Abstract

We investigate the cubic sesquioxide Dy3+:Lu2O3 as a gain material for lasers in the mid-infrared spectral range. Bulk crystals of this material have been grown from the melt for the first time in the course of our experiments. Spectroscopic characterizations of the material show that it compares very favorably with more established materials like Dy3+:ZBLAN. The energetic positions of the energy levels up to 14,000 cm−1 were identified by spectroscopy at 11 K. Additionally, absorption cross-sections as high as 2.2 × 10−20 cm2 at 1.26 µm, and emission cross-sections as high as 6.7 × 10−21 cm2 at 2.777 µm, were determined. Furthermore, the room temperature fluorescence lifetime of the 6H13/2 multiplet was determined as 50 µs, which points to serious quenching as compared to the estimated radiative lifetime in the order of 20 ms.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Mid-infrared spectroscopic characterization of Pr3+:Lu2O3

Alessandra Toncelli, Jihua Xu, Alessandro Tredicucci, Alexander M. Heuer, and Christian Kränkel
Opt. Mater. Express 9(11) 4464-4473 (2019)

Intense 2.89 μm emission from Dy3+/Yb3+-codoped PbF2 crystal by 970 nm laser diode pumping

Peixiong Zhang, Min Xu, Lianhan Zhang, Jiaqi Hong, Xianyong Wang, Yaqi Wang, Guangzhu Chen, and Yin Hang
Opt. Express 23(21) 27786-27794 (2015)

Host dependence of spectroscopic properties of Dy3+- doped and Dy3+, Tm3+-codped Ge-Ga-S-CdI2 chalcohalide glasses

Haitao Guo, Lei Liu, Yongqian Wang, Chaoqi Hou, Weinan Li, Min Lu, Kuaisheng Zou, and Bo Peng
Opt. Express 17(17) 15350-15358 (2009)

References

  • View by:
  • |
  • |
  • |

  1. J. Mulrooney, J. Clifford, C. Fitzpatrick, and E. Lewis, “Detection of carbon dioxide emissions from a diesel engine using a mid-infrared optical fibre based sensor,” Sens. Actuators A Phys. 136(1), 104–110 (2007).
    [Crossref]
  2. S. J. Linke, A. Frings, L. Ren, A. Gomolka, U. Schumacher, R. Reimer, N.-O. Hansen, N. Jowett, G. Richard, and R. J. D. Miller, “A new technology for applanation free corneal trephination: The picosecond infrared laser (PIRL),” PLoS One 10(3), e0120944 (2015).
    [Crossref] [PubMed]
  3. X. C. Zhang, A. Shkurinov, and Y. Zhang, “Extreme terahertz science,” Nat. Photonics 11(1), 16 (2017).
    [Crossref]
  4. R. R. Gattass, R. Thapa, F. H. Kung, L. E. Busse, L. B. Shaw, and J. S. Sanghera, “Review of infrared fiber-based components,” Appl. Opt. 54(31), F25–F34 (2015).
    [Crossref] [PubMed]
  5. R. I. Woodward, M. R. Majewski, G. Bharathan, D. D. Hudson, A. Fuerbach, and S. D. Jackson, “Watt-level dysprosium fiber laser at 3.15 μm with 73% slope efficiency,” Opt. Lett. 43(7), 1471–1474 (2018).
    [Crossref] [PubMed]
  6. M. R. Majewski and S. D. Jackson, “Highly efficient mid-infrared dysprosium fiber laser,” Opt. Lett. 41(10), 2173–2176 (2016).
    [Crossref] [PubMed]
  7. S. D. Jackson, “Continuous wave 2.9 µm dysprosium-doped fluoride fiber laser,” Appl. Phys. Lett. 83(7), 1316–1318 (2003).
    [Crossref]
  8. M. Bass, Handbook of Optics (McGraw-Hill, 1995).
  9. A. Kaminskii, Laser Crystals: Their Physics and Properties, in Springer Series in Optical Sciences (Springer Berlin Heidelberg, 2013).
  10. R. Peters, C. Kränkel, S. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. Heckl, C. Baer, C. Saraceno, T. Südmeyer, and U. Keller, “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides,” Appl. Phys. B 102(3), 509–514 (2011).
    [Crossref]
  11. E. Mix, “Kristallzüchtung, Spektroskopie und Lasereigenschaften Yb-dotierter Sesquioxide,” Ph.D. thesis, Universität Hamburg (1999).
  12. L. Laversenne, Y. Guyot, C. Goutaudier, M. T. Cohen-Adad, and G. Boulon, “Optimization of spectroscopic properties of Yb3+-doped refractory sesquioxides: cubic Y2O3, Lu2O3, and monoclinic Gd2O3,” Opt. Mater. 16(4), 475–483 (2001).
    [Crossref]
  13. A. M. Heuer, C. J. Saraceno, K. Beil, G. Huber, and C. Kränkel, “Efficient OPSL-pumped mode-locked Yb:Lu2O3 laser with 67% optical-to-optical efficiency,” Sci. Rep. 6(1), 19090 (2016).
    [Crossref] [PubMed]
  14. P. von Brunn, A. M. Heuer, L. Fornasiero, G. Huber, and C. Kränkel, “Efficient laser operation of Nd3+:Lu2O3 at various wavelengths between 917 nm and 1463 nm,” Laser Phys. 26(8), 084003 (2016).
    [Crossref]
  15. T. Li, K. Beil, C. Kränkel, and G. Huber, “Efficient high-power continuous wave Er:Lu2O3 laser at 2.85 μm,” Opt. Lett. 37(13), 2568–2570 (2012).
    [Crossref] [PubMed]
  16. M. Guzik, J. Pejchal, A. Yoshikawa, A. Ito, T. Goto, M. Siczek, T. Lis, and G. Boulon, “Structural Investigations of Lu2O3 as Single Crystal and Polycrystalline Transparent Ceramic,” Cryst. Growth Des. 14(7), 3327–3334 (2014).
    [Crossref]
  17. J. Shi, B. Liu, Q. Wang, H. Tang, F. Wu, D. Li, H. Zhao, Z. Wang, W. Deng, X. Xu, and J. Xu, “Crystal growth, spectroscopic characteristics, and Judd-Ofelt analysis of Dy:Lu2O3 for yellow laser,” Chin. Phys. B 27(7), 077802 (2018).
    [Crossref]
  18. A. M. Heuer, P. von Brunn, and C. Kränkel, “Spectroscopy of Er3+-, Dy3+-, Pr3+-, and Ho3+-doped sesquioxides in the mid-infrared spectral region”, 7th EPS-QEOD Europhoton Conference, Vienna, Austria, p33.22 (2016).
  19. R. Peters, K. Petermann, and G. Huber, “Growth technology and laser properties of Yb-doped sesquioxides, in Crystal Growth Technology - Semiconductors and Dielectrics, P. Capper and P. Rudolph, eds. (Wiley, 2010), pp. 267–282.
  20. K. Edmondson, S. Agoston, and R. Ranganathan, “Impurity level lifetime measurements using a lock-in amplifier,” Am. J. Phys. 64(6), 787–791 (1996).
    [Crossref]
  21. H. B. Ergun, K. A. Gehring, and G. A. Gehring, “Jahn-Teller induced Davydov splitting in TbVO4,” J. Phys. Chem. 9, 1101 (1976).
  22. A. Toncelli, Dipartimento di Fisica, Universitá di Pisa, Largo Bruno Pontecorvo 3, Pisa, Italy, (personal communication, 2018).
  23. Y. H. Tsang, A. E. El-Taher, T. A. King, and S. D. Jackson, “Efficient 2.96 µm dysprosium-doped fluoride fibre laser pumped with a Nd:YAG laser operating at 1.3 µm,” Opt. Express 14(2), 678–685 (2006).
    [Crossref] [PubMed]
  24. Y. H. Tsang and A. E. El-Taher, “Efficient lasing at near 3 µm by a Dy-doped ZBLAN fiber laser pumped at 1.1 µm by an Yb fiber laser,” Laser Phys. Lett. 8(11), 818–822 (2011).
    [Crossref]
  25. D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136(4A), A954–A957 (1964).
    [Crossref]
  26. C. Füchtbauer, G. Joos, and O. Dinkelacker, “Über Intensität, Verbreiterung und Druckverschiebung von Spektrallinien, insbesondere der Absorptionslinie 2537 des Quecksilbers,” Ann. Phys. 376(9-12), 204–227 (1923).
    [Crossref]
  27. R. Ladenburg, “Die quantentheoretische Deutung der Zahl der Dispersionselektronen,” Z. Phys. 4(4), 451–468 (1921).
    [Crossref]
  28. B. Henderson and R. H. Bartram, Crystal-Field Engineering of Solid-State Laser Materials, Cambridge Studies in Modern Optics (Cambridge University Press, 2005).
  29. M. R. Majewski, R. I. Woodward, and S. D. Jackson, “Dysprosium-doped ZBLAN fiber laser tunable from 2.8 µm to 3.4 µm, pumped at 1.7 µm,” Opt. Lett. 43(5), 971–974 (2018).
    [Crossref] [PubMed]
  30. H. W. Moos, “Spectroscopic relaxation processes of rare earth ions in crystals,” J. Lumin. 1, 106–121 (1970).
    [Crossref]
  31. J. Koetke and G. Huber, “Infrared excited-state absorption and stimulated emission cross sections of Er3+-doped crystals,” Appl. Phys. B 61(2), 151–158 (1995).
    [Crossref]

