Abstract

Composite microspheres with carbonyl iron cores and graphite shells are prepared by a mechanical ball milling method. The microwave absorption properties of these microspheres are investigated in terms of complex permittivity and permeability, impedance matching property, and reflection loss. The morphology and conductivity of the graphite can be well tuned by controlling the milling time to achieve the improvement in its impedance matching characteristics. In addition, by integration of the composition and unique structure, the carbonyl iron/graphite microspheres possess better absorption properties than milling graphite. The microspheres show highly strong electromagnetic wave (EMW) absorption with a minimum reflection loss (RL) of −55.2 dB, which could be attributed to the good impedance matching and effective complementarities between magnetic and dielectric components. More importantly, the qualified frequency bandwidth of the absorber is up to 9.7GHz (8.3-18GHz) with a matching thickness of 2.1mm. The results indicate that carbonyl iron/graphite microspheres may be excellent candidate materials for EMW absorption applications.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-broadband, polarization-independent, wide-angle absorption in impedance-matched metamaterials with anti-reflective moth-eye surfaces

Rushin Contractor, Giuseppe D’Aguanno, and Curtis Menyuk
Opt. Express 26(18) 24031-24043 (2018)

Polarization-insensitive, ultra-broadband, and compact metamaterial-inspired optical absorber via wide-angle and highly efficient performances

Mohammad Mehrabi, Hamid Rajabalipanah, Ali Abdolali, and Majid Tayarani
Appl. Opt. 57(14) 3693-3703 (2018)

Water metamaterial for ultra-broadband and wide-angle absorption

Jianwen Xie, Weiren Zhu, Ivan D. Rukhlenko, Fajun Xiao, Chong He, Junping Geng, Xianling Liang, Ronghong Jin, and Malin Premaratne
Opt. Express 26(4) 5052-5059 (2018)

References

  • View by:
  • |
  • |
  • |

  1. S. M. Abbas, A. K. Dixit, R. Chatterjee, and T. C. Goel, “Complex permittivity, complex permeability and microwave absorption properties of ferrite-polymer composites,” J. Magn. Magn. Mater. 309(1), 20–24 (2007).
    [Crossref]
  2. P. Saini, V. Choudhary, B. P. Singh, R. B. Mathur, and S. K. Dhawan, “Polyaniline-MWCNT nanocomposites for microwave absorption and EMI shielding,” Mater. Chem. Phys. 113(2), 919–926 (2009).
    [Crossref]
  3. S. Sugimoto, T. Maeda, D. Book, T. Kagotani, K. Inomata, M. Homma, H. Ota, Y. Houjou, and R. Sato, “GHz microwave absorption of a fine α-Fe structure produced by the disproportionation of Sm2Fe17 in hydrogen,” J. Alloys Compd. 330(330), 301–306 (2002).
    [Crossref]
  4. A. N. Yusoff, M. H. Abdullah, S. H. Ahmad, S. F. Jusoh, A. A. Mansor, and S. A. A. Hamid, “Electromagnetic and absorption properties of some microwave absorbers,” J. Appl. Phys. 92(2), 876–882 (2002).
    [Crossref]
  5. Y. H. Zou, L. Y. Jiang, S. C. Wen, W. X. Shu, Y. J. Qing, Z. X. Tang, H. L. Luo, and D. Y. Fan, “Enhancing and tuning absorption properties of microwave absorbing materials using metamaterials,” Appl. Phys. Lett. 93(26), 261115 (2008).
    [Crossref]
  6. S. F. Lai, Y. H. Wu, J. J. Wang, W. Wu, and W. H. Gu, “Optical-transparent flexible broadband absorbers based on the ITO-PET-ITO structure,” Opt. Mater. Express 8(6), 1585–1592 (2018).
    [Crossref]
  7. D. H. Tiep, B. X. Khuyen, B. S. Tung, Y. J. Kim, J. S. Hwang, V. D. Lam, and Y. P. Lee, “Enhanced-bandwidth perfect absorption based on a hybrid metamaterial,” Opt. Mater. Express 8(9), 2751–2759 (2018).
    [Crossref]
  8. L. Wang, Y. Huang, C. Li, J. Chen, and X. Sun, “Hierarchical graphene@Fe3O4 nanocluster@carbon@MnO2 nanosheet array composites: synthesis and microwave absorption performance,” Phys. Chem. Chem. Phys. 17(8), 5878–5886 (2015).
    [Crossref] [PubMed]
  9. H. Guo, Y. Q. Zhan, Z. R. Chen, F. B. Meng, J. J. Wei, and X. B. Liu, “Decoration of basalt fibers with hybrid Fe3O4 microspheres and their microwave absorption application in bisphthalonitrile composites,” J. Mater. Chem. A Mater. Energy Sustain. 1(6), 2286–2296 (2013).
    [Crossref]
  10. X. J. Zhang, G. C. Lv, G. S. Wang, T. Y. Bai, J. K. Qu, X. F. Liu, and P. G. Yin, “High-performance microwave absorption of flexible nanocomposites based on flower-like Co superstructures and polyvinylidene fluoride,” RSC Advances 5(68), 55468–55473 (2015).
    [Crossref]
  11. M. M. Lu, M. S. Cao, Y. H. Chen, W. Q. Cao, J. Liu, H. L. Shi, D. Q. Zhang, W. Z. Wang, and J. Yuan, “Multiscale Assembly of Grape-Like Ferroferric Oxide and Carbon Nanotubes: A Smart Absorber Prototype Varying Temperature to Tune Intensities,” ACS Appl. Mater. Interfaces 7(34), 19408–19415 (2015).
    [Crossref] [PubMed]
  12. G. X. Tong, J. H. Yuan, W. H. Wu, Q. Hu, H. S. Qian, L. C. Li, and J. P. Shen, “Flower-like Co superstructures: Morphology and phase evolution mechanism and novel microwave electromagnetic characteristics,” CrystEngComm 14(6), 2071–2079 (2012).
    [Crossref]
  13. S. B. Cho, D. H. Kang, and J. H. Oh, “Relationship between magnetic properties and microwave-absorbing characteristics of NiZnCo ferrite composites,” J. Mater. Sci. 31(17), 4719–4722 (1996).
    [Crossref]
  14. J. Zhao, S. Wei, C. Wang, K. Chen, B. Zhu, T. Jiang, and Y. Feng, “Broadband microwave absorption utilizing water-based metamaterial structures,” Opt. Express 26(7), 8522–8531 (2018).
    [Crossref] [PubMed]
  15. E. J. Pakulis and T. Osada, “Microwave absorption studies of Y-Ba-Cu-O,” Phys. Rev. B Condens. Matter 37(10), 5940–5942 (1988).
    [Crossref] [PubMed]
  16. Y. Yin, X. Liu, X. Wei, R. Yu, and J. Shui, “Porous CNTs/Co Composite Derived from Zeolitic Imidazolate Framework: A Lightweight, Ultrathin, and Highly Efficient Electromagnetic Wave Absorber,” ACS Appl. Mater. Interfaces 8(50), 34686–34698 (2016).
    [Crossref] [PubMed]
  17. Z. T. Zhu, X. Sun, H. R. Xue, H. Guo, X. Fan, X. Pan, and J. He, “Graphene-carbonyl iron cross-linked composites with excellent electromagnetic wave absorption properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(32), 6582–6591 (2014).
    [Crossref]
  18. B. Wen, M. S. Cao, Z. L. Hou, W. L. Song, L. Zhang, M. M. Lu, H. B. Jin, X. Y. Fang, W. Z. Wang, and J. Yuan, “Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites,” Carbon 65(12), 124–139 (2013).
    [Crossref]
  19. G. Pan, J. Zhu, S. Ma, G. Sun, and X. Yang, “Enhancing the Electromagnetic Performance of Co through the Phase-Controlled Synthesis of Hexagonal and Cubic Co Nanocrystals Grown on Graphene,” ACS Appl. Mater. Interfaces 5(23), 12716–12724 (2013).
    [Crossref] [PubMed]
  20. A. Wadhawan, D. Garrett, and J. M. Perez, “Nanoparticle-assisted microwave absorption by single-wall carbon nanotubes,” Appl. Phys. Lett. 83(13), 2683–2685 (2003).
    [Crossref]
  21. Y. Zhang, Y. Huang, T. Zhang, H. Chang, P. Xiao, H. Chen, Z. Huang, and Y. Chen, “Broadband and Tunable High-Performance Microwave Absorption of an Ultralight and Highly Compressible Graphene Foam,” Adv. Mater. 27(12), 2049–2053 (2015).
    [Crossref] [PubMed]
  22. W. Liu, L. Liu, G. B. Ji, D. R. Li, Y. N. Zhang, J. N. Ma, and Y. W. Du, “Composition Design and Structural Characterization of MOF-Derived Composites with Controllable Electromagnetic Properties,” ACS Sustain. Chem.& Eng. 5(9), 7961–7971 (2017).
    [Crossref]
  23. Z. L. Zhang, Z. L. Wang, L. Y. Heng, S. Wang, X. Q. Chen, X. Q. Fu, Y. H. Zou, and Z. X. Tang, “Improving the Electromagnetic Wave Absorption Properties of the Layered MoS2 by Cladding with Ni Nanoparticles,” J. Phys. Soc. Jpn. 87(5), 054402 (2018).
    [Crossref]
  24. R. Qiang, Y. C. Du, H. T. Zhao, Y. Wang, C. H. Tian, Z. G. Li, X. J. Han, and P. Xu, “Metal organic framework-derived Fe/C nanocubes toward efficient microwave absorption,” J. Mater. Chem. A Mater. Energy Sustain. 3(25), 13426–13434 (2015).
    [Crossref]
  25. B. Zhao, G. Shao, B. B. Fan, W. Y. Zhao, Y. Q. Chen, and R. Zhang, “Facile synthesis of crumpled ZnS net-wrapped Ni walnut spheres with enhanced microwave absorption properties,” RSC Advances 5(13), 9806–9814 (2015).
    [Crossref]
  26. X. L. Li, Z. X. Li, X. G. Liu, S. H. Zhang, and S. L. Ran, “Fe/amorphous ceramics core/shell structured nanoflakes-assembled rod-like architecture for efficient microwave absorber,” J. Phys. D Appl. Phys. 50(48), 485302 (2017).
    [Crossref]
  27. X. G. Huang, J. Zhang, W. F. Rao, T. Y. Sang, B. Song, and C. P. Wong, “Tunable electromagnetic properties and enhanced microwave absorption ability of flaky graphite/cobalt zinc ferrite composites,” J. Alloys Compd. 662, 409–414 (2016).
    [Crossref]
  28. X. Sun, J. P. He, G. X. Li, J. Tang, T. Wang, Y. X. Guo, and H. R. Xue, “Laminated magnetic graphene with enhanced electromagnetic wave absorption properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(4), 765–777 (2013).
    [Crossref]
  29. O. Ghodbane, L. Roué, and D. Bélanger, “Study of the Electroless Deposition of Pd on Cu-Modified Graphite Electrodes by Metal Exchange Reaction,” Chem. Mater. 20(10), 3495–3504 (2008).
    [Crossref]
  30. M. Palaniappa, G. V. Babu, and K. Balasubramanian, “Electroless nickel-phosphorus plating on graphite powder,” Mater. Sci. Eng. A 471(1), 165–168 (2007).
    [Crossref]
  31. W. Q. Zhang, S. W. Bie, H. C. Chen, Y. Lu, and J. J. Jiang, “Electromagnetic and microwave absorption properties of carbonyl iron/MnO2 composite,” J. Magn. Magn. Mater. 358–359, 1–4 (2014).
    [Crossref]
  32. J. Sun, H. L. Xu, Y. Shen, H. Bi, W. F. Liang, and R. B. Yang, “Enhanced microwave absorption properties of the milled flake-shaped FeSiAl/graphite composites,” J. Alloys Compd. 548, 18–22 (2013).
    [Crossref]
  33. J. Liu, R. Che, H. Chen, F. Zhang, F. Xia, Q. Wu, and M. Wang, “Microwave absorption enhancement of multifunctional composite microspheres with spinel Fe3 O4 Cores and Anatase TiO2 shells,” Small 8(8), 1214–1221 (2012).
    [Crossref] [PubMed]
  34. S. Reich and C. Thomsen, “Raman spectroscopy of graphite,” Philos Trans A Math Phys Eng Sci 362(1824), 2271–2288 (2004).
    [Crossref] [PubMed]
  35. J. Jiang, D. Li, D. Geng, J. An, J. He, W. Liu, and Z. Zhang, “Microwave absorption properties of core double-shell FeCo/C/BaTiO3 nanocomposites,” Nanoscale 6(8), 3967–3971 (2014).
    [Crossref] [PubMed]
  36. Y. Kang, Z. Jiang, T. Ma, Z. Chu, and G. Li, “Hybrids of Reduced Graphene Oxide and Hexagonal Boron Nitride: Lightweight Absorbers with Tunable and Highly Efficient Microwave Attenuation Properties,” ACS Appl. Mater. Interfaces 8(47), 32468–32476 (2016).
    [Crossref] [PubMed]
  37. X. H. Li, J. Feng, Y. P. Du, J. T. Bai, H. M. Fan, H. L. Zhang, Y. Peng, and F. S. Li, “One-pot synthesis of CoFe2O4/graphene oxide hybrids and their conversion into FeCo/graphene hybrids for lightweight and highly efficient microwave absorber,” J. Mater. Chem. A Mater. Energy Sustain. 3(10), 5535–5546 (2015).
    [Crossref]
  38. H. Sun, R. Che, X. You, Y. Jiang, Z. Yang, J. Deng, L. Qiu, and H. Peng, “Cross-Stacking Aligned Carbon-Nanotube Films to Tune Microwave Absorption Frequencies and Increase Absorption Intensities,” Adv. Mater. 26(48), 8120–8125 (2014).
    [Crossref] [PubMed]
  39. V. T. Truong, S. Z. Riddell, and R. F. Muscat, “Polypyrrole based microwave absorbers,” J. Mater. Sci. 33(20), 4971–4976 (1998).
    [Crossref]
  40. P. Singh, V. K. Babbar, A. Razdan, S. L. Srivastava, and R. K. Puri, “Complex permeability and permittivity, and microwave absorption studies of Ca(CoTi)xFe12-2xO19 hexaferrite composites in X-band microwave frequencies,” Mater. Sci. Eng. B 67(3), 132–138 (1999).
    [Crossref]
  41. Y. Du, W. Liu, R. Qiang, Y. Wang, X. Han, J. Ma, and P. Xu, “Shell thickness-dependent microwave absorption of core-shell Fe3O4@C composites,” ACS Appl. Mater. Interfaces 6(15), 12997–13006 (2014).
    [Crossref] [PubMed]
  42. G. S. Wang, Y. Y. Wu, X. J. Zhang, Y. Li, L. Guo, and M. S. Cao, “Controllable synthesis of uniform ZnO nanorods and their enhanced dielectric and absorption properties,” J. Mater. Chem. A Mater. Energy Sustain. 2(23), 8644–8651 (2014).
    [Crossref]
  43. J. R. Liu, M. Itoh, and K. Machida, “Electromagnetic wave absorption properties of α-Fe/Fe3B/Y2O3 nanocomposites in gigahertz range,” Appl. Phys. Lett. 83(19), 4017–4019 (2003).
    [Crossref]
  44. S. Kimura, T. Kato, T. Hyodo, Y. Shimizu, and M. Egashira, “Electromagnetic wave absorption properties of carbonyl iron-ferrite/PMMA composites fabricated by hybridization method,” J. Magn. Magn. Mater. 312(1), 181–186 (2007).
    [Crossref]
  45. M. J. Youh, H. C. Wu, W. H. Lin, S. C. Chiu, C. F. Huang, H. C. Yu, J. S. Hsu, and Y. Y. Li, “A carbonyl iron/carbon fiber material for electromagnetic wave absorption,” J. Nanosci. Nanotechnol. 11(3), 2315–2320 (2011).
    [Crossref] [PubMed]
  46. Z. T. Zhu, X. Sun, H. R. Xue, H. Guo, X. L. Fan, X. C. Pan, and J. P. He, “Graphene–carbonyl iron cross-linked composites with excellent electromagnetic wave absorption properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(32), 6582–6591 (2014).
    [Crossref]
  47. J. Li, W. J. Feng, J. S. Wang, X. Zhao, W. Q. Zheng, and H. Yang, “Impact of silica-coating on the microwave absorption properties of carbonyl iron powder,” J. Magn. Magn. Mater. 393, 82–87 (2015).
    [Crossref]
  48. X. G. Huang, J. Zhang, Z. H. Liu, T. Y. Sang, B. Song, H. L. Zhu, and C. P. Wong, “Facile preparation and microwave absorption properties of porous hollow BaFe12O19 /CoFe2O4 composite microrods,” J. Alloys Compd. 648, 1072–1075 (2015).
    [Crossref]
  49. M. H. Al-Saleh and U. Sundararaj, “Electromagnetic interference shielding mechanisms of CNT/polymer composites,” Carbon 47(7), 1738–1746 (2009).
    [Crossref]
  50. F. S. Wen, F. Zhang, and Z. Y. Liu, “Investigation on Microwave Absorption Properties for Multiwalled Carbon Nanotubes/Fe/Co/Ni Nanopowders as Lightweight Absorbers,” J. Phys. Chem. C 115(29), 14025–14030 (2011).
    [Crossref]

