Abstract

Bi3+, Eu3+ and Tb3+ triple-doped white light emitting phosphors Ca3ZrSi2O9:Eu3+,Bi3+,Tb3+ were successfully synthesized. In Bi3+ and Eu3+ co-doped phosphors Ca2.83-yZrSi2O9:0.17Eu3+,yBi3+, the blue light from Bi3+ ions and red light from Eu3+ ions are simultaneously observed. Energy transfer exists from Bi3+ to Eu3+ ions, and the energy transfer efficiency is 19.58% in phosphor Ca2.68ZrSi2O9:0.17Eu3+,0.15Bi3+.The CIE chromaticity coordinates of Bi3+ and Eu3+ co-doped phosphors, Ca2.83-yZrSi2O9:0.17Eu3+,yBi3+, are just located in the orange and pink region. White light emitting was finally obtained in Eu3+, Bi3+, Tb3+ triply doped phosphors Ca2.74-zZrSi2O9:0.17Eu3+,0.09Bi3+,zTb3+, through further doping green light emitting Tb3+ ions (5D3,4 - 7FJ’ transitions). Energy transfer also exists from Bi3+ to Tb3+ ions, and this energy transfer efficiency is 11.95% in phosphor Ca2.61ZrSi2O9:0.17Eu3+,0.09Bi3+,0.13Tb3+. The CIE chromaticity coordinates are always in the white light region from 25 °C to 275 °C for the triply doped phosphor Ca2.24ZrSi2O9:0.17Eu3+,0.09Bi3+,0.50Tb3+.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Energy transfer between Ce3+ and Tb3+ and the enhanced luminescence of a green phosphor SrB2O4:Ce3+, Tb3+, Na+

Shaojun Sun, Li Wu, Huan Yi, Liwei Wu, Jingyuan Ji, Chunling Zhang, Yi Zhang, Yongfa Kong, and Jingjun Xu
Opt. Mater. Express 6(4) 1172-1185 (2016)

ZnB2O4:Bi3+,Eu3+:a highly efficient, red-emitting phosphor

Wei-Ren Liu, Chun Che Lin, Yi-Chen Chiu, Yao-Tsung Yeh, Shyue-Ming Jang, and Ru-Shi Liu
Opt. Express 18(3) 2946-2951 (2010)

References

  • View by:
  • |
  • |
  • |

  1. K. Li, M. Shang, H. Lian, and J. Lin, “Recent development in phosphors with different emitting colors via energy transfer,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(24), 5507–5530 (2016).
    [Crossref]
  2. Z. Xia and Q. Liu, “Progress in discovery and structural design of color conversion phosphors for LEDs,” Prog. Mater. Sci. 84, 59–117 (2016).
    [Crossref]
  3. J. Cho, J. H. Park, J. K. Kim, and E. F. Schubert, “White light-emitting diodes: History, progress, and future,” Laser Photonics Rev. 11(2), 1600147 (2017).
    [Crossref]
  4. Z. Xia and A. Meijerink, “Ce3+-Doped garnet phosphors: composition modification, luminescence properties and applications,” Chem. Soc. Rev. 46(1), 275–299 (2017).
    [Crossref] [PubMed]
  5. X. Qin, X. Liu, W. Huang, M. Bettinelli, and X. Liu, “Lanthanide-Activated Phosphors Based on 4f-5d Optical Transitions: Theoretical and Experimental Aspects,” Chem. Rev. 117(5), 4488–4527 (2017).
    [Crossref] [PubMed]
  6. Y. H. Kim, N. S. M. Viswanath, S. Unithrattil, H. J. Kim, and W. B. Im, “Review—Phosphor Plates for High-Power LED Applications: Challenges and Opportunities toward Perfect Lighting,” ECS J Solid State Sc 7(1), R3134–R3147 (2018).
    [Crossref]
  7. P. Shi, Z. Xia, M. S. Molokeev, and V. V. Atuchin, “Crystal chemistry and luminescence properties of red-emitting CsGd1-xEux(MoO4)2 solid-solution phosphors,” Dalton Trans. 43(25), 9669–9676 (2014).
    [Crossref] [PubMed]
  8. Q. Zhang, X. Wang, X. Ding, and Y. Wang, “A broad band yellow-emitting Sr8CaBi(PO4)7:Eu2+ phosphor for n-UV pumped white light emitting devices,” Dyes Pigments 149, 268–275 (2018).
    [Crossref]
  9. Z. Zhou, G. Liu, J. Ni, W. Liu, and Q. Liu, “Simultaneous multi-wavelength ultraviolet excited single-phase white light emitting phosphor Ba1-x(Zr,Ti)Si3O9:xEu,” Opt. Mater. 79, 53–62 (2018).
    [Crossref]
  10. Q. Yang, G. Li, Y. Wei, and H. Chai, “Synthesis and photoluminescence properties of red-emitting NaLaMgWO6:Sm3+,Eu3+ phosphors for white LED applications,” J. Lumin. 199, 323–330 (2018).
    [Crossref]
  11. M. A. Mickens and Z. Assefa, “Tunable luminescence and white light emission of novel multiphase sodium calcium silicate nanophosphors doped with Ce3+, Tb3+, and Mn2+ ions,” J. Lumin. 145, 498–506 (2014).
    [Crossref]
  12. C. Wang, P. Li, Z. Wang, Y. Sun, J. Cheng, Z. Li, M. Tian, and Z. Yang, “Crystal structure, luminescence properties, energy transfer and thermal properties of a novel color-tunable, white light-emitting phosphor Ca9-x-yCe(PO4)7:xEu2+,yMn2,” Phys. Chem. Chem. Phys. 18(41), 28661–28673 (2016).
    [Crossref] [PubMed]
  13. C. Xu, H. Guan, Y. Song, Z. An, X. Zhang, X. Zhou, Z. Shi, Y. Sheng, and H. Zou, “Novel highly efficient single-component multi-peak emitting aluminosilicate phosphors co-activated with Ce3+, Tb3+ and Eu2+: luminescence properties, tunable color, and thermal properties,” Phys. Chem. Chem. Phys. 20(3), 1591–1607 (2018).
    [Crossref] [PubMed]
  14. X. Zhou, W. Geng, J. Ding, Y. Wang, and Y. Wang, “Structure, bandgap, photoluminescence evolution and thermal stability improved of Sr replacement apatite phosphors Ca10-xSrx(PO4)6F2:Eu2+ (x = 4, 6, 8),” Dyes Pigments 152, 75–84 (2018).
    [Crossref]
  15. J. R. Plaister, J. Jansen, R. A. G. de Graaff, and D. J. W. Ijdo, “Structure Determination of Ca3HfSi2O9 and Ca3ZrSi2O9 from Powder Diffraction,” J. Solid State Chem. 115(2), 464–468 (1995).
    [Crossref]
  16. S. W. Kim, Y. Zuo, T. Masui, and N. Imanaka, “Synthesis of Red-Emitting Ca3-xEuxZrSi2O9 Phosphors,” ECS Solid State Lett 2(9), R34–R36 (2013).
    [Crossref]
  17. Y. Zuo, S. W. Kim, T. Masui, and N. Imanaka, “Influence of Al3+ Doping into the Zr4+ Site on the Photoluminescence Properties of Ca3-xEuxZrSi2O9+x/2 Phosphors,” ECS J Solid State Sc 3(5), R79–R82 (2014).
    [Crossref]
  18. Y. Zuo, S. W. Kim, T. Masui, and N. Imanaka, “Enhanced luminescent properties of Ca3−xTbxZrSi2O9+x/2 phosphors by Al3+ doping into the Zr4+ site in the host lattice,” J. Lumin. 148, 198–201 (2014).
    [Crossref]
  19. J. Zhong, W. Zhao, L. Yang, P. Shi, Z. Liao, M. Xia, W. Pu, W. Xiao, and L. Wang, “Synthesis, electronic structures, and photoluminescence properties of an efficient and thermally stable red-emitting phosphor Ca3ZrSi2O9:Eu3+,Bi3+ for deep UV-LEDs,” RSC Advances 8(24), 13054–13060 (2018).
    [Crossref]
  20. H. Zhou, Q. Wang, and Y. Jin, “Temperature dependence of energy transfer in tunable white light-emitting phosphor BaY2Si3O10:Bi3+,Eu3+ for near UV LEDs,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(42), 11151–11162 (2015).
    [Crossref]
  21. K. Li, J. Fan, M. Shang, H. Lian, and J. Lin, “Sr2Y8(SiO4)6O2:Bi3+/Eu3+: a single-component white-emitting phosphor via energy transfer for UV w-LEDs,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(38), 9989–9998 (2015).
    [Crossref]
  22. F. Kang, Y. Zhang, and M. Peng, “Controlling the energy transfer via multi luminescent centers to achieve white light/tunable emissions in a single-phased X2-type Y2SiO5:Eu3+,Bi3+ phosphor for ultraviolet converted LEDs,” Inorg. Chem. 54(4), 1462–1473 (2015).
    [Crossref] [PubMed]
  23. M. Venkataravanappa, H. Nagabhushana, G. P. Darshan, B. Daruka Prasad, G. R. Vijayakumar, H. B. Premkumar, and Udayabhanu, “Novel EGCG assisted ultrasound synthesis of self-assembled Ca2SiO4:Eu3+ hierarchical superstructures: Photometric characteristics and LED applications,” Ultrason. Sonochem. 33, 226–239 (2016).
    [Crossref] [PubMed]
  24. F. Kang, X. Yang, M. Peng, L. Wondraczek, Z. Ma, Q. Zhang, and J. Qiu, “Red Photoluminescence from Bi3+ and the Influence of the Oxygen-Vacancy Perturbation in ScVO4: A Combined Experimental and Theoretical Study,” J. Phys. Chem. C 118(14), 7515–7522 (2014).
    [Crossref]
  25. J.-C. Zhang, Y.-Z. Long, H.-D. Zhang, B. Sun, W.-P. Han, and X.-Y. Sun, “Eu2+/Eu3+-emission-ratio-tunable CaZr(PO4)2:Eu phosphors synthesized in air atmosphere for potential white light-emitting deep UV LEDs,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(2), 312–318 (2014).
    [Crossref]
  26. R. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A 32(5), 751–767 (1976).
    [Crossref]
  27. D. L. Dexter, “A Theory of Sensitized Luminescence in Solids,” J. Chem. Phys. 21(5), 836–850 (1953).
    [Crossref]
  28. Z. Yu, Z. Xia, C. Su, R. Wang, and Q. Liu, “Effect of Gd/La substitution on the phase structures and luminescence properties of (La,Gd)Sr2AlO5:Ce3+ solid solution phosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(44), 11629–11634 (2015).
    [Crossref]
  29. J. Zhou and Z. Xia, “Luminescence color tuning of Ce3+, Tb3+ and Eu3+ codoped and tri-doped BaY2Si3O10 phosphors via energy transfer,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(29), 7552–7560 (2015).
    [Crossref]
  30. Y. S. Vidya, K. Gurushantha, H. Nagabhushana, S. C. Sharma, K. S. Anantharaju, C. Shivakumara, D. Suresh, H. P. Nagaswarupa, S. C. Prashantha, and M. R. Anilkumar, “Phase transformation of ZrO2:Tb3+ nanophosphor: Color tunable photoluminescence and photocatalytic activities,” J. Alloys Compd. 622, 86–96 (2015).
    [Crossref]
  31. G. Blanco, J. M. Pintado, S. Bernal, M. A. Cauqui, M. P. Corchado, A. Galtayries, J. Ghijsen, R. Sporken, T. Eickhoff, and W. Drube, “Influence of the nature of the noble metal (Rh,Pt) on the low-temperature reducibility of a Ce/Tb mixed oxide with application as TWC component,” Surf. Interface Anal. 34(1), 120–124 (2002).
    [Crossref]
  32. C.-Y. Yang, S. Das, and C.-H. Lu, “Tunable photoluminescence properties and energy transfer in oxyapatite-based Ca2Tb8(SiO4)6:Eu3+ phosphors for UV-LEDs,” J. Lumin. 168, 199–206 (2015).
    [Crossref]
  33. C.-Y. Yang, S. Das, S. Som, and C.-H. Lu, “White emitting Ca2Tb8(SiO4)6O2:Eu2+/Eu3+ phosphors: Photoluminescence and efficient energy transfer,” Chem. Phys. Lett. 660, 164–168 (2016).
    [Crossref]
  34. Z. Zhou, G. Liu, Q. Wei, H. Yang, and Q. Liu, “Luminescence properties of Ag nanoclusters doped SiO2–PbF2 oxyfluoride glasses,” J. Lumin. 169, 695–700 (2016).
    [Crossref]

