Abstract

A large mode area depressed cladding waveguide was inscribed by a femtosecond laser beam in bulk of high purity 70TeO2-22WO3-8Bi2O3 glass. Non-linear propagation of femtosecond pulses in the single mode waveguide with mode field diameter of 12 μm was investigated under input at 1030 nm wavelength. The highest peak value of a Raman-gain coefficient of all the tellurite glasses was measured (1.2x10−9 cm/W). The dispersion of the refractive index was obtained in the range of 1170-2300 nm. Spectrum broadening of up to 160 nm at the −10 dB level was observed under input pulse energy as low as 84 nJ in a 14 mm long waveguide. The spectrum broadening was numerically simulated, and it was found that both the Kerr and the Raman nonlinearities result to comparable contributions to the spectrum transformation.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Femtosecond laser direct writing of few-mode depressed-cladding waveguide lasers

Yuechen Jia, Ruiyun He, Javier R. Vázquez de Aldana, Hongliang Liu, and Feng Chen
Opt. Express 27(21) 30941-30951 (2019)

Depressed cladding, buried waveguide laser formed in a YAG:Nd3+ crystal by femtosecond laser writing

A. G. Okhrimchuk, A. V. Shestakov, I. Khrushchev, and J. Mitchell
Opt. Lett. 30(17) 2248-2250 (2005)

References

  • View by:
  • |
  • |
  • |

  1. E. Cassan, C. Grillet, D. N. Neshev, and D. J. Moss, “Nonlinear integrated photonics,” Photon. Res. 6(5), NIP1 (2018).
    [Crossref]
  2. S. Gross and M. J. Withford, “Ultrafast-laser-inscribed 3D integrated photonics: Challenges and emerging applications,” Nanophotonics 4(3), 332–352 (2015).
    [Crossref]
  3. P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express 16(10), 7161–7168 (2008).
    [Crossref] [PubMed]
  4. M. Liao, X. Yan, G. Qin, C. Chaudhari, T. Suzuki, and Y. Ohishi, “A highly non-linear tellurite microstructure fiber with multi-ring holes for supercontinuum generation,” Opt. Express 17(18), 15481–15490 (2009).
    [Crossref] [PubMed]
  5. M. Liao, C. Chaudhari, G. Qin, X. Yan, T. Suzuki, and Y. Ohishi, “Tellurite microstructure fibers with small hexagonal core for supercontinuum generation,” Opt. Express 17(14), 12174–12182 (2009).
    [Crossref] [PubMed]
  6. X. Feng, W. H. Loh, J. C. Flanagan, A. Camerlingo, S. Dasgupta, P. Petropoulos, P. Horak, K. E. Frampton, N. M. White, J. H. Price, H. N. Rutt, and D. J. Richardson, “Single-mode tellurite glass holey fiber with extremely large mode area for infrared nonlinear applications,” Opt. Express 16(18), 13651–13656 (2008).
    [Crossref] [PubMed]
  7. P. Nandi, G. Jose, C. Jayakrishnan, S. Debbarma, K. Chalapathi, K. Alti, A. K. Dharmadhikari, J. A. Dharmadhikari, and D. Mathur, “Femtosecond laser written channel waveguides in tellurite glass,” Opt. Express 14(25), 12145–12150 (2006).
    [Crossref] [PubMed]
  8. M. P. Smayev, V. V. Dorofeev, A. N. Moiseev, and A. G. Okhrimchuk, “Femtosecond laser writing of a depressed cladding single mode channel waveguide in high-purity tellurite glass,” J. Non-Cryst. Solids 480, 100–106 (2018).
    [Crossref]
  9. N. D. Psaila, R. R. Thomson, H. T. Bookey, S. Shen, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and A. K. Kar, “Supercontinuum generation in an ultrafast laser inscribed chalcogenide glass waveguide,” Opt. Express 15(24), 15776–15781 (2007).
    [Crossref] [PubMed]
  10. M. A. Hughes, W. Yang, and D. W. Hewak, “Spectral broadening in femtosecond laser written waveguides in chalcogenide glass,” J. Opt. Soc. Am. B 26(7), 1370 (2009).
    [Crossref]