2018 (3)

2017 (1)

X. C. Zhang, A. Shkurinov, and Y. Zhang, “Extreme terahertz science,” Nat. Photonics 11(1), 16 (2017).
[Crossref]

2016 (3)

M. R. Majewski and S. D. Jackson, “Highly efficient mid-infrared dysprosium fiber laser,” Opt. Lett. 41(10), 2173–2176 (2016).
[Crossref] [PubMed]

A. M. Heuer, C. J. Saraceno, K. Beil, G. Huber, and C. Kränkel, “Efficient OPSL-pumped mode-locked Yb:Lu2O3 laser with 67% optical-to-optical efficiency,” Sci. Rep. 6(1), 19090 (2016).
[Crossref] [PubMed]

P. von Brunn, A. M. Heuer, L. Fornasiero, G. Huber, and C. Kränkel, “Efficient laser operation of Nd3+:Lu2O3 at various wavelengths between 917 nm and 1463 nm,” Laser Phys. 26(8), 084003 (2016).
[Crossref]

2015 (2)

R. R. Gattass, R. Thapa, F. H. Kung, L. E. Busse, L. B. Shaw, and J. S. Sanghera, “Review of infrared fiber-based components,” Appl. Opt. 54(31), F25–F34 (2015).
[Crossref] [PubMed]

S. J. Linke, A. Frings, L. Ren, A. Gomolka, U. Schumacher, R. Reimer, N.-O. Hansen, N. Jowett, G. Richard, and R. J. D. Miller, “A new technology for applanation free corneal trephination: The picosecond infrared laser (PIRL),” PLoS One 10(3), e0120944 (2015).
[Crossref] [PubMed]

2014 (1)

M. Guzik, J. Pejchal, A. Yoshikawa, A. Ito, T. Goto, M. Siczek, T. Lis, and G. Boulon, “Structural Investigations of Lu2O3 as Single Crystal and Polycrystalline Transparent Ceramic,” Cryst. Growth Des. 14(7), 3327–3334 (2014).
[Crossref]

2012 (1)

2011 (2)

Y. H. Tsang and A. E. El-Taher, “Efficient lasing at near 3 µm by a Dy-doped ZBLAN fiber laser pumped at 1.1 µm by an Yb fiber laser,” Laser Phys. Lett. 8(11), 818–822 (2011).
[Crossref]

R. Peters, C. Kränkel, S. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. Heckl, C. Baer, C. Saraceno, T. Südmeyer, and U. Keller, “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides,” Appl. Phys. B 102(3), 509–514 (2011).
[Crossref]

2007 (1)

J. Mulrooney, J. Clifford, C. Fitzpatrick, and E. Lewis, “Detection of carbon dioxide emissions from a diesel engine using a mid-infrared optical fibre based sensor,” Sens. Actuators A Phys. 136(1), 104–110 (2007).
[Crossref]

2006 (1)

2003 (1)

S. D. Jackson, “Continuous wave 2.9 µm dysprosium-doped fluoride fiber laser,” Appl. Phys. Lett. 83(7), 1316–1318 (2003).
[Crossref]

2001 (1)

L. Laversenne, Y. Guyot, C. Goutaudier, M. T. Cohen-Adad, and G. Boulon, “Optimization of spectroscopic properties of Yb3+-doped refractory sesquioxides: cubic Y2O3, Lu2O3, and monoclinic Gd2O3,” Opt. Mater. 16(4), 475–483 (2001).
[Crossref]

1996 (1)

K. Edmondson, S. Agoston, and R. Ranganathan, “Impurity level lifetime measurements using a lock-in amplifier,” Am. J. Phys. 64(6), 787–791 (1996).
[Crossref]

1995 (1)

J. Koetke and G. Huber, “Infrared excited-state absorption and stimulated emission cross sections of Er3+-doped crystals,” Appl. Phys. B 61(2), 151–158 (1995).
[Crossref]

1976 (1)

H. B. Ergun, K. A. Gehring, and G. A. Gehring, “Jahn-Teller induced Davydov splitting in TbVO4,” J. Phys. Chem. 9, 1101 (1976).

1970 (1)

H. W. Moos, “Spectroscopic relaxation processes of rare earth ions in crystals,” J. Lumin. 1, 106–121 (1970).
[Crossref]

1964 (1)

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136(4A), A954–A957 (1964).
[Crossref]

1923 (1)

C. Füchtbauer, G. Joos, and O. Dinkelacker, “Über Intensität, Verbreiterung und Druckverschiebung von Spektrallinien, insbesondere der Absorptionslinie 2537 des Quecksilbers,” Ann. Phys. 376(9-12), 204–227 (1923).
[Crossref]

1921 (1)

R. Ladenburg, “Die quantentheoretische Deutung der Zahl der Dispersionselektronen,” Z. Phys. 4(4), 451–468 (1921).
[Crossref]

Agoston, S.

K. Edmondson, S. Agoston, and R. Ranganathan, “Impurity level lifetime measurements using a lock-in amplifier,” Am. J. Phys. 64(6), 787–791 (1996).
[Crossref]

Baer, C.

R. Peters, C. Kränkel, S. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. Heckl, C. Baer, C. Saraceno, T. Südmeyer, and U. Keller, “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides,” Appl. Phys. B 102(3), 509–514 (2011).
[Crossref]

Beil, K.

A. M. Heuer, C. J. Saraceno, K. Beil, G. Huber, and C. Kränkel, “Efficient OPSL-pumped mode-locked Yb:Lu2O3 laser with 67% optical-to-optical efficiency,” Sci. Rep. 6(1), 19090 (2016).
[Crossref] [PubMed]

T. Li, K. Beil, C. Kränkel, and G. Huber, “Efficient high-power continuous wave Er:Lu2O3 laser at 2.85 μm,” Opt. Lett. 37(13), 2568–2570 (2012).
[Crossref] [PubMed]

R. Peters, C. Kränkel, S. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. Heckl, C. Baer, C. Saraceno, T. Südmeyer, and U. Keller, “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides,” Appl. Phys. B 102(3), 509–514 (2011).
[Crossref]

Bharathan, G.

Boulon, G.

M. Guzik, J. Pejchal, A. Yoshikawa, A. Ito, T. Goto, M. Siczek, T. Lis, and G. Boulon, “Structural Investigations of Lu2O3 as Single Crystal and Polycrystalline Transparent Ceramic,” Cryst. Growth Des. 14(7), 3327–3334 (2014).
[Crossref]

L. Laversenne, Y. Guyot, C. Goutaudier, M. T. Cohen-Adad, and G. Boulon, “Optimization of spectroscopic properties of Yb3+-doped refractory sesquioxides: cubic Y2O3, Lu2O3, and monoclinic Gd2O3,” Opt. Mater. 16(4), 475–483 (2001).
[Crossref]

Busse, L. E.

Clifford, J.

J. Mulrooney, J. Clifford, C. Fitzpatrick, and E. Lewis, “Detection of carbon dioxide emissions from a diesel engine using a mid-infrared optical fibre based sensor,” Sens. Actuators A Phys. 136(1), 104–110 (2007).
[Crossref]

Cohen-Adad, M. T.

L. Laversenne, Y. Guyot, C. Goutaudier, M. T. Cohen-Adad, and G. Boulon, “Optimization of spectroscopic properties of Yb3+-doped refractory sesquioxides: cubic Y2O3, Lu2O3, and monoclinic Gd2O3,” Opt. Mater. 16(4), 475–483 (2001).
[Crossref]

Deng, W.

J. Shi, B. Liu, Q. Wang, H. Tang, F. Wu, D. Li, H. Zhao, Z. Wang, W. Deng, X. Xu, and J. Xu, “Crystal growth, spectroscopic characteristics, and Judd-Ofelt analysis of Dy:Lu2O3 for yellow laser,” Chin. Phys. B 27(7), 077802 (2018).
[Crossref]

Dinkelacker, O.

C. Füchtbauer, G. Joos, and O. Dinkelacker, “Über Intensität, Verbreiterung und Druckverschiebung von Spektrallinien, insbesondere der Absorptionslinie 2537 des Quecksilbers,” Ann. Phys. 376(9-12), 204–227 (1923).
[Crossref]

Edmondson, K.

K. Edmondson, S. Agoston, and R. Ranganathan, “Impurity level lifetime measurements using a lock-in amplifier,” Am. J. Phys. 64(6), 787–791 (1996).
[Crossref]

El-Taher, A. E.

Y. H. Tsang and A. E. El-Taher, “Efficient lasing at near 3 µm by a Dy-doped ZBLAN fiber laser pumped at 1.1 µm by an Yb fiber laser,” Laser Phys. Lett. 8(11), 818–822 (2011).
[Crossref]

Y. H. Tsang, A. E. El-Taher, T. A. King, and S. D. Jackson, “Efficient 2.96 µm dysprosium-doped fluoride fibre laser pumped with a Nd:YAG laser operating at 1.3 µm,” Opt. Express 14(2), 678–685 (2006).
[Crossref] [PubMed]

Ergun, H. B.

H. B. Ergun, K. A. Gehring, and G. A. Gehring, “Jahn-Teller induced Davydov splitting in TbVO4,” J. Phys. Chem. 9, 1101 (1976).

Fitzpatrick, C.

J. Mulrooney, J. Clifford, C. Fitzpatrick, and E. Lewis, “Detection of carbon dioxide emissions from a diesel engine using a mid-infrared optical fibre based sensor,” Sens. Actuators A Phys. 136(1), 104–110 (2007).
[Crossref]

Fornasiero, L.

P. von Brunn, A. M. Heuer, L. Fornasiero, G. Huber, and C. Kränkel, “Efficient laser operation of Nd3+:Lu2O3 at various wavelengths between 917 nm and 1463 nm,” Laser Phys. 26(8), 084003 (2016).
[Crossref]

Fredrich-Thornton, S.

R. Peters, C. Kränkel, S. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. Heckl, C. Baer, C. Saraceno, T. Südmeyer, and U. Keller, “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides,” Appl. Phys. B 102(3), 509–514 (2011).
[Crossref]

Frings, A.

S. J. Linke, A. Frings, L. Ren, A. Gomolka, U. Schumacher, R. Reimer, N.-O. Hansen, N. Jowett, G. Richard, and R. J. D. Miller, “A new technology for applanation free corneal trephination: The picosecond infrared laser (PIRL),” PLoS One 10(3), e0120944 (2015).
[Crossref] [PubMed]

Füchtbauer, C.

C. Füchtbauer, G. Joos, and O. Dinkelacker, “Über Intensität, Verbreiterung und Druckverschiebung von Spektrallinien, insbesondere der Absorptionslinie 2537 des Quecksilbers,” Ann. Phys. 376(9-12), 204–227 (1923).
[Crossref]

Fuerbach, A.

Gattass, R. R.

Gehring, G. A.

H. B. Ergun, K. A. Gehring, and G. A. Gehring, “Jahn-Teller induced Davydov splitting in TbVO4,” J. Phys. Chem. 9, 1101 (1976).

Gehring, K. A.

H. B. Ergun, K. A. Gehring, and G. A. Gehring, “Jahn-Teller induced Davydov splitting in TbVO4,” J. Phys. Chem. 9, 1101 (1976).

Gomolka, A.

S. J. Linke, A. Frings, L. Ren, A. Gomolka, U. Schumacher, R. Reimer, N.-O. Hansen, N. Jowett, G. Richard, and R. J. D. Miller, “A new technology for applanation free corneal trephination: The picosecond infrared laser (PIRL),” PLoS One 10(3), e0120944 (2015).
[Crossref] [PubMed]

Goto, T.

M. Guzik, J. Pejchal, A. Yoshikawa, A. Ito, T. Goto, M. Siczek, T. Lis, and G. Boulon, “Structural Investigations of Lu2O3 as Single Crystal and Polycrystalline Transparent Ceramic,” Cryst. Growth Des. 14(7), 3327–3334 (2014).
[Crossref]

Goutaudier, C.

L. Laversenne, Y. Guyot, C. Goutaudier, M. T. Cohen-Adad, and G. Boulon, “Optimization of spectroscopic properties of Yb3+-doped refractory sesquioxides: cubic Y2O3, Lu2O3, and monoclinic Gd2O3,” Opt. Mater. 16(4), 475–483 (2001).
[Crossref]

Guyot, Y.

L. Laversenne, Y. Guyot, C. Goutaudier, M. T. Cohen-Adad, and G. Boulon, “Optimization of spectroscopic properties of Yb3+-doped refractory sesquioxides: cubic Y2O3, Lu2O3, and monoclinic Gd2O3,” Opt. Mater. 16(4), 475–483 (2001).
[Crossref]

Guzik, M.

M. Guzik, J. Pejchal, A. Yoshikawa, A. Ito, T. Goto, M. Siczek, T. Lis, and G. Boulon, “Structural Investigations of Lu2O3 as Single Crystal and Polycrystalline Transparent Ceramic,” Cryst. Growth Des. 14(7), 3327–3334 (2014).
[Crossref]

Hansen, N.-O.

S. J. Linke, A. Frings, L. Ren, A. Gomolka, U. Schumacher, R. Reimer, N.-O. Hansen, N. Jowett, G. Richard, and R. J. D. Miller, “A new technology for applanation free corneal trephination: The picosecond infrared laser (PIRL),” PLoS One 10(3), e0120944 (2015).
[Crossref] [PubMed]

Heckl, O.

R. Peters, C. Kränkel, S. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. Heckl, C. Baer, C. Saraceno, T. Südmeyer, and U. Keller, “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides,” Appl. Phys. B 102(3), 509–514 (2011).
[Crossref]

Heuer, A. M.

A. M. Heuer, C. J. Saraceno, K. Beil, G. Huber, and C. Kränkel, “Efficient OPSL-pumped mode-locked Yb:Lu2O3 laser with 67% optical-to-optical efficiency,” Sci. Rep. 6(1), 19090 (2016).
[Crossref] [PubMed]

P. von Brunn, A. M. Heuer, L. Fornasiero, G. Huber, and C. Kränkel, “Efficient laser operation of Nd3+:Lu2O3 at various wavelengths between 917 nm and 1463 nm,” Laser Phys. 26(8), 084003 (2016).
[Crossref]

A. M. Heuer, P. von Brunn, and C. Kränkel, “Spectroscopy of Er3+-, Dy3+-, Pr3+-, and Ho3+-doped sesquioxides in the mid-infrared spectral region”, 7th EPS-QEOD Europhoton Conference, Vienna, Austria, p33.22 (2016).

Huber, G.

P. von Brunn, A. M. Heuer, L. Fornasiero, G. Huber, and C. Kränkel, “Efficient laser operation of Nd3+:Lu2O3 at various wavelengths between 917 nm and 1463 nm,” Laser Phys. 26(8), 084003 (2016).
[Crossref]

A. M. Heuer, C. J. Saraceno, K. Beil, G. Huber, and C. Kränkel, “Efficient OPSL-pumped mode-locked Yb:Lu2O3 laser with 67% optical-to-optical efficiency,” Sci. Rep. 6(1), 19090 (2016).
[Crossref] [PubMed]

T. Li, K. Beil, C. Kränkel, and G. Huber, “Efficient high-power continuous wave Er:Lu2O3 laser at 2.85 μm,” Opt. Lett. 37(13), 2568–2570 (2012).
[Crossref] [PubMed]

R. Peters, C. Kränkel, S. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. Heckl, C. Baer, C. Saraceno, T. Südmeyer, and U. Keller, “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides,” Appl. Phys. B 102(3), 509–514 (2011).
[Crossref]

J. Koetke and G. Huber, “Infrared excited-state absorption and stimulated emission cross sections of Er3+-doped crystals,” Appl. Phys. B 61(2), 151–158 (1995).
[Crossref]

Hudson, D. D.

Ito, A.

M. Guzik, J. Pejchal, A. Yoshikawa, A. Ito, T. Goto, M. Siczek, T. Lis, and G. Boulon, “Structural Investigations of Lu2O3 as Single Crystal and Polycrystalline Transparent Ceramic,” Cryst. Growth Des. 14(7), 3327–3334 (2014).
[Crossref]

Jackson, S. D.

Joos, G.

C. Füchtbauer, G. Joos, and O. Dinkelacker, “Über Intensität, Verbreiterung und Druckverschiebung von Spektrallinien, insbesondere der Absorptionslinie 2537 des Quecksilbers,” Ann. Phys. 376(9-12), 204–227 (1923).
[Crossref]

Jowett, N.

S. J. Linke, A. Frings, L. Ren, A. Gomolka, U. Schumacher, R. Reimer, N.-O. Hansen, N. Jowett, G. Richard, and R. J. D. Miller, “A new technology for applanation free corneal trephination: The picosecond infrared laser (PIRL),” PLoS One 10(3), e0120944 (2015).
[Crossref] [PubMed]

Keller, U.

R. Peters, C. Kränkel, S. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. Heckl, C. Baer, C. Saraceno, T. Südmeyer, and U. Keller, “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides,” Appl. Phys. B 102(3), 509–514 (2011).
[Crossref]

King, T. A.

Koetke, J.

J. Koetke and G. Huber, “Infrared excited-state absorption and stimulated emission cross sections of Er3+-doped crystals,” Appl. Phys. B 61(2), 151–158 (1995).
[Crossref]

Kränkel, C.

A. M. Heuer, C. J. Saraceno, K. Beil, G. Huber, and C. Kränkel, “Efficient OPSL-pumped mode-locked Yb:Lu2O3 laser with 67% optical-to-optical efficiency,” Sci. Rep. 6(1), 19090 (2016).
[Crossref] [PubMed]

P. von Brunn, A. M. Heuer, L. Fornasiero, G. Huber, and C. Kränkel, “Efficient laser operation of Nd3+:Lu2O3 at various wavelengths between 917 nm and 1463 nm,” Laser Phys. 26(8), 084003 (2016).
[Crossref]

T. Li, K. Beil, C. Kränkel, and G. Huber, “Efficient high-power continuous wave Er:Lu2O3 laser at 2.85 μm,” Opt. Lett. 37(13), 2568–2570 (2012).
[Crossref] [PubMed]

R. Peters, C. Kränkel, S. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. Heckl, C. Baer, C. Saraceno, T. Südmeyer, and U. Keller, “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides,” Appl. Phys. B 102(3), 509–514 (2011).
[Crossref]

A. M. Heuer, P. von Brunn, and C. Kränkel, “Spectroscopy of Er3+-, Dy3+-, Pr3+-, and Ho3+-doped sesquioxides in the mid-infrared spectral region”, 7th EPS-QEOD Europhoton Conference, Vienna, Austria, p33.22 (2016).

Kung, F. H.

Ladenburg, R.

R. Ladenburg, “Die quantentheoretische Deutung der Zahl der Dispersionselektronen,” Z. Phys. 4(4), 451–468 (1921).
[Crossref]

Laversenne, L.

L. Laversenne, Y. Guyot, C. Goutaudier, M. T. Cohen-Adad, and G. Boulon, “Optimization of spectroscopic properties of Yb3+-doped refractory sesquioxides: cubic Y2O3, Lu2O3, and monoclinic Gd2O3,” Opt. Mater. 16(4), 475–483 (2001).
[Crossref]

Lewis, E.

J. Mulrooney, J. Clifford, C. Fitzpatrick, and E. Lewis, “Detection of carbon dioxide emissions from a diesel engine using a mid-infrared optical fibre based sensor,” Sens. Actuators A Phys. 136(1), 104–110 (2007).
[Crossref]

Li, D.

J. Shi, B. Liu, Q. Wang, H. Tang, F. Wu, D. Li, H. Zhao, Z. Wang, W. Deng, X. Xu, and J. Xu, “Crystal growth, spectroscopic characteristics, and Judd-Ofelt analysis of Dy:Lu2O3 for yellow laser,” Chin. Phys. B 27(7), 077802 (2018).
[Crossref]

Li, T.

Linke, S. J.

S. J. Linke, A. Frings, L. Ren, A. Gomolka, U. Schumacher, R. Reimer, N.-O. Hansen, N. Jowett, G. Richard, and R. J. D. Miller, “A new technology for applanation free corneal trephination: The picosecond infrared laser (PIRL),” PLoS One 10(3), e0120944 (2015).
[Crossref] [PubMed]

Lis, T.

M. Guzik, J. Pejchal, A. Yoshikawa, A. Ito, T. Goto, M. Siczek, T. Lis, and G. Boulon, “Structural Investigations of Lu2O3 as Single Crystal and Polycrystalline Transparent Ceramic,” Cryst. Growth Des. 14(7), 3327–3334 (2014).
[Crossref]

Liu, B.

J. Shi, B. Liu, Q. Wang, H. Tang, F. Wu, D. Li, H. Zhao, Z. Wang, W. Deng, X. Xu, and J. Xu, “Crystal growth, spectroscopic characteristics, and Judd-Ofelt analysis of Dy:Lu2O3 for yellow laser,” Chin. Phys. B 27(7), 077802 (2018).
[Crossref]

Majewski, M. R.