2018 (4)

2017 (2)

W. Liu, L. Liu, G. B. Ji, D. R. Li, Y. N. Zhang, J. N. Ma, and Y. W. Du, “Composition Design and Structural Characterization of MOF-Derived Composites with Controllable Electromagnetic Properties,” ACS Sustain. Chem.& Eng. 5(9), 7961–7971 (2017).
[Crossref]

X. L. Li, Z. X. Li, X. G. Liu, S. H. Zhang, and S. L. Ran, “Fe/amorphous ceramics core/shell structured nanoflakes-assembled rod-like architecture for efficient microwave absorber,” J. Phys. D Appl. Phys. 50(48), 485302 (2017).
[Crossref]

2016 (3)

X. G. Huang, J. Zhang, W. F. Rao, T. Y. Sang, B. Song, and C. P. Wong, “Tunable electromagnetic properties and enhanced microwave absorption ability of flaky graphite/cobalt zinc ferrite composites,” J. Alloys Compd. 662, 409–414 (2016).
[Crossref]

Y. Kang, Z. Jiang, T. Ma, Z. Chu, and G. Li, “Hybrids of Reduced Graphene Oxide and Hexagonal Boron Nitride: Lightweight Absorbers with Tunable and Highly Efficient Microwave Attenuation Properties,” ACS Appl. Mater. Interfaces 8(47), 32468–32476 (2016).
[Crossref] [PubMed]

Y. Yin, X. Liu, X. Wei, R. Yu, and J. Shui, “Porous CNTs/Co Composite Derived from Zeolitic Imidazolate Framework: A Lightweight, Ultrathin, and Highly Efficient Electromagnetic Wave Absorber,” ACS Appl. Mater. Interfaces 8(50), 34686–34698 (2016).
[Crossref] [PubMed]

2015 (9)

X. J. Zhang, G. C. Lv, G. S. Wang, T. Y. Bai, J. K. Qu, X. F. Liu, and P. G. Yin, “High-performance microwave absorption of flexible nanocomposites based on flower-like Co superstructures and polyvinylidene fluoride,” RSC Advances 5(68), 55468–55473 (2015).
[Crossref]

M. M. Lu, M. S. Cao, Y. H. Chen, W. Q. Cao, J. Liu, H. L. Shi, D. Q. Zhang, W. Z. Wang, and J. Yuan, “Multiscale Assembly of Grape-Like Ferroferric Oxide and Carbon Nanotubes: A Smart Absorber Prototype Varying Temperature to Tune Intensities,” ACS Appl. Mater. Interfaces 7(34), 19408–19415 (2015).
[Crossref] [PubMed]

L. Wang, Y. Huang, C. Li, J. Chen, and X. Sun, “Hierarchical graphene@Fe3O4 nanocluster@carbon@MnO2 nanosheet array composites: synthesis and microwave absorption performance,” Phys. Chem. Chem. Phys. 17(8), 5878–5886 (2015).
[Crossref] [PubMed]

X. H. Li, J. Feng, Y. P. Du, J. T. Bai, H. M. Fan, H. L. Zhang, Y. Peng, and F. S. Li, “One-pot synthesis of CoFe2O4/graphene oxide hybrids and their conversion into FeCo/graphene hybrids for lightweight and highly efficient microwave absorber,” J. Mater. Chem. A Mater. Energy Sustain. 3(10), 5535–5546 (2015).
[Crossref]

Y. Zhang, Y. Huang, T. Zhang, H. Chang, P. Xiao, H. Chen, Z. Huang, and Y. Chen, “Broadband and Tunable High-Performance Microwave Absorption of an Ultralight and Highly Compressible Graphene Foam,” Adv. Mater. 27(12), 2049–2053 (2015).
[Crossref] [PubMed]

R. Qiang, Y. C. Du, H. T. Zhao, Y. Wang, C. H. Tian, Z. G. Li, X. J. Han, and P. Xu, “Metal organic framework-derived Fe/C nanocubes toward efficient microwave absorption,” J. Mater. Chem. A Mater. Energy Sustain. 3(25), 13426–13434 (2015).
[Crossref]

B. Zhao, G. Shao, B. B. Fan, W. Y. Zhao, Y. Q. Chen, and R. Zhang, “Facile synthesis of crumpled ZnS net-wrapped Ni walnut spheres with enhanced microwave absorption properties,” RSC Advances 5(13), 9806–9814 (2015).
[Crossref]

J. Li, W. J. Feng, J. S. Wang, X. Zhao, W. Q. Zheng, and H. Yang, “Impact of silica-coating on the microwave absorption properties of carbonyl iron powder,” J. Magn. Magn. Mater. 393, 82–87 (2015).
[Crossref]

X. G. Huang, J. Zhang, Z. H. Liu, T. Y. Sang, B. Song, H. L. Zhu, and C. P. Wong, “Facile preparation and microwave absorption properties of porous hollow BaFe12O19 /CoFe2O4 composite microrods,” J. Alloys Compd. 648, 1072–1075 (2015).
[Crossref]

2014 (7)

Z. T. Zhu, X. Sun, H. R. Xue, H. Guo, X. L. Fan, X. C. Pan, and J. P. He, “Graphene–carbonyl iron cross-linked composites with excellent electromagnetic wave absorption properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(32), 6582–6591 (2014).
[Crossref]

J. Jiang, D. Li, D. Geng, J. An, J. He, W. Liu, and Z. Zhang, “Microwave absorption properties of core double-shell FeCo/C/BaTiO3 nanocomposites,” Nanoscale 6(8), 3967–3971 (2014).
[Crossref] [PubMed]

Y. Du, W. Liu, R. Qiang, Y. Wang, X. Han, J. Ma, and P. Xu, “Shell thickness-dependent microwave absorption of core-shell Fe3O4@C composites,” ACS Appl. Mater. Interfaces 6(15), 12997–13006 (2014).
[Crossref] [PubMed]

G. S. Wang, Y. Y. Wu, X. J. Zhang, Y. Li, L. Guo, and M. S. Cao, “Controllable synthesis of uniform ZnO nanorods and their enhanced dielectric and absorption properties,” J. Mater. Chem. A Mater. Energy Sustain. 2(23), 8644–8651 (2014).
[Crossref]

H. Sun, R. Che, X. You, Y. Jiang, Z. Yang, J. Deng, L. Qiu, and H. Peng, “Cross-Stacking Aligned Carbon-Nanotube Films to Tune Microwave Absorption Frequencies and Increase Absorption Intensities,” Adv. Mater. 26(48), 8120–8125 (2014).
[Crossref] [PubMed]

W. Q. Zhang, S. W. Bie, H. C. Chen, Y. Lu, and J. J. Jiang, “Electromagnetic and microwave absorption properties of carbonyl iron/MnO2 composite,” J. Magn. Magn. Mater. 358–359, 1–4 (2014).
[Crossref]

Z. T. Zhu, X. Sun, H. R. Xue, H. Guo, X. Fan, X. Pan, and J. He, “Graphene-carbonyl iron cross-linked composites with excellent electromagnetic wave absorption properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(32), 6582–6591 (2014).
[Crossref]

2013 (5)

B. Wen, M. S. Cao, Z. L. Hou, W. L. Song, L. Zhang, M. M. Lu, H. B. Jin, X. Y. Fang, W. Z. Wang, and J. Yuan, “Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites,” Carbon 65(12), 124–139 (2013).
[Crossref]

G. Pan, J. Zhu, S. Ma, G. Sun, and X. Yang, “Enhancing the Electromagnetic Performance of Co through the Phase-Controlled Synthesis of Hexagonal and Cubic Co Nanocrystals Grown on Graphene,” ACS Appl. Mater. Interfaces 5(23), 12716–12724 (2013).
[Crossref] [PubMed]

H. Guo, Y. Q. Zhan, Z. R. Chen, F. B. Meng, J. J. Wei, and X. B. Liu, “Decoration of basalt fibers with hybrid Fe3O4 microspheres and their microwave absorption application in bisphthalonitrile composites,” J. Mater. Chem. A Mater. Energy Sustain. 1(6), 2286–2296 (2013).
[Crossref]

J. Sun, H. L. Xu, Y. Shen, H. Bi, W. F. Liang, and R. B. Yang, “Enhanced microwave absorption properties of the milled flake-shaped FeSiAl/graphite composites,” J. Alloys Compd. 548, 18–22 (2013).
[Crossref]

X. Sun, J. P. He, G. X. Li, J. Tang, T. Wang, Y. X. Guo, and H. R. Xue, “Laminated magnetic graphene with enhanced electromagnetic wave absorption properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(4), 765–777 (2013).
[Crossref]

2012 (2)

J. Liu, R. Che, H. Chen, F. Zhang, F. Xia, Q. Wu, and M. Wang, “Microwave absorption enhancement of multifunctional composite microspheres with spinel Fe3 O4 Cores and Anatase TiO2 shells,” Small 8(8), 1214–1221 (2012).
[Crossref] [PubMed]

G. X. Tong, J. H. Yuan, W. H. Wu, Q. Hu, H. S. Qian, L. C. Li, and J. P. Shen, “Flower-like Co superstructures: Morphology and phase evolution mechanism and novel microwave electromagnetic characteristics,” CrystEngComm 14(6), 2071–2079 (2012).
[Crossref]

2011 (2)

M. J. Youh, H. C. Wu, W. H. Lin, S. C. Chiu, C. F. Huang, H. C. Yu, J. S. Hsu, and Y. Y. Li, “A carbonyl iron/carbon fiber material for electromagnetic wave absorption,” J. Nanosci. Nanotechnol. 11(3), 2315–2320 (2011).
[Crossref] [PubMed]

F. S. Wen, F. Zhang, and Z. Y. Liu, “Investigation on Microwave Absorption Properties for Multiwalled Carbon Nanotubes/Fe/Co/Ni Nanopowders as Lightweight Absorbers,” J. Phys. Chem. C 115(29), 14025–14030 (2011).
[Crossref]

2009 (2)

M. H. Al-Saleh and U. Sundararaj, “Electromagnetic interference shielding mechanisms of CNT/polymer composites,” Carbon 47(7), 1738–1746 (2009).
[Crossref]

P. Saini, V. Choudhary, B. P. Singh, R. B. Mathur, and S. K. Dhawan, “Polyaniline-MWCNT nanocomposites for microwave absorption and EMI shielding,” Mater. Chem. Phys. 113(2), 919–926 (2009).
[Crossref]

2008 (2)

Y. H. Zou, L. Y. Jiang, S. C. Wen, W. X. Shu, Y. J. Qing, Z. X. Tang, H. L. Luo, and D. Y. Fan, “Enhancing and tuning absorption properties of microwave absorbing materials using metamaterials,” Appl. Phys. Lett. 93(26), 261115 (2008).
[Crossref]

O. Ghodbane, L. Roué, and D. Bélanger, “Study of the Electroless Deposition of Pd on Cu-Modified Graphite Electrodes by Metal Exchange Reaction,” Chem. Mater. 20(10), 3495–3504 (2008).
[Crossref]

2007 (3)

M. Palaniappa, G. V. Babu, and K. Balasubramanian, “Electroless nickel-phosphorus plating on graphite powder,” Mater. Sci. Eng. A 471(1), 165–168 (2007).
[Crossref]

S. M. Abbas, A. K. Dixit, R. Chatterjee, and T. C. Goel, “Complex permittivity, complex permeability and microwave absorption properties of ferrite-polymer composites,” J. Magn. Magn. Mater. 309(1), 20–24 (2007).
[Crossref]

S. Kimura, T. Kato, T. Hyodo, Y. Shimizu, and M. Egashira, “Electromagnetic wave absorption properties of carbonyl iron-ferrite/PMMA composites fabricated by hybridization method,” J. Magn. Magn. Mater. 312(1), 181–186 (2007).
[Crossref]

2004 (1)

S. Reich and C. Thomsen, “Raman spectroscopy of graphite,” Philos Trans A Math Phys Eng Sci 362(1824), 2271–2288 (2004).
[Crossref] [PubMed]

2003 (2)

A. Wadhawan, D. Garrett, and J. M. Perez, “Nanoparticle-assisted microwave absorption by single-wall carbon nanotubes,” Appl. Phys. Lett. 83(13), 2683–2685 (2003).
[Crossref]

J. R. Liu, M. Itoh, and K. Machida, “Electromagnetic wave absorption properties of α-Fe/Fe3B/Y2O3 nanocomposites in gigahertz range,” Appl. Phys. Lett. 83(19), 4017–4019 (2003).
[Crossref]

2002 (2)

S. Sugimoto, T. Maeda, D. Book, T. Kagotani, K. Inomata, M. Homma, H. Ota, Y. Houjou, and R. Sato, “GHz microwave absorption of a fine α-Fe structure produced by the disproportionation of Sm2Fe17 in hydrogen,” J. Alloys Compd. 330(330), 301–306 (2002).
[Crossref]

A. N. Yusoff, M. H. Abdullah, S. H. Ahmad, S. F. Jusoh, A. A. Mansor, and S. A. A. Hamid, “Electromagnetic and absorption properties of some microwave absorbers,” J. Appl. Phys. 92(2), 876–882 (2002).
[Crossref]

1999 (1)

P. Singh, V. K. Babbar, A. Razdan, S. L. Srivastava, and R. K. Puri, “Complex permeability and permittivity, and microwave absorption studies of Ca(CoTi)xFe12-2xO19 hexaferrite composites in X-band microwave frequencies,” Mater. Sci. Eng. B 67(3), 132–138 (1999).
[Crossref]

1998 (1)

V. T. Truong, S. Z. Riddell, and R. F. Muscat, “Polypyrrole based microwave absorbers,” J. Mater. Sci. 33(20), 4971–4976 (1998).
[Crossref]

1996 (1)

S. B. Cho, D. H. Kang, and J. H. Oh, “Relationship between magnetic properties and microwave-absorbing characteristics of NiZnCo ferrite composites,” J. Mater. Sci. 31(17), 4719–4722 (1996).
[Crossref]

1988 (1)

E. J. Pakulis and T. Osada, “Microwave absorption studies of Y-Ba-Cu-O,” Phys. Rev. B Condens. Matter 37(10), 5940–5942 (1988).
[Crossref] [PubMed]

Abbas, S. M.

S. M. Abbas, A. K. Dixit, R. Chatterjee, and T. C. Goel, “Complex permittivity, complex permeability and microwave absorption properties of ferrite-polymer composites,” J. Magn. Magn. Mater. 309(1), 20–24 (2007).
[Crossref]

Abdullah, M. H.

A. N. Yusoff, M. H. Abdullah, S. H. Ahmad, S. F. Jusoh, A. A. Mansor, and S. A. A. Hamid, “Electromagnetic and absorption properties of some microwave absorbers,” J. Appl. Phys. 92(2), 876–882 (2002).
[Crossref]

Ahmad, S. H.

A. N. Yusoff, M. H. Abdullah, S. H. Ahmad, S. F. Jusoh, A. A. Mansor, and S. A. A. Hamid, “Electromagnetic and absorption properties of some microwave absorbers,” J. Appl. Phys. 92(2), 876–882 (2002).
[Crossref]

Al-Saleh, M. H.

M. H. Al-Saleh and U. Sundararaj, “Electromagnetic interference shielding mechanisms of CNT/polymer composites,” Carbon 47(7), 1738–1746 (2009).
[Crossref]

An, J.

J. Jiang, D. Li, D. Geng, J. An, J. He, W. Liu, and Z. Zhang, “Microwave absorption properties of core double-shell FeCo/C/BaTiO3 nanocomposites,” Nanoscale 6(8), 3967–3971 (2014).
[Crossref] [PubMed]

Babbar, V. K.

P. Singh, V. K. Babbar, A. Razdan, S. L. Srivastava, and R. K. Puri, “Complex permeability and permittivity, and microwave absorption studies of Ca(CoTi)xFe12-2xO19 hexaferrite composites in X-band microwave frequencies,” Mater. Sci. Eng. B 67(3), 132–138 (1999).
[Crossref]

Babu, G. V.

M. Palaniappa, G. V. Babu, and K. Balasubramanian, “Electroless nickel-phosphorus plating on graphite powder,” Mater. Sci. Eng. A 471(1), 165–168 (2007).
[Crossref]

Bai, J. T.

X. H. Li, J. Feng, Y. P. Du, J. T. Bai, H. M. Fan, H. L. Zhang, Y. Peng, and F. S. Li, “One-pot synthesis of CoFe2O4/graphene oxide hybrids and their conversion into FeCo/graphene hybrids for lightweight and highly efficient microwave absorber,” J. Mater. Chem. A Mater. Energy Sustain. 3(10), 5535–5546 (2015).
[Crossref]

Bai, T. Y.

X. J. Zhang, G. C. Lv, G. S. Wang, T. Y. Bai, J. K. Qu, X. F. Liu, and P. G. Yin, “High-performance microwave absorption of flexible nanocomposites based on flower-like Co superstructures and polyvinylidene fluoride,” RSC Advances 5(68), 55468–55473 (2015).
[Crossref]

Balasubramanian, K.

M. Palaniappa, G. V. Babu, and K. Balasubramanian, “Electroless nickel-phosphorus plating on graphite powder,” Mater. Sci. Eng. A 471(1), 165–168 (2007).
[Crossref]

Bélanger, D.

O. Ghodbane, L. Roué, and D. Bélanger, “Study of the Electroless Deposition of Pd on Cu-Modified Graphite Electrodes by Metal Exchange Reaction,” Chem. Mater. 20(10), 3495–3504 (2008).
[Crossref]

Bi, H.

J. Sun, H. L. Xu, Y. Shen, H. Bi, W. F. Liang, and R. B. Yang, “Enhanced microwave absorption properties of the milled flake-shaped FeSiAl/graphite composites,” J. Alloys Compd. 548, 18–22 (2013).
[Crossref]

Bie, S. W.

W. Q. Zhang, S. W. Bie, H. C. Chen, Y. Lu, and J. J. Jiang, “Electromagnetic and microwave absorption properties of carbonyl iron/MnO2 composite,” J. Magn. Magn. Mater. 358–359, 1–4 (2014).
[Crossref]

Book, D.

S. Sugimoto, T. Maeda, D. Book, T. Kagotani, K. Inomata, M. Homma, H. Ota, Y. Houjou, and R. Sato, “GHz microwave absorption of a fine α-Fe structure produced by the disproportionation of Sm2Fe17 in hydrogen,” J. Alloys Compd. 330(330), 301–306 (2002).
[Crossref]

Cao, M. S.

M. M. Lu, M. S. Cao, Y. H. Chen, W. Q. Cao, J. Liu, H. L. Shi, D. Q. Zhang, W. Z. Wang, and J. Yuan, “Multiscale Assembly of Grape-Like Ferroferric Oxide and Carbon Nanotubes: A Smart Absorber Prototype Varying Temperature to Tune Intensities,” ACS Appl. Mater. Interfaces 7(34), 19408–19415 (2015).
[Crossref] [PubMed]

G. S. Wang, Y. Y. Wu, X. J. Zhang, Y. Li, L. Guo, and M. S. Cao, “Controllable synthesis of uniform ZnO nanorods and their enhanced dielectric and absorption properties,” J. Mater. Chem. A Mater. Energy Sustain. 2(23), 8644–8651 (2014).
[Crossref]

B. Wen, M. S. Cao, Z. L. Hou, W. L. Song, L. Zhang, M. M. Lu, H. B. Jin, X. Y. Fang, W. Z. Wang, and J. Yuan, “Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites,” Carbon 65(12), 124–139 (2013).
[Crossref]

Cao, W. Q.

M. M. Lu, M. S. Cao, Y. H. Chen, W. Q. Cao, J. Liu, H. L. Shi, D. Q. Zhang, W. Z. Wang, and J. Yuan, “Multiscale Assembly of Grape-Like Ferroferric Oxide and Carbon Nanotubes: A Smart Absorber Prototype Varying Temperature to Tune Intensities,” ACS Appl. Mater. Interfaces 7(34), 19408–19415 (2015).
[Crossref] [PubMed]

Chang, H.

Y. Zhang, Y. Huang, T. Zhang, H. Chang, P. Xiao, H. Chen, Z. Huang, and Y. Chen, “Broadband and Tunable High-Performance Microwave Absorption of an Ultralight and Highly Compressible Graphene Foam,” Adv. Mater. 27(12), 2049–2053 (2015).
[Crossref] [PubMed]

Chatterjee, R.

S. M. Abbas, A. K. Dixit, R. Chatterjee, and T. C. Goel, “Complex permittivity, complex permeability and microwave absorption properties of ferrite-polymer composites,” J. Magn. Magn. Mater. 309(1), 20–24 (2007).
[Crossref]

Che, R.

H. Sun, R. Che, X. You, Y. Jiang, Z. Yang, J. Deng, L. Qiu, and H. Peng, “Cross-Stacking Aligned Carbon-Nanotube Films to Tune Microwave Absorption Frequencies and Increase Absorption Intensities,” Adv. Mater. 26(48), 8120–8125 (2014).
[Crossref] [PubMed]

J. Liu, R. Che, H. Chen, F. Zhang, F. Xia, Q. Wu, and M. Wang, “Microwave absorption enhancement of multifunctional composite microspheres with spinel Fe3 O4 Cores and Anatase TiO2 shells,” Small 8(8), 1214–1221 (2012).
[Crossref] [PubMed]

Chen, H.

Y. Zhang, Y. Huang, T. Zhang, H. Chang, P. Xiao, H. Chen, Z. Huang, and Y. Chen, “Broadband and Tunable High-Performance Microwave Absorption of an Ultralight and Highly Compressible Graphene Foam,” Adv. Mater. 27(12), 2049–2053 (2015).
[Crossref] [PubMed]

J. Liu, R. Che, H. Chen, F. Zhang, F. Xia, Q. Wu, and M. Wang, “Microwave absorption enhancement of multifunctional composite microspheres with spinel Fe3 O4 Cores and Anatase TiO2 shells,” Small 8(8), 1214–1221 (2012).
[Crossref] [PubMed]

Chen, H. C.

W. Q. Zhang, S. W. Bie, H. C. Chen, Y. Lu, and J. J. Jiang, “Electromagnetic and microwave absorption properties of carbonyl iron/MnO2 composite,” J. Magn. Magn. Mater. 358–359, 1–4 (2014).
[Crossref]

Chen, J.

L. Wang, Y. Huang, C. Li, J. Chen, and X. Sun, “Hierarchical graphene@Fe3O4 nanocluster@carbon@MnO2 nanosheet array composites: synthesis and microwave absorption performance,” Phys. Chem. Chem. Phys. 17(8), 5878–5886 (2015).
[Crossref] [PubMed]

Chen, K.

Chen, X. Q.

Z. L. Zhang, Z. L. Wang, L. Y. Heng, S. Wang, X. Q. Chen, X. Q. Fu, Y. H. Zou, and Z. X. Tang, “Improving the Electromagnetic Wave Absorption Properties of the Layered MoS2 by Cladding with Ni Nanoparticles,” J. Phys. Soc. Jpn. 87(5), 054402 (2018).
[Crossref]

Chen, Y.

Y. Zhang, Y. Huang, T. Zhang, H. Chang, P. Xiao, H. Chen, Z. Huang, and Y. Chen, “Broadband and Tunable High-Performance Microwave Absorption of an Ultralight and Highly Compressible Graphene Foam,” Adv. Mater. 27(12), 2049–2053 (2015).
[Crossref] [PubMed]

Chen, Y. H.

M. M. Lu, M. S. Cao, Y. H. Chen, W. Q. Cao, J. Liu, H. L. Shi, D. Q. Zhang, W. Z. Wang, and J. Yuan, “Multiscale Assembly of Grape-Like Ferroferric Oxide and Carbon Nanotubes: A Smart Absorber Prototype Varying Temperature to Tune Intensities,” ACS Appl. Mater. Interfaces 7(34), 19408–19415 (2015).
[Crossref] [PubMed]

Chen, Y. Q.

B. Zhao, G. Shao, B. B. Fan, W. Y. Zhao, Y. Q. Chen, and R. Zhang, “Facile synthesis of crumpled ZnS net-wrapped Ni walnut spheres with enhanced microwave absorption properties,” RSC Advances 5(13), 9806–9814 (2015).
[Crossref]

Chen, Z. R.

H. Guo, Y. Q. Zhan, Z. R. Chen, F. B. Meng, J. J. Wei, and X. B. Liu, “Decoration of basalt fibers with hybrid Fe3O4 microspheres and their microwave absorption application in bisphthalonitrile composites,” J. Mater. Chem. A Mater. Energy Sustain. 1(6), 2286–2296 (2013).
[Crossref]

Chiu, S. C.

M. J. Youh, H. C. Wu, W. H. Lin, S. C. Chiu, C. F. Huang, H. C. Yu, J. S. Hsu, and Y. Y. Li, “A carbonyl iron/carbon fiber material for electromagnetic wave absorption,” J. Nanosci. Nanotechnol. 11(3), 2315–2320 (2011).
[Crossref] [PubMed]

Cho, S. B.

S. B. Cho, D. H. Kang, and J. H. Oh, “Relationship between magnetic properties and microwave-absorbing characteristics of NiZnCo ferrite composites,” J. Mater. Sci. 31(17), 4719–4722 (1996).
[Crossref]

Choudhary, V.

P. Saini, V. Choudhary, B. P. Singh, R. B. Mathur, and S. K. Dhawan, “Polyaniline-MWCNT nanocomposites for microwave absorption and EMI shielding,” Mater. Chem. Phys. 113(2), 919–926 (2009).
[Crossref]

Chu, Z.

Y. Kang, Z. Jiang, T. Ma, Z. Chu, and G. Li, “Hybrids of Reduced Graphene Oxide and Hexagonal Boron Nitride: Lightweight Absorbers with Tunable and Highly Efficient Microwave Attenuation Properties,” ACS Appl. Mater. Interfaces 8(47), 32468–32476 (2016).
[Crossref] [PubMed]

Deng, J.

H. Sun, R. Che, X. You, Y. Jiang, Z. Yang, J. Deng, L. Qiu, and H. Peng, “Cross-Stacking Aligned Carbon-Nanotube Films to Tune Microwave Absorption Frequencies and Increase Absorption Intensities,” Adv. Mater. 26(48), 8120–8125 (2014).
[Crossref] [PubMed]

Dhawan, S. K.

P. Saini, V. Choudhary, B. P. Singh, R. B. Mathur, and S. K. Dhawan, “Polyaniline-MWCNT nanocomposites for microwave absorption and EMI shielding,” Mater. Chem. Phys. 113(2), 919–926 (2009).
[Crossref]

Dixit, A. K.

S. M. Abbas, A. K. Dixit, R. Chatterjee, and T. C. Goel, “Complex permittivity, complex permeability and microwave absorption properties of ferrite-polymer composites,” J. Magn. Magn. Mater. 309(1), 20–24 (2007).
[Crossref]

Du, Y.

Y. Du, W. Liu, R. Qiang, Y. Wang, X. Han, J. Ma, and P. Xu, “Shell thickness-dependent microwave absorption of core-shell Fe3O4@C composites,” ACS Appl. Mater. Interfaces 6(15), 12997–13006 (2014).
[Crossref] [PubMed]

Du, Y. C.

R. Qiang, Y. C. Du, H. T. Zhao, Y. Wang, C. H. Tian, Z. G. Li, X. J. Han, and P. Xu, “Metal organic framework-derived Fe/C nanocubes toward efficient microwave absorption,” J. Mater. Chem. A Mater. Energy Sustain. 3(25), 13426–13434 (2015).
[Crossref]

Du, Y. P.

X. H. Li, J. Feng, Y. P. Du, J. T. Bai, H. M. Fan, H. L. Zhang, Y. Peng, and F. S. Li, “One-pot synthesis of CoFe2O4/graphene oxide hybrids and their conversion into FeCo/graphene hybrids for lightweight and highly efficient microwave absorber,” J. Mater. Chem. A Mater. Energy Sustain. 3(10), 5535–5546 (2015).
[Crossref]

Du, Y. W.

W. Liu, L. Liu, G. B. Ji, D. R. Li, Y. N. Zhang, J. N. Ma, and Y. W. Du, “Composition Design and Structural Characterization of MOF-Derived Composites with Controllable Electromagnetic Properties,” ACS Sustain. Chem.& Eng. 5(9), 7961–7971 (2017).
[Crossref]

Egashira, M.

S. Kimura, T. Kato, T. Hyodo, Y. Shimizu, and M. Egashira, “Electromagnetic wave absorption properties of carbonyl iron-ferrite/PMMA composites fabricated by hybridization method,” J. Magn. Magn. Mater. 312(1), 181–186 (2007).
[Crossref]

Fan, B. B.

B. Zhao, G. Shao, B. B. Fan, W. Y. Zhao, Y. Q. Chen, and R. Zhang, “Facile synthesis of crumpled ZnS net-wrapped Ni walnut spheres with enhanced microwave absorption properties,” RSC Advances 5(13), 9806–9814 (2015).
[Crossref]

Fan, D. Y.

Y. H. Zou, L. Y. Jiang, S. C. Wen, W. X. Shu, Y. J. Qing, Z. X. Tang, H. L. Luo, and D. Y. Fan, “Enhancing and tuning absorption properties of microwave absorbing materials using metamaterials,” Appl. Phys. Lett. 93(26), 261115 (2008).
[Crossref]

Fan, H. M.

X. H. Li, J. Feng, Y. P. Du, J. T. Bai, H. M. Fan, H. L. Zhang, Y. Peng, and F. S. Li, “One-pot synthesis of CoFe2O4/graphene oxide hybrids and their conversion into FeCo/graphene hybrids for lightweight and highly efficient microwave absorber,” J. Mater. Chem. A Mater. Energy Sustain. 3(10), 5535–5546 (2015).
[Crossref]

Fan, X.

Z. T. Zhu, X. Sun, H. R. Xue, H. Guo, X. Fan, X. Pan, and J. He, “Graphene-carbonyl iron cross-linked composites with excellent electromagnetic wave absorption properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(32), 6582–6591 (2014).
[Crossref]

Fan, X. L.

Z. T. Zhu, X. Sun, H. R. Xue, H. Guo, X. L. Fan, X. C. Pan, and J. P. He, “Graphene–carbonyl iron cross-linked composites with excellent electromagnetic wave absorption properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(32), 6582–6591 (2014).
[Crossref]

Fang, X. Y.

B. Wen, M. S. Cao, Z. L. Hou, W. L. Song, L. Zhang, M. M. Lu, H. B. Jin, X. Y. Fang, W. Z. Wang, and J. Yuan, “Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites,” Carbon 65(12), 124–139 (2013).
[Crossref]

Feng, J.

X. H. Li, J. Feng, Y. P. Du, J. T. Bai, H. M. Fan, H. L. Zhang, Y. Peng, and F. S. Li, “One-pot synthesis of CoFe2O4/graphene oxide hybrids and their conversion into FeCo/graphene hybrids for lightweight and highly efficient microwave absorber,” J. Mater. Chem. A Mater. Energy Sustain. 3(10), 5535–5546 (2015).
[Crossref]

Feng, W. J.

J. Li, W. J. Feng, J. S. Wang, X. Zhao, W. Q. Zheng, and H. Yang, “Impact of silica-coating on the microwave absorption properties of carbonyl iron powder,” J. Magn. Magn. Mater. 393, 82–87 (2015).
[Crossref]

Feng, Y.

Fu, X. Q.

Z. L. Zhang, Z. L. Wang, L. Y. Heng, S. Wang, X. Q. Chen, X. Q. Fu, Y. H. Zou, and Z. X. Tang, “Improving the Electromagnetic Wave Absorption Properties of the Layered MoS2 by Cladding with Ni Nanoparticles,” J. Phys. Soc. Jpn. 87(5), 054402 (2018).
[Crossref]

Garrett, D.

A. Wadhawan, D. Garrett, and J. M. Perez, “Nanoparticle-assisted microwave absorption by single-wall carbon nanotubes,” Appl. Phys. Lett. 83(13), 2683–2685 (2003).
[Crossref]

Geng, D.

J. Jiang, D. Li, D. Geng, J. An, J. He, W. Liu, and Z. Zhang, “Microwave absorption properties of core double-shell FeCo/C/BaTiO3 nanocomposites,” Nanoscale 6(8), 3967–3971 (2014).
[Crossref] [PubMed]

Ghodbane, O.

O. Ghodbane, L. Roué, and D. Bélanger, “Study of the Electroless Deposition of Pd on Cu-Modified Graphite Electrodes by Metal Exchange Reaction,” Chem. Mater. 20(10), 3495–3504 (2008).
[Crossref]

Goel, T. C.

S. M. Abbas, A. K. Dixit, R. Chatterjee, and T. C. Goel, “Complex permittivity, complex permeability and microwave absorption properties of ferrite-polymer composites,” J. Magn. Magn. Mater. 309(1), 20–24 (2007).
[Crossref]

Gu, W. H.

Guo, H.

Z. T. Zhu, X. Sun, H. R. Xue, H. Guo, X. L. Fan, X. C. Pan, and J. P. He, “Graphene–carbonyl iron cross-linked composites with excellent electromagnetic wave absorption properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(32), 6582–6591 (2014).
[Crossref]

Z. T. Zhu, X. Sun, H. R. Xue, H. Guo, X. Fan, X. Pan, and J. He, “Graphene-carbonyl iron cross-linked composites with excellent electromagnetic wave absorption properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(32), 6582–6591 (2014).
[Crossref]

H. Guo, Y. Q. Zhan, Z. R. Chen, F. B. Meng, J. J. Wei, and X. B. Liu, “Decoration of basalt fibers with hybrid Fe3O4 microspheres and their microwave absorption application in bisphthalonitrile composites,” J. Mater. Chem. A Mater. Energy Sustain. 1(6), 2286–2296 (2013).
[Crossref]

Guo, L.

G. S. Wang, Y. Y. Wu, X. J. Zhang, Y. Li, L. Guo, and M. S. Cao, “Controllable synthesis of uniform ZnO nanorods and their enhanced dielectric and absorption properties,” J. Mater. Chem. A Mater. Energy Sustain. 2(23), 8644–8651 (2014).
[Crossref]

Guo, Y. X.

X. Sun, J. P. He, G. X. Li, J. Tang, T. Wang, Y. X. Guo, and H. R. Xue, “Laminated magnetic graphene with enhanced electromagnetic wave absorption properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(4), 765–777 (2013).
[Crossref]

Hamid, S. A. A.

A. N. Yusoff, M. H. Abdullah, S. H. Ahmad, S. F. Jusoh, A. A. Mansor, and S. A. A. Hamid, “Electromagnetic and absorption properties of some microwave absorbers,” J. Appl. Phys. 92(2), 876–882 (2002).
[Crossref]

Han, X.

Y. Du, W. Liu, R. Qiang, Y. Wang, X. Han, J. Ma, and P. Xu, “Shell thickness-dependent microwave absorption of core-shell Fe3O4@C composites,” ACS Appl. Mater. Interfaces 6(15), 12997–13006 (2014).
[Crossref] [PubMed]

Han, X. J.

R. Qiang, Y. C. Du, H. T. Zhao, Y. Wang, C. H. Tian, Z. G. Li, X. J. Han, and P. Xu, “Metal organic framework-derived Fe/C nanocubes toward efficient microwave absorption,” J. Mater. Chem. A Mater. Energy Sustain. 3(25), 13426–13434 (2015).
[Crossref]

He, J.

Z. T. Zhu, X. Sun, H. R. Xue, H. Guo, X. Fan, X. Pan, and J. He, “Graphene-carbonyl iron cross-linked composites with excellent electromagnetic wave absorption properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(32), 6582–6591 (2014).
[Crossref]

J. Jiang, D. Li, D. Geng, J. An, J. He, W. Liu, and Z. Zhang, “Microwave absorption properties of core double-shell FeCo/C/BaTiO3 nanocomposites,” Nanoscale 6(8), 3967–3971 (2014).
[Crossref] [PubMed]

He, J. P.

Z. T. Zhu, X. Sun, H. R. Xue, H. Guo, X. L. Fan, X. C. Pan, and J. P. He, “Graphene–carbonyl iron cross-linked composites with excellent electromagnetic wave absorption properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(32), 6582–6591 (2014).
[Crossref]

X. Sun, J. P. He, G. X. Li, J. Tang, T. Wang, Y. X. Guo, and H. R. Xue, “Laminated magnetic graphene with enhanced electromagnetic wave absorption properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(4), 765–777 (2013).
[Crossref]

Heng, L. Y.

Z. L. Zhang, Z. L. Wang, L. Y. Heng, S. Wang, X. Q. Chen, X. Q. Fu, Y. H. Zou, and Z. X. Tang, “Improving the Electromagnetic Wave Absorption Properties of the Layered MoS2 by Cladding with Ni Nanoparticles,” J. Phys. Soc. Jpn. 87(5), 054402 (2018).
[Crossref]

Homma, M.

S. Sugimoto, T. Maeda, D. Book, T. Kagotani, K. Inomata, M. Homma, H. Ota, Y. Houjou, and R. Sato, “GHz microwave absorption of a fine α-Fe structure produced by the disproportionation of Sm2Fe17 in hydrogen,” J. Alloys Compd. 330(330), 301–306 (2002).
[Crossref]

Hou, Z. L.

B. Wen, M. S. Cao, Z. L. Hou, W. L. Song, L. Zhang, M. M. Lu, H. B. Jin, X. Y. Fang, W. Z. Wang, and J. Yuan, “Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites,” Carbon 65(12), 124–139 (2013).
[Crossref]

Houjou, Y.

S. Sugimoto, T. Maeda, D. Book, T. Kagotani, K. Inomata, M. Homma, H. Ota, Y. Houjou, and R. Sato, “GHz microwave absorption of a fine α-Fe structure produced by the disproportionation of Sm2Fe17 in hydrogen,” J. Alloys Compd. 330(330), 301–306 (2002).
[Crossref]

Hsu, J. S.

M. J. Youh, H. C. Wu, W. H. Lin, S. C. Chiu, C. F. Huang, H. C. Yu, J. S. Hsu, and Y. Y. Li, “A carbonyl iron/carbon fiber material for electromagnetic wave absorption,” J. Nanosci. Nanotechnol. 11(3), 2315–2320 (2011).
[Crossref] [PubMed]

Hu, Q.

G. X. Tong, J. H. Yuan, W. H. Wu, Q. Hu, H. S. Qian, L. C. Li, and J. P. Shen, “Flower-like Co superstructures: Morphology and phase evolution mechanism and novel microwave electromagnetic characteristics,” CrystEngComm 14(6), 2071–2079 (2012).
[Crossref]

Huang, C. F.

M. J. Youh, H. C. Wu, W. H. Lin, S. C. Chiu, C. F. Huang, H. C. Yu, J. S. Hsu, and Y. Y. Li, “A carbonyl iron/carbon fiber material for electromagnetic wave absorption,” J. Nanosci. Nanotechnol. 11(3), 2315–2320 (2011).
[Crossref] [PubMed]

Huang, X. G.

X. G. Huang, J. Zhang, W. F. Rao, T. Y. Sang, B. Song, and C. P. Wong, “Tunable electromagnetic properties and enhanced microwave absorption ability of flaky graphite/cobalt zinc ferrite composites,” J. Alloys Compd. 662, 409–414 (2016).
[Crossref]

X. G. Huang, J. Zhang, Z. H. Liu, T. Y. Sang, B. Song, H. L. Zhu, and C. P. Wong, “Facile preparation and microwave absorption properties of porous hollow BaFe12O19 /CoFe2O4 composite microrods,” J. Alloys Compd. 648, 1072–1075 (2015).
[Crossref]

Huang, Y.

L. Wang, Y. Huang, C. Li, J. Chen, and X. Sun, “Hierarchical graphene@Fe3O4 nanocluster@carbon@MnO2 nanosheet array composites: synthesis and microwave absorption performance,” Phys. Chem. Chem. Phys. 17(8), 5878–5886 (2015).
[Crossref] [PubMed]

Y. Zhang, Y. Huang, T. Zhang, H. Chang, P. Xiao, H. Chen, Z. Huang, and Y. Chen, “Broadband and Tunable High-Performance Microwave Absorption of an Ultralight and Highly Compressible Graphene Foam,” Adv. Mater. 27(12), 2049–2053 (2015).
[Crossref] [PubMed]

Huang, Z.

Y. Zhang, Y. Huang, T. Zhang, H. Chang, P. Xiao, H. Chen, Z. Huang, and Y. Chen, “Broadband and Tunable High-Performance Microwave Absorption of an Ultralight and Highly Compressible Graphene Foam,” Adv. Mater. 27(12), 2049–2053 (2015).
[Crossref] [PubMed]

Hwang, J. S.

Hyodo, T.

S. Kimura, T. Kato, T. Hyodo, Y. Shimizu, and M. Egashira, “Electromagnetic wave absorption properties of carbonyl iron-ferrite/PMMA composites fabricated by hybridization method,” J. Magn. Magn. Mater. 312(1), 181–186 (2007).
[Crossref]

Inomata, K.

S. Sugimoto, T. Maeda, D. Book, T. Kagotani, K. Inomata, M. Homma, H. Ota, Y. Houjou, and R. Sato, “GHz microwave absorption of a fine α-Fe structure produced by the disproportionation of Sm2Fe17 in hydrogen,” J. Alloys Compd. 330(330), 301–306 (2002).
[Crossref]

Itoh, M.

J. R. Liu, M. Itoh, and K. Machida, “Electromagnetic wave absorption properties of α-Fe/Fe3B/Y2O3 nanocomposites in gigahertz range,” Appl. Phys. Lett. 83(19), 4017–4019 (2003).
[Crossref]

Ji, G. B.

W. Liu, L. Liu, G. B. Ji, D. R. Li, Y. N. Zhang, J. N. Ma, and Y. W. Du, “Composition Design and Structural Characterization of MOF-Derived Composites with Controllable Electromagnetic Properties,” ACS Sustain. Chem.& Eng. 5(9), 7961–7971 (2017).
[Crossref]

Jiang, J.

J. Jiang, D. Li, D. Geng, J. An, J. He, W. Liu, and Z. Zhang, “Microwave absorption properties of core double-shell FeCo/C/BaTiO3 nanocomposites,” Nanoscale 6(8), 3967–3971 (2014).
[Crossref] [PubMed]

Jiang, J. J.

W. Q. Zhang, S. W. Bie, H. C. Chen, Y. Lu, and J. J. Jiang, “Electromagnetic and microwave absorption properties of carbonyl iron/MnO2 composite,” J. Magn. Magn. Mater. 358–359, 1–4 (2014).
[Crossref]

Jiang, L. Y.

Y. H. Zou, L. Y. Jiang, S. C. Wen, W. X. Shu, Y. J. Qing, Z. X. Tang, H. L. Luo, and D. Y. Fan, “Enhancing and tuning absorption properties of microwave absorbing materials using metamaterials,” Appl. Phys. Lett. 93(26), 261115 (2008).
[Crossref]

Jiang, T.

Jiang, Y.

H. Sun, R. Che, X. You, Y. Jiang, Z. Yang, J. Deng, L. Qiu, and H. Peng, “Cross-Stacking Aligned Carbon-Nanotube Films to Tune Microwave Absorption Frequencies and Increase Absorption Intensities,” Adv. Mater. 26(48), 8120–8125 (2014).
[Crossref] [PubMed]

Jiang, Z.

Y. Kang, Z. Jiang, T. Ma, Z. Chu, and G. Li, “Hybrids of Reduced Graphene Oxide and Hexagonal Boron Nitride: Lightweight Absorbers with Tunable and Highly Efficient Microwave Attenuation Properties,” ACS Appl. Mater. Interfaces 8(47), 32468–32476 (2016).
[Crossref] [PubMed]

Jin, H. B.

B. Wen, M. S. Cao, Z. L. Hou, W. L. Song, L. Zhang, M. M. Lu, H. B. Jin, X. Y. Fang, W. Z. Wang, and J. Yuan, “Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites,” Carbon 65(12), 124–139 (2013).
[Crossref]

Jusoh, S. F.

A. N. Yusoff, M. H. Abdullah, S. H. Ahmad, S. F. Jusoh, A. A. Mansor, and S. A. A. Hamid, “Electromagnetic and absorption properties of some microwave absorbers,” J. Appl. Phys. 92(2), 876–882 (2002).
[Crossref]

Kagotani, T.

S. Sugimoto, T. Maeda, D. Book, T. Kagotani, K. Inomata, M. Homma, H. Ota, Y. Houjou, and R. Sato, “GHz microwave absorption of a fine α-Fe structure produced by the disproportionation of Sm2Fe17 in hydrogen,” J. Alloys Compd. 330(330), 301–306 (2002).
[Crossref]

Kang, D. H.

S. B. Cho, D. H. Kang, and J. H. Oh, “Relationship between magnetic properties and microwave-absorbing characteristics of NiZnCo ferrite composites,” J. Mater. Sci. 31(17), 4719–4722 (1996).
[Crossref]

Kang, Y.

Y. Kang, Z. Jiang, T. Ma, Z. Chu, and G. Li, “Hybrids of Reduced Graphene Oxide and Hexagonal Boron Nitride: Lightweight Absorbers with Tunable and Highly Efficient Microwave Attenuation Properties,” ACS Appl. Mater. Interfaces 8(47), 32468–32476 (2016).
[Crossref] [PubMed]

Kato, T.

S. Kimura, T. Kato, T. Hyodo, Y. Shimizu, and M. Egashira, “Electromagnetic wave absorption properties of carbonyl iron-ferrite/PMMA composites fabricated by hybridization method,” J. Magn. Magn. Mater. 312(1), 181–186 (2007).
[Crossref]

Khuyen, B. X.

Kim, Y. J.

Kimura, S.

S. Kimura, T. Kato, T. Hyodo, Y. Shimizu, and M. Egashira, “Electromagnetic wave absorption properties of carbonyl iron-ferrite/PMMA composites fabricated by hybridization method,” J. Magn. Magn. Mater. 312(1), 181–186 (2007).
[Crossref]

Lai, S. F.

Lam, V. D.

Lee, Y. P.

Li, C.

L. Wang, Y. Huang, C. Li, J. Chen, and X. Sun, “Hierarchical graphene@Fe3O4 nanocluster@carbon@MnO2 nanosheet array composites: synthesis and microwave absorption performance,” Phys. Chem. Chem. Phys. 17(8), 5878–5886 (2015).
[Crossref] [PubMed]

Li, D.

J. Jiang, D. Li, D. Geng, J. An, J. He, W. Liu, and Z. Zhang, “Microwave absorption properties of core double-shell FeCo/C/BaTiO3 nanocomposites,” Nanoscale 6(8), 3967–3971 (2014).
[Crossref] [PubMed]

Li, D. R.

W. Liu, L. Liu, G. B. Ji, D. R. Li, Y. N. Zhang, J. N. Ma, and Y. W. Du, “Composition Design and Structural Characterization of MOF-Derived Composites with Controllable Electromagnetic Properties,” ACS Sustain. Chem.& Eng. 5(9), 7961–7971 (2017).
[Crossref]

Li, F. S.

X. H. Li, J. Feng, Y. P. Du, J. T. Bai, H. M. Fan, H. L. Zhang, Y. Peng, and F. S. Li, “One-pot synthesis of CoFe2O4/graphene oxide hybrids and their conversion into FeCo/graphene hybrids for lightweight and highly efficient microwave absorber,” J. Mater. Chem. A Mater. Energy Sustain. 3(10), 5535–5546 (2015).
[Crossref]

Li, G.

Y. Kang, Z. Jiang, T. Ma, Z. Chu, and G. Li, “Hybrids of Reduced Graphene Oxide and Hexagonal Boron Nitride: Lightweight Absorbers with Tunable and Highly Efficient Microwave Attenuation Properties,” ACS Appl. Mater. Interfaces 8(47), 32468–32476 (2016).
[Crossref] [PubMed]

Li, G. X.

X. Sun, J. P. He, G. X. Li, J. Tang, T. Wang, Y. X. Guo, and H. R. Xue, “Laminated magnetic graphene with enhanced electromagnetic wave absorption properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(4), 765–777 (2013).
[Crossref]

Li, J.

J. Li, W. J. Feng, J. S. Wang, X. Zhao, W. Q. Zheng, and H. Yang, “Impact of silica-coating on the microwave absorption properties of carbonyl iron powder,” J. Magn. Magn. Mater. 393, 82–87 (2015).
[Crossref]

Li, L. C.

G. X. Tong, J. H. Yuan, W. H. Wu, Q. Hu, H. S. Qian, L. C. Li, and J. P. Shen, “Flower-like Co superstructures: Morphology and phase evolution mechanism and novel microwave electromagnetic characteristics,” CrystEngComm 14(6), 2071–2079 (2012).
[Crossref]

Li, X. H.

X. H. Li, J. Feng, Y. P. Du, J. T. Bai, H. M. Fan, H. L. Zhang, Y. Peng, and F. S. Li, “One-pot synthesis of CoFe2O4/graphene oxide hybrids and their conversion into FeCo/graphene hybrids for lightweight and highly efficient microwave absorber,” J. Mater. Chem. A Mater. Energy Sustain. 3(10), 5535–5546 (2015).
[Crossref]

Li, X. L.

X. L. Li, Z. X. Li, X. G. Liu, S. H. Zhang, and S. L. Ran, “Fe/amorphous ceramics core/shell structured nanoflakes-assembled rod-like architecture for efficient microwave absorber,” J. Phys. D Appl. Phys. 50(48), 485302 (2017).
[Crossref]

Li, Y.

G. S. Wang, Y. Y. Wu, X. J. Zhang, Y. Li, L. Guo, and M. S. Cao, “Controllable synthesis of uniform ZnO nanorods and their enhanced dielectric and absorption properties,” J. Mater. Chem. A Mater. Energy Sustain. 2(23), 8644–8651 (2014).
[Crossref]

Li, Y. Y.

M. J. Youh, H. C. Wu, W. H. Lin, S. C. Chiu, C. F. Huang, H. C. Yu, J. S. Hsu, and Y. Y. Li, “A carbonyl iron/carbon fiber material for electromagnetic wave absorption,” J. Nanosci. Nanotechnol. 11(3), 2315–2320 (2011).
[Crossref] [PubMed]

Li, Z. G.

R. Qiang, Y. C. Du, H. T. Zhao, Y. Wang, C. H. Tian, Z. G. Li, X. J. Han, and P. Xu, “Metal organic framework-derived Fe/C nanocubes toward efficient microwave absorption,” J. Mater. Chem. A Mater. Energy Sustain. 3(25), 13426–13434 (2015).
[Crossref]

Li, Z. X.

X. L. Li, Z. X. Li, X. G. Liu, S. H. Zhang, and S. L. Ran, “Fe/amorphous ceramics core/shell structured nanoflakes-assembled rod-like architecture for efficient microwave absorber,” J. Phys. D Appl. Phys. 50(48), 485302 (2017).
[Crossref]

Liang, W. F.

J. Sun, H. L. Xu, Y. Shen, H. Bi, W. F. Liang, and R. B. Yang, “Enhanced microwave absorption properties of the milled flake-shaped FeSiAl/graphite composites,” J. Alloys Compd. 548, 18–22 (2013).
[Crossref]

Lin, W. H.

M. J. Youh, H. C. Wu, W. H. Lin, S. C. Chiu, C. F. Huang, H. C. Yu, J. S. Hsu, and Y. Y. Li, “A carbonyl iron/carbon fiber material for electromagnetic wave absorption,” J. Nanosci. Nanotechnol. 11(3), 2315–2320 (2011).
[Crossref] [PubMed]

Liu, J.

M. M. Lu, M. S. Cao, Y. H. Chen, W. Q. Cao, J. Liu, H. L. Shi, D. Q. Zhang, W. Z. Wang, and J. Yuan, “Multiscale Assembly of Grape-Like Ferroferric Oxide and Carbon Nanotubes: A Smart Absorber Prototype Varying Temperature to Tune Intensities,” ACS Appl. Mater. Interfaces 7(34), 19408–19415 (2015).
[Crossref] [PubMed]

J. Liu, R. Che, H. Chen, F. Zhang, F. Xia, Q. Wu, and M. Wang, “Microwave absorption enhancement of multifunctional composite microspheres with spinel Fe3 O4 Cores and Anatase TiO2 shells,” Small 8(8), 1214–1221 (2012).
[Crossref] [PubMed]

Liu, J. R.

J. R. Liu, M. Itoh, and K. Machida, “Electromagnetic wave absorption properties of α-Fe/Fe3B/Y2O3 nanocomposites in gigahertz range,” Appl. Phys. Lett. 83(19), 4017–4019 (2003).
[Crossref]

Liu, L.

W. Liu, L. Liu, G. B. Ji, D. R. Li, Y. N. Zhang, J. N. Ma, and Y. W. Du, “Composition Design and Structural Characterization of MOF-Derived Composites with Controllable Electromagnetic Properties,” ACS Sustain. Chem.& Eng. 5(9), 7961–7971 (2017).
[Crossref]

Liu, W.

W. Liu, L. Liu, G. B. Ji, D. R. Li, Y. N. Zhang, J. N. Ma, and Y. W. Du, “Composition Design and Structural Characterization of MOF-Derived Composites with Controllable Electromagnetic Properties,” ACS Sustain. Chem.& Eng. 5(9), 7961–7971 (2017).
[Crossref]

J. Jiang, D. Li, D. Geng, J. An, J. He, W. Liu, and Z. Zhang, “Microwave absorption properties of core double-shell FeCo/C/BaTiO3 nanocomposites,” Nanoscale 6(8), 3967–3971 (2014).
[Crossref] [PubMed]

Y. Du, W. Liu, R. Qiang, Y. Wang, X. Han, J. Ma, and P. Xu, “Shell thickness-dependent microwave absorption of core-shell Fe3O4@C composites,” ACS Appl. Mater. Interfaces 6(15), 12997–13006 (2014).
[Crossref] [PubMed]

Liu, X.

Y. Yin, X. Liu, X. Wei, R. Yu, and J. Shui, “Porous CNTs/Co Composite Derived from Zeolitic Imidazolate Framework: A Lightweight, Ultrathin, and Highly Efficient Electromagnetic Wave Absorber,” ACS Appl. Mater. Interfaces 8(50), 34686–34698 (2016).
[Crossref] [PubMed]

Liu, X. B.

H. Guo, Y. Q. Zhan, Z. R. Chen, F. B. Meng, J. J. Wei, and X. B. Liu, “Decoration of basalt fibers with hybrid Fe3O4 microspheres and their microwave absorption application in bisphthalonitrile composites,” J. Mater. Chem. A Mater. Energy Sustain. 1(6), 2286–2296 (2013).
[Crossref]

Liu, X. F.

X. J. Zhang, G. C. Lv, G. S. Wang, T. Y. Bai, J. K. Qu, X. F. Liu, and P. G. Yin, “High-performance microwave absorption of flexible nanocomposites based on flower-like Co superstructures and polyvinylidene fluoride,” RSC Advances 5(68), 55468–55473 (2015).
[Crossref]

Liu, X. G.

X. L. Li, Z. X. Li, X. G. Liu, S. H. Zhang, and S. L. Ran, “Fe/amorphous ceramics core/shell structured nanoflakes-assembled rod-like architecture for efficient microwave absorber,” J. Phys. D Appl. Phys. 50(48), 485302 (2017).
[Crossref]

Liu, Z. H.

X. G. Huang, J. Zhang, Z. H. Liu, T. Y. Sang, B. Song, H. L. Zhu, and C. P. Wong, “Facile preparation and microwave absorption properties of porous hollow BaFe12O19 /CoFe2O4 composite microrods,” J. Alloys Compd. 648, 1072–1075 (2015).
[Crossref]

Liu, Z. Y.

F. S. Wen, F. Zhang, and Z. Y. Liu, “Investigation on Microwave Absorption Properties for Multiwalled Carbon Nanotubes/Fe/Co/Ni Nanopowders as Lightweight Absorbers,” J. Phys. Chem. C 115(29), 14025–14030 (2011).
[Crossref]

Lu, M. M.

M. M. Lu, M. S. Cao, Y. H. Chen, W. Q. Cao, J. Liu, H. L. Shi, D. Q. Zhang, W. Z. Wang, and J. Yuan, “Multiscale Assembly of Grape-Like Ferroferric Oxide and Carbon Nanotubes: A Smart Absorber Prototype Varying Temperature to Tune Intensities,” ACS Appl. Mater. Interfaces 7(34), 19408–19415 (2015).
[Crossref] [PubMed]

B. Wen, M. S. Cao, Z. L. Hou, W. L. Song, L. Zhang, M. M. Lu, H. B. Jin, X. Y. Fang, W. Z. Wang, and J. Yuan, “Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites,” Carbon 65(12), 124–139 (2013).
[Crossref]

Lu, Y.

W. Q. Zhang, S. W. Bie, H. C. Chen, Y. Lu, and J. J. Jiang, “Electromagnetic and microwave absorption properties of carbonyl iron/MnO2 composite,” J. Magn. Magn. Mater. 358–359, 1–4 (2014).
[Crossref]

Luo, H. L.

Y. H. Zou, L. Y. Jiang, S. C. Wen, W. X. Shu, Y. J. Qing, Z. X. Tang, H. L. Luo, and D. Y. Fan, “Enhancing and tuning absorption properties of microwave absorbing materials using metamaterials,” Appl. Phys. Lett. 93(26), 261115 (2008).
[Crossref]

Lv, G. C.

X. J. Zhang, G. C. Lv, G. S. Wang, T. Y. Bai, J. K. Qu, X. F. Liu, and P. G. Yin, “High-performance microwave absorption of flexible nanocomposites based on flower-like Co superstructures and polyvinylidene fluoride,” RSC Advances 5(68), 55468–55473 (2015).
[Crossref]

Ma, J.

Y. Du, W. Liu, R. Qiang, Y. Wang, X. Han, J. Ma, and P. Xu, “Shell thickness-dependent microwave absorption of core-shell Fe3O4@C composites,” ACS Appl. Mater. Interfaces 6(15), 12997–13006 (2014).
[Crossref] [PubMed]

Ma, J. N.

W. Liu, L. Liu, G. B. Ji, D. R. Li, Y. N. Zhang, J. N. Ma, and Y. W. Du, “Composition Design and Structural Characterization of MOF-Derived Composites with Controllable Electromagnetic Properties,” ACS Sustain. Chem.& Eng. 5(9), 7961–7971 (2017).
[Crossref]

Ma, S.

G. Pan, J. Zhu, S. Ma, G. Sun, and X. Yang, “Enhancing the Electromagnetic Performance of Co through the Phase-Controlled Synthesis of Hexagonal and Cubic Co Nanocrystals Grown on Graphene,” ACS Appl. Mater. Interfaces 5(23), 12716–12724 (2013).
[Crossref] [PubMed]

Ma, T.

Y. Kang, Z. Jiang, T. Ma, Z. Chu, and G. Li, “Hybrids of Reduced Graphene Oxide and Hexagonal Boron Nitride: Lightweight Absorbers with Tunable and Highly Efficient Microwave Attenuation Properties,” ACS Appl. Mater. Interfaces 8(47), 32468–32476 (2016).
[Crossref] [PubMed]

Machida, K.

J. R. Liu, M. Itoh, and K. Machida, “Electromagnetic wave absorption properties of α-Fe/Fe3B/Y2O3 nanocomposites in gigahertz range,” Appl. Phys. Lett. 83(19), 4017–4019 (2003).
[Crossref]

Maeda, T.

S. Sugimoto, T. Maeda, D. Book, T. Kagotani, K. Inomata, M. Homma, H. Ota, Y. Houjou, and R. Sato, “GHz microwave absorption of a fine α-Fe structure produced by the disproportionation of Sm2Fe17 in hydrogen,” J. Alloys Compd. 330(330), 301–306 (2002).
[Crossref]

Mansor, A. A.

A. N. Yusoff, M. H. Abdullah, S. H. Ahmad, S. F. Jusoh, A. A. Mansor, and S. A. A. Hamid, “Electromagnetic and absorption properties of some microwave absorbers,” J. Appl. Phys. 92(2), 876–882 (2002).
[Crossref]

Mathur, R. B.

P. Saini, V. Choudhary, B. P. Singh, R. B. Mathur, and S. K. Dhawan, “Polyaniline-MWCNT nanocomposites for microwave absorption and EMI shielding,” Mater. Chem. Phys. 113(2), 919–926 (2009).
[Crossref]

Meng, F. B.

H. Guo, Y. Q. Zhan, Z. R. Chen, F. B. Meng, J. J. Wei, and X. B. Liu, “Decoration of basalt fibers with hybrid Fe3O4 microspheres and their microwave absorption application in bisphthalonitrile composites,” J. Mater. Chem. A Mater. Energy Sustain. 1(6), 2286–2296 (2013).
[Crossref]

Muscat, R. F.

V. T. Truong, S. Z. Riddell, and R. F. Muscat, “Polypyrrole based microwave absorbers,” J. Mater. Sci. 33(20), 4971–4976 (1998).
[Crossref]

Oh, J. H.

S. B. Cho, D. H. Kang, and J. H. Oh, “Relationship between magnetic properties and microwave-absorbing characteristics of NiZnCo ferrite composites,” J. Mater. Sci. 31(17), 4719–4722 (1996).
[Crossref]

Osada, T.

E. J. Pakulis and T. Osada, “Microwave absorption studies of Y-Ba-Cu-O,” Phys. Rev. B Condens. Matter 37(10), 5940–5942 (1988).
[Crossref] [PubMed]

Ota, H.

S. Sugimoto, T. Maeda, D. Book, T. Kagotani, K. Inomata, M. Homma, H. Ota, Y. Houjou, and R. Sato, “GHz microwave absorption of a fine α-Fe structure produced by the disproportionation of Sm2Fe17 in hydrogen,” J. Alloys Compd. 330(330), 301–306 (2002).
[Crossref]

Pakulis, E. J.

E. J. Pakulis and T. Osada, “Microwave absorption studies of Y-Ba-Cu-O,” Phys. Rev. B Condens. Matter 37(10), 5940–5942 (1988).
[Crossref] [PubMed]

Palaniappa, M.

M. Palaniappa, G. V. Babu, and K. Balasubramanian, “Electroless nickel-phosphorus plating on graphite powder,” Mater. Sci. Eng. A 471(1), 165–168 (2007).
[Crossref]

Pan, G.

G. Pan, J. Zhu, S. Ma, G. Sun, and X. Yang, “Enhancing the Electromagnetic Performance of Co through the Phase-Controlled Synthesis of Hexagonal and Cubic Co Nanocrystals Grown on Graphene,” ACS Appl. Mater. Interfaces 5(23), 12716–12724 (2013).
[Crossref] [PubMed]

Pan, X.

Z. T. Zhu, X. Sun, H. R. Xue, H. Guo, X. Fan, X. Pan, and J. He, “Graphene-carbonyl iron cross-linked composites with excellent electromagnetic wave absorption properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(32), 6582–6591 (2014).
[Crossref]

Pan, X. C.

Z. T. Zhu, X. Sun, H. R. Xue, H. Guo, X. L. Fan, X. C. Pan, and J. P. He, “Graphene–carbonyl iron cross-linked composites with excellent electromagnetic wave absorption properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(32), 6582–6591 (2014).
[Crossref]

Peng, H.

H. Sun, R. Che, X. You, Y. Jiang, Z. Yang, J. Deng, L. Qiu, and H. Peng, “Cross-Stacking Aligned Carbon-Nanotube Films to Tune Microwave Absorption Frequencies and Increase Absorption Intensities,” Adv. Mater. 26(48), 8120–8125 (2014).
[Crossref] [PubMed]

Peng, Y.

X. H. Li, J. Feng, Y. P. Du, J. T. Bai, H. M. Fan, H. L. Zhang, Y. Peng, and F. S. Li, “One-pot synthesis of CoFe2O4/graphene oxide hybrids and their conversion into FeCo/graphene hybrids for lightweight and highly efficient microwave absorber,” J. Mater. Chem. A Mater. Energy Sustain. 3(10), 5535–5546 (2015).
[Crossref]

Perez, J. M.

A. Wadhawan, D. Garrett, and J. M. Perez, “Nanoparticle-assisted microwave absorption by single-wall carbon nanotubes,” Appl. Phys. Lett. 83(13), 2683–2685 (2003).
[Crossref]

Puri, R. K.

P. Singh, V. K. Babbar, A. Razdan, S. L. Srivastava, and R. K. Puri, “Complex permeability and permittivity, and microwave absorption studies of Ca(CoTi)xFe12-2xO19 hexaferrite composites in X-band microwave frequencies,” Mater. Sci. Eng. B 67(3), 132–138 (1999).
[Crossref]

Qian, H. S.

G. X. Tong, J. H. Yuan, W. H. Wu, Q. Hu, H. S. Qian, L. C. Li, and J. P. Shen, “Flower-like Co superstructures: Morphology and phase evolution mechanism and novel microwave electromagnetic characteristics,” CrystEngComm 14(6), 2071–2079 (2012).
[Crossref]

Qiang, R.

R. Qiang, Y. C. Du, H. T. Zhao, Y. Wang, C. H. Tian, Z. G. Li, X. J. Han, and P. Xu, “Metal organic framework-derived Fe/C nanocubes toward efficient microwave absorption,” J. Mater. Chem. A Mater. Energy Sustain. 3(25), 13426–13434 (2015).
[Crossref]

Y. Du, W. Liu, R. Qiang, Y. Wang, X. Han, J. Ma, and P. Xu, “Shell thickness-dependent microwave absorption of core-shell Fe3O4@C composites,” ACS Appl. Mater. Interfaces 6(15), 12997–13006 (2014).
[Crossref] [PubMed]

Qing, Y. J.

Y. H. Zou, L. Y. Jiang, S. C. Wen, W. X. Shu, Y. J. Qing, Z. X. Tang, H. L. Luo, and D. Y. Fan, “Enhancing and tuning absorption properties of microwave absorbing materials using metamaterials,” Appl. Phys. Lett. 93(26), 261115 (2008).
[Crossref]

Qiu, L.

H. Sun, R. Che, X. You, Y. Jiang, Z. Yang, J. Deng, L. Qiu, and H. Peng, “Cross-Stacking Aligned Carbon-Nanotube Films to Tune Microwave Absorption Frequencies and Increase Absorption Intensities,” Adv. Mater. 26(48), 8120–8125 (2014).
[Crossref] [PubMed]

Qu, J. K.

X. J. Zhang, G. C. Lv, G. S. Wang, T. Y. Bai, J. K. Qu, X. F. Liu, and P. G. Yin, “High-performance microwave absorption of flexible nanocomposites based on flower-like Co superstructures and polyvinylidene fluoride,” RSC Advances 5(68), 55468–55473 (2015).
[Crossref]

Ran, S. L.

X. L. Li, Z. X. Li, X. G. Liu, S. H. Zhang, and S. L. Ran, “Fe/amorphous ceramics core/shell structured nanoflakes-assembled rod-like architecture for efficient microwave absorber,” J. Phys. D Appl. Phys. 50(48), 485302 (2017).
[Crossref]

Rao, W. F.

X. G. Huang, J. Zhang, W. F. Rao, T. Y. Sang, B. Song, and C. P. Wong, “Tunable electromagnetic properties and enhanced microwave absorption ability of flaky graphite/cobalt zinc ferrite composites,” J. Alloys Compd. 662, 409–414 (2016).
[Crossref]

Razdan, A.

P. Singh, V. K. Babbar, A. Razdan, S. L. Srivastava, and R. K. Puri, “Complex permeability and permittivity, and microwave absorption studies of Ca(CoTi)xFe12-2xO19 hexaferrite composites in X-band microwave frequencies,” Mater. Sci. Eng. B 67(3), 132–138 (1999).
[Crossref]

Reich, S.

S. Reich and C. Thomsen, “Raman spectroscopy of graphite,” Philos Trans A Math Phys Eng Sci 362(1824), 2271–2288 (2004).
[Crossref] [PubMed]

Riddell, S. Z.

V. T. Truong, S. Z. Riddell, and R. F. Muscat, “Polypyrrole based microwave absorbers,” J. Mater. Sci. 33(20), 4971–4976 (1998).
[Crossref]

Roué, L.

O. Ghodbane, L. Roué, and D. Bélanger, “Study of the Electroless Deposition of Pd on Cu-Modified Graphite Electrodes by Metal Exchange Reaction,” Chem. Mater. 20(10), 3495–3504 (2008).
[Crossref]

Saini, P.

P. Saini, V. Choudhary, B. P. Singh, R. B. Mathur, and S. K. Dhawan, “Polyaniline-MWCNT nanocomposites for microwave absorption and EMI shielding,” Mater. Chem. Phys. 113(2), 919–926 (2009).
[Crossref]

Sang, T. Y.

X. G. Huang, J. Zhang, W. F. Rao, T. Y. Sang, B. Song, and C. P. Wong, “Tunable electromagnetic properties and enhanced microwave absorption ability of flaky graphite/cobalt zinc ferrite composites,” J. Alloys Compd. 662, 409–414 (2016).
[Crossref]

X. G. Huang, J. Zhang, Z. H. Liu, T. Y. Sang, B. Song, H. L. Zhu, and C. P. Wong, “Facile preparation and microwave absorption properties of porous hollow BaFe12O19 /CoFe2O4 composite microrods,” J. Alloys Compd. 648, 1072–1075 (2015).
[Crossref]

Sato, R.

S. Sugimoto, T. Maeda, D. Book, T. Kagotani, K. Inomata, M. Homma, H. Ota, Y. Houjou, and R. Sato, “GHz microwave absorption of a fine α-Fe structure produced by the disproportionation of Sm2Fe17 in hydrogen,” J. Alloys Compd. 330(330), 301–306 (2002).
[Crossref]

Shao, G.

B. Zhao, G. Shao, B. B. Fan, W. Y. Zhao, Y. Q. Chen, and R. Zhang, “Facile synthesis of crumpled ZnS net-wrapped Ni walnut spheres with enhanced microwave absorption properties,” RSC Advances 5(13), 9806–9814 (2015).
[Crossref]

Shen, J. P.

G. X. Tong, J. H. Yuan, W. H. Wu, Q. Hu, H. S. Qian, L. C. Li, and J. P. Shen, “Flower-like Co superstructures: Morphology and phase evolution mechanism and novel microwave electromagnetic characteristics,” CrystEngComm 14(6), 2071–2079 (2012).
[Crossref]

Shen, Y.

J. Sun, H. L. Xu, Y. Shen, H. Bi, W. F. Liang, and R. B. Yang, “Enhanced microwave absorption properties of the milled flake-shaped FeSiAl/graphite composites,” J. Alloys Compd. 548, 18–22 (2013).
[Crossref]

Shi, H. L.

M. M. Lu, M. S. Cao, Y. H. Chen, W. Q. Cao, J. Liu, H. L. Shi, D. Q. Zhang, W. Z. Wang, and J. Yuan, “Multiscale Assembly of Grape-Like Ferroferric Oxide and Carbon Nanotubes: A Smart Absorber Prototype Varying Temperature to Tune Intensities,” ACS Appl. Mater. Interfaces 7(34), 19408–19415 (2015).
[Crossref] [PubMed]

Shimizu, Y.

S. Kimura, T. Kato, T. Hyodo, Y. Shimizu, and M. Egashira, “Electromagnetic wave absorption properties of carbonyl iron-ferrite/PMMA composites fabricated by hybridization method,” J. Magn. Magn. Mater. 312(1), 181–186 (2007).
[Crossref]

Shu, W. X.

Y. H. Zou, L. Y. Jiang, S. C. Wen, W. X. Shu, Y. J. Qing, Z. X. Tang, H. L. Luo, and D. Y. Fan, “Enhancing and tuning absorption properties of microwave absorbing materials using metamaterials,” Appl. Phys. Lett. 93(26), 261115 (2008).
[Crossref]

Shui, J.

Y. Yin, X. Liu, X. Wei, R. Yu, and J. Shui, “Porous CNTs/Co Composite Derived from Zeolitic Imidazolate Framework: A Lightweight, Ultrathin, and Highly Efficient Electromagnetic Wave Absorber,” ACS Appl. Mater. Interfaces 8(50), 34686–34698 (2016).
[Crossref] [PubMed]

Singh, B. P.

P. Saini, V. Choudhary, B. P. Singh, R. B. Mathur, and S. K. Dhawan, “Polyaniline-MWCNT nanocomposites for microwave absorption and EMI shielding,” Mater. Chem. Phys. 113(2), 919–926 (2009).
[Crossref]

Singh, P.

P. Singh, V. K. Babbar, A. Razdan, S. L. Srivastava, and R. K. Puri, “Complex permeability and permittivity, and microwave absorption studies of Ca(CoTi)xFe12-2xO19 hexaferrite composites in X-band microwave frequencies,” Mater. Sci. Eng. B 67(3), 132–138 (1999).
[Crossref]

Song, B.

X. G. Huang, J. Zhang, W. F. Rao, T. Y. Sang, B. Song, and C. P. Wong, “Tunable electromagnetic properties and enhanced microwave absorption ability of flaky graphite/cobalt zinc ferrite composites,” J. Alloys Compd. 662, 409–414 (2016).
[Crossref]

X. G. Huang, J. Zhang, Z. H. Liu, T. Y. Sang, B. Song, H. L. Zhu, and C. P. Wong, “Facile preparation and microwave absorption properties of porous hollow BaFe12O19 /CoFe2O4 composite microrods,” J. Alloys Compd. 648, 1072–1075 (2015).
[Crossref]

Song, W. L.

B. Wen, M. S. Cao, Z. L. Hou, W. L. Song, L. Zhang, M. M. Lu, H. B. Jin, X. Y. Fang, W. Z. Wang, and J. Yuan, “Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites,” Carbon 65(12), 124–139 (2013).
[Crossref]

Srivastava, S. L.

P. Singh, V. K. Babbar, A. Razdan, S. L. Srivastava, and R. K. Puri, “Complex permeability and permittivity, and microwave absorption studies of Ca(CoTi)xFe12-2xO19 hexaferrite composites in X-band microwave frequencies,” Mater. Sci. Eng. B 67(3), 132–138 (1999).
[Crossref]

Sugimoto, S.

S. Sugimoto, T. Maeda, D. Book, T. Kagotani, K. Inomata, M. Homma, H. Ota, Y. Houjou, and R. Sato, “GHz microwave absorption of a fine α-Fe structure produced by the disproportionation of Sm2Fe17 in hydrogen,” J. Alloys Compd. 330(330), 301–306 (2002).
[Crossref]

Sun, G.

G. Pan, J. Zhu, S. Ma, G. Sun, and X. Yang, “Enhancing the Electromagnetic Performance of Co through the Phase-Controlled Synthesis of Hexagonal and Cubic Co Nanocrystals Grown on Graphene,” ACS Appl. Mater. Interfaces 5(23), 12716–12724 (2013).
[Crossref] [PubMed]

Sun, H.

H. Sun, R. Che, X. You, Y. Jiang, Z. Yang, J. Deng, L. Qiu, and H. Peng, “Cross-Stacking Aligned Carbon-Nanotube Films to Tune Microwave Absorption Frequencies and Increase Absorption Intensities,” Adv. Mater. 26(48), 8120–8125 (2014).
[Crossref] [PubMed]

Sun, J.

J. Sun, H. L. Xu, Y. Shen, H. Bi, W. F. Liang, and R. B. Yang, “Enhanced microwave absorption properties of the milled flake-shaped FeSiAl/graphite composites,” J. Alloys Compd. 548, 18–22 (2013).
[Crossref]

Sun, X.

L. Wang, Y. Huang, C. Li, J. Chen, and X. Sun, “Hierarchical graphene@Fe3O4 nanocluster@carbon@MnO2 nanosheet array composites: synthesis and microwave absorption performance,” Phys. Chem. Chem. Phys. 17(8), 5878–5886 (2015).
[Crossref] [PubMed]

Z. T. Zhu, X. Sun, H. R. Xue, H. Guo, X. L. Fan, X. C. Pan, and J. P. He, “Graphene–carbonyl iron cross-linked composites with excellent electromagnetic wave absorption properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(32), 6582–6591 (2014).
[Crossref]

Z. T. Zhu, X. Sun, H. R. Xue, H. Guo, X. Fan, X. Pan, and J. He, “Graphene-carbonyl iron cross-linked composites with excellent electromagnetic wave absorption properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(32), 6582–6591 (2014).
[Crossref]

X. Sun, J. P. He, G. X. Li, J. Tang, T. Wang, Y. X. Guo, and H. R. Xue, “Laminated magnetic graphene with enhanced electromagnetic wave absorption properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(4), 765–777 (2013).
[Crossref]

Sundararaj, U.

M. H. Al-Saleh and U. Sundararaj, “Electromagnetic interference shielding mechanisms of CNT/polymer composites,” Carbon 47(7), 1738–1746 (2009).
[Crossref]

Tang, J.

X. Sun, J. P. He, G. X. Li, J. Tang, T. Wang, Y. X. Guo, and H. R. Xue, “Laminated magnetic graphene with enhanced electromagnetic wave absorption properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(4), 765–777 (2013).
[Crossref]

Tang, Z. X.

Z. L. Zhang, Z. L. Wang, L. Y. Heng, S. Wang, X. Q. Chen, X. Q. Fu, Y. H. Zou, and Z. X. Tang, “Improving the Electromagnetic Wave Absorption Properties of the Layered MoS2 by Cladding with Ni Nanoparticles,” J. Phys. Soc. Jpn. 87(5), 054402 (2018).
[Crossref]

Y. H. Zou, L. Y. Jiang, S. C. Wen, W. X. Shu, Y. J. Qing, Z. X. Tang, H. L. Luo, and D. Y. Fan, “Enhancing and tuning absorption properties of microwave absorbing materials using metamaterials,” Appl. Phys. Lett. 93(26), 261115 (2008).
[Crossref]

Thomsen, C.

S. Reich and C. Thomsen, “Raman spectroscopy of graphite,” Philos Trans A Math Phys Eng Sci 362(1824), 2271–2288 (2004).
[Crossref] [PubMed]

Tian, C. H.

R. Qiang, Y. C. Du, H. T. Zhao, Y. Wang, C. H. Tian, Z. G. Li, X. J. Han, and P. Xu, “Metal organic framework-derived Fe/C nanocubes toward efficient microwave absorption,” J. Mater. Chem. A Mater. Energy Sustain. 3(25), 13426–13434 (2015).
[Crossref]

Tiep, D. H.

Tong, G. X.

G. X. Tong, J. H. Yuan, W. H. Wu, Q. Hu, H. S. Qian, L. C. Li, and J. P. Shen, “Flower-like Co superstructures: Morphology and phase evolution mechanism and novel microwave electromagnetic characteristics,” CrystEngComm 14(6), 2071–2079 (2012).
[Crossref]

Truong, V. T.

V. T. Truong, S. Z. Riddell, and R. F. Muscat, “Polypyrrole based microwave absorbers,” J. Mater. Sci. 33(20), 4971–4976 (1998).
[Crossref]

Tung, B. S.

Wadhawan, A.

A. Wadhawan, D. Garrett, and J. M. Perez, “Nanoparticle-assisted microwave absorption by single-wall carbon nanotubes,” Appl. Phys. Lett. 83(13), 2683–2685 (2003).
[Crossref]

Wang, C.

Wang, G. S.

X. J. Zhang, G. C. Lv, G. S. Wang, T. Y. Bai, J. K. Qu, X. F. Liu, and P. G. Yin, “High-performance microwave absorption of flexible nanocomposites based on flower-like Co superstructures and polyvinylidene fluoride,” RSC Advances 5(68), 55468–55473 (2015).
[Crossref]

G. S. Wang, Y. Y. Wu, X. J. Zhang, Y. Li, L. Guo, and M. S. Cao, “Controllable synthesis of uniform ZnO nanorods and their enhanced dielectric and absorption properties,” J. Mater. Chem. A Mater. Energy Sustain. 2(23), 8644–8651 (2014).
[Crossref]

Wang, J. J.

Wang, J. S.

J. Li, W. J. Feng, J. S. Wang, X. Zhao, W. Q. Zheng, and H. Yang, “Impact of silica-coating on the microwave absorption properties of carbonyl iron powder,” J. Magn. Magn. Mater. 393, 82–87 (2015).
[Crossref]

Wang, L.

L. Wang, Y. Huang, C. Li, J. Chen, and X. Sun, “Hierarchical graphene@Fe3O4 nanocluster@carbon@MnO2 nanosheet array composites: synthesis and microwave absorption performance,” Phys. Chem. Chem. Phys. 17(8), 5878–5886 (2015).
[Crossref] [PubMed]

Wang, M.

J. Liu, R. Che, H. Chen, F. Zhang, F. Xia, Q. Wu, and M. Wang, “Microwave absorption enhancement of multifunctional composite microspheres with spinel Fe3 O4 Cores and Anatase TiO2 shells,” Small 8(8), 1214–1221 (2012).
[Crossref] [PubMed]

Wang, S.

Z. L. Zhang, Z. L. Wang, L. Y. Heng, S. Wang, X. Q. Chen, X. Q. Fu, Y. H. Zou, and Z. X. Tang, “Improving the Electromagnetic Wave Absorption Properties of the Layered MoS2 by Cladding with Ni Nanoparticles,” J. Phys. Soc. Jpn. 87(5), 054402 (2018).
[Crossref]

Wang, T.

X. Sun, J. P. He, G. X. Li, J. Tang, T. Wang, Y. X. Guo, and H. R. Xue, “Laminated magnetic graphene with enhanced electromagnetic wave absorption properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(4), 765–777 (2013).
[Crossref]

Wang, W. Z.

M. M. Lu, M. S. Cao, Y. H. Chen, W. Q. Cao, J. Liu, H. L. Shi, D. Q. Zhang, W. Z. Wang, and J. Yuan, “Multiscale Assