Zinoviev, “Structural, optical, and spectroscopic properties and efficient two-micron lasing of new Tm3+:Lu2O3 ceramics,” Quantum Electron. 41(10), 863–868 (2011).
[Crossref]

Other (4)

P. Koopmann, S. Lamrini, K. Scholle, P. Fuhrberg, and K. Petermann, “Laser Operation and Spectroscopic Investigations of Tm:LuScO3,” in CLEO/Europe and EQEC 2011 Conference Digiest, OSA Technical Digest (Optical Society of America, 2011), paper CA1_4.

L. B. Kong, Y. Z. Huang, W. X. Que, T. S. Zhang, and S. Li, “Transparent Ceramics,” in Topics in Mining, Metallurgy and Materials Engineering, E. D. Carlos,P. Bergmann, ed. (Springer, 2015).

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2 mm Laser Sources and Their Possible Applications,” in Frontiers in Guided Wave Optics and Optoelectronics, E. D. Bishnu Pal, ed. (INTECH, 2010)

P. Koopmann, S. Lamrini, K. Scholle, P. Fuhrberg, and K. Petermann, “Long wavelength laser operation of Tm:Sc2O3 at 2116 nm and beyond,” in Advances in Optical Materials, OSA Technical Digest (Optical Society of America, 2011), paper ATuA5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Characterization of 1.5% Tm:Lu1.6Sc0.4O3 ceramic. a: SEM morphology of the thermal etching surface and a inserted photo of a ceramic square plate (2.6 x 15 x 18 mm3) with 5 rectangular bars (2.6 x 2.6 x 15 mm3). b: XRD patterns. c: Transmission and emission spectra with an energy level diagram showing cross relaxation(CR) between two Er3+ ions and 2.1μm emissions due to a large Stark splitting of the 3H6 ground states. d: The stimulated emission and absorption cross sections.
Fig. 2
Fig. 2 Schematic of the ceramic laser setup with a cavity formed by an incoupling mirror (M1) and an output coupler (OC) pumped by a 796 nm laser diode.
Fig. 3
Fig. 3 The gain cross sections (a) and output laser spectrum (b) of 1.5% Tm:Lu1.6Sc0.4O3 ceramic. The pump power dependence of output power (c) and optical-to-optical conversion efficiencies (d) for 1% Tm and 1.5% Tm doped Lu1.6Sc0.4O3 ceramics.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

σ g = βσ SE ( 1 β ) σ abs  

Metrics