McCumber, D. E.

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136(4A), A954–A957 (1964).
[Crossref]

Miller, R. J. D.

S. J. Linke, A. Frings, L. Ren, A. Gomolka, U. Schumacher, R. Reimer, N.-O. Hansen, N. Jowett, G. Richard, and R. J. D. Miller, “A new technology for applanation free corneal trephination: The picosecond infrared laser (PIRL),” PLoS One 10(3), e0120944 (2015).
[Crossref] [PubMed]

Moos, H. W.

H. W. Moos, “Spectroscopic relaxation processes of rare earth ions in crystals,” J. Lumin. 1, 106–121 (1970).
[Crossref]

Mulrooney, J.

J. Mulrooney, J. Clifford, C. Fitzpatrick, and E. Lewis, “Detection of carbon dioxide emissions from a diesel engine using a mid-infrared optical fibre based sensor,” Sens. Actuators A Phys. 136(1), 104–110 (2007).
[Crossref]

Pejchal, J.

M. Guzik, J. Pejchal, A. Yoshikawa, A. Ito, T. Goto, M. Siczek, T. Lis, and G. Boulon, “Structural Investigations of Lu2O3 as Single Crystal and Polycrystalline Transparent Ceramic,” Cryst. Growth Des. 14(7), 3327–3334 (2014).
[Crossref]

Petermann, K.

R. Peters, C. Kränkel, S. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. Heckl, C. Baer, C. Saraceno, T. Südmeyer, and U. Keller, “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides,” Appl. Phys. B 102(3), 509–514 (2011).
[Crossref]

Peters, R.

R. Peters, C. Kränkel, S. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. Heckl, C. Baer, C. Saraceno, T. Südmeyer, and U. Keller, “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides,” Appl. Phys. B 102(3), 509–514 (2011).
[Crossref]

Ranganathan, R.

K. Edmondson, S. Agoston, and R. Ranganathan, “Impurity level lifetime measurements using a lock-in amplifier,” Am. J. Phys. 64(6), 787–791 (1996).
[Crossref]

Reimer, R.

S. J. Linke, A. Frings, L. Ren, A. Gomolka, U. Schumacher, R. Reimer, N.-O. Hansen, N. Jowett, G. Richard, and R. J. D. Miller, “A new technology for applanation free corneal trephination: The picosecond infrared laser (PIRL),” PLoS One 10(3), e0120944 (2015).
[Crossref] [PubMed]

Ren, L.

S. J. Linke, A. Frings, L. Ren, A. Gomolka, U. Schumacher, R. Reimer, N.-O. Hansen, N. Jowett, G. Richard, and R. J. D. Miller, “A new technology for applanation free corneal trephination: The picosecond infrared laser (PIRL),” PLoS One 10(3), e0120944 (2015).
[Crossref] [PubMed]

Richard, G.

S. J. Linke, A. Frings, L. Ren, A. Gomolka, U. Schumacher, R. Reimer, N.-O. Hansen, N. Jowett, G. Richard, and R. J. D. Miller, “A new technology for applanation free corneal trephination: The picosecond infrared laser (PIRL),” PLoS One 10(3), e0120944 (2015).
[Crossref] [PubMed]

Sanghera, J. S.

Saraceno, C.

R. Peters, C. Kränkel, S. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. Heckl, C. Baer, C. Saraceno, T. Südmeyer, and U. Keller, “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides,” Appl. Phys. B 102(3), 509–514 (2011).
[Crossref]

Saraceno, C. J.

A. M. Heuer, C. J. Saraceno, K. Beil, G. Huber, and C. Kränkel, “Efficient OPSL-pumped mode-locked Yb:Lu2O3 laser with 67% optical-to-optical efficiency,” Sci. Rep. 6(1), 19090 (2016).
[Crossref] [PubMed]

Schumacher, U.

S. J. Linke, A. Frings, L. Ren, A. Gomolka, U. Schumacher, R. Reimer, N.-O. Hansen, N. Jowett, G. Richard, and R. J. D. Miller, “A new technology for applanation free corneal trephination: The picosecond infrared laser (PIRL),” PLoS One 10(3), e0120944 (2015).
[Crossref] [PubMed]

Shaw, L. B.

Shi, J.

J. Shi, B. Liu, Q. Wang, H. Tang, F. Wu, D. Li, H. Zhao, Z. Wang, W. Deng, X. Xu, and J. Xu, “Crystal growth, spectroscopic characteristics, and Judd-Ofelt analysis of Dy:Lu2O3 for yellow laser,” Chin. Phys. B 27(7), 077802 (2018).
[Crossref]

Shkurinov, A.

X. C. Zhang, A. Shkurinov, and Y. Zhang, “Extreme terahertz science,” Nat. Photonics 11(1), 16 (2017).
[Crossref]

Siczek, M.

M. Guzik, J. Pejchal, A. Yoshikawa, A. Ito, T. Goto, M. Siczek, T. Lis, and G. Boulon, “Structural Investigations of Lu2O3 as Single Crystal and Polycrystalline Transparent Ceramic,” Cryst. Growth Des. 14(7), 3327–3334 (2014).
[Crossref]

Südmeyer, T.

R. Peters, C. Kränkel, S. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. Heckl, C. Baer, C. Saraceno, T. Südmeyer, and U. Keller, “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides,” Appl. Phys. B 102(3), 509–514 (2011).
[Crossref]

Tang, H.

J. Shi, B. Liu, Q. Wang, H. Tang, F. Wu, D. Li, H. Zhao, Z. Wang, W. Deng, X. Xu, and J. Xu, “Crystal growth, spectroscopic characteristics, and Judd-Ofelt analysis of Dy:Lu2O3 for yellow laser,” Chin. Phys. B 27(7), 077802 (2018).
[Crossref]

Thapa, R.

Tsang, Y. H.

Y. H. Tsang and A. E. El-Taher, “Efficient lasing at near 3 µm by a Dy-doped ZBLAN fiber laser pumped at 1.1 µm by an Yb fiber laser,” Laser Phys. Lett. 8(11), 818–822 (2011).
[Crossref]

Y. H. Tsang, A. E. El-Taher, T. A. King, and S. D. Jackson, “Efficient 2.96 µm dysprosium-doped fluoride fibre laser pumped with a Nd:YAG laser operating at 1.3 µm,” Opt. Express 14(2), 678–685 (2006).
[Crossref] [PubMed]

von Brunn, P.

P. von Brunn, A. M. Heuer, L. Fornasiero, G. Huber, and C. Kränkel, “Efficient laser operation of Nd3+:Lu2O3 at various wavelengths between 917 nm and 1463 nm,” Laser Phys. 26(8), 084003 (2016).
[Crossref]

A. M. Heuer, P. von Brunn, and C. Kränkel, “Spectroscopy of Er3+-, Dy3+-, Pr3+-, and Ho3+-doped sesquioxides in the mid-infrared spectral region”, 7th EPS-QEOD Europhoton Conference, Vienna, Austria, p33.22 (2016).

Wang, Q.

J. Shi, B. Liu, Q. Wang, H. Tang, F. Wu, D. Li, H. Zhao, Z. Wang, W. Deng, X. Xu, and J. Xu, “Crystal growth, spectroscopic characteristics, and Judd-Ofelt analysis of Dy:Lu2O3 for yellow laser,” Chin. Phys. B 27(7), 077802 (2018).
[Crossref]

Wang, Z.

J. Shi, B. Liu, Q. Wang, H. Tang, F. Wu, D. Li, H. Zhao, Z. Wang, W. Deng, X. Xu, and J. Xu, “Crystal growth, spectroscopic characteristics, and Judd-Ofelt analysis of Dy:Lu2O3 for yellow laser,” Chin. Phys. B 27(7), 077802 (2018).
[Crossref]

Woodward, R. I.

Wu, F.

J. Shi, B. Liu, Q. Wang, H. Tang, F. Wu, D. Li, H. Zhao, Z. Wang, W. Deng, X. Xu, and J. Xu, “Crystal growth, spectroscopic characteristics, and Judd-Ofelt analysis of Dy:Lu2O3 for yellow laser,” Chin. Phys. B 27(7), 077802 (2018).
[Crossref]

Xu, J.

J. Shi, B. Liu, Q. Wang, H. Tang, F. Wu, D. Li, H. Zhao, Z. Wang, W. Deng, X. Xu, and J. Xu, “Crystal growth, spectroscopic characteristics, and Judd-Ofelt analysis of Dy:Lu2O3 for yellow laser,” Chin. Phys. B 27(7), 077802 (2018).
[Crossref]

Xu, X.

J. Shi, B. Liu, Q. Wang, H. Tang, F. Wu, D. Li, H. Zhao, Z. Wang, W. Deng, X. Xu, and J. Xu, “Crystal growth, spectroscopic characteristics, and Judd-Ofelt analysis of Dy:Lu2O3 for yellow laser,” Chin. Phys. B 27(7), 077802 (2018).
[Crossref]

Yoshikawa, A.

M. Guzik, J. Pejchal, A. Yoshikawa, A. Ito, T. Goto, M. Siczek, T. Lis, and G. Boulon, “Structural Investigations of Lu2O3 as Single Crystal and Polycrystalline Transparent Ceramic,” Cryst. Growth Des. 14(7), 3327–3334 (2014).
[Crossref]

Zhang, X. C.

X. C. Zhang, A. Shkurinov, and Y. Zhang, “Extreme terahertz science,” Nat. Photonics 11(1), 16 (2017).
[Crossref]

Zhang, Y.

X. C. Zhang, A. Shkurinov, and Y. Zhang, “Extreme terahertz science,” Nat. Photonics 11(1), 16 (2017).
[Crossref]

Zhao, H.

J. Shi, B. Liu, Q. Wang, H. Tang, F. Wu, D. Li, H. Zhao, Z. Wang, W. Deng, X. Xu, and J. Xu, “Crystal growth, spectroscopic characteristics, and Judd-Ofelt analysis of Dy:Lu2O3 for yellow laser,” Chin. Phys. B 27(7), 077802 (2018).
[Crossref]

Am. J. Phys. (1)

K. Edmondson, S. Agoston, and R. Ranganathan, “Impurity level lifetime measurements using a lock-in amplifier,” Am. J. Phys. 64(6), 787–791 (1996).
[Crossref]

Ann. Phys. (1)

C. Füchtbauer, G. Joos, and O. Dinkelacker, “Über Intensität, Verbreiterung und Druckverschiebung von Spektrallinien, insbesondere der Absorptionslinie 2537 des Quecksilbers,” Ann. Phys. 376(9-12), 204–227 (1923).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (2)

J. Koetke and G. Huber, “Infrared excited-state absorption and stimulated emission cross sections of Er3+-doped crystals,” Appl. Phys. B 61(2), 151–158 (1995).
[Crossref]

R. Peters, C. Kränkel, S. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. Heckl, C. Baer, C. Saraceno, T. Südmeyer, and U. Keller, “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides,” Appl. Phys. B 102(3), 509–514 (2011).
[Crossref]

Appl. Phys. Lett. (1)

S. D. Jackson, “Continuous wave 2.9 µm dysprosium-doped fluoride fiber laser,” Appl. Phys. Lett. 83(7), 1316–1318 (2003).
[Crossref]

Chin. Phys. B (1)

J. Shi, B. Liu, Q. Wang, H. Tang, F. Wu, D. Li, H. Zhao, Z. Wang, W. Deng, X. Xu, and J. Xu, “Crystal growth, spectroscopic characteristics, and Judd-Ofelt analysis of Dy:Lu2O3 for yellow laser,” Chin. Phys. B 27(7), 077802 (2018).
[Crossref]

Cryst. Growth Des. (1)

M. Guzik, J. Pejchal, A. Yoshikawa, A. Ito, T. Goto, M. Siczek, T. Lis, and G. Boulon, “Structural Investigations of Lu2O3 as Single Crystal and Polycrystalline Transparent Ceramic,” Cryst. Growth Des. 14(7), 3327–3334 (2014).
[Crossref]

J. Lumin. (1)

H. W. Moos, “Spectroscopic relaxation processes of rare earth ions in crystals,” J. Lumin. 1, 106–121 (1970).
[Crossref]

J. Phys. Chem. (1)

H. B. Ergun, K. A. Gehring, and G. A. Gehring, “Jahn-Teller induced Davydov splitting in TbVO4,” J. Phys. Chem. 9, 1101 (1976).

Laser Phys. (1)

P. von Brunn, A. M. Heuer, L. Fornasiero, G. Huber, and C. Kränkel, “Efficient laser operation of Nd3+:Lu2O3 at various wavelengths between 917 nm and 1463 nm,” Laser Phys. 26(8), 084003 (2016).
[Crossref]

Laser Phys. Lett. (1)

Y. H. Tsang and A. E. El-Taher, “Efficient lasing at near 3 µm by a Dy-doped ZBLAN fiber laser pumped at 1.1 µm by an Yb fiber laser,” Laser Phys. Lett. 8(11), 818–822 (2011).
[Crossref]

Nat. Photonics (1)

X. C. Zhang, A. Shkurinov, and Y. Zhang, “Extreme terahertz science,” Nat. Photonics 11(1), 16 (2017).
[Crossref]

Opt. Express (1)

Opt. Lett. (4)

Opt. Mater. (1)

L. Laversenne, Y. Guyot, C. Goutaudier, M. T. Cohen-Adad, and G. Boulon, “Optimization of spectroscopic properties of Yb3+-doped refractory sesquioxides: cubic Y2O3, Lu2O3, and monoclinic Gd2O3,” Opt. Mater. 16(4), 475–483 (2001).
[Crossref]

Phys. Rev. (1)

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136(4A), A954–A957 (1964).
[Crossref]

PLoS One (1)

S. J. Linke, A. Frings, L. Ren, A. Gomolka, U. Schumacher, R. Reimer, N.-O. Hansen, N. Jowett, G. Richard, and R. J. D. Miller, “A new technology for applanation free corneal trephination: The picosecond infrared laser (PIRL),” PLoS One 10(3), e0120944 (2015).
[Crossref] [PubMed]

Sci. Rep. (1)

A. M. Heuer, C. J. Saraceno, K. Beil, G. Huber, and C. Kränkel, “Efficient OPSL-pumped mode-locked Yb:Lu2O3 laser with 67% optical-to-optical efficiency,” Sci. Rep. 6(1), 19090 (2016).
[Crossref] [PubMed]

Sens. Actuators A Phys. (1)

J. Mulrooney, J. Clifford, C. Fitzpatrick, and E. Lewis, “Detection of carbon dioxide emissions from a diesel engine using a mid-infrared optical fibre based sensor,” Sens. Actuators A Phys. 136(1), 104–110 (2007).
[Crossref]

Z. Phys. (1)

R. Ladenburg, “Die quantentheoretische Deutung der Zahl der Dispersionselektronen,” Z. Phys. 4(4), 451–468 (1921).
[Crossref]

Other (7)

B. Henderson and R. H. Bartram, Crystal-Field Engineering of Solid-State Laser Materials, Cambridge Studies in Modern Optics (Cambridge University Press, 2005).

M. Bass, Handbook of Optics (McGraw-Hill, 1995).

A. Kaminskii, Laser Crystals: Their Physics and Properties, in Springer Series in Optical Sciences (Springer Berlin Heidelberg, 2013).

E. Mix, “Kristallzüchtung, Spektroskopie und Lasereigenschaften Yb-dotierter Sesquioxide,” Ph.D. thesis, Universität Hamburg (1999).

A. Toncelli, Dipartimento di Fisica, Universitá di Pisa, Largo Bruno Pontecorvo 3, Pisa, Italy, (personal communication, 2018).

A. M. Heuer, P. von Brunn, and C. Kränkel, “Spectroscopy of Er3+-, Dy3+-, Pr3+-, and Ho3+-doped sesquioxides in the mid-infrared spectral region”, 7th EPS-QEOD Europhoton Conference, Vienna, Austria, p33.22 (2016).

R. Peters, K. Petermann, and G. Huber, “Growth technology and laser properties of Yb-doped sesquioxides, in Crystal Growth Technology - Semiconductors and Dielectrics, P. Capper and P. Rudolph, eds. (Wiley, 2010), pp. 267–282.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Growth setup (a) and a grown boule of Dy3+(3 at.%):Lu2O3 (b). Despite the large surface area leading to the crystallization starting at different points, the boule contained large single crystalline volumes.
Fig. 2
Fig. 2 Experimental spectroscopy setups used for transmission and fluorescence measurements. For the fluorescence measurements the sample was slightly tilted and an excitation source was focused on it under grazing incidence. In case of the cryogenic measurements at 11 K a cryostat head was put into the sample position.
Fig. 3
Fig. 3 Energy level diagram for Dy3+:Lu2O3 with corresponding absorption and emission transitions of interest. In addition, possible pump and laser ESA as well as a possible cross-relaxation process are listed. Room temperature absorption spectra are aligned on the right and give an indication to the absorption strength for each multiplet.
Fig. 4
Fig. 4 Absorption cross section spectra for Dy3+(3 at.%):Lu2O3 at 11 K. The grey vertical lines mark the determined positions of the Stark levels. In the blue graph the labels for the energy multiplets are always to the right of the corresponding set. The remaining graphs only cover one multiplet each.
Fig. 5
Fig. 5 Cryogenic emission spectrum of Dy3+:Lu2O3 calibrated to its zero-phonon line. The saturation near 100 cm−1 is caused by the intensity of the excitation source. The grey vertical lines mark the determined positions of the Stark levels.
Fig. 6
Fig. 6 Absorption (a) and emission (b) cross-sections of Dy3+:Lu2O3, with a resolution of 1 nm and 7.2 nm respectively.
Fig. 7
Fig. 7 Gain cross-sections for Dy3+:Lu2O3 for different inversion factors.

Tables (1)

Tables Icon

Table 1 Determined Stark energy level positions for Dy3+:Lu2O3 at 11 K.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

  σ em ( λ )= σ abs ( λ ) Z l Z u exp( E zpl hc λ k B T )
σ em ( λ )= 1 8πc n 2 τ rad   λ 5 I fl ( λ ) β ul λ I fl ( λ )dλ
σ gain ( λ )=β σ em ( 1β ) σ abs ,

Metrics