2018 (7)

Q. Zhang, X. Wang, X. Ding, and Y. Wang, “A broad band yellow-emitting Sr8CaBi(PO4)7:Eu2+ phosphor for n-UV pumped white light emitting devices,” Dyes Pigments 149, 268–275 (2018).
[Crossref]

Z. Zhou, G. Liu, J. Ni, W. Liu, and Q. Liu, “Simultaneous multi-wavelength ultraviolet excited single-phase white light emitting phosphor Ba1-x(Zr,Ti)Si3O9:xEu,” Opt. Mater. 79, 53–62 (2018).
[Crossref]

Q. Yang, G. Li, Y. Wei, and H. Chai, “Synthesis and photoluminescence properties of red-emitting NaLaMgWO6:Sm3+,Eu3+ phosphors for white LED applications,” J. Lumin. 199, 323–330 (2018).
[Crossref]

Y. H. Kim, N. S. M. Viswanath, S. Unithrattil, H. J. Kim, and W. B. Im, “Review—Phosphor Plates for High-Power LED Applications: Challenges and Opportunities toward Perfect Lighting,” ECS J Solid State Sc 7(1), R3134–R3147 (2018).
[Crossref]

C. Xu, H. Guan, Y. Song, Z. An, X. Zhang, X. Zhou, Z. Shi, Y. Sheng, and H. Zou, “Novel highly efficient single-component multi-peak emitting aluminosilicate phosphors co-activated with Ce3+, Tb3+ and Eu2+: luminescence properties, tunable color, and thermal properties,” Phys. Chem. Chem. Phys. 20(3), 1591–1607 (2018).
[Crossref] [PubMed]

X. Zhou, W. Geng, J. Ding, Y. Wang, and Y. Wang, “Structure, bandgap, photoluminescence evolution and thermal stability improved of Sr replacement apatite phosphors Ca10-xSrx(PO4)6F2:Eu2+ (x = 4, 6, 8),” Dyes Pigments 152, 75–84 (2018).
[Crossref]

J. Zhong, W. Zhao, L. Yang, P. Shi, Z. Liao, M. Xia, W. Pu, W. Xiao, and L. Wang, “Synthesis, electronic structures, and photoluminescence properties of an efficient and thermally stable red-emitting phosphor Ca3ZrSi2O9:Eu3+,Bi3+ for deep UV-LEDs,” RSC Advances 8(24), 13054–13060 (2018).
[Crossref]

2017 (3)

J. Cho, J. H. Park, J. K. Kim, and E. F. Schubert, “White light-emitting diodes: History, progress, and future,” Laser Photonics Rev. 11(2), 1600147 (2017).
[Crossref]

Z. Xia and A. Meijerink, “Ce3+-Doped garnet phosphors: composition modification, luminescence properties and applications,” Chem. Soc. Rev. 46(1), 275–299 (2017).
[Crossref] [PubMed]

X. Qin, X. Liu, W. Huang, M. Bettinelli, and X. Liu, “Lanthanide-Activated Phosphors Based on 4f-5d Optical Transitions: Theoretical and Experimental Aspects,” Chem. Rev. 117(5), 4488–4527 (2017).
[Crossref] [PubMed]

2016 (6)

K. Li, M. Shang, H. Lian, and J. Lin, “Recent development in phosphors with different emitting colors via energy transfer,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(24), 5507–5530 (2016).
[Crossref]

Z. Xia and Q. Liu, “Progress in discovery and structural design of color conversion phosphors for LEDs,” Prog. Mater. Sci. 84, 59–117 (2016).
[Crossref]

C. Wang, P. Li, Z. Wang, Y. Sun, J. Cheng, Z. Li, M. Tian, and Z. Yang, “Crystal structure, luminescence properties, energy transfer and thermal properties of a novel color-tunable, white light-emitting phosphor Ca9-x-yCe(PO4)7:xEu2+,yMn2,” Phys. Chem. Chem. Phys. 18(41), 28661–28673 (2016).
[Crossref] [PubMed]

M. Venkataravanappa, H. Nagabhushana, G. P. Darshan, B. Daruka Prasad, G. R. Vijayakumar, H. B. Premkumar, and Udayabhanu, “Novel EGCG assisted ultrasound synthesis of self-assembled Ca2SiO4:Eu3+ hierarchical superstructures: Photometric characteristics and LED applications,” Ultrason. Sonochem. 33, 226–239 (2016).
[Crossref] [PubMed]

C.-Y. Yang, S. Das, S. Som, and C.-H. Lu, “White emitting Ca2Tb8(SiO4)6O2:Eu2+/Eu3+ phosphors: Photoluminescence and efficient energy transfer,” Chem. Phys. Lett. 660, 164–168 (2016).
[Crossref]

Z. Zhou, G. Liu, Q. Wei, H. Yang, and Q. Liu, “Luminescence properties of Ag nanoclusters doped SiO2–PbF2 oxyfluoride glasses,” J. Lumin. 169, 695–700 (2016).
[Crossref]

2015 (7)

C.-Y. Yang, S. Das, and C.-H. Lu, “Tunable photoluminescence properties and energy transfer in oxyapatite-based Ca2Tb8(SiO4)6:Eu3+ phosphors for UV-LEDs,” J. Lumin. 168, 199–206 (2015).
[Crossref]

Z. Yu, Z. Xia, C. Su, R. Wang, and Q. Liu, “Effect of Gd/La substitution on the phase structures and luminescence properties of (La,Gd)Sr2AlO5:Ce3+ solid solution phosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(44), 11629–11634 (2015).
[Crossref]

J. Zhou and Z. Xia, “Luminescence color tuning of Ce3+, Tb3+ and Eu3+ codoped and tri-doped BaY2Si3O10 phosphors via energy transfer,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(29), 7552–7560 (2015).
[Crossref]

Y. S. Vidya, K. Gurushantha, H. Nagabhushana, S. C. Sharma, K. S. Anantharaju, C. Shivakumara, D. Suresh, H. P. Nagaswarupa, S. C. Prashantha, and M. R. Anilkumar, “Phase transformation of ZrO2:Tb3+ nanophosphor: Color tunable photoluminescence and photocatalytic activities,” J. Alloys Compd. 622, 86–96 (2015).
[Crossref]

H. Zhou, Q. Wang, and Y. Jin, “Temperature dependence of energy transfer in tunable white light-emitting phosphor BaY2Si3O10:Bi3+,Eu3+ for near UV LEDs,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(42), 11151–11162 (2015).
[Crossref]

K. Li, J. Fan, M. Shang, H. Lian, and J. Lin, “Sr2Y8(SiO4)6O2:Bi3+/Eu3+: a single-component white-emitting phosphor via energy transfer for UV w-LEDs,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(38), 9989–9998 (2015).
[Crossref]

F. Kang, Y. Zhang, and M. Peng, “Controlling the energy transfer via multi luminescent centers to achieve white light/tunable emissions in a single-phased X2-type Y2SiO5:Eu3+,Bi3+ phosphor for ultraviolet converted LEDs,” Inorg. Chem. 54(4), 1462–1473 (2015).
[Crossref] [PubMed]

2014 (6)

F. Kang, X. Yang, M. Peng, L. Wondraczek, Z. Ma, Q. Zhang, and J. Qiu, “Red Photoluminescence from Bi3+ and the Influence of the Oxygen-Vacancy Perturbation in ScVO4: A Combined Experimental and Theoretical Study,” J. Phys. Chem. C 118(14), 7515–7522 (2014).
[Crossref]

J.-C. Zhang, Y.-Z. Long, H.-D. Zhang, B. Sun, W.-P. Han, and X.-Y. Sun, “Eu2+/Eu3+-emission-ratio-tunable CaZr(PO4)2:Eu phosphors synthesized in air atmosphere for potential white light-emitting deep UV LEDs,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(2), 312–318 (2014).
[Crossref]

Y. Zuo, S. W. Kim, T. Masui, and N. Imanaka, “Influence of Al3+ Doping into the Zr4+ Site on the Photoluminescence Properties of Ca3-xEuxZrSi2O9+x/2 Phosphors,” ECS J Solid State Sc 3(5), R79–R82 (2014).
[Crossref]

Y. Zuo, S. W. Kim, T. Masui, and N. Imanaka, “Enhanced luminescent properties of Ca3−xTbxZrSi2O9+x/2 phosphors by Al3+ doping into the Zr4+ site in the host lattice,” J. Lumin. 148, 198–201 (2014).
[Crossref]

P. Shi, Z. Xia, M. S. Molokeev, and V. V. Atuchin, “Crystal chemistry and luminescence properties of red-emitting CsGd1-xEux(MoO4)2 solid-solution phosphors,” Dalton Trans. 43(25), 9669–9676 (2014).
[Crossref] [PubMed]

M. A. Mickens and Z. Assefa, “Tunable luminescence and white light emission of novel multiphase sodium calcium silicate nanophosphors doped with Ce3+, Tb3+, and Mn2+ ions,” J. Lumin. 145, 498–506 (2014).
[Crossref]

2013 (1)

S. W. Kim, Y. Zuo, T. Masui, and N. Imanaka, “Synthesis of Red-Emitting Ca3-xEuxZrSi2O9 Phosphors,” ECS Solid State Lett 2(9), R34–R36 (2013).
[Crossref]

2002 (1)

G. Blanco, J. M. Pintado, S. Bernal, M. A. Cauqui, M. P. Corchado, A. Galtayries, J. Ghijsen, R. Sporken, T. Eickhoff, and W. Drube, “Influence of the nature of the noble metal (Rh,Pt) on the low-temperature reducibility of a Ce/Tb mixed oxide with application as TWC component,” Surf. Interface Anal. 34(1), 120–124 (2002).
[Crossref]

1995 (1)

J. R. Plaister, J. Jansen, R. A. G. de Graaff, and D. J. W. Ijdo, “Structure Determination of Ca3HfSi2O9 and Ca3ZrSi2O9 from Powder Diffraction,” J. Solid State Chem. 115(2), 464–468 (1995).
[Crossref]

1976 (1)

R. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A 32(5), 751–767 (1976).
[Crossref]

1953 (1)

D. L. Dexter, “A Theory of Sensitized Luminescence in Solids,” J. Chem. Phys. 21(5), 836–850 (1953).
[Crossref]

An, Z.

C. Xu, H. Guan, Y. Song, Z. An, X. Zhang, X. Zhou, Z. Shi, Y. Sheng, and H. Zou, “Novel highly efficient single-component multi-peak emitting aluminosilicate phosphors co-activated with Ce3+, Tb3+ and Eu2+: luminescence properties, tunable color, and thermal properties,” Phys. Chem. Chem. Phys. 20(3), 1591–1607 (2018).
[Crossref] [PubMed]

Anantharaju, K. S.

Y. S. Vidya, K. Gurushantha, H. Nagabhushana, S. C. Sharma, K. S. Anantharaju, C. Shivakumara, D. Suresh, H. P. Nagaswarupa, S. C. Prashantha, and M. R. Anilkumar, “Phase transformation of ZrO2:Tb3+ nanophosphor: Color tunable photoluminescence and photocatalytic activities,” J. Alloys Compd. 622, 86–96 (2015).
[Crossref]

Anilkumar, M. R.

Y. S. Vidya, K. Gurushantha, H. Nagabhushana, S. C. Sharma, K. S. Anantharaju, C. Shivakumara, D. Suresh, H. P. Nagaswarupa, S. C. Prashantha, and M. R. Anilkumar, “Phase transformation of ZrO2:Tb3+ nanophosphor: Color tunable photoluminescence and photocatalytic activities,” J. Alloys Compd. 622, 86–96 (2015).
[Crossref]

Assefa, Z.

M. A. Mickens and Z. Assefa, “Tunable luminescence and white light emission of novel multiphase sodium calcium silicate nanophosphors doped with Ce3+, Tb3+, and Mn2+ ions,” J. Lumin. 145, 498–506 (2014).
[Crossref]

Atuchin, V. V.

P. Shi, Z. Xia, M. S. Molokeev, and V. V. Atuchin, “Crystal chemistry and luminescence properties of red-emitting CsGd1-xEux(MoO4)2 solid-solution phosphors,” Dalton Trans. 43(25), 9669–9676 (2014).
[Crossref] [PubMed]

Bernal, S.

G. Blanco, J. M. Pintado, S. Bernal, M. A. Cauqui, M. P. Corchado, A. Galtayries, J. Ghijsen, R. Sporken, T. Eickhoff, and W. Drube, “Influence of the nature of the noble metal (Rh,Pt) on the low-temperature reducibility of a Ce/Tb mixed oxide with application as TWC component,” Surf. Interface Anal. 34(1), 120–124 (2002).
[Crossref]

Bettinelli, M.

X. Qin, X. Liu, W. Huang, M. Bettinelli, and X. Liu, “Lanthanide-Activated Phosphors Based on 4f-5d Optical Transitions: Theoretical and Experimental Aspects,” Chem. Rev. 117(5), 4488–4527 (2017).
[Crossref] [PubMed]

Blanco, G.

G. Blanco, J. M. Pintado, S. Bernal, M. A. Cauqui, M. P. Corchado, A. Galtayries, J. Ghijsen, R. Sporken, T. Eickhoff, and W. Drube, “Influence of the nature of the noble metal (Rh,Pt) on the low-temperature reducibility of a Ce/Tb mixed oxide with application as TWC component,” Surf. Interface Anal. 34(1), 120–124 (2002).
[Crossref]

Cauqui, M. A.

G. Blanco, J. M. Pintado, S. Bernal, M. A. Cauqui, M. P. Corchado, A. Galtayries, J. Ghijsen, R. Sporken, T. Eickhoff, and W. Drube, “Influence of the nature of the noble metal (Rh,Pt) on the low-temperature reducibility of a Ce/Tb mixed oxide with application as TWC component,” Surf. Interface Anal. 34(1), 120–124 (2002).
[Crossref]

Chai, H.

Q. Yang, G. Li, Y. Wei, and H. Chai, “Synthesis and photoluminescence properties of red-emitting NaLaMgWO6:Sm3+,Eu3+ phosphors for white LED applications,” J. Lumin. 199, 323–330 (2018).
[Crossref]

Cheng, J.

C. Wang, P. Li, Z. Wang, Y. Sun, J. Cheng, Z. Li, M. Tian, and Z. Yang, “Crystal structure, luminescence properties, energy transfer and thermal properties of a novel color-tunable, white light-emitting phosphor Ca9-x-yCe(PO4)7:xEu2+,yMn2,” Phys. Chem. Chem. Phys. 18(41), 28661–28673 (2016).
[Crossref] [PubMed]

Cho, J.

J. Cho, J. H. Park, J. K. Kim, and E. F. Schubert, “White light-emitting diodes: History, progress, and future,” Laser Photonics Rev. 11(2), 1600147 (2017).
[Crossref]

Corchado, M. P.

G. Blanco, J. M. Pintado, S. Bernal, M. A. Cauqui, M. P. Corchado, A. Galtayries, J. Ghijsen, R. Sporken, T. Eickhoff, and W. Drube, “Influence of the nature of the noble metal (Rh,Pt) on the low-temperature reducibility of a Ce/Tb mixed oxide with application as TWC component,” Surf. Interface Anal. 34(1), 120–124 (2002).
[Crossref]

Darshan, G. P.

M. Venkataravanappa, H. Nagabhushana, G. P. Darshan, B. Daruka Prasad, G. R. Vijayakumar, H. B. Premkumar, and Udayabhanu, “Novel EGCG assisted ultrasound synthesis of self-assembled Ca2SiO4:Eu3+ hierarchical superstructures: Photometric characteristics and LED applications,” Ultrason. Sonochem. 33, 226–239 (2016).
[Crossref] [PubMed]

Daruka Prasad, B.

M. Venkataravanappa, H. Nagabhushana, G. P. Darshan, B. Daruka Prasad, G. R. Vijayakumar, H. B. Premkumar, and Udayabhanu, “Novel EGCG assisted ultrasound synthesis of self-assembled Ca2SiO4:Eu3+ hierarchical superstructures: Photometric characteristics and LED applications,” Ultrason. Sonochem. 33, 226–239 (2016).
[Crossref] [PubMed]

Das, S.

C.-Y. Yang, S. Das, S. Som, and C.-H. Lu, “White emitting Ca2Tb8(SiO4)6O2:Eu2+/Eu3+ phosphors: Photoluminescence and efficient energy transfer,” Chem. Phys. Lett. 660, 164–168 (2016).
[Crossref]

C.-Y. Yang, S. Das, and C.-H. Lu, “Tunable photoluminescence properties and energy transfer in oxyapatite-based Ca2Tb8(SiO4)6:Eu3+ phosphors for UV-LEDs,” J. Lumin. 168, 199–206 (2015).
[Crossref]

de Graaff, R. A. G.

J. R. Plaister, J. Jansen, R. A. G. de Graaff, and D. J. W. Ijdo, “Structure Determination of Ca3HfSi2O9 and Ca3ZrSi2O9 from Powder Diffraction,” J. Solid State Chem. 115(2), 464–468 (1995).
[Crossref]

Dexter, D. L.

D. L. Dexter, “A Theory of Sensitized Luminescence in Solids,” J. Chem. Phys. 21(5), 836–850 (1953).
[Crossref]

Ding, J.

X. Zhou, W. Geng, J. Ding, Y. Wang, and Y. Wang, “Structure, bandgap, photoluminescence evolution and thermal stability improved of Sr replacement apatite phosphors Ca10-xSrx(PO4)6F2:Eu2+ (x = 4, 6, 8),” Dyes Pigments 152, 75–84 (2018).
[Crossref]

Ding, X.

Q. Zhang, X. Wang, X. Ding, and Y. Wang, “A broad band yellow-emitting Sr8CaBi(PO4)7:Eu2+ phosphor for n-UV pumped white light emitting devices,” Dyes Pigments 149, 268–275 (2018).
[Crossref]

Drube, W.

G. Blanco, J. M. Pintado, S. Bernal, M. A. Cauqui, M. P. Corchado, A. Galtayries, J. Ghijsen, R. Sporken, T. Eickhoff, and W. Drube, “Influence of the nature of the noble metal (Rh,Pt) on the low-temperature reducibility of a Ce/Tb mixed oxide with application as TWC component,” Surf. Interface Anal. 34(1), 120–124 (2002).
[Crossref]

Eickhoff, T.

G. Blanco, J. M. Pintado, S. Bernal, M. A. Cauqui, M. P. Corchado, A. Galtayries, J. Ghijsen, R. Sporken, T. Eickhoff, and W. Drube, “Influence of the nature of the noble metal (Rh,Pt) on the low-temperature reducibility of a Ce/Tb mixed oxide with application as TWC component,” Surf. Interface Anal. 34(1), 120–124 (2002).
[Crossref]

Fan, J.

K. Li, J. Fan, M. Shang, H. Lian, and J. Lin, “Sr2Y8(SiO4)6O2:Bi3+/Eu3+: a single-component white-emitting phosphor via energy transfer for UV w-LEDs,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(38), 9989–9998 (2015).
[Crossref]

Galtayries, A.

G. Blanco, J. M. Pintado, S. Bernal, M. A. Cauqui, M. P. Corchado, A. Galtayries, J. Ghijsen, R. Sporken, T. Eickhoff, and W. Drube, “Influence of the nature of the noble metal (Rh,Pt) on the low-temperature reducibility of a Ce/Tb mixed oxide with application as TWC component,” Surf. Interface Anal. 34(1), 120–124 (2002).
[Crossref]

Geng, W.

X. Zhou, W. Geng, J. Ding, Y. Wang, and Y. Wang, “Structure, bandgap, photoluminescence evolution and thermal stability improved of Sr replacement apatite phosphors Ca10-xSrx(PO4)6F2:Eu2+ (x = 4, 6, 8),” Dyes Pigments 152, 75–84 (2018).
[Crossref]

Ghijsen, J.

G. Blanco, J. M. Pintado, S. Bernal, M. A. Cauqui, M. P. Corchado, A. Galtayries, J. Ghijsen, R. Sporken, T. Eickhoff, and W. Drube, “Influence of the nature of the noble metal (Rh,Pt) on the low-temperature reducibility of a Ce/Tb mixed oxide with application as TWC component,” Surf. Interface Anal. 34(1), 120–124 (2002).
[Crossref]

Guan, H.

C. Xu, H. Guan, Y. Song, Z. An, X. Zhang, X. Zhou, Z. Shi, Y. Sheng, and H. Zou, “Novel highly efficient single-component multi-peak emitting aluminosilicate phosphors co-activated with Ce3+, Tb3+ and Eu2+: luminescence properties, tunable color, and thermal properties,” Phys. Chem. Chem. Phys. 20(3), 1591–1607 (2018).
[Crossref] [PubMed]

Gurushantha, K.

Y. S. Vidya, K. Gurushantha, H. Nagabhushana, S. C. Sharma, K. S. Anantharaju, C. Shivakumara, D. Suresh, H. P. Nagaswarupa, S. C. Prashantha, and M. R. Anilkumar, “Phase transformation of ZrO2:Tb3+ nanophosphor: Color tunable photoluminescence and photocatalytic activities,” J. Alloys Compd. 622, 86–96 (2015).
[Crossref]

Han, W.-P.

J.-C. Zhang, Y.-Z. Long, H.-D. Zhang, B. Sun, W.-P. Han, and X.-Y. Sun, “Eu2+/Eu3+-emission-ratio-tunable CaZr(PO4)2:Eu phosphors synthesized in air atmosphere for potential white light-emitting deep UV LEDs,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(2), 312–318 (2014).
[Crossref]

Huang, W.

X. Qin, X. Liu, W. Huang, M. Bettinelli, and X. Liu, “Lanthanide-Activated Phosphors Based on 4f-5d Optical Transitions: Theoretical and Experimental Aspects,” Chem. Rev. 117(5), 4488–4527 (2017).
[Crossref] [PubMed]

Ijdo, D. J. W.

J. R. Plaister, J. Jansen, R. A. G. de Graaff, and D. J. W. Ijdo, “Structure Determination of Ca3HfSi2O9 and Ca3ZrSi2O9 from Powder Diffraction,” J. Solid State Chem. 115(2), 464–468 (1995).
[Crossref]

Im, W. B.

Y. H. Kim, N. S. M. Viswanath, S. Unithrattil, H. J. Kim, and W. B. Im, “Review—Phosphor Plates for High-Power LED Applications: Challenges and Opportunities toward Perfect Lighting,” ECS J Solid State Sc 7(1), R3134–R3147 (2018).
[Crossref]

Imanaka, N.

Y. Zuo, S. W. Kim, T. Masui, and N. Imanaka, “Influence of Al3+ Doping into the Zr4+ Site on the Photoluminescence Properties of Ca3-xEuxZrSi2O9+x/2 Phosphors,” ECS J Solid State Sc 3(5), R79–R82 (2014).
[Crossref]

Y. Zuo, S. W. Kim, T. Masui, and N. Imanaka, “Enhanced luminescent properties of Ca3−xTbxZrSi2O9+x/2 phosphors by Al3+ doping into the Zr4+ site in the host lattice,” J. Lumin. 148, 198–201 (2014).
[Crossref]

S. W. Kim, Y. Zuo, T. Masui, and N. Imanaka, “Synthesis of Red-Emitting Ca3-xEuxZrSi2O9 Phosphors,” ECS Solid State Lett 2(9), R34–R36 (2013).
[Crossref]

Jansen, J.

J. R. Plaister, J. Jansen, R. A. G. de Graaff, and D. J. W. Ijdo, “Structure Determination of Ca3HfSi2O9 and Ca3ZrSi2O9 from Powder Diffraction,” J. Solid State Chem. 115(2), 464–468 (1995).
[Crossref]

Jin, Y.

H. Zhou, Q. Wang, and Y. Jin, “Temperature dependence of energy transfer in tunable white light-emitting phosphor BaY2Si3O10:Bi3+,Eu3+ for near UV LEDs,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(42), 11151–11162 (2015).
[Crossref]

Kang, F.

F. Kang, Y. Zhang, and M. Peng, “Controlling the energy transfer via multi luminescent centers to achieve white light/tunable emissions in a single-phased X2-type Y2SiO5:Eu3+,Bi3+ phosphor for ultraviolet converted LEDs,” Inorg. Chem. 54(4), 1462–1473 (2015).
[Crossref] [PubMed]

F. Kang, X. Yang, M. Peng, L. Wondraczek, Z. Ma, Q. Zhang, and J. Qiu, “Red Photoluminescence from Bi3+ and the Influence of the Oxygen-Vacancy Perturbation in ScVO4: A Combined Experimental and Theoretical Study,” J. Phys. Chem. C 118(14), 7515–7522 (2014).
[Crossref]

Kim, H. J.

Y. H. Kim, N. S. M. Viswanath, S. Unithrattil, H. J. Kim, and W. B. Im, “Review—Phosphor Plates for High-Power LED Applications: Challenges and Opportunities toward Perfect Lighting,” ECS J Solid State Sc 7(1), R3134–R3147 (2018).
[Crossref]

Kim, J. K.

J. Cho, J. H. Park, J. K. Kim, and E. F. Schubert, “White light-emitting diodes: History, progress, and future,” Laser Photonics Rev. 11(2), 1600147 (2017).
[Crossref]

Kim, S. W.

Y. Zuo, S. W. Kim, T. Masui, and N. Imanaka, “Influence of Al3+ Doping into the Zr4+ Site on the Photoluminescence Properties of Ca3-xEuxZrSi2O9+x/2 Phosphors,” ECS J Solid State Sc 3(5), R79–R82 (2014).
[Crossref]

Y. Zuo, S. W. Kim, T. Masui, and N. Imanaka, “Enhanced luminescent properties of Ca3−xTbxZrSi2O9+x/2 phosphors by Al3+ doping into the Zr4+ site in the host lattice,” J. Lumin. 148, 198–201 (2014).
[Crossref]

S. W. Kim, Y. Zuo, T. Masui, and N. Imanaka, “Synthesis of Red-Emitting Ca3-xEuxZrSi2O9 Phosphors,” ECS Solid State Lett 2(9), R34–R36 (2013).
[Crossref]

Kim, Y. H.

Y. H. Kim, N. S. M. Viswanath, S. Unithrattil, H. J. Kim, and W. B. Im, “Review—Phosphor Plates for High-Power LED Applications: Challenges and Opportunities toward Perfect Lighting,” ECS J Solid State Sc 7(1), R3134–R3147 (2018).
[Crossref]

Li, G.

Q. Yang, G. Li, Y. Wei, and H. Chai, “Synthesis and photoluminescence properties of red-emitting NaLaMgWO6:Sm3+,Eu3+ phosphors for white LED applications,” J. Lumin. 199, 323–330 (2018).
[Crossref]

Li, K.

K. Li, M. Shang, H. Lian, and J. Lin, “Recent development in phosphors with different emitting colors via energy transfer,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(24), 5507–5530 (2016).
[Crossref]

K. Li, J. Fan, M. Shang, H. Lian, and J. Lin, “Sr2Y8(SiO4)6O2:Bi3+/Eu3+: a single-component white-emitting phosphor via energy transfer for UV w-LEDs,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(38), 9989–9998 (2015).
[Crossref]

Li, P.

C. Wang, P. Li, Z. Wang, Y. Sun, J. Cheng, Z. Li, M. Tian, and Z. Yang, “Crystal structure, luminescence properties, energy transfer and thermal properties of a novel color-tunable, white light-emitting phosphor Ca9-x-yCe(PO4)7:xEu2+,yMn2,” Phys. Chem. Chem. Phys. 18(41), 28661–28673 (2016).
[Crossref] [PubMed]

Li, Z.

C. Wang, P. Li, Z. Wang, Y. Sun, J. Cheng, Z. Li, M. Tian, and Z. Yang, “Crystal structure, luminescence properties, energy transfer and thermal properties of a novel color-tunable, white light-emitting phosphor Ca9-x-yCe(PO4)7:xEu2+,yMn2,” Phys. Chem. Chem. Phys. 18(41), 28661–28673 (2016).
[Crossref] [PubMed]

Lian, H.

K. Li, M. Shang, H. Lian, and J. Lin, “Recent development in phosphors with different emitting colors via energy transfer,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(24), 5507–5530 (2016).
[Crossref]

K. Li, J. Fan, M. Shang, H. Lian, and J. Lin, “Sr2Y8(SiO4)6O2:Bi3+/Eu3+: a single-component white-emitting phosphor via energy transfer for UV w-LEDs,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(38), 9989–9998 (2015).
[Crossref]

Liao, Z.

J. Zhong, W. Zhao, L. Yang, P. Shi, Z. Liao, M. Xia, W. Pu, W. Xiao, and L. Wang, “Synthesis, electronic structures, and photoluminescence properties of an efficient and thermally stable red-emitting phosphor Ca3ZrSi2O9:Eu3+,Bi3+ for deep UV-LEDs,” RSC Advances 8(24), 13054–13060 (2018).
[Crossref]

Lin, J.

K. Li, M. Shang, H. Lian, and J. Lin, “Recent development in phosphors with different emitting colors via energy transfer,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(24), 5507–5530 (2016).
[Crossref]

K. Li, J. Fan, M. Shang, H. Lian, and J. Lin, “Sr2Y8(SiO4)6O2:Bi3+/Eu3+: a single-component white-emitting phosphor via energy transfer for UV w-LEDs,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(38), 9989–9998 (2015).
[Crossref]

Liu, G.

Z. Zhou, G. Liu, J. Ni, W. Liu, and Q. Liu, “Simultaneous multi-wavelength ultraviolet excited single-phase white light emitting phosphor Ba1-x(Zr,Ti)Si3O9:xEu,” Opt. Mater. 79, 53–62 (2018).
[Crossref]

Z. Zhou, G. Liu, Q. Wei, H. Yang, and Q. Liu, “Luminescence properties of Ag nanoclusters doped SiO2–PbF2 oxyfluoride glasses,” J. Lumin. 169, 695–700 (2016).
[Crossref]

Liu, Q.

Z. Zhou, G. Liu, J. Ni, W. Liu, and Q. Liu, “Simultaneous multi-wavelength ultraviolet excited single-phase white light emitting phosphor Ba1-x(Zr,Ti)Si3O9:xEu,” Opt. Mater. 79, 53–62 (2018).
[Crossref]

Z. Xia and Q. Liu, “Progress in discovery and structural design of color conversion phosphors for LEDs,” Prog. Mater. Sci. 84, 59–117 (2016).
[Crossref]

Z. Zhou, G. Liu, Q. Wei, H. Yang, and Q. Liu, “Luminescence properties of Ag nanoclusters doped SiO2–PbF2 oxyfluoride glasses,” J. Lumin. 169, 695–700 (2016).
[Crossref]

Z. Yu, Z. Xia, C. Su, R. Wang, and Q. Liu, “Effect of Gd/La substitution on the phase structures and luminescence properties of (La,Gd)Sr2AlO5:Ce3+ solid solution phosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(44), 11629–11634 (2015).
[Crossref]

Liu, W.

Z. Zhou, G. Liu, J. Ni, W. Liu, and Q. Liu, “Simultaneous multi-wavelength ultraviolet excited single-phase white light emitting phosphor Ba1-x(Zr,Ti)Si3O9:xEu,” Opt. Mater. 79, 53–62 (2018).
[Crossref]

Liu, X.

X. Qin, X. Liu, W. Huang, M. Bettinelli, and X. Liu, “Lanthanide-Activated Phosphors Based on 4f-5d Optical Transitions: Theoretical and Experimental Aspects,” Chem. Rev. 117(5), 4488–4527 (2017).
[Crossref] [PubMed]

X. Qin, X. Liu, W. Huang, M. Bettinelli, and X. Liu, “Lanthanide-Activated Phosphors Based on 4f-5d Optical Transitions: Theoretical and Experimental Aspects,” Chem. Rev. 117(5), 4488–4527 (2017).
[Crossref] [PubMed]

Long, Y.-Z.

J.-C. Zhang, Y.-Z. Long, H.-D. Zhang, B. Sun, W.-P. Han, and X.-Y. Sun, “Eu2+/Eu3+-emission-ratio-tunable CaZr(PO4)2:Eu phosphors synthesized in air atmosphere for potential white light-emitting deep UV LEDs,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(2), 312–318 (2014).
[Crossref]

Lu, C.-H.

C.-Y. Yang, S. Das, S. Som, and C.-H. Lu, “White emitting Ca2Tb8(SiO4)6O2:Eu2+/Eu3+ phosphors: Photoluminescence and efficient energy transfer,” Chem. Phys. Lett. 660, 164–168 (2016).
[Crossref]

C.-Y. Yang, S. Das, and C.-H. Lu, “Tunable photoluminescence properties and energy transfer in oxyapatite-based Ca2Tb8(SiO4)6:Eu3+ phosphors for UV-LEDs,” J. Lumin. 168, 199–206 (2015).
[Crossref]

Ma, Z.

F. Kang, X. Yang, M. Peng, L. Wondraczek, Z. Ma, Q. Zhang, and J. Qiu, “Red Photoluminescence from Bi3+ and the Influence of the Oxygen-Vacancy Perturbation in ScVO4: A Combined Experimental and Theoretical Study,” J. Phys. Chem. C 118(14), 7515–7522 (2014).
[Crossref]

Masui, T.

Y. Zuo, S. W. Kim, T. Masui, and N. Imanaka, “Enhanced luminescent properties of Ca3−xTbxZrSi2O9+x/2 phosphors by Al3+ doping into the Zr4+ site in the host lattice,” J. Lumin. 148, 198–201 (2014).
[Crossref]

Y. Zuo, S. W. Kim, T. Masui, and N. Imanaka, “Influence of Al3+ Doping into the Zr4+ Site on the Photoluminescence Properties of Ca3-xEuxZrSi2O9+x/2 Phosphors,” ECS J Solid State Sc 3(5), R79–R82 (2014).
[Crossref]

S. W. Kim, Y. Zuo, T. Masui, and N. Imanaka, “Synthesis of Red-Emitting Ca3-xEuxZrSi2O9 Phosphors,” ECS Solid State Lett 2(9), R34–R36 (2013).
[Crossref]

Meijerink, A.

Z. Xia and A. Meijerink, “Ce3+-Doped garnet phosphors: composition modification, luminescence properties and applications,” Chem. Soc. Rev. 46(1), 275–299 (2017).
[Crossref] [PubMed]

Mickens, M. A.

M. A. Mickens and Z. Assefa, “Tunable luminescence and white light emission of novel multiphase sodium calcium silicate nanophosphors doped with Ce3+, Tb3+, and Mn2+ ions,” J. Lumin. 145, 498–506 (2014).
[Crossref]

Molokeev, M. S.

P. Shi, Z. Xia, M. S. Molokeev, and V. V. Atuchin, “Crystal chemistry and luminescence properties of red-emitting CsGd1-xEux(MoO4)2 solid-solution phosphors,” Dalton Trans. 43(25), 9669–9676 (2014).
[Crossref] [PubMed]

Nagabhushana, H.

M. Venkataravanappa, H. Nagabhushana, G. P. Darshan, B. Daruka Prasad, G. R. Vijayakumar, H. B. Premkumar, and Udayabhanu, “Novel EGCG assisted ultrasound synthesis of self-assembled Ca2SiO4:Eu3+ hierarchical superstructures: Photometric characteristics and LED applications,” Ultrason. Sonochem. 33, 226–239 (2016).
[Crossref] [PubMed]

Y. S. Vidya, K. Gurushantha, H. Nagabhushana, S. C. Sharma, K. S. Anantharaju, C. Shivakumara, D. Suresh, H. P. Nagaswarupa, S. C. Prashantha, and M. R. Anilkumar, “Phase transformation of ZrO2:Tb3+ nanophosphor: Color tunable photoluminescence and photocatalytic activities,” J. Alloys Compd. 622, 86–96 (2015).
[Crossref]

Nagaswarupa, H. P.

Y. S. Vidya, K. Gurushantha, H. Nagabhushana, S. C. Sharma, K. S. Anantharaju, C. Shivakumara, D. Suresh, H. P. Nagaswarupa, S. C. Prashantha, and M. R. Anilkumar, “Phase transformation of ZrO2:Tb3+ nanophosphor: Color tunable photoluminescence and photocatalytic activities,” J. Alloys Compd. 622, 86–96 (2015).
[Crossref]

Ni, J.

Z. Zhou, G. Liu, J. Ni, W. Liu, and Q. Liu, “Simultaneous multi-wavelength ultraviolet excited single-phase white light emitting phosphor Ba1-x(Zr,Ti)Si3O9:xEu,” Opt. Mater. 79, 53–62 (2018).
[Crossref]

Park, J. H.

J. Cho, J. H. Park, J. K. Kim, and E. F. Schubert, “White light-emitting diodes: History, progress, and future,” Laser Photonics Rev. 11(2), 1600147 (2017).
[Crossref]

Peng, M.

F. Kang, Y. Zhang, and M. Peng, “Controlling the energy transfer via multi luminescent centers to achieve white light/tunable emissions in a single-phased X2-type Y2SiO5:Eu3+,Bi3+ phosphor for ultraviolet converted LEDs,” Inorg. Chem. 54(4), 1462–1473 (2015).
[Crossref] [PubMed]

F. Kang, X. Yang, M. Peng, L. Wondraczek, Z. Ma, Q. Zhang, and J. Qiu, “Red Photoluminescence from Bi3+ and the Influence of the Oxygen-Vacancy Perturbation in ScVO4: A Combined Experimental and Theoretical Study,” J. Phys. Chem. C 118(14), 7515–7522 (2014).
[Crossref]

Pintado, J. M.

G. Blanco, J. M. Pintado, S. Bernal, M. A. Cauqui, M. P. Corchado, A. Galtayries, J. Ghijsen, R. Sporken, T. Eickhoff, and W. Drube, “Influence of the nature of the noble metal (Rh,Pt) on the low-temperature reducibility of a Ce/Tb mixed oxide with application as TWC component,” Surf. Interface Anal. 34(1), 120–124 (2002).
[Crossref]

Plaister, J. R.

J. R. Plaister, J. Jansen, R. A. G. de Graaff, and D. J. W. Ijdo, “Structure Determination of Ca3HfSi2O9 and Ca3ZrSi2O9 from Powder Diffraction,” J. Solid State Chem. 115(2), 464–468 (1995).
[Crossref]

Prashantha, S. C.

Y. S. Vidya, K. Gurushantha, H. Nagabhushana, S. C. Sharma, K. S. Anantharaju, C. Shivakumara, D. Suresh, H. P. Nagaswarupa, S. C. Prashantha, and M. R. Anilkumar, “Phase transformation of ZrO2:Tb3+ nanophosphor: Color tunable photoluminescence and photocatalytic activities,” J. Alloys Compd. 622, 86–96 (2015).
[Crossref]

Premkumar, H. B.

M. Venkataravanappa, H. Nagabhushana, G. P. Darshan, B. Daruka Prasad, G. R. Vijayakumar, H. B. Premkumar, and Udayabhanu, “Novel EGCG assisted ultrasound synthesis of self-assembled Ca2SiO4:Eu3+ hierarchical superstructures: Photometric characteristics and LED applications,” Ultrason. Sonochem. 33, 226–239 (2016).
[Crossref] [PubMed]

Pu, W.

J. Zhong, W. Zhao, L. Yang, P. Shi, Z. Liao, M. Xia, W. Pu, W. Xiao, and L. Wang, “Synthesis, electronic structures, and photoluminescence properties of an efficient and thermally stable red-emitting phosphor Ca3ZrSi2O9:Eu3+,Bi3+ for deep UV-LEDs,” RSC Advances 8(24), 13054–13060 (2018).
[Crossref]

Qin, X.

X. Qin, X. Liu, W. Huang, M. Bettinelli, and X. Liu, “Lanthanide-Activated Phosphors Based on 4f-5d Optical Transitions: Theoretical and Experimental Aspects,” Chem. Rev. 117(5), 4488–4527 (2017).
[Crossref] [PubMed]

Qiu, J.

F. Kang, X. Yang, M. Peng, L. Wondraczek, Z. Ma, Q. Zhang, and J. Qiu, “Red Photoluminescence from Bi3+ and the Influence of the Oxygen-Vacancy Perturbation in ScVO4: A Combined Experimental and Theoretical Study,” J. Phys. Chem. C 118(14), 7515–7522 (2014).
[Crossref]

Schubert, E. F.

J. Cho, J. H. Park, J. K. Kim, and E. F. Schubert, “White light-emitting diodes: History, progress, and future,” Laser Photonics Rev. 11(2), 1600147 (2017).
[Crossref]

Shang, M.

K. Li, M. Shang, H. Lian, and J. Lin, “Recent development in phosphors with different emitting colors via energy transfer,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(24), 5507–5530 (2016).
[Crossref]

K. Li, J. Fan, M. Shang, H. Lian, and J. Lin, “Sr2Y8(SiO4)6O2:Bi3+/Eu3+: a single-component white-emitting phosphor via energy transfer for UV w-LEDs,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(38), 9989–9998 (2015).
[Crossref]

Shannon, R.

R. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A 32(5), 751–767 (1976).
[Crossref]

Sharma, S. C.

Y. S. Vidya, K. Gurushantha, H. Nagabhushana, S. C. Sharma, K. S. Anantharaju, C. Shivakumara, D. Suresh, H. P. Nagaswarupa, S. C. Prashantha, and M. R. Anilkumar, “Phase transformation of ZrO2:Tb3+ nanophosphor: Color tunable photoluminescence and photocatalytic activities,” J. Alloys Compd. 622, 86–96 (2015).
[Crossref]

Sheng, Y.

C. Xu, H. Guan, Y. Song, Z. An, X. Zhang, X. Zhou, Z. Shi, Y. Sheng, and H. Zou, “Novel highly efficient single-component multi-peak emitting aluminosilicate phosphors co-activated with Ce3+, Tb3+ and Eu2+: luminescence properties, tunable color, and thermal properties,” Phys. Chem. Chem. Phys. 20(3), 1591–1607 (2018).
[Crossref] [PubMed]

Shi, P.

J. Zhong, W. Zhao, L. Yang, P. Shi, Z. Liao, M. Xia, W. Pu, W. Xiao, and L. Wang, “Synthesis, electronic structures, and photoluminescence properties of an efficient and thermally stable red-emitting phosphor Ca3ZrSi2O9:Eu3+,Bi3+ for deep UV-LEDs,” RSC Advances 8(24), 13054–13060 (2018).
[Crossref]

P. Shi, Z. Xia, M. S. Molokeev, and V. V. Atuchin, “Crystal chemistry and luminescence properties of red-emitting CsGd1-xEux(MoO4)2 solid-solution phosphors,” Dalton Trans. 43(25), 9669–9676 (2014).
[Crossref] [PubMed]

Shi, Z.

C. Xu, H. Guan, Y. Song, Z. An, X. Zhang, X. Zhou, Z. Shi, Y. Sheng, and H. Zou, “Novel highly efficient single-component multi-peak emitting aluminosilicate phosphors co-activated with Ce3+, Tb3+ and Eu2+: luminescence properties, tunable color, and thermal properties,” Phys. Chem. Chem. Phys. 20(3), 1591–1607 (2018).
[Crossref] [PubMed]

Shivakumara, C.

Y. S. Vidya, K. Gurushantha, H. Nagabhushana, S. C. Sharma, K. S. Anantharaju, C. Shivakumara, D. Suresh, H. P. Nagaswarupa, S. C. Prashantha, and M. R. Anilkumar, “Phase transformation of ZrO2:Tb3+ nanophosphor: Color tunable photoluminescence and photocatalytic activities,” J. Alloys Compd. 622, 86–96 (2015).
[Crossref]

Som, S.

C.-Y. Yang, S. Das, S. Som, and C.-H. Lu, “White emitting Ca2Tb8(SiO4)6O2:Eu2+/Eu3+ phosphors: Photoluminescence and efficient energy transfer,” Chem. Phys. Lett. 660, 164–168 (2016).
[Crossref]

Song, Y.

C. Xu, H. Guan, Y. Song, Z. An, X. Zhang, X. Zhou, Z. Shi, Y. Sheng, and H. Zou, “Novel highly efficient single-component multi-peak emitting aluminosilicate phosphors co-activated with Ce3+, Tb3+ and Eu2+: luminescence properties, tunable color, and thermal properties,” Phys. Chem. Chem. Phys. 20(3), 1591–1607 (2018).
[Crossref] [PubMed]

Sporken, R.

G. Blanco, J. M. Pintado, S. Bernal, M. A. Cauqui, M. P. Corchado, A. Galtayries, J. Ghijsen, R. Sporken, T. Eickhoff, and W. Drube, “Influence of the nature of the noble metal (Rh,Pt) on the low-temperature reducibility of a Ce/Tb mixed oxide with application as TWC component,” Surf. Interface Anal. 34(1), 120–124 (2002).
[Crossref]

Su, C.

Z. Yu, Z. Xia, C. Su, R. Wang, and Q. Liu, “Effect of Gd/La substitution on the phase structures and luminescence properties of (La,Gd)Sr2AlO5:Ce3+ solid solution phosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(44), 11629–11634 (2015).
[Crossref]

Sun, B.

J.-C. Zhang, Y.-Z. Long, H.-D. Zhang, B. Sun, W.-P. Han, and X.-Y. Sun, “Eu2+/Eu3+-emission-ratio-tunable CaZr(PO4)2:Eu phosphors synthesized in air atmosphere for potential white light-emitting deep UV LEDs,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(2), 312–318 (2014).
[Crossref]

Sun, X.-Y.

J.-C. Zhang, Y.-Z. Long, H.-D. Zhang, B. Sun, W.-P. Han, and X.-Y. Sun, “Eu2+/Eu3+-emission-ratio-tunable CaZr(PO4)2:Eu phosphors synthesized in air atmosphere for potential white light-emitting deep UV LEDs,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(2), 312–318 (2014).
[Crossref]

Sun, Y.

C. Wang, P. Li, Z. Wang, Y. Sun, J. Cheng, Z. Li, M. Tian, and Z. Yang, “Crystal structure, luminescence properties, energy transfer and thermal properties of a novel color-tunable, white light-emitting phosphor Ca9-x-yCe(PO4)7:xEu2+,yMn2,” Phys. Chem. Chem. Phys. 18(41), 28661–28673 (2016).
[Crossref] [PubMed]

Suresh, D.

Y. S. Vidya, K. Gurushantha, H. Nagabhushana, S. C. Sharma, K. S. Anantharaju, C. Shivakumara, D. Suresh, H. P. Nagaswarupa, S. C. Prashantha, and M. R. Anilkumar, “Phase transformation of ZrO2:Tb3+ nanophosphor: Color tunable photoluminescence and photocatalytic activities,” J. Alloys Compd. 622, 86–96 (2015).
[Crossref]

Tian, M.

C. Wang, P. Li, Z. Wang, Y. Sun, J. Cheng, Z. Li, M. Tian, and Z. Yang, “Crystal structure, luminescence properties, energy transfer and thermal properties of a novel color-tunable, white light-emitting phosphor Ca9-x-yCe(PO4)7:xEu2+,yMn2,” Phys. Chem. Chem. Phys. 18(41), 28661–28673 (2016).
[Crossref] [PubMed]

Udayabhanu,

M. Venkataravanappa, H. Nagabhushana, G. P. Darshan, B. Daruka Prasad, G. R. Vijayakumar, H. B. Premkumar, and Udayabhanu, “Novel EGCG assisted ultrasound synthesis of self-assembled Ca2SiO4:Eu3+ hierarchical superstructures: Photometric characteristics and LED applications,” Ultrason. Sonochem. 33, 226–239 (2016).
[Crossref] [PubMed]

Unithrattil, S.