  11. J. E. McCarthy, H. T. Bookey, N. D. Psaila, R. R. Thomson, and A. K. Kar, “Mid-infrared guiding and nonlinear spectral broadening in ultrafast laser inscribed gallium lanthanum sulphide waveguides,” Opt. Express 20, 1545 (2012).
    [Crossref] [PubMed]
  12. J. McCarthy, H. Bookey, S. Beecher, R. Lamb, I. Elder, and A. K. Kar, “Spectrally tailored mid-infrared super-continuum generation in a buried waveguide spanning 1750 nm to 5000 nm for atmospheric transmission,” Appl. Phys. Lett. 103(15), 151103 (2013).
    [Crossref]
  13. M. Li, S. Huang, Q. Wang, H. Petek, and K. P. Chen, “Nonlinear lightwave circuits in chalcogenide glasses fabricated by ultrafast laser,” Opt. Lett. 39(3), 693–696 (2014).
    [Crossref] [PubMed]
  14. J. M. Morris, M. D. Mackenzie, C. R. Petersen, G. Demetriou, A. K. Kar, O. Bang, and H. T. Bookey, “Ge22 As20Se58 glass ultrafast laser inscribed waveguides for mid-IR integrated optics,” Opt. Mater. Express 8(4), 1001 (2018).
    [Crossref]
  15. W. Yang, C. Corbari, P. G. Kazansky, K. Sakaguchi, and I. C. S. Carvalho, “Low loss photonic components in high index bismuth borate glass by femtosecond laser direct writing,” Opt. Express 16(20), 16215–16226 (2008).
    [Crossref] [PubMed]
  16. F. Chen and J. R. V. de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
    [Crossref]
  17. A. G. Okhrimchuk, A. V. Shestakov, I. Khrushchev, and J. Mitchell, “Depressed cladding, buried waveguide laser formed in a YAG:Nd3+ crystal by femtosecond laser writing,” Opt. Lett. 30(17), 2248–2250 (2005).
    [Crossref] [PubMed]
  18. D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, K. Kuan, T. M. Monro, M. Ams, A. Fuerbach, and M. J. Withford, “Fifty percent internal slope efficiency femtosecond direct-written Tm3+:ZBLAN waveguide laser,” Opt. Lett. 36(9), 1587–1589 (2011).
    [Crossref] [PubMed]
  19. C. J. Bellair, C. L. Curl, B. E. Allman, P. J. Harris, A. Roberts, L. M. D. Delbridge, and K. A. Nugent, “Quantitative Phase Amplitude Microscopy IV: imaging thick specimens,” J. Microsc. 214(1), 62–69 (2004).
    [Crossref] [PubMed]
  20. A. Okhrimchuk, V. Mezentsev, and N. Lichkova, “Mid-infrared channel waveguides in RbPb2Cl5 crystal inscribed by femtosecond laser pulses,” Opt. Laser Technol. 92, 80–84 (2017).
    [Crossref]
  21. V. G. Plotnichenko, V. O. Sokolov, V. V. Koltashev, E. M. Dianov, I. A. Grishin, and M. F. Churbanov, “Raman band intensities of tellurite glass,” Opt. Lett. 2005, 1156–1158 (2005).
  22. M. Galli, F. Marabelli, and G. Guizzetti, “Direct measurement of refractive-index dispersion of transparent media by white-light interferometry,” Appl. Opt. 42(19), 3910–3914 (2003).
    [Crossref] [PubMed]
  23. G. Ghosh, “Sellmeier Coefficients and Chromatic Dispersions for Some Tellurite Glasses,” J. Am. Ceram. Soc. 78(10), 2828–2830 (1995).
    [Crossref]
  24. J. Dudley and R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University Press, 2010).
  25. R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, “Raman response function of silica-core fibers,” J. Opt. Soc. Am. B 6(6), 1159–1166 (1989).
    [Crossref]
  26. X. Yan, G. Qin, M. Liao, T. Suzuki, and Y. Ohishi, “Transient Raman response effects on the soliton self-frequency shift in tellurite microstructured optical fiber,” J. Opt. Soc. Am. B 28(8), 1831–1836 (2011).
    [Crossref]
  27. E. E. Serebryannikov, C. Rivero, R. Stegeman, and A. M. Zheltikov, “Soliton transients and supercontinuum generation in high-Raman-gain materials,” J. Opt. Soc. Am. B 24(1), 137–141 (2007).
    [Crossref]
  28. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, 2007).

