Abstract

We analyze and compare two complementary 2D plasmonic structures, a gold film perforated with a subwavelength hole array and a periodic lattice of gold disks, for infrared detector applications and argue that the former gives the best results when integrated on top of a Ge/Si quantum dot mid-infrared photodetector (QDIP). The periodicity of both metasurfaces is the same and equal to 1.2 µm. The QDIP coupled with the metal disk array exhibits about 3.7 times plasmonic responsivity enhancement as compared to a conventional Ge/Si device and displays an over 11 times enhancement when integrated with the holey Au film. At 78 K, the quantum efficiency of about 2% and photovoltaic peak detectivity of 4.5 × 1012 cm·Hz1/2/W are determined at a wavelength of 4.2 µm in a hybrid QDIP with the perforated gold film.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Photovoltaic Ge/SiGe quantum dot mid-infrared photodetector enhanced by surface plasmons

A. I. Yakimov, V. V. Kirienko, A. A. Bloshkin, V. A. Armbrister, A. V. Dvurechenskii, and J.-M. Hartmann
Opt. Express 25(21) 25602-25611 (2017)

Quantum efficiency of plasmonic-coupled quantum dot infrared photodetectors for single- color detection: the upper limit of plasmonic enhancement

S. C. Lee, J.-H. Kang, Q. Park, S. Krishna, and S. R. J. Brueck
Opt. Express 28(5) 7618-7633 (2020)

Quantum dot infrared photodetector enhanced by surface plasma wave excitation

S. C. Lee, S. Krishna, and S. R. J. Brueck
Opt. Express 17(25) 23160-23168 (2009)

References

  • View by:
  • |
  • |
  • |

  1. F.J. Garcia-Vidal, L. Martin-Moreno, T.W.. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
    [Crossref]
  2. A. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6(11), 709–713 (2012).
    [Crossref]
  3. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mater. 9(14), 205–213 (2010).
    [Crossref]
  4. J. Zhang, L. Zhang, and W. Xu, “Surface plasmon polaritons: physics and applications,” J. Phys. D: Appl. Phys. 45, 113001 (2012).
    [Crossref]
  5. S. Law, V. Podolskiy, and D. Wasserman, “Towards nanoscale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics,” Nanophotonics 2(2), 103–130 (2013).
    [Crossref]
  6. V. Ryzhii, “The theory of quantum-dot infrared phototransistors,” Semicond. Sci. Technol. 11, 759–765 (1996).
    [Crossref]
  7. J. Phillips, “Evaluation of the fundamental properties of quantum dot infrared detectors,” J. Appl. Phys. 91, 4590–4594 (2002).
    [Crossref]
  8. S. C. Lee, S. Krishna, and S. R. J. Brueck, “Quantum dot photodetector enhanced by surface plasma wave excitation,” Opt. Express 17(25), 23160–23168 (2009).
    [Crossref]
  9. S. C. Lee, S. Krishna, and S. R. J. Brueck, “Light direction-dependent plasmonic enhancement in quantum dot infrared photodetectors,” Appl. Phys. Lett. 97(14), 021112 (2010).
    [Crossref]
  10. C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10(14), 1704–1709 (2010).
    [Crossref] [PubMed]
  11. R. Liu, P. Vasinajindakaw, G. Gu, J. Vaillancourt, and X. Lu, “Optimizing light absorption in quantum dot infrared photodetectors by tuning surface confinement of surface plasmonic waves,” J. Appl. Phys. D: Appl. Phys. 46(14), 015102 (2013).
    [Crossref]
  12. G. Gu, J. Vaillancourt, P. Vasinajindakaw, and X. Lu, “Backside-configured surface plasmonic structure with over 40 times photocurrent enhancement,” Semicond. Sci. Technol. 28(14), 105005 (2013).
    [Crossref]
  13. J. Vaillancourt, N. Mojaverian, and X. Lu, “A long infrared focal plane array enhanced by backside-configured structures,” IEEE Photon. Technol. Lett. 26(8), 745–748 (2014).
    [Crossref]
  14. A.I. Yakimov, V.V. Kirienko, A.A. Bloshkin, V.A. Armbrister, and A.V. Dvurechenskii, “Plasmon polariton enhanced mid-infrared photodetectors based on Ge quantum dots in Si,” J. Appl. Phys. 122, 133101 (2017).
    [Crossref]
  15. A.I. Yakimov, V.V. Kirienko, V.A. Armbrister, A.A. Bloshkin, and A.V. Dvurechenskii, “Surface plasmon dispersion in a mid-infrared Ge/Si quantum dot photodetector coupled with a perforated gold metasurface,” Appl. Phys. Lett. 112, 171107 (2018).
    [Crossref]
  16. W.S. Ko, I. Bhattacharya, T.-T. D. Tran, K.W. Ng, S.A. Gerke, and C. Chang-Hasnain, “Ultrahigh responsivity-bandwidth product in a compact InP nanopillar phototransistor directly grown on silicon,” Sci. Rep. 6, 33368 (2016).
    [Crossref] [PubMed]
  17. G. Gu, J. Vaillancourt, and X. Lu, “Analysis of near-field components of a plasmonic optical antenna and their contribution to quantum dot infrared photodetector enhancement,” Opt. Express 22(21), 24970–24976 (2014).
    [Crossref] [PubMed]
  18. Y. Wu, J. Niu, M. Danesh, J. Liu, Y. Chen, L. Ke, C. Qiu, and H. Yang, “Localized surface plasmon resonance in graphene nanomesh with Au nanostructures,” Appl. Phys. Lett. 109, 041106 (2016).
    [Crossref]
  19. M. Auer-Berger, V. Tretnak, F.-P. Wenzl, J.R. Krenn, and E.J.W. List-Kratochvil, “Aluminium-nanodisc-induced collective lattice resonances: controlling the light extraction in organic light emitting diodes,” Appl. Phys. Lett. 111, 173301 (2017).
    [Crossref]
  20. B.K. Minhas, W. Fan, K. Agi, S.R.J. Brueck, and K.J. Malloy, “Metallic inductive and capacitance grids: theory and experiment,” J. Opt. Soc. Am. A 19(7), 1352 (2002).
    [Crossref]
  21. A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
    [Crossref]
  22. M. Ershov and H. C. Liu, “Low-frequency noise gain and photocurrent gain in quantum well infrared photodetectors,” J. Appl. Phys. 86, 6580–6585 (1999).
    [Crossref]
  23. A. I. Yakimov, V. V. Kirienko, V. A. Armbrister, A. A. Bloshkin, A. V. Dvurechenskii, and A. A. Shklyaev, “Photoconductive gain and quantum efficiency of remotely doped Ge/Si quantum dot photodetectors,” Mater. Res. Express 3, 105032 (2016).
    [Crossref]
  24. A.N. Sofronov, L.E. Vorobjev, D.A. Firsov, V.Yu. Panevin, R.M. Balagula, P. Werner, and A.A. Tonkikh, “Photoinduced mid-infrared intraband light absorption and photoconductivity in Ge/Si quantum dots,” Superlattices Microstruct. 87, 53–57 (2015).
    [Crossref]
  25. S. Hayashi and T. Okamoto, “Plasmonics: visit the past to know future,” J. Phys. D: Appl. Phys. 45, 433001 (2012).
    [Crossref]
  26. G. Gu, N. Mojaverian, J. Vaillancourt, and X. Lu, “Surface plasmonic resonance induced near-field vectors and their contribution to quantum dot infrared photodetector enhancement,” J. Phys. D: Appl. Phys. 47, 435106 (2014).
    [Crossref]

2018 (1)

A.I. Yakimov, V.V. Kirienko, V.A. Armbrister, A.A. Bloshkin, and A.V. Dvurechenskii, “Surface plasmon dispersion in a mid-infrared Ge/Si quantum dot photodetector coupled with a perforated gold metasurface,” Appl. Phys. Lett. 112, 171107 (2018).
[Crossref]

2017 (2)

A.I. Yakimov, V.V. Kirienko, A.A. Bloshkin, V.A. Armbrister, and A.V. Dvurechenskii, “Plasmon polariton enhanced mid-infrared photodetectors based on Ge quantum dots in Si,” J. Appl. Phys. 122, 133101 (2017).
[Crossref]

M. Auer-Berger, V. Tretnak, F.-P. Wenzl, J.R. Krenn, and E.J.W. List-Kratochvil, “Aluminium-nanodisc-induced collective lattice resonances: controlling the light extraction in organic light emitting diodes,” Appl. Phys. Lett. 111, 173301 (2017).
[Crossref]

2016 (3)

Y. Wu, J. Niu, M. Danesh, J. Liu, Y. Chen, L. Ke, C. Qiu, and H. Yang, “Localized surface plasmon resonance in graphene nanomesh with Au nanostructures,” Appl. Phys. Lett. 109, 041106 (2016).
[Crossref]

A. I. Yakimov, V. V. Kirienko, V. A. Armbrister, A. A. Bloshkin, A. V. Dvurechenskii, and A. A. Shklyaev, “Photoconductive gain and quantum efficiency of remotely doped Ge/Si quantum dot photodetectors,” Mater. Res. Express 3, 105032 (2016).
[Crossref]

W.S. Ko, I. Bhattacharya, T.-T. D. Tran, K.W. Ng, S.A. Gerke, and C. Chang-Hasnain, “Ultrahigh responsivity-bandwidth product in a compact InP nanopillar phototransistor directly grown on silicon,” Sci. Rep. 6, 33368 (2016).
[Crossref] [PubMed]

2015 (1)

A.N. Sofronov, L.E. Vorobjev, D.A. Firsov, V.Yu. Panevin, R.M. Balagula, P. Werner, and A.A. Tonkikh, “Photoinduced mid-infrared intraband light absorption and photoconductivity in Ge/Si quantum dots,” Superlattices Microstruct. 87, 53–57 (2015).
[Crossref]

2014 (3)

G. Gu, N. Mojaverian, J. Vaillancourt, and X. Lu, “Surface plasmonic resonance induced near-field vectors and their contribution to quantum dot infrared photodetector enhancement,” J. Phys. D: Appl. Phys. 47, 435106 (2014).
[Crossref]

G. Gu, J. Vaillancourt, and X. Lu, “Analysis of near-field components of a plasmonic optical antenna and their contribution to quantum dot infrared photodetector enhancement,” Opt. Express 22(21), 24970–24976 (2014).
[Crossref] [PubMed]

J. Vaillancourt, N. Mojaverian, and X. Lu, “A long infrared focal plane array enhanced by backside-configured structures,” IEEE Photon. Technol. Lett. 26(8), 745–748 (2014).
[Crossref]

2013 (3)

R. Liu, P. Vasinajindakaw, G. Gu, J. Vaillancourt, and X. Lu, “Optimizing light absorption in quantum dot infrared photodetectors by tuning surface confinement of surface plasmonic waves,” J. Appl. Phys. D: Appl. Phys. 46(14), 015102 (2013).
[Crossref]

G. Gu, J. Vaillancourt, P. Vasinajindakaw, and X. Lu, “Backside-configured surface plasmonic structure with over 40 times photocurrent enhancement,” Semicond. Sci. Technol. 28(14), 105005 (2013).
[Crossref]

S. Law, V. Podolskiy, and D. Wasserman, “Towards nanoscale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics,” Nanophotonics 2(2), 103–130 (2013).
[Crossref]

2012 (3)

A. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6(11), 709–713 (2012).
[Crossref]

J. Zhang, L. Zhang, and W. Xu, “Surface plasmon polaritons: physics and applications,” J. Phys. D: Appl. Phys. 45, 113001 (2012).
[Crossref]

S. Hayashi and T. Okamoto, “Plasmonics: visit the past to know future,” J. Phys. D: Appl. Phys. 45, 433001 (2012).
[Crossref]

2010 (4)

F.J. Garcia-Vidal, L. Martin-Moreno, T.W.. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[Crossref]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mater. 9(14), 205–213 (2010).
[Crossref]

S. C. Lee, S. Krishna, and S. R. J. Brueck, “Light direction-dependent plasmonic enhancement in quantum dot infrared photodetectors,” Appl. Phys. Lett. 97(14), 021112 (2010).
[Crossref]

C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10(14), 1704–1709 (2010).
[Crossref] [PubMed]

2009 (1)

2002 (2)

J. Phillips, “Evaluation of the fundamental properties of quantum dot infrared detectors,” J. Appl. Phys. 91, 4590–4594 (2002).
[Crossref]

B.K. Minhas, W. Fan, K. Agi, S.R.J. Brueck, and K.J. Malloy, “Metallic inductive and capacitance grids: theory and experiment,” J. Opt. Soc. Am. A 19(7), 1352 (2002).
[Crossref]

1999 (1)

M. Ershov and H. C. Liu, “Low-frequency noise gain and photocurrent gain in quantum well infrared photodetectors,” J. Appl. Phys. 86, 6580–6585 (1999).
[Crossref]

1998 (1)

1996 (1)

V. Ryzhii, “The theory of quantum-dot infrared phototransistors,” Semicond. Sci. Technol. 11, 759–765 (1996).
[Crossref]

Agi, K.

Armbrister, V. A.

A. I. Yakimov, V. V. Kirienko, V. A. Armbrister, A. A. Bloshkin, A. V. Dvurechenskii, and A. A. Shklyaev, “Photoconductive gain and quantum efficiency of remotely doped Ge/Si quantum dot photodetectors,” Mater. Res. Express 3, 105032 (2016).
[Crossref]

Armbrister, V.A.

A.I. Yakimov, V.V. Kirienko, V.A. Armbrister, A.A. Bloshkin, and A.V. Dvurechenskii, “Surface plasmon dispersion in a mid-infrared Ge/Si quantum dot photodetector coupled with a perforated gold metasurface,” Appl. Phys. Lett. 112, 171107 (2018).
[Crossref]

A.I. Yakimov, V.V. Kirienko, A.A. Bloshkin, V.A. Armbrister, and A.V. Dvurechenskii, “Plasmon polariton enhanced mid-infrared photodetectors based on Ge quantum dots in Si,” J. Appl. Phys. 122, 133101 (2017).
[Crossref]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mater. 9(14), 205–213 (2010).
[Crossref]

Auer-Berger, M.

M. Auer-Berger, V. Tretnak, F.-P. Wenzl, J.R. Krenn, and E.J.W. List-Kratochvil, “Aluminium-nanodisc-induced collective lattice resonances: controlling the light extraction in organic light emitting diodes,” Appl. Phys. Lett. 111, 173301 (2017).
[Crossref]

Balagula, R.M.

A.N. Sofronov, L.E. Vorobjev, D.A. Firsov, V.Yu. Panevin, R.M. Balagula, P. Werner, and A.A. Tonkikh, “Photoinduced mid-infrared intraband light absorption and photoconductivity in Ge/Si quantum dots,” Superlattices Microstruct. 87, 53–57 (2015).
[Crossref]

Bhattacharya, I.

W.S. Ko, I. Bhattacharya, T.-T. D. Tran, K.W. Ng, S.A. Gerke, and C. Chang-Hasnain, “Ultrahigh responsivity-bandwidth product in a compact InP nanopillar phototransistor directly grown on silicon,” Sci. Rep. 6, 33368 (2016).
[Crossref] [PubMed]

Bloshkin, A. A.

A. I. Yakimov, V. V. Kirienko, V. A. Armbrister, A. A. Bloshkin, A. V. Dvurechenskii, and A. A. Shklyaev, “Photoconductive gain and quantum efficiency of remotely doped Ge/Si quantum dot photodetectors,” Mater. Res. Express 3, 105032 (2016).
[Crossref]

Bloshkin, A.A.

A.I. Yakimov, V.V. Kirienko, V.A. Armbrister, A.A. Bloshkin, and A.V. Dvurechenskii, “Surface plasmon dispersion in a mid-infrared Ge/Si quantum dot photodetector coupled with a perforated gold metasurface,” Appl. Phys. Lett. 112, 171107 (2018).
[Crossref]

A.I. Yakimov, V.V. Kirienko, A.A. Bloshkin, V.A. Armbrister, and A.V. Dvurechenskii, “Plasmon polariton enhanced mid-infrared photodetectors based on Ge quantum dots in Si,” J. Appl. Phys. 122, 133101 (2017).
[Crossref]

Brolo, A.

A. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6(11), 709–713 (2012).
[Crossref]

Brueck, S. R. J.

S. C. Lee, S. Krishna, and S. R. J. Brueck, “Light direction-dependent plasmonic enhancement in quantum dot infrared photodetectors,” Appl. Phys. Lett. 97(14), 021112 (2010).
[Crossref]

S. C. Lee, S. Krishna, and S. R. J. Brueck, “Quantum dot photodetector enhanced by surface plasma wave excitation,” Opt. Express 17(25), 23160–23168 (2009).
[Crossref]

Brueck, S.R.J.

Bur, J. A.

C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10(14), 1704–1709 (2010).
[Crossref] [PubMed]

Chang, C.-C.

C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10(14), 1704–1709 (2010).
[Crossref] [PubMed]

Chang-Hasnain, C.

W.S. Ko, I. Bhattacharya, T.-T. D. Tran, K.W. Ng, S.A. Gerke, and C. Chang-Hasnain, “Ultrahigh responsivity-bandwidth product in a compact InP nanopillar phototransistor directly grown on silicon,” Sci. Rep. 6, 33368 (2016).
[Crossref] [PubMed]

Chen, Y.

Y. Wu, J. Niu, M. Danesh, J. Liu, Y. Chen, L. Ke, C. Qiu, and H. Yang, “Localized surface plasmon resonance in graphene nanomesh with Au nanostructures,” Appl. Phys. Lett. 109, 041106 (2016).
[Crossref]

Danesh, M.

Y. Wu, J. Niu, M. Danesh, J. Liu, Y. Chen, L. Ke, C. Qiu, and H. Yang, “Localized surface plasmon resonance in graphene nanomesh with Au nanostructures,” Appl. Phys. Lett. 109, 041106 (2016).
[Crossref]

Djurišic, A. B.

Dvurechenskii, A. V.

A. I. Yakimov, V. V. Kirienko, V. A. Armbrister, A. A. Bloshkin, A. V. Dvurechenskii, and A. A. Shklyaev, “Photoconductive gain and quantum efficiency of remotely doped Ge/Si quantum dot photodetectors,” Mater. Res. Express 3, 105032 (2016).
[Crossref]

Dvurechenskii, A.V.

A.I. Yakimov, V.V. Kirienko, V.A. Armbrister, A.A. Bloshkin, and A.V. Dvurechenskii, “Surface plasmon dispersion in a mid-infrared Ge/Si quantum dot photodetector coupled with a perforated gold metasurface,” Appl. Phys. Lett. 112, 171107 (2018).
[Crossref]

A.I. Yakimov, V.V. Kirienko, A.A. Bloshkin, V.A. Armbrister, and A.V. Dvurechenskii, “Plasmon polariton enhanced mid-infrared photodetectors based on Ge quantum dots in Si,” J. Appl. Phys. 122, 133101 (2017).
[Crossref]

Ebbesen, T.W..

F.J. Garcia-Vidal, L. Martin-Moreno, T.W.. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[Crossref]

Elazar, J. M.

Ershov, M.

M. Ershov and H. C. Liu, “Low-frequency noise gain and photocurrent gain in quantum well infrared photodetectors,” J. Appl. Phys. 86, 6580–6585 (1999).
[Crossref]

Fan, W.

Firsov, D.A.

A.N. Sofronov, L.E. Vorobjev, D.A. Firsov, V.Yu. Panevin, R.M. Balagula, P. Werner, and A.A. Tonkikh, “Photoinduced mid-infrared intraband light absorption and photoconductivity in Ge/Si quantum dots,” Superlattices Microstruct. 87, 53–57 (2015).
[Crossref]

Garcia-Vidal, F.J.

F.J. Garcia-Vidal, L. Martin-Moreno, T.W.. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[Crossref]

Gerke, S.A.

W.S. Ko, I. Bhattacharya, T.-T. D. Tran, K.W. Ng, S.A. Gerke, and C. Chang-Hasnain, “Ultrahigh responsivity-bandwidth product in a compact InP nanopillar phototransistor directly grown on silicon,” Sci. Rep. 6, 33368 (2016).
[Crossref] [PubMed]

Gu, G.

G. Gu, N. Mojaverian, J. Vaillancourt, and X. Lu, “Surface plasmonic resonance induced near-field vectors and their contribution to quantum dot infrared photodetector enhancement,” J. Phys. D: Appl. Phys. 47, 435106 (2014).
[Crossref]

G. Gu, J. Vaillancourt, and X. Lu, “Analysis of near-field components of a plasmonic optical antenna and their contribution to quantum dot infrared photodetector enhancement,” Opt. Express 22(21), 24970–24976 (2014).
[Crossref] [PubMed]

R. Liu, P. Vasinajindakaw, G. Gu, J. Vaillancourt, and X. Lu, “Optimizing light absorption in quantum dot infrared photodetectors by tuning surface confinement of surface plasmonic waves,” J. Appl. Phys. D: Appl. Phys. 46(14), 015102 (2013).
[Crossref]

G. Gu, J. Vaillancourt, P. Vasinajindakaw, and X. Lu, “Backside-configured surface plasmonic structure with over 40 times photocurrent enhancement,” Semicond. Sci. Technol. 28(14), 105005 (2013).
[Crossref]

Hayashi, S.

S. Hayashi and T. Okamoto, “Plasmonics: visit the past to know future,” J. Phys. D: Appl. Phys. 45, 433001 (2012).
[Crossref]

Huang, D.

C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10(14), 1704–1709 (2010).
[Crossref] [PubMed]

Ke, L.

Y. Wu, J. Niu, M. Danesh, J. Liu, Y. Chen, L. Ke, C. Qiu, and H. Yang, “Localized surface plasmon resonance in graphene nanomesh with Au nanostructures,” Appl. Phys. Lett. 109, 041106 (2016).
[Crossref]

Kim, Y.-S.

C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10(14), 1704–1709 (2010).
[Crossref] [PubMed]

Kirienko, V. V.

A. I. Yakimov, V. V. Kirienko, V. A. Armbrister, A. A. Bloshkin, A. V. Dvurechenskii, and A. A. Shklyaev, “Photoconductive gain and quantum efficiency of remotely doped Ge/Si quantum dot photodetectors,” Mater. Res. Express 3, 105032 (2016).
[Crossref]

Kirienko, V.V.

A.I. Yakimov, V.V. Kirienko, V.A. Armbrister, A.A. Bloshkin, and A.V. Dvurechenskii, “Surface plasmon dispersion in a mid-infrared Ge/Si quantum dot photodetector coupled with a perforated gold metasurface,” Appl. Phys. Lett. 112, 171107 (2018).
[Crossref]

A.I. Yakimov, V.V. Kirienko, A.A. Bloshkin, V.A. Armbrister, and A.V. Dvurechenskii, “Plasmon polariton enhanced mid-infrared photodetectors based on Ge quantum dots in Si,” J. Appl. Phys. 122, 133101 (2017).
[Crossref]

Ko, W.S.

W.S. Ko, I. Bhattacharya, T.-T. D. Tran, K.W. Ng, S.A. Gerke, and C. Chang-Hasnain, “Ultrahigh responsivity-bandwidth product in a compact InP nanopillar phototransistor directly grown on silicon,” Sci. Rep. 6, 33368 (2016).
[Crossref] [PubMed]

Krenn, J.R.

M. Auer-Berger, V. Tretnak, F.-P. Wenzl, J.R. Krenn, and E.J.W. List-Kratochvil, “Aluminium-nanodisc-induced collective lattice resonances: controlling the light extraction in organic light emitting diodes,” Appl. Phys. Lett. 111, 173301 (2017).
[Crossref]

Krishna, S.

C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10(14), 1704–1709 (2010).
[Crossref] [PubMed]

S. C. Lee, S. Krishna, and S. R. J. Brueck, “Light direction-dependent plasmonic enhancement in quantum dot infrared photodetectors,” Appl. Phys. Lett. 97(14), 021112 (2010).
[Crossref]

S. C. Lee, S. Krishna, and S. R. J. Brueck, “Quantum dot photodetector enhanced by surface plasma wave excitation,” Opt. Express 17(25), 23160–23168 (2009).
[Crossref]

Kuipers, L.

F.J. Garcia-Vidal, L. Martin-Moreno, T.W.. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[Crossref]

Law, S.

S. Law, V. Podolskiy, and D. Wasserman, “Towards nanoscale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics,” Nanophotonics 2(2), 103–130 (2013).
[Crossref]

Lee, S. C.

S. C. Lee, S. Krishna, and S. R. J. Brueck, “Light direction-dependent plasmonic enhancement in quantum dot infrared photodetectors,” Appl. Phys. Lett. 97(14), 021112 (2010).
[Crossref]

S. C. Lee, S. Krishna, and S. R. J. Brueck, “Quantum dot photodetector enhanced by surface plasma wave excitation,” Opt. Express 17(25), 23160–23168 (2009).
[Crossref]

Lin, S.-Y.

C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10(14), 1704–1709 (2010).
[Crossref] [PubMed]

List-Kratochvil, E.J.W.

M. Auer-Berger, V. Tretnak, F.-P. Wenzl, J.R. Krenn, and E.J.W. List-Kratochvil, “Aluminium-nanodisc-induced collective lattice resonances: controlling the light extraction in organic light emitting diodes,” Appl. Phys. Lett. 111, 173301 (2017).
[Crossref]

Liu, H. C.

M. Ershov and H. C. Liu, “Low-frequency noise gain and photocurrent gain in quantum well infrared photodetectors,” J. Appl. Phys. 86, 6580–6585 (1999).
[Crossref]

Liu, J.

Y. Wu, J. Niu, M. Danesh, J. Liu, Y. Chen, L. Ke, C. Qiu, and H. Yang, “Localized surface plasmon resonance in graphene nanomesh with Au nanostructures,” Appl. Phys. Lett. 109, 041106 (2016).
[Crossref]

Liu, R.

R. Liu, P. Vasinajindakaw, G. Gu, J. Vaillancourt, and X. Lu, “Optimizing light absorption in quantum dot infrared photodetectors by tuning surface confinement of surface plasmonic waves,” J. Appl. Phys. D: Appl. Phys. 46(14), 015102 (2013).
[Crossref]

Lu, X.

J. Vaillancourt, N. Mojaverian, and X. Lu, “A long infrared focal plane array enhanced by backside-configured structures,” IEEE Photon. Technol. Lett. 26(8), 745–748 (2014).
[Crossref]

G. Gu, N. Mojaverian, J. Vaillancourt, and X. Lu, “Surface plasmonic resonance induced near-field vectors and their contribution to quantum dot infrared photodetector enhancement,” J. Phys. D: Appl. Phys. 47, 435106 (2014).
[Crossref]

G. Gu, J. Vaillancourt, and X. Lu, “Analysis of near-field components of a plasmonic optical antenna and their contribution to quantum dot infrared photodetector enhancement,” Opt. Express 22(21), 24970–24976 (2014).
[Crossref] [PubMed]

R. Liu, P. Vasinajindakaw, G. Gu, J. Vaillancourt, and X. Lu, “Optimizing light absorption in quantum dot infrared photodetectors by tuning surface confinement of surface plasmonic waves,” J. Appl. Phys. D: Appl. Phys. 46(14), 015102 (2013).
[Crossref]

G. Gu, J. Vaillancourt, P. Vasinajindakaw, and X. Lu, “Backside-configured surface plasmonic structure with over 40 times photocurrent enhancement,” Semicond. Sci. Technol. 28(14), 105005 (2013).
[Crossref]

Majewski, M. L.

Malloy, K.J.

Martin-Moreno, L.

F.J. Garcia-Vidal, L. Martin-Moreno, T.W.. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[Crossref]

Minhas, B.K.

Mojaverian, N.

J. Vaillancourt, N. Mojaverian, and X. Lu, “A long infrared focal plane array enhanced by backside-configured structures,” IEEE Photon. Technol. Lett. 26(8), 745–748 (2014).
[Crossref]

G. Gu, N. Mojaverian, J. Vaillancourt, and X. Lu, “Surface plasmonic resonance induced near-field vectors and their contribution to quantum dot infrared photodetector enhancement,” J. Phys. D: Appl. Phys. 47, 435106 (2014).
[Crossref]

Ng, K.W.

W.S. Ko, I. Bhattacharya, T.-T. D. Tran, K.W. Ng, S.A. Gerke, and C. Chang-Hasnain, “Ultrahigh responsivity-bandwidth product in a compact InP nanopillar phototransistor directly grown on silicon,” Sci. Rep. 6, 33368 (2016).
[Crossref] [PubMed]

Niu, J.

Y. Wu, J. Niu, M. Danesh, J. Liu, Y. Chen, L. Ke, C. Qiu, and H. Yang, “Localized surface plasmon resonance in graphene nanomesh with Au nanostructures,” Appl. Phys. Lett. 109, 041106 (2016).
[Crossref]

Okamoto, T.

S. Hayashi and T. Okamoto, “Plasmonics: visit the past to know future,” J. Phys. D: Appl. Phys. 45, 433001 (2012).
[Crossref]

Panevin, V.Yu.

A.N. Sofronov, L.E. Vorobjev, D.A. Firsov, V.Yu. Panevin, R.M. Balagula, P. Werner, and A.A. Tonkikh, “Photoinduced mid-infrared intraband light absorption and photoconductivity in Ge/Si quantum dots,” Superlattices Microstruct. 87, 53–57 (2015).
[Crossref]

Phillips, J.

J. Phillips, “Evaluation of the fundamental properties of quantum dot infrared detectors,” J. Appl. Phys. 91, 4590–4594 (2002).
[Crossref]

Podolskiy, V.

S. Law, V. Podolskiy, and D. Wasserman, “Towards nanoscale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics,” Nanophotonics 2(2), 103–130 (2013).
[Crossref]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mater. 9(14), 205–213 (2010).
[Crossref]

Qiu, C.

Y. Wu, J. Niu, M. Danesh, J. Liu, Y. Chen, L. Ke, C. Qiu, and H. Yang, “Localized surface plasmon resonance in graphene nanomesh with Au nanostructures,” Appl. Phys. Lett. 109, 041106 (2016).
[Crossref]

Rakic, A. D.

Ryzhii, V.

V. Ryzhii, “The theory of quantum-dot infrared phototransistors,” Semicond. Sci. Technol. 11, 759–765 (1996).
[Crossref]

Sharma, Y. D.

C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10(14), 1704–1709 (2010).
[Crossref] [PubMed]

Shenoi, R. V.

C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10(14), 1704–1709 (2010).
[Crossref] [PubMed]

Shklyaev, A. A.

A. I. Yakimov, V. V. Kirienko, V. A. Armbrister, A. A. Bloshkin, A. V. Dvurechenskii, and A. A. Shklyaev, “Photoconductive gain and quantum efficiency of remotely doped Ge/Si quantum dot photodetectors,” Mater. Res. Express 3, 105032 (2016).
[Crossref]

Sofronov, A.N.

A.N. Sofronov, L.E. Vorobjev, D.A. Firsov, V.Yu. Panevin, R.M. Balagula, P. Werner, and A.A. Tonkikh, “Photoinduced mid-infrared intraband light absorption and photoconductivity in Ge/Si quantum dots,” Superlattices Microstruct. 87, 53–57 (2015).
[Crossref]

Tonkikh, A.A.

A.N. Sofronov, L.E. Vorobjev, D.A. Firsov, V.Yu. Panevin, R.M. Balagula, P. Werner, and A.A. Tonkikh, “Photoinduced mid-infrared intraband light absorption and photoconductivity in Ge/Si quantum dots,” Superlattices Microstruct. 87, 53–57 (2015).
[Crossref]

Tran, T.-T. D.

W.S. Ko, I. Bhattacharya, T.-T. D. Tran, K.W. Ng, S.A. Gerke, and C. Chang-Hasnain, “Ultrahigh responsivity-bandwidth product in a compact InP nanopillar phototransistor directly grown on silicon,” Sci. Rep. 6, 33368 (2016).
[Crossref] [PubMed]

Tretnak, V.

M. Auer-Berger, V. Tretnak, F.-P. Wenzl, J.R. Krenn, and E.J.W. List-Kratochvil, “Aluminium-nanodisc-induced collective lattice resonances: controlling the light extraction in organic light emitting diodes,” Appl. Phys. Lett. 111, 173301 (2017).
[Crossref]

Vaillancourt, J.

J. Vaillancourt, N. Mojaverian, and X. Lu, “A long infrared focal plane array enhanced by backside-configured structures,” IEEE Photon. Technol. Lett. 26(8), 745–748 (2014).
[Crossref]

G. Gu, N. Mojaverian, J. Vaillancourt, and X. Lu, “Surface plasmonic resonance induced near-field vectors and their contribution to quantum dot infrared photodetector enhancement,” J. Phys. D: Appl. Phys. 47, 435106 (2014).
[Crossref]

G. Gu, J. Vaillancourt, and X. Lu, “Analysis of near-field components of a plasmonic optical antenna and their contribution to quantum dot infrared photodetector enhancement,” Opt. Express 22(21), 24970–24976 (2014).
[Crossref] [PubMed]

G. Gu, J. Vaillancourt, P. Vasinajindakaw, and X. Lu, “Backside-configured surface plasmonic structure with over 40 times photocurrent enhancement,” Semicond. Sci. Technol. 28(14), 105005 (2013).
[Crossref]

R. Liu, P. Vasinajindakaw, G. Gu, J. Vaillancourt, and X. Lu, “Optimizing light absorption in quantum dot infrared photodetectors by tuning surface confinement of surface plasmonic waves,” J. Appl. Phys. D: Appl. Phys. 46(14), 015102 (2013).
[Crossref]

Vasinajindakaw, P.

G. Gu, J. Vaillancourt, P. Vasinajindakaw, and X. Lu, “Backside-configured surface plasmonic structure with over 40 times photocurrent enhancement,” Semicond. Sci. Technol. 28(14), 105005 (2013).
[Crossref]

R. Liu, P. Vasinajindakaw, G. Gu, J. Vaillancourt, and X. Lu, “Optimizing light absorption in quantum dot infrared photodetectors by tuning surface confinement of surface plasmonic waves,” J. Appl. Phys. D: Appl. Phys. 46(14), 015102 (2013).
[Crossref]

Vorobjev, L.E.

A.N. Sofronov, L.E. Vorobjev, D.A. Firsov, V.Yu. Panevin, R.M. Balagula, P. Werner, and A.A. Tonkikh, “Photoinduced mid-infrared intraband light absorption and photoconductivity in Ge/Si quantum dots,” Superlattices Microstruct. 87, 53–57 (2015).
[Crossref]

Wasserman, D.

S. Law, V. Podolskiy, and D. Wasserman, “Towards nanoscale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics,” Nanophotonics 2(2), 103–130 (2013).
[Crossref]

Wenzl, F.-P.

M. Auer-Berger, V. Tretnak, F.-P. Wenzl, J.R. Krenn, and E.J.W. List-Kratochvil, “Aluminium-nanodisc-induced collective lattice resonances: controlling the light extraction in organic light emitting diodes,” Appl. Phys. Lett. 111, 173301 (2017).
[Crossref]

Werner, P.

A.N. Sofronov, L.E. Vorobjev, D.A. Firsov, V.Yu. Panevin, R.M. Balagula, P. Werner, and A.A. Tonkikh, “Photoinduced mid-infrared intraband light absorption and photoconductivity in Ge/Si quantum dots,” Superlattices Microstruct. 87, 53–57 (2015).
[Crossref]

Wu, Y.

Y. Wu, J. Niu, M. Danesh, J. Liu, Y. Chen, L. Ke, C. Qiu, and H. Yang, “Localized surface plasmon resonance in graphene nanomesh with Au nanostructures,” Appl. Phys. Lett. 109, 041106 (2016).
[Crossref]

Xu, W.

J. Zhang, L. Zhang, and W. Xu, “Surface plasmon polaritons: physics and applications,” J. Phys. D: Appl. Phys. 45, 113001 (2012).
[Crossref]

Yakimov, A. I.

A. I. Yakimov, V. V. Kirienko, V. A. Armbrister, A. A. Bloshkin, A. V. Dvurechenskii, and A. A. Shklyaev, “Photoconductive gain and quantum efficiency of remotely doped Ge/Si quantum dot photodetectors,” Mater. Res. Express 3, 105032 (2016).
[Crossref]

Yakimov, A.I.

A.I. Yakimov, V.V. Kirienko, V.A. Armbrister, A.A. Bloshkin, and A.V. Dvurechenskii, “Surface plasmon dispersion in a mid-infrared Ge/Si quantum dot photodetector coupled with a perforated gold metasurface,” Appl. Phys. Lett. 112, 171107 (2018).
[Crossref]

A.I. Yakimov, V.V. Kirienko, A.A. Bloshkin, V.A. Armbrister, and A.V. Dvurechenskii, “Plasmon polariton enhanced mid-infrared photodetectors based on Ge quantum dots in Si,” J. Appl. Phys. 122, 133101 (2017).
[Crossref]

Yang, H.

Y. Wu, J. Niu, M. Danesh, J. Liu, Y. Chen, L. Ke, C. Qiu, and H. Yang, “Localized surface plasmon resonance in graphene nanomesh with Au nanostructures,” Appl. Phys. Lett. 109, 041106 (2016).
[Crossref]

Zhang, J.

J. Zhang, L. Zhang, and W. Xu, “Surface plasmon polaritons: physics and applications,” J. Phys. D: Appl. Phys. 45, 113001 (2012).
[Crossref]

Zhang, L.

J. Zhang, L. Zhang, and W. Xu, “Surface plasmon polaritons: physics and applications,” J. Phys. D: Appl. Phys. 45, 113001 (2012).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

Y. Wu, J. Niu, M. Danesh, J. Liu, Y. Chen, L. Ke, C. Qiu, and H. Yang, “Localized surface plasmon resonance in graphene nanomesh with Au nanostructures,” Appl. Phys. Lett. 109, 041106 (2016).
[Crossref]

M. Auer-Berger, V. Tretnak, F.-P. Wenzl, J.R. Krenn, and E.J.W. List-Kratochvil, “Aluminium-nanodisc-induced collective lattice resonances: controlling the light extraction in organic light emitting diodes,” Appl. Phys. Lett. 111, 173301 (2017).
[Crossref]

S. C. Lee, S. Krishna, and S. R. J. Brueck, “Light direction-dependent plasmonic enhancement in quantum dot infrared photodetectors,” Appl. Phys. Lett. 97(14), 021112 (2010).
[Crossref]

A.I. Yakimov, V.V. Kirienko, V.A. Armbrister, A.A. Bloshkin, and A.V. Dvurechenskii, “Surface plasmon dispersion in a mid-infrared Ge/Si quantum dot photodetector coupled with a perforated gold metasurface,” Appl. Phys. Lett. 112, 171107 (2018).
[Crossref]

IEEE Photon. Technol. Lett. (1)

J. Vaillancourt, N. Mojaverian, and X. Lu, “A long infrared focal plane array enhanced by backside-configured structures,” IEEE Photon. Technol. Lett. 26(8), 745–748 (2014).
[Crossref]

J. Appl. Phys. (3)

A.I. Yakimov, V.V. Kirienko, A.A. Bloshkin, V.A. Armbrister, and A.V. Dvurechenskii, “Plasmon polariton enhanced mid-infrared photodetectors based on Ge quantum dots in Si,” J. Appl. Phys. 122, 133101 (2017).
[Crossref]

M. Ershov and H. C. Liu, “Low-frequency noise gain and photocurrent gain in quantum well infrared photodetectors,” J. Appl. Phys. 86, 6580–6585 (1999).
[Crossref]

J. Phillips, “Evaluation of the fundamental properties of quantum dot infrared detectors,” J. Appl. Phys. 91, 4590–4594 (2002).
[Crossref]

J. Appl. Phys. D: Appl. Phys. (1)

R. Liu, P. Vasinajindakaw, G. Gu, J. Vaillancourt, and X. Lu, “Optimizing light absorption in quantum dot infrared photodetectors by tuning surface confinement of surface plasmonic waves,” J. Appl. Phys. D: Appl. Phys. 46(14), 015102 (2013).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phys. D: Appl. Phys. (3)

S. Hayashi and T. Okamoto, “Plasmonics: visit the past to know future,” J. Phys. D: Appl. Phys. 45, 433001 (2012).
[Crossref]

G. Gu, N. Mojaverian, J. Vaillancourt, and X. Lu, “Surface plasmonic resonance induced near-field vectors and their contribution to quantum dot infrared photodetector enhancement,” J. Phys. D: Appl. Phys. 47, 435106 (2014).
[Crossref]

J. Zhang, L. Zhang, and W. Xu, “Surface plasmon polaritons: physics and applications,” J. Phys. D: Appl. Phys. 45, 113001 (2012).
[Crossref]

Mater. Res. Express (1)

A. I. Yakimov, V. V. Kirienko, V. A. Armbrister, A. A. Bloshkin, A. V. Dvurechenskii, and A. A. Shklyaev, “Photoconductive gain and quantum efficiency of remotely doped Ge/Si quantum dot photodetectors,” Mater. Res. Express 3, 105032 (2016).
[Crossref]

Nano Lett. (1)

C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10(14), 1704–1709 (2010).
[Crossref] [PubMed]

Nanophotonics (1)

S. Law, V. Podolskiy, and D. Wasserman, “Towards nanoscale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics,” Nanophotonics 2(2), 103–130 (2013).
[Crossref]

Nat. Photonics (1)

A. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6(11), 709–713 (2012).
[Crossref]

Nature Mater. (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mater. 9(14), 205–213 (2010).
[Crossref]

Opt. Express (2)

Rev. Mod. Phys. (1)

F.J. Garcia-Vidal, L. Martin-Moreno, T.W.. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[Crossref]

Sci. Rep. (1)

W.S. Ko, I. Bhattacharya, T.-T. D. Tran, K.W. Ng, S.A. Gerke, and C. Chang-Hasnain, “Ultrahigh responsivity-bandwidth product in a compact InP nanopillar phototransistor directly grown on silicon,” Sci. Rep. 6, 33368 (2016).
[Crossref] [PubMed]

Semicond. Sci. Technol. (2)

G. Gu, J. Vaillancourt, P. Vasinajindakaw, and X. Lu, “Backside-configured surface plasmonic structure with over 40 times photocurrent enhancement,” Semicond. Sci. Technol. 28(14), 105005 (2013).
[Crossref]

V. Ryzhii, “The theory of quantum-dot infrared phototransistors,” Semicond. Sci. Technol. 11, 759–765 (1996).
[Crossref]

Superlattices Microstruct. (1)

A.N. Sofronov, L.E. Vorobjev, D.A. Firsov, V.Yu. Panevin, R.M. Balagula, P. Werner, and A.A. Tonkikh, “Photoinduced mid-infrared intraband light absorption and photoconductivity in Ge/Si quantum dots,” Superlattices Microstruct. 87, 53–57 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 (a) Layer sequence of the 10-period Ge/Si QDIP coupled with the top metallic 2D hole (2DHA) or disk (2DDA) arrays. (b) Optical image of a Ge/Si photodetector integrated with 2DHA or 2DDA plasmonic structure (top view). A 1D periodicity along the vertical axis is an artifact of the image. Zoom-in scanning electron microscopy images of the square lattice of circular gold disks (c) and holes (d) in the Au film. The lattice periodicity is 1.2 µm, the hole/disk diameter is 0.7 µm. (e) Schematic image of the fragment of the valence band profile of Ge/Si heterostructures along the growth axis z showing the optical absorption η0 involved and the carrier escape mechanism pe, mentioned in the text.
Fig. 2
Fig. 2 (a) Photocurrent spectral response of the Ge/Si QDIPs with the gold 2DDA and 2DHA plasmonic structures compared to the bare QDIP. The PC enhancement at ~4.2 µm is due to excitation of the resonant fundamental surface plasmon mode. (b) Photocurrent enhancement spectra.
Fig. 3
Fig. 3 (a) Peak responsivity (λpeak = 4.2 µm), (b) detectivity, and (c) quantum efficiency of the Ge/Si QDIPs with the gold 2DDA and 2DHA plasmonic structures compared with the reference QDIP at different biases Ub.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

λ s p = a ( ε m ε d ε m + ε d ) 1 / 2 ,

Metrics