Y. H. Kim, N. S. M. Viswanath, S. Unithrattil, H. J. Kim, and W. B. Im, “Review—Phosphor Plates for High-Power LED Applications: Challenges and Opportunities toward Perfect Lighting,” ECS J Solid State Sc 7(1), R3134–R3147 (2018).
[Crossref]

Venkataravanappa, M.

M. Venkataravanappa, H. Nagabhushana, G. P. Darshan, B. Daruka Prasad, G. R. Vijayakumar, H. B. Premkumar, and Udayabhanu, “Novel EGCG assisted ultrasound synthesis of self-assembled Ca2SiO4:Eu3+ hierarchical superstructures: Photometric characteristics and LED applications,” Ultrason. Sonochem. 33, 226–239 (2016).
[Crossref] [PubMed]

Vidya, Y. S.

Y. S. Vidya, K. Gurushantha, H. Nagabhushana, S. C. Sharma, K. S. Anantharaju, C. Shivakumara, D. Suresh, H. P. Nagaswarupa, S. C. Prashantha, and M. R. Anilkumar, “Phase transformation of ZrO2:Tb3+ nanophosphor: Color tunable photoluminescence and photocatalytic activities,” J. Alloys Compd. 622, 86–96 (2015).
[Crossref]

Vijayakumar, G. R.

M. Venkataravanappa, H. Nagabhushana, G. P. Darshan, B. Daruka Prasad, G. R. Vijayakumar, H. B. Premkumar, and Udayabhanu, “Novel EGCG assisted ultrasound synthesis of self-assembled Ca2SiO4:Eu3+ hierarchical superstructures: Photometric characteristics and LED applications,” Ultrason. Sonochem. 33, 226–239 (2016).
[Crossref] [PubMed]

Viswanath, N. S. M.

Y. H. Kim, N. S. M. Viswanath, S. Unithrattil, H. J. Kim, and W. B. Im, “Review—Phosphor Plates for High-Power LED Applications: Challenges and Opportunities toward Perfect Lighting,” ECS J Solid State Sc 7(1), R3134–R3147 (2018).
[Crossref]

Wang, C.

C. Wang, P. Li, Z. Wang, Y. Sun, J. Cheng, Z. Li, M. Tian, and Z. Yang, “Crystal structure, luminescence properties, energy transfer and thermal properties of a novel color-tunable, white light-emitting phosphor Ca9-x-yCe(PO4)7:xEu2+,yMn2,” Phys. Chem. Chem. Phys. 18(41), 28661–28673 (2016).
[Crossref] [PubMed]

Wang, L.

J. Zhong, W. Zhao, L. Yang, P. Shi, Z. Liao, M. Xia, W. Pu, W. Xiao, and L. Wang, “Synthesis, electronic structures, and photoluminescence properties of an efficient and thermally stable red-emitting phosphor Ca3ZrSi2O9:Eu3+,Bi3+ for deep UV-LEDs,” RSC Advances 8(24), 13054–13060 (2018).
[Crossref]

Wang, Q.

H. Zhou, Q. Wang, and Y. Jin, “Temperature dependence of energy transfer in tunable white light-emitting phosphor BaY2Si3O10:Bi3+,Eu3+ for near UV LEDs,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(42), 11151–11162 (2015).
[Crossref]

Wang, R.

Z. Yu, Z. Xia, C. Su, R. Wang, and Q. Liu, “Effect of Gd/La substitution on the phase structures and luminescence properties of (La,Gd)Sr2AlO5:Ce3+ solid solution phosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(44), 11629–11634 (2015).
[Crossref]

Wang, X.

Q. Zhang, X. Wang, X. Ding, and Y. Wang, “A broad band yellow-emitting Sr8CaBi(PO4)7:Eu2+ phosphor for n-UV pumped white light emitting devices,” Dyes Pigments 149, 268–275 (2018).
[Crossref]

Wang, Y.

Q. Zhang, X. Wang, X. Ding, and Y. Wang, “A broad band yellow-emitting Sr8CaBi(PO4)7:Eu2+ phosphor for n-UV pumped white light emitting devices,” Dyes Pigments 149, 268–275 (2018).
[Crossref]

X. Zhou, W. Geng, J. Ding, Y. Wang, and Y. Wang, “Structure, bandgap, photoluminescence evolution and thermal stability improved of Sr replacement apatite phosphors Ca10-xSrx(PO4)6F2:Eu2+ (x = 4, 6, 8),” Dyes Pigments 152, 75–84 (2018).
[Crossref]

X. Zhou, W. Geng, J. Ding, Y. Wang, and Y. Wang, “Structure, bandgap, photoluminescence evolution and thermal stability improved of Sr replacement apatite phosphors Ca10-xSrx(PO4)6F2:Eu2+ (x = 4, 6, 8),” Dyes Pigments 152, 75–84 (2018).
[Crossref]

Wang, Z.

C. Wang, P. Li, Z. Wang, Y. Sun, J. Cheng, Z. Li, M. Tian, and Z. Yang, “Crystal structure, luminescence properties, energy transfer and thermal properties of a novel color-tunable, white light-emitting phosphor Ca9-x-yCe(PO4)7:xEu2+,yMn2,” Phys. Chem. Chem. Phys. 18(41), 28661–28673 (2016).
[Crossref] [PubMed]

Wei, Q.

Z. Zhou, G. Liu, Q. Wei, H. Yang, and Q. Liu, “Luminescence properties of Ag nanoclusters doped SiO2–PbF2 oxyfluoride glasses,” J. Lumin. 169, 695–700 (2016).
[Crossref]

Wei, Y.

Q. Yang, G. Li, Y. Wei, and H. Chai, “Synthesis and photoluminescence properties of red-emitting NaLaMgWO6:Sm3+,Eu3+ phosphors for white LED applications,” J. Lumin. 199, 323–330 (2018).
[Crossref]

Wondraczek, L.

F. Kang, X. Yang, M. Peng, L. Wondraczek, Z. Ma, Q. Zhang, and J. Qiu, “Red Photoluminescence from Bi3+ and the Influence of the Oxygen-Vacancy Perturbation in ScVO4: A Combined Experimental and Theoretical Study,” J. Phys. Chem. C 118(14), 7515–7522 (2014).
[Crossref]

Xia, M.

J. Zhong, W. Zhao, L. Yang, P. Shi, Z. Liao, M. Xia, W. Pu, W. Xiao, and L. Wang, “Synthesis, electronic structures, and photoluminescence properties of an efficient and thermally stable red-emitting phosphor Ca3ZrSi2O9:Eu3+,Bi3+ for deep UV-LEDs,” RSC Advances 8(24), 13054–13060 (2018).
[Crossref]

Xia, Z.

Z. Xia and A. Meijerink, “Ce3+-Doped garnet phosphors: composition modification, luminescence properties and applications,” Chem. Soc. Rev. 46(1), 275–299 (2017).
[Crossref] [PubMed]

Z. Xia and Q. Liu, “Progress in discovery and structural design of color conversion phosphors for LEDs,” Prog. Mater. Sci. 84, 59–117 (2016).
[Crossref]

Z. Yu, Z. Xia, C. Su, R. Wang, and Q. Liu, “Effect of Gd/La substitution on the phase structures and luminescence properties of (La,Gd)Sr2AlO5:Ce3+ solid solution phosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(44), 11629–11634 (2015).
[Crossref]

J. Zhou and Z. Xia, “Luminescence color tuning of Ce3+, Tb3+ and Eu3+ codoped and tri-doped BaY2Si3O10 phosphors via energy transfer,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(29), 7552–7560 (2015).
[Crossref]

P. Shi, Z. Xia, M. S. Molokeev, and V. V. Atuchin, “Crystal chemistry and luminescence properties of red-emitting CsGd1-xEux(MoO4)2 solid-solution phosphors,” Dalton Trans. 43(25), 9669–9676 (2014).
[Crossref] [PubMed]

Xiao, W.

J. Zhong, W. Zhao, L. Yang, P. Shi, Z. Liao, M. Xia, W. Pu, W. Xiao, and L. Wang, “Synthesis, electronic structures, and photoluminescence properties of an efficient and thermally stable red-emitting phosphor Ca3ZrSi2O9:Eu3+,Bi3+ for deep UV-LEDs,” RSC Advances 8(24), 13054–13060 (2018).
[Crossref]

Xu, C.

C. Xu, H. Guan, Y. Song, Z. An, X. Zhang, X. Zhou, Z. Shi, Y. Sheng, and H. Zou, “Novel highly efficient single-component multi-peak emitting aluminosilicate phosphors co-activated with Ce3+, Tb3+ and Eu2+: luminescence properties, tunable color, and thermal properties,” Phys. Chem. Chem. Phys. 20(3), 1591–1607 (2018).
[Crossref] [PubMed]

Yang, C.-Y.

C.-Y. Yang, S. Das, S. Som, and C.-H. Lu, “White emitting Ca2Tb8(SiO4)6O2:Eu2+/Eu3+ phosphors: Photoluminescence and efficient energy transfer,” Chem. Phys. Lett. 660, 164–168 (2016).
[Crossref]

C.-Y. Yang, S. Das, and C.-H. Lu, “Tunable photoluminescence properties and energy transfer in oxyapatite-based Ca2Tb8(SiO4)6:Eu3+ phosphors for UV-LEDs,” J. Lumin. 168, 199–206 (2015).
[Crossref]

Yang, H.

Z. Zhou, G. Liu, Q. Wei, H. Yang, and Q. Liu, “Luminescence properties of Ag nanoclusters doped SiO2–PbF2 oxyfluoride glasses,” J. Lumin. 169, 695–700 (2016).
[Crossref]

Yang, L.

J. Zhong, W. Zhao, L. Yang, P. Shi, Z. Liao, M. Xia, W. Pu, W. Xiao, and L. Wang, “Synthesis, electronic structures, and photoluminescence properties of an efficient and thermally stable red-emitting phosphor Ca3ZrSi2O9:Eu3+,Bi3+ for deep UV-LEDs,” RSC Advances 8(24), 13054–13060 (2018).
[Crossref]

Yang, Q.

Q. Yang, G. Li, Y. Wei, and H. Chai, “Synthesis and photoluminescence properties of red-emitting NaLaMgWO6:Sm3+,Eu3+ phosphors for white LED applications,” J. Lumin. 199, 323–330 (2018).
[Crossref]

Yang, X.

F. Kang, X. Yang, M. Peng, L. Wondraczek, Z. Ma, Q. Zhang, and J. Qiu, “Red Photoluminescence from Bi3+ and the Influence of the Oxygen-Vacancy Perturbation in ScVO4: A Combined Experimental and Theoretical Study,” J. Phys. Chem. C 118(14), 7515–7522 (2014).
[Crossref]

Yang, Z.

C. Wang, P. Li, Z. Wang, Y. Sun, J. Cheng, Z. Li, M. Tian, and Z. Yang, “Crystal structure, luminescence properties, energy transfer and thermal properties of a novel color-tunable, white light-emitting phosphor Ca9-x-yCe(PO4)7:xEu2+,yMn2,” Phys. Chem. Chem. Phys. 18(41), 28661–28673 (2016).
[Crossref] [PubMed]

Yu, Z.

Z. Yu, Z. Xia, C. Su, R. Wang, and Q. Liu, “Effect of Gd/La substitution on the phase structures and luminescence properties of (La,Gd)Sr2AlO5:Ce3+ solid solution phosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(44), 11629–11634 (2015).
[Crossref]

Zhang, H.-D.

J.-C. Zhang, Y.-Z. Long, H.-D. Zhang, B. Sun, W.-P. Han, and X.-Y. Sun, “Eu2+/Eu3+-emission-ratio-tunable CaZr(PO4)2:Eu phosphors synthesized in air atmosphere for potential white light-emitting deep UV LEDs,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(2), 312–318 (2014).
[Crossref]

Zhang, J.-C.

J.-C. Zhang, Y.-Z. Long, H.-D. Zhang, B. Sun, W.-P. Han, and X.-Y. Sun, “Eu2+/Eu3+-emission-ratio-tunable CaZr(PO4)2:Eu phosphors synthesized in air atmosphere for potential white light-emitting deep UV LEDs,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(2), 312–318 (2014).
[Crossref]

Zhang, Q.

Q. Zhang, X. Wang, X. Ding, and Y. Wang, “A broad band yellow-emitting Sr8CaBi(PO4)7:Eu2+ phosphor for n-UV pumped white light emitting devices,” Dyes Pigments 149, 268–275 (2018).
[Crossref]

F. Kang, X. Yang, M. Peng, L. Wondraczek, Z. Ma, Q. Zhang, and J. Qiu, “Red Photoluminescence from Bi3+ and the Influence of the Oxygen-Vacancy Perturbation in ScVO4: A Combined Experimental and Theoretical Study,” J. Phys. Chem. C 118(14), 7515–7522 (2014).
[Crossref]

Zhang, X.

C. Xu, H. Guan, Y. Song, Z. An, X. Zhang, X. Zhou, Z. Shi, Y. Sheng, and H. Zou, “Novel highly efficient single-component multi-peak emitting aluminosilicate phosphors co-activated with Ce3+, Tb3+ and Eu2+: luminescence properties, tunable color, and thermal properties,” Phys. Chem. Chem. Phys. 20(3), 1591–1607 (2018).
[Crossref] [PubMed]

Zhang, Y.

F. Kang, Y. Zhang, and M. Peng, “Controlling the energy transfer via multi luminescent centers to achieve white light/tunable emissions in a single-phased X2-type Y2SiO5:Eu3+,Bi3+ phosphor for ultraviolet converted LEDs,” Inorg. Chem. 54(4), 1462–1473 (2015).
[Crossref] [PubMed]

Zhao, W.

J. Zhong, W. Zhao, L. Yang, P. Shi, Z. Liao, M. Xia, W. Pu, W. Xiao, and L. Wang, “Synthesis, electronic structures, and photoluminescence properties of an efficient and thermally stable red-emitting phosphor Ca3ZrSi2O9:Eu3+,Bi3+ for deep UV-LEDs,” RSC Advances 8(24), 13054–13060 (2018).
[Crossref]

Zhong, J.

J. Zhong, W. Zhao, L. Yang, P. Shi, Z. Liao, M. Xia, W. Pu, W. Xiao, and L. Wang, “Synthesis, electronic structures, and photoluminescence properties of an efficient and thermally stable red-emitting phosphor Ca3ZrSi2O9:Eu3+,Bi3+ for deep UV-LEDs,” RSC Advances 8(24), 13054–13060 (2018).
[Crossref]

Zhou, H.

H. Zhou, Q. Wang, and Y. Jin, “Temperature dependence of energy transfer in tunable white light-emitting phosphor BaY2Si3O10:Bi3+,Eu3+ for near UV LEDs,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(42), 11151–11162 (2015).
[Crossref]

Zhou, J.

J. Zhou and Z. Xia, “Luminescence color tuning of Ce3+, Tb3+ and Eu3+ codoped and tri-doped BaY2Si3O10 phosphors via energy transfer,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(29), 7552–7560 (2015).
[Crossref]

Zhou, X.

C. Xu, H. Guan, Y. Song, Z. An, X. Zhang, X. Zhou, Z. Shi, Y. Sheng, and H. Zou, “Novel highly efficient single-component multi-peak emitting aluminosilicate phosphors co-activated with Ce3+, Tb3+ and Eu2+: luminescence properties, tunable color, and thermal properties,” Phys. Chem. Chem. Phys. 20(3), 1591–1607 (2018).
[Crossref] [PubMed]

X. Zhou, W. Geng, J. Ding, Y. Wang, and Y. Wang, “Structure, bandgap, photoluminescence evolution and thermal stability improved of Sr replacement apatite phosphors Ca10-xSrx(PO4)6F2:Eu2+ (x = 4, 6, 8),” Dyes Pigments 152, 75–84 (2018).
[Crossref]

Zhou, Z.

Z. Zhou, G. Liu, J. Ni, W. Liu, and Q. Liu, “Simultaneous multi-wavelength ultraviolet excited single-phase white light emitting phosphor Ba1-x(Zr,Ti)Si3O9:xEu,” Opt. Mater. 79, 53–62 (2018).
[Crossref]

Z. Zhou, G. Liu, Q. Wei, H. Yang, and Q. Liu, “Luminescence properties of Ag nanoclusters doped SiO2–PbF2 oxyfluoride glasses,” J. Lumin. 169, 695–700 (2016).
[Crossref]

Zou, H.

C. Xu, H. Guan, Y. Song, Z. An, X. Zhang, X. Zhou, Z. Shi, Y. Sheng, and H. Zou, “Novel highly efficient single-component multi-peak emitting aluminosilicate phosphors co-activated with Ce3+, Tb3+ and Eu2+: luminescence properties, tunable color, and thermal properties,” Phys. Chem. Chem. Phys. 20(3), 1591–1607 (2018).
[Crossref] [PubMed]

Zuo, Y.

Y. Zuo, S. W. Kim, T. Masui, and N. Imanaka, “Influence of Al3+ Doping into the Zr4+ Site on the Photoluminescence Properties of Ca3-xEuxZrSi2O9+x/2 Phosphors,” ECS J Solid State Sc 3(5), R79–R82 (2014).
[Crossref]

Y. Zuo, S. W. Kim, T. Masui, and N. Imanaka, “Enhanced luminescent properties of Ca3−xTbxZrSi2O9+x/2 phosphors by Al3+ doping into the Zr4+ site in the host lattice,” J. Lumin. 148, 198–201 (2014).
[Crossref]

S. W. Kim, Y. Zuo, T. Masui, and N. Imanaka, “Synthesis of Red-Emitting Ca3-xEuxZrSi2O9 Phosphors,” ECS Solid State Lett 2(9), R34–R36 (2013).
[Crossref]

Acta Crystallogr. A (1)

R. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A 32(5), 751–767 (1976).
[Crossref]

Chem. Phys. Lett. (1)

C.-Y. Yang, S. Das, S. Som, and C.-H. Lu, “White emitting Ca2Tb8(SiO4)6O2:Eu2+/Eu3+ phosphors: Photoluminescence and efficient energy transfer,” Chem. Phys. Lett. 660, 164–168 (2016).
[Crossref]

Chem. Rev. (1)

X. Qin, X. Liu, W. Huang, M. Bettinelli, and X. Liu, “Lanthanide-Activated Phosphors Based on 4f-5d Optical Transitions: Theoretical and Experimental Aspects,” Chem. Rev. 117(5), 4488–4527 (2017).
[Crossref] [PubMed]

Chem. Soc. Rev. (1)

Z. Xia and A. Meijerink, “Ce3+-Doped garnet phosphors: composition modification, luminescence properties and applications,” Chem. Soc. Rev. 46(1), 275–299 (2017).
[Crossref] [PubMed]

Dalton Trans. (1)

P. Shi, Z. Xia, M. S. Molokeev, and V. V. Atuchin, “Crystal chemistry and luminescence properties of red-emitting CsGd1-xEux(MoO4)2 solid-solution phosphors,” Dalton Trans. 43(25), 9669–9676 (2014).
[Crossref] [PubMed]

Dyes Pigments (2)

Q. Zhang, X. Wang, X. Ding, and Y. Wang, “A broad band yellow-emitting Sr8CaBi(PO4)7:Eu2+ phosphor for n-UV pumped white light emitting devices,” Dyes Pigments 149, 268–275 (2018).
[Crossref]

X. Zhou, W. Geng, J. Ding, Y. Wang, and Y. Wang, “Structure, bandgap, photoluminescence evolution and thermal stability improved of Sr replacement apatite phosphors Ca10-xSrx(PO4)6F2:Eu2+ (x = 4, 6, 8),” Dyes Pigments 152, 75–84 (2018).
[Crossref]

ECS J Solid State Sc (2)

Y. Zuo, S. W. Kim, T. Masui, and N. Imanaka, “Influence of Al3+ Doping into the Zr4+ Site on the Photoluminescence Properties of Ca3-xEuxZrSi2O9+x/2 Phosphors,” ECS J Solid State Sc 3(5), R79–R82 (2014).
[Crossref]

Y. H. Kim, N. S. M. Viswanath, S. Unithrattil, H. J. Kim, and W. B. Im, “Review—Phosphor Plates for High-Power LED Applications: Challenges and Opportunities toward Perfect Lighting,” ECS J Solid State Sc 7(1), R3134–R3147 (2018).
[Crossref]

ECS Solid State Lett (1)

S. W. Kim, Y. Zuo, T. Masui, and N. Imanaka, “Synthesis of Red-Emitting Ca3-xEuxZrSi2O9 Phosphors,” ECS Solid State Lett 2(9), R34–R36 (2013).
[Crossref]

Inorg. Chem. (1)

F. Kang, Y. Zhang, and M. Peng, “Controlling the energy transfer via multi luminescent centers to achieve white light/tunable emissions in a single-phased X2-type Y2SiO5:Eu3+,Bi3+ phosphor for ultraviolet converted LEDs,” Inorg. Chem. 54(4), 1462–1473 (2015).
[Crossref] [PubMed]

J. Alloys Compd. (1)

Y. S. Vidya, K. Gurushantha, H. Nagabhushana, S. C. Sharma, K. S. Anantharaju, C. Shivakumara, D. Suresh, H. P. Nagaswarupa, S. C. Prashantha, and M. R. Anilkumar, “Phase transformation of ZrO2:Tb3+ nanophosphor: Color tunable photoluminescence and photocatalytic activities,” J. Alloys Compd. 622, 86–96 (2015).
[Crossref]

J. Chem. Phys. (1)

D. L. Dexter, “A Theory of Sensitized Luminescence in Solids,” J. Chem. Phys. 21(5), 836–850 (1953).
[Crossref]

J. Lumin. (5)

Z. Zhou, G. Liu, Q. Wei, H. Yang, and Q. Liu, “Luminescence properties of Ag nanoclusters doped SiO2–PbF2 oxyfluoride glasses,” J. Lumin. 169, 695–700 (2016).
[Crossref]

C.-Y. Yang, S. Das, and C.-H. Lu, “Tunable photoluminescence properties and energy transfer in oxyapatite-based Ca2Tb8(SiO4)6:Eu3+ phosphors for UV-LEDs,” J. Lumin. 168, 199–206 (2015).
[Crossref]

Y. Zuo, S. W. Kim, T. Masui, and N. Imanaka, “Enhanced luminescent properties of Ca3−xTbxZrSi2O9+x/2 phosphors by Al3+ doping into the Zr4+ site in the host lattice,” J. Lumin. 148, 198–201 (2014).
[Crossref]

Q. Yang, G. Li, Y. Wei, and H. Chai, “Synthesis and photoluminescence properties of red-emitting NaLaMgWO6:Sm3+,Eu3+ phosphors for white LED applications,” J. Lumin. 199, 323–330 (2018).
[Crossref]

M. A. Mickens and Z. Assefa, “Tunable luminescence and white light emission of novel multiphase sodium calcium silicate nanophosphors doped with Ce3+, Tb3+, and Mn2+ ions,” J. Lumin. 145, 498–506 (2014).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (6)

K. Li, M. Shang, H. Lian, and J. Lin, “Recent development in phosphors with different emitting colors via energy transfer,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(24), 5507–5530 (2016).
[Crossref]

J.-C. Zhang, Y.-Z. Long, H.-D. Zhang, B. Sun, W.-P. Han, and X.-Y. Sun, “Eu2+/Eu3+-emission-ratio-tunable CaZr(PO4)2:Eu phosphors synthesized in air atmosphere for potential white light-emitting deep UV LEDs,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(2), 312–318 (2014).
[Crossref]

Z. Yu, Z. Xia, C. Su, R. Wang, and Q. Liu, “Effect of Gd/La substitution on the phase structures and luminescence properties of (La,Gd)Sr2AlO5:Ce3+ solid solution phosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(44), 11629–11634 (2015).
[Crossref]

J. Zhou and Z. Xia, “Luminescence color tuning of Ce3+, Tb3+ and Eu3+ codoped and tri-doped BaY2Si3O10 phosphors via energy transfer,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(29), 7552–7560 (2015).
[Crossref]

H. Zhou, Q. Wang, and Y. Jin, “Temperature dependence of energy transfer in tunable white light-emitting phosphor BaY2Si3O10:Bi3+,Eu3+ for near UV LEDs,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(42), 11151–11162 (2015).
[Crossref]

K. Li, J. Fan, M. Shang, H. Lian, and J. Lin, “Sr2Y8(SiO4)6O2:Bi3+/Eu3+: a single-component white-emitting phosphor via energy transfer for UV w-LEDs,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(38), 9989–9998 (2015).
[Crossref]

J. Phys. Chem. C (1)

F. Kang, X. Yang, M. Peng, L. Wondraczek, Z. Ma, Q. Zhang, and J. Qiu, “Red Photoluminescence from Bi3+ and the Influence of the Oxygen-Vacancy Perturbation in ScVO4: A Combined Experimental and Theoretical Study,” J. Phys. Chem. C 118(14), 7515–7522 (2014).
[Crossref]

J. Solid State Chem. (1)

J. R. Plaister, J. Jansen, R. A. G. de Graaff, and D. J. W. Ijdo, “Structure Determination of Ca3HfSi2O9 and Ca3ZrSi2O9 from Powder Diffraction,” J. Solid State Chem. 115(2), 464–468 (1995).
[Crossref]

Laser Photonics Rev. (1)

J. Cho, J. H. Park, J. K. Kim, and E. F. Schubert, “White light-emitting diodes: History, progress, and future,” Laser Photonics Rev. 11(2), 1600147 (2017).
[Crossref]

Opt. Mater. (1)

Z. Zhou, G. Liu, J. Ni, W. Liu, and Q. Liu, “Simultaneous multi-wavelength ultraviolet excited single-phase white light emitting phosphor Ba1-x(Zr,Ti)Si3O9:xEu,” Opt. Mater. 79, 53–62 (2018).
[Crossref]

Phys. Chem. Chem. Phys. (2)

C. Wang, P. Li, Z. Wang, Y. Sun, J. Cheng, Z. Li, M. Tian, and Z. Yang, “Crystal structure, luminescence properties, energy transfer and thermal properties of a novel color-tunable, white light-emitting phosphor Ca9-x-yCe(PO4)7:xEu2+,yMn2,” Phys. Chem. Chem. Phys. 18(41), 28661–28673 (2016).
[Crossref] [PubMed]

C. Xu, H. Guan, Y. Song, Z. An, X. Zhang, X. Zhou, Z. Shi, Y. Sheng, and H. Zou, “Novel highly efficient single-component multi-peak emitting aluminosilicate phosphors co-activated with Ce3+, Tb3+ and Eu2+: luminescence properties, tunable color, and thermal properties,” Phys. Chem. Chem. Phys. 20(3), 1591–1607 (2018).
[Crossref] [PubMed]

Prog. Mater. Sci. (1)

Z. Xia and Q. Liu, “Progress in discovery and structural design of color conversion phosphors for LEDs,” Prog. Mater. Sci. 84, 59–117 (2016).
[Crossref]

RSC Advances (1)

J. Zhong, W. Zhao, L. Yang, P. Shi, Z. Liao, M. Xia, W. Pu, W. Xiao, and L. Wang, “Synthesis, electronic structures, and photoluminescence properties of an efficient and thermally stable red-emitting phosphor Ca3ZrSi2O9:Eu3+,Bi3+ for deep UV-LEDs,” RSC Advances 8(24), 13054–13060 (2018).
[Crossref]

Surf. Interface Anal. (1)

G. Blanco, J. M. Pintado, S. Bernal, M. A. Cauqui, M. P. Corchado, A. Galtayries, J. Ghijsen, R. Sporken, T. Eickhoff, and W. Drube, “Influence of the nature of the noble metal (Rh,Pt) on the low-temperature reducibility of a Ce/Tb mixed oxide with application as TWC component,” Surf. Interface Anal. 34(1), 120–124 (2002).
[Crossref]

Ultrason. Sonochem. (1)

M. Venkataravanappa, H. Nagabhushana, G. P. Darshan, B. Daruka Prasad, G. R. Vijayakumar, H. B. Premkumar, and Udayabhanu, “Novel EGCG assisted ultrasound synthesis of self-assembled Ca2SiO4:Eu3+ hierarchical superstructures: Photometric characteristics and LED applications,” Ultrason. Sonochem. 33, 226–239 (2016).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 (a) Excitation spectrum measured by monitoring the emission at 610 nm, and emission spectra under the excitation at 270 nm, 392 nm for Ca2.83ZrSi2O9:0.17Eu3+, (b) excitation spectrum measured by monitoring the emission at 420 nm, and emission spectrum under the excitation at 300 nm for Ca2.85ZrSi2O9:0.15Bi3+.
Fig. 2
Fig. 2 CIE chromaticity diagram for Eu3+ , Bi3+ singly doped Ca2.83ZrSi2O9:0.17Eu3+(Eu3+ ), Ca2.85ZrSi2O9:0.15Bi3+(Bi3+ ) phosphors and doubly doped Ca2.83-yZrSi2O9:0.17Eu3+,yBi3+ (y = 0.03, 0.09, 0.15, 0.20) (1, 2, 3, 4) phosphors, corresponding to Table 1.
Fig. 3
Fig. 3 (a) XRD patterns of Ca2.83-yZrSi2O9:0.17Eu3+,yBi3+ (y = 0.03-0.20), and the standard XRD patterns of monoclinic Ca3ZrSi2O9 (JCPDS 01-083-0365), (b) schematic crystal structure of monoclinic Ca3ZrSi2O9 consisting of Ca(1)O6 (green), Ca(2)O6 (dark yellow), Ca(3)O6 (purple), ZrO6 octahedron and Si(1, 2)O4 tetrahedron.
Fig. 4
Fig. 4 Emission spectra under the excitation at (a) 270-300 nm and (b) 392 nm for Ca2.83-yZrSi2O9:0.17Eu3+,yBi3+ (y = 0-0.20), the corresponding dependence of emission intensity peaked at 450 nm, 610 nm (λEX = 270-300 nm) on the doping value y of Bi3+ ions is shown in the inset of (a), and the dependence of emission intensity peaked at 610 nm (λEX = 392 nm) on the doping value y of Bi3+ ions is shown in the inset of (b).
Fig. 5
Fig. 5 Excitation spectra measured by monitoring the emission at (a) 610 nm and (b) 445 nm or 450 nm for Ca2.83-yZrSi2O9:0.17Eu3+,yBi3+ (y = 0-0.20).
Fig. 6
Fig. 6 Decay curves of Bi3+ ions in both Ca2.85ZrSi2O9:0.15Bi3+EX = 300 nm, λEM = 420 nm) and Ca2.68ZrSi2O9:0.17Eu3+,0.15Bi3+EX = 320 nm, λEM = 450 nm).
Fig. 7
Fig. 7 Schematic energy level and energy transfer (ET) diagram of Eu3+, Bi3+ and Tb3+ ions in Ca3ZrSi2O9 host.
Fig. 8
Fig. 8 (a) Excitation spectrum measured by monitoring the emission at 543 nm, and emission spectra under the excitation at 244 nm, 281 nm for Ca2.87ZrSi2O9:0.13Tb3+, (b) XPS spectra of Tb 3d core levels for Tb4O7 raw materials and Ca2.87ZrSi2O9:0.13Tb3+ phosphors, and the arrow points to the position of Tb4+ satellite. The insets of (b) are corresponding photos taken in daylight for Tb4O7 raw materials and Ca2.87ZrSi2O9:0.13Tb3+ phosphors.
Fig. 9
Fig. 9 CIE chromaticity diagram for Eu3+, Bi3+, Tb3+ singly doped Ca2.83ZrSi2O9:0.17Eu3+ (Eu3+), Ca2.85ZrSi2O9:0.15Bi3+ (Bi3+), Ca2.87ZrSi2O9:0.13Tb3+ (Tb3+) phosphors, Eu3+, Bi3+ doubly doped Ca2.74ZrSi2O9:0.17Eu3+,0.09Bi3+ (Eu3+,Bi3+)) phosphors and Eu3+, Bi3+, Tb3+ triply doped Ca2.74-zZrSi2O9:0.17Eu3+,0.09Bi3+,zTb3+ (z=0.03, 0.09, 0.13, 0.20, 0.30, 0.40, 0.50) (1, 2, 3, 4, 5, 6, 7) phosphors, corresponding to Table 2.
Fig. 10
Fig. 10 XRD patterns of Ca2.74-zZrSi2O9:0.17Eu3+,0.09Bi3+,zTb3+ (z = 0.03-0.50), with the standard XRD patterns of monoclinic Ca3ZrSi2O9 (JCPDS 01-083-0365) and hexagonal Ca2Tb8Si6O26 (JCPDS 00-029-0386), the symbol “*” marking peaks of the second phase Ca2Tb8Si6O26 appeared in Ca2.74-zZrSi2O9:0.17Eu3+,0.09Bi3+,zTb3+ (z ≥ 0.09).
Fig. 11
Fig. 11 (a) Emission spectra under the excitation at 323 nm or 320 nm, (b) the dependence of emission intensity peaked at 450 nm, 543 nm, 610 nm (λEX = 323 nm or 320 nm) on the doping value z of Tb3+ ions, and excitation spectra measured by monitoring the emission at (c) 450 nm or 445 nm, (d) 543 nm and (e) 610 nm for Ca2.74-zZrSi2O9:0.17Eu3+,0.09Bi3+,zTb3+ (z = 0.03-0.50), (f) emission spectrum under the excitation at 323 nm and excitation spectra measured by monitoring the emission at 450 nm, 543 nm and 610 nm for Ca2.24ZrSi2O9:0.17Eu3+,0.09Bi3+,0.50Tb3+.
Fig. 12
Fig. 12 Decay curves of Bi3+ ions (λEX = 320 nm, λEM = 450 nm or 445 nm) in Ca2.74-zZrSi2O9:0.17Eu3+,0.09Bi3+,zTb3+ (z = 0-0.13).
Fig. 13
Fig. 13 (a) Emission spectra under the excitation at 323 nm at different temperatures from 25 °C to 275 °C, (b) Arrhenius plot of the total emission intensity under 323 nm excitation and corresponding fit using the Arrhenius formula, (c) relative total emission intensity and relative emission intensity peaked at 450 nm, 543 nm, 610 nm (λEX = 323 nm), respectively, as a function of temperature for Ca2.24ZrSi2O9:0.17Eu3+,0.09Bi3+,0.50Tb3+.
Fig. 14
Fig. 14 CIE chromaticity diagram at different temperatures from 25 to 275 °C (25 (1), 50 (2), 75 (3), 100 (4), 125 (5), 150 (6), 175 (7), 200 (8), 225 (9), 250 (10), 275 (11)) for Ca2.24ZrSi2O9:0.17Eu3+ ,0.09Bi3+ ,0.50Tb3+, corresponding to Table 3.

Tables (3)

Tables Icon

Table 1 CIE chromaticity coordinates (x, y) and corresponding excitation wavelength for Eu3+, Bi3+singly and doubly doped Ca3ZrSi2O9 based phosphors

Tables Icon

Table 2 CIE chromaticity coordinates (x, y) and corresponding excitation wavelength for Eu3+, Bi3+, Tb3+ singly doped, Eu3+, Bi3+ doubly doped and Eu3+, Bi3+, Tb3+ triply doped Ca3ZrSi2O9 based phosphors

Tables Icon

Table 3 CIE chromaticity coordinates (x, y) and correlated color temperature (CCT) (λEX = 323 nm) at different temperatures from 25 °C to 275 °C for Ca2.24ZrSi2O9:0.17Eu3+,0.09Bi3+,0.50Tb3+

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Dr= Rm(CN)-Rd(CN) Rm(CN)
I(t)=I0+A1e (-t/ τ 1 ) +A2e (-t/ τ 2 )
τ= A1τ 1 2 +A2τ 2 2 A1τ 1 +A2τ 2
ηT=1- τ x τ 0
I(T)= I0 1+Ce (-Ea/KBT)

Metrics