2018 (3)

2017 (1)

A. Okhrimchuk, V. Mezentsev, and N. Lichkova, “Mid-infrared channel waveguides in RbPb2Cl5 crystal inscribed by femtosecond laser pulses,” Opt. Laser Technol. 92, 80–84 (2017).
[Crossref]

2015 (1)

S. Gross and M. J. Withford, “Ultrafast-laser-inscribed 3D integrated photonics: Challenges and emerging applications,” Nanophotonics 4(3), 332–352 (2015).
[Crossref]

2014 (2)

F. Chen and J. R. V. de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

M. Li, S. Huang, Q. Wang, H. Petek, and K. P. Chen, “Nonlinear lightwave circuits in chalcogenide glasses fabricated by ultrafast laser,” Opt. Lett. 39(3), 693–696 (2014).
[Crossref] [PubMed]

2013 (1)

J. McCarthy, H. Bookey, S. Beecher, R. Lamb, I. Elder, and A. K. Kar, “Spectrally tailored mid-infrared super-continuum generation in a buried waveguide spanning 1750 nm to 5000 nm for atmospheric transmission,” Appl. Phys. Lett. 103(15), 151103 (2013).
[Crossref]

2012 (1)

2011 (2)

2009 (3)

2008 (3)

2007 (2)

2006 (1)

2005 (2)

A. G. Okhrimchuk, A. V. Shestakov, I. Khrushchev, and J. Mitchell, “Depressed cladding, buried waveguide laser formed in a YAG:Nd3+ crystal by femtosecond laser writing,” Opt. Lett. 30(17), 2248–2250 (2005).
[Crossref] [PubMed]

V. G. Plotnichenko, V. O. Sokolov, V. V. Koltashev, E. M. Dianov, I. A. Grishin, and M. F. Churbanov, “Raman band intensities of tellurite glass,” Opt. Lett. 2005, 1156–1158 (2005).

2004 (1)

C. J. Bellair, C. L. Curl, B. E. Allman, P. J. Harris, A. Roberts, L. M. D. Delbridge, and K. A. Nugent, “Quantitative Phase Amplitude Microscopy IV: imaging thick specimens,” J. Microsc. 214(1), 62–69 (2004).
[Crossref] [PubMed]

2003 (1)

1995 (1)

G. Ghosh, “Sellmeier Coefficients and Chromatic Dispersions for Some Tellurite Glasses,” J. Am. Ceram. Soc. 78(10), 2828–2830 (1995).
[Crossref]

1989 (1)

Allman, B. E.

C. J. Bellair, C. L. Curl, B. E. Allman, P. J. Harris, A. Roberts, L. M. D. Delbridge, and K. A. Nugent, “Quantitative Phase Amplitude Microscopy IV: imaging thick specimens,” J. Microsc. 214(1), 62–69 (2004).
[Crossref] [PubMed]

Alti, K.

Ams, M.

Bang, O.

Beecher, S.

J. McCarthy, H. Bookey, S. Beecher, R. Lamb, I. Elder, and A. K. Kar, “Spectrally tailored mid-infrared super-continuum generation in a buried waveguide spanning 1750 nm to 5000 nm for atmospheric transmission,” Appl. Phys. Lett. 103(15), 151103 (2013).
[Crossref]

Bellair, C. J.

C. J. Bellair, C. L. Curl, B. E. Allman, P. J. Harris, A. Roberts, L. M. D. Delbridge, and K. A. Nugent, “Quantitative Phase Amplitude Microscopy IV: imaging thick specimens,” J. Microsc. 214(1), 62–69 (2004).
[Crossref] [PubMed]

Bookey, H.

J. McCarthy, H. Bookey, S. Beecher, R. Lamb, I. Elder, and A. K. Kar, “Spectrally tailored mid-infrared super-continuum generation in a buried waveguide spanning 1750 nm to 5000 nm for atmospheric transmission,” Appl. Phys. Lett. 103(15), 151103 (2013).
[Crossref]

Bookey, H. T.

Camerlingo, A.

Carvalho, I. C. S.

Cassan, E.

Cerullo, G.

Chalapathi, K.

Chaudhari, C.

Chen, F.

F. Chen and J. R. V. de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

Chen, K. P.

Chiodo, N.

Churbanov, M. F.

V. G. Plotnichenko, V. O. Sokolov, V. V. Koltashev, E. M. Dianov, I. A. Grishin, and M. F. Churbanov, “Raman band intensities of tellurite glass,” Opt. Lett. 2005, 1156–1158 (2005).

Corbari, C.

Cordeiro, C. M. B.

Cronin-Golomb, M.

Curl, C. L.

C. J. Bellair, C. L. Curl, B. E. Allman, P. J. Harris, A. Roberts, L. M. D. Delbridge, and K. A. Nugent, “Quantitative Phase Amplitude Microscopy IV: imaging thick specimens,” J. Microsc. 214(1), 62–69 (2004).
[Crossref] [PubMed]

Dasgupta, S.

de Aldana, J. R. V.

F. Chen and J. R. V. de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

Debbarma, S.

Delbridge, L. M. D.

C. J. Bellair, C. L. Curl, B. E. Allman, P. J. Harris, A. Roberts, L. M. D. Delbridge, and K. A. Nugent, “Quantitative Phase Amplitude Microscopy IV: imaging thick specimens,” J. Microsc. 214(1), 62–69 (2004).
[Crossref] [PubMed]

Demetriou, G.

Dharmadhikari, A. K.

Dharmadhikari, J. A.

Dianov, E. M.

V. G. Plotnichenko, V. O. Sokolov, V. V. Koltashev, E. M. Dianov, I. A. Grishin, and M. F. Churbanov, “Raman band intensities of tellurite glass,” Opt. Lett. 2005, 1156–1158 (2005).

Domachuk, P.

Dorofeev, V. V.

M. P. Smayev, V. V. Dorofeev, A. N. Moiseev, and A. G. Okhrimchuk, “Femtosecond laser writing of a depressed cladding single mode channel waveguide in high-purity tellurite glass,” J. Non-Cryst. Solids 480, 100–106 (2018).
[Crossref]

Ebendorff-Heidepriem, H.

Elder, I.

J. McCarthy, H. Bookey, S. Beecher, R. Lamb, I. Elder, and A. K. Kar, “Spectrally tailored mid-infrared super-continuum generation in a buried waveguide spanning 1750 nm to 5000 nm for atmospheric transmission,” Appl. Phys. Lett. 103(15), 151103 (2013).
[Crossref]

Feng, X.

Flanagan, J. C.

Frampton, K. E.

Fuerbach, A.

Galli, M.

George, A. K.

Ghosh, G.

G. Ghosh, “Sellmeier Coefficients and Chromatic Dispersions for Some Tellurite Glasses,” J. Am. Ceram. Soc. 78(10), 2828–2830 (1995).
[Crossref]

Gordon, J. P.

Grillet, C.

Grishin, I. A.

V. G. Plotnichenko, V. O. Sokolov, V. V. Koltashev, E. M. Dianov, I. A. Grishin, and M. F. Churbanov, “Raman band intensities of tellurite glass,” Opt. Lett. 2005, 1156–1158 (2005).

Gross, S.

Guizzetti, G.

Harris, P. J.

C. J. Bellair, C. L. Curl, B. E. Allman, P. J. Harris, A. Roberts, L. M. D. Delbridge, and K. A. Nugent, “Quantitative Phase Amplitude Microscopy IV: imaging thick specimens,” J. Microsc. 214(1), 62–69 (2004).
[Crossref] [PubMed]

Haus, H. A.

Hewak, D. W.

Horak, P.

Huang, S.

Hughes, M. A.

Jayakrishnan, C.

Jha, A.

Jose, G.

Kar, A. K.

Kazansky, P. G.

Khrushchev, I.

Knight, J. C.

Koltashev, V. V.

V. G. Plotnichenko, V. O. Sokolov, V. V. Koltashev, E. M. Dianov, I. A. Grishin, and M. F. Churbanov, “Raman band intensities of tellurite glass,” Opt. Lett. 2005, 1156–1158 (2005).

Kuan, K.

Lamb, R.

J. McCarthy, H. Bookey, S. Beecher, R. Lamb, I. Elder, and A. K. Kar, “Spectrally tailored mid-infrared super-continuum generation in a buried waveguide spanning 1750 nm to 5000 nm for atmospheric transmission,” Appl. Phys. Lett. 103(15), 151103 (2013).
[Crossref]

Lancaster, D. G.

Li, M.

Liao, M.

Lichkova, N.

A. Okhrimchuk, V. Mezentsev, and N. Lichkova, “Mid-infrared channel waveguides in RbPb2Cl5 crystal inscribed by femtosecond laser pulses,” Opt. Laser Technol. 92, 80–84 (2017).
[Crossref]

Loh, W. H.

Mackenzie, M. D.

Marabelli, F.

Mathur, D.

McCarthy, J.

J. McCarthy, H. Bookey, S. Beecher, R. Lamb, I. Elder, and A. K. Kar, “Spectrally tailored mid-infrared super-continuum generation in a buried waveguide spanning 1750 nm to 5000 nm for atmospheric transmission,” Appl. Phys. Lett. 103(15), 151103 (2013).
[Crossref]

McCarthy, J. E.

Mezentsev, V.

A. Okhrimchuk, V. Mezentsev, and N. Lichkova, “Mid-infrared channel waveguides in RbPb2Cl5 crystal inscribed by femtosecond laser pulses,” Opt. Laser Technol. 92, 80–84 (2017).
[Crossref]

Mitchell, J.

Moiseev, A. N.

M. P. Smayev, V. V. Dorofeev, A. N. Moiseev, and A. G. Okhrimchuk, “Femtosecond laser writing of a depressed cladding single mode channel waveguide in high-purity tellurite glass,” J. Non-Cryst. Solids 480, 100–106 (2018).
[Crossref]

Monro, T. M.

Morris, J. M.

Moss, D. J.

Nandi, P.

Neshev, D. N.

Nugent, K. A.

C. J. Bellair, C. L. Curl, B. E. Allman, P. J. Harris, A. Roberts, L. M. D. Delbridge, and K. A. Nugent, “Quantitative Phase Amplitude Microscopy IV: imaging thick specimens,” J. Microsc. 214(1), 62–69 (2004).
[Crossref] [PubMed]

Ohishi, Y.

Okhrimchuk, A.

A. Okhrimchuk, V. Mezentsev, and N. Lichkova, “Mid-infrared channel waveguides in RbPb2Cl5 crystal inscribed by femtosecond laser pulses,” Opt. Laser Technol. 92, 80–84 (2017).
[Crossref]

Okhrimchuk, A. G.

M. P. Smayev, V. V. Dorofeev, A. N. Moiseev, and A. G. Okhrimchuk, “Femtosecond laser writing of a depressed cladding single mode channel waveguide in high-purity tellurite glass,” J. Non-Cryst. Solids 480, 100–106 (2018).
[Crossref]

A. G. Okhrimchuk, A. V. Shestakov, I. Khrushchev, and J. Mitchell, “Depressed cladding, buried waveguide laser formed in a YAG:Nd3+ crystal by femtosecond laser writing,” Opt. Lett. 30(17), 2248–2250 (2005).
[Crossref] [PubMed]

Omenetto, F. G.

Osellame, R.

Petek, H.

Petersen, C. R.

Petropoulos, P.

Plotnichenko, V. G.

V. G. Plotnichenko, V. O. Sokolov, V. V. Koltashev, E. M. Dianov, I. A. Grishin, and M. F. Churbanov, “Raman band intensities of tellurite glass,” Opt. Lett. 2005, 1156–1158 (2005).

Price, J. H.

Psaila, N. D.

Qin, G.

Richardson, D. J.

Rivero, C.

Roberts, A.

C. J. Bellair, C. L. Curl, B. E. Allman, P. J. Harris, A. Roberts, L. M. D. Delbridge, and K. A. Nugent, “Quantitative Phase Amplitude Microscopy IV: imaging thick specimens,” J. Microsc. 214(1), 62–69 (2004).
[Crossref] [PubMed]

Rutt, H. N.

Sakaguchi, K.

Serebryannikov, E. E.

Shen, S.

Shestakov, A. V.

Smayev, M. P.

M. P. Smayev, V. V. Dorofeev, A. N. Moiseev, and A. G. Okhrimchuk, “Femtosecond laser writing of a depressed cladding single mode channel waveguide in high-purity tellurite glass,” J. Non-Cryst. Solids 480, 100–106 (2018).
[Crossref]

Sokolov, V. O.

V. G. Plotnichenko, V. O. Sokolov, V. V. Koltashev, E. M. Dianov, I. A. Grishin, and M. F. Churbanov, “Raman band intensities of tellurite glass,” Opt. Lett. 2005, 1156–1158 (2005).

Stegeman, R.

Stolen, R. H.

Suzuki, T.

Thomson, R. R.

Tomlinson, W. J.

Wang, A.

Wang, Q.

White, N. M.

Withford, M. J.

Wolchover, N. A.

Yan, X.

Yang, W.

Zheltikov, A. M.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

J. McCarthy, H. Bookey, S. Beecher, R. Lamb, I. Elder, and A. K. Kar, “Spectrally tailored mid-infrared super-continuum generation in a buried waveguide spanning 1750 nm to 5000 nm for atmospheric transmission,” Appl. Phys. Lett. 103(15), 151103 (2013).
[Crossref]

J. Am. Ceram. Soc. (1)

G. Ghosh, “Sellmeier Coefficients and Chromatic Dispersions for Some Tellurite Glasses,” J. Am. Ceram. Soc. 78(10), 2828–2830 (1995).
[Crossref]

J. Microsc. (1)

C. J. Bellair, C. L. Curl, B. E. Allman, P. J. Harris, A. Roberts, L. M. D. Delbridge, and K. A. Nugent, “Quantitative Phase Amplitude Microscopy IV: imaging thick specimens,” J. Microsc. 214(1), 62–69 (2004).
[Crossref] [PubMed]

J. Non-Cryst. Solids (1)

M. P. Smayev, V. V. Dorofeev, A. N. Moiseev, and A. G. Okhrimchuk, “Femtosecond laser writing of a depressed cladding single mode channel waveguide in high-purity tellurite glass,” J. Non-Cryst. Solids 480, 100–106 (2018).
[Crossref]

J. Opt. Soc. Am. B (4)

Laser Photonics Rev. (1)

F. Chen and J. R. V. de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

Nanophotonics (1)

S. Gross and M. J. Withford, “Ultrafast-laser-inscribed 3D integrated photonics: Challenges and emerging applications,” Nanophotonics 4(3), 332–352 (2015).
[Crossref]

Opt. Express (8)

P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express 16(10), 7161–7168 (2008).
[Crossref] [PubMed]

M. Liao, X. Yan, G. Qin, C. Chaudhari, T. Suzuki, and Y. Ohishi, “A highly non-linear tellurite microstructure fiber with multi-ring holes for supercontinuum generation,” Opt. Express 17(18), 15481–15490 (2009).
[Crossref] [PubMed]

M. Liao, C. Chaudhari, G. Qin, X. Yan, T. Suzuki, and Y. Ohishi, “Tellurite microstructure fibers with small hexagonal core for supercontinuum generation,” Opt. Express 17(14), 12174–12182 (2009).
[Crossref] [PubMed]

X. Feng, W. H. Loh, J. C. Flanagan, A. Camerlingo, S. Dasgupta, P. Petropoulos, P. Horak, K. E. Frampton, N. M. White, J. H. Price, H. N. Rutt, and D. J. Richardson, “Single-mode tellurite glass holey fiber with extremely large mode area for infrared nonlinear applications,” Opt. Express 16(18), 13651–13656 (2008).
[Crossref] [PubMed]

P. Nandi, G. Jose, C. Jayakrishnan, S. Debbarma, K. Chalapathi, K. Alti, A. K. Dharmadhikari, J. A. Dharmadhikari, and D. Mathur, “Femtosecond laser written channel waveguides in tellurite glass,” Opt. Express 14(25), 12145–12150 (2006).
[Crossref] [PubMed]

J. E. McCarthy, H. T. Bookey, N. D. Psaila, R. R. Thomson, and A. K. Kar, “Mid-infrared guiding and nonlinear spectral broadening in ultrafast laser inscribed gallium lanthanum sulphide waveguides,” Opt. Express 20, 1545 (2012).
[Crossref] [PubMed]

N. D. Psaila, R. R. Thomson, H. T. Bookey, S. Shen, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and A. K. Kar, “Supercontinuum generation in an ultrafast laser inscribed chalcogenide glass waveguide,” Opt. Express 15(24), 15776–15781 (2007).
[Crossref] [PubMed]

W. Yang, C. Corbari, P. G. Kazansky, K. Sakaguchi, and I. C. S. Carvalho, “Low loss photonic components in high index bismuth borate glass by femtosecond laser direct writing,” Opt. Express 16(20), 16215–16226 (2008).
[Crossref] [PubMed]

Opt. Laser Technol. (1)

A. Okhrimchuk, V. Mezentsev, and N. Lichkova, “Mid-infrared channel waveguides in RbPb2Cl5 crystal inscribed by femtosecond laser pulses,” Opt. Laser Technol. 92, 80–84 (2017).
[Crossref]

Opt. Lett. (4)

Opt. Mater. Express (1)

Photon. Res. (1)

Other (2)

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, 2007).

J. Dudley and R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University Press, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Bright field microscope picture of the waveguide end. Laser writing beam passed from the top. Scale bar is 10 μm.
Fig. 2
Fig. 2 Raman gain spectra of the 70TeO2-22WO3-8Bi2O3 glass (black solid line) and silica glass (red solid line) for reference (magnified by factor of 10).
Fig. 3
Fig. 3 (a) Optical scheme for measurement of the femtosecond pulse delay in the sample Δt; (b) Plot of the first derivative of the propagation constant β1 against circular frequency ω. Points are the experiment, the solid line is a theoretical fit by formula (3).
Fig. 4
Fig. 4 Spectrum of the 175-fs pulses coupled to the waveguide. Resolution is 0.2 nm.
Fig. 5
Fig. 5 Intensity distributions at the waveguide output under designated input pulse energies. Arrows show input polarization. Scale bar is 10 μm.
Fig. 6
Fig. 6 A plot of MFD against input pulse energy. Red circles are for horizontal polarization, blue circles are for vertical polarization; filled circles are for diameter in the horizontal cross-section, and empty circles are for diameter in the vertical cross-section.
Fig. 7
Fig. 7 Spectra of light at the waveguide output obtained experimentally (a), (c), (e) and numerically (b), (d), (f) at input pulse energy Ein of 4.7 nJ (a,b), 26 nJ (c,d) and 84 nJ (e,f).
Fig. 8
Fig. 8 Plot of measured spectrum widths at the −10 dB level relative spectrum maximum against the input pulse energy. Red points are for horizontal polarization, and blue points are for vertical polarization.
Fig. 9
Fig. 9 Calculated wavelength dependence of the effective refractive index (a) and confinement loss of fundamental mode (b). The geometry of the waveguide cross-section along with PML used for calculations is shown in the inset.
Fig. 10
Fig. 10 Raman response function hR(t) for 70TeO2-22WO3-8Bi2O3 glass.
Fig. 11
Fig. 11 (a) Spectral width (−20dB level) of the output spectrum versus input pulse power. The initial part of the curve with a relatively fast growth at a level −20 dB (filled circles) is given in a detail in the inset together with the spectral width at a level −10 dB (empty circles); (b) Output spectrum obtained numerically for the input pulse energy of 4 μJ.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δt= L u L c = β 1 L L c ,
n(ω)= 1+ A ω 1 2 ω 2 + B ω 2 2 ω 2 ,
β 1 (ω)= ( ωn c ) ω = 1+ A ω 1 2 ( ω 1 2 ω 2 ) 2 + B ω 2 2 ( ω 2 2 ω 2 ) 2 c 1+ A ω 1 2 ω 2 + B ω 2 2 ω 2 .

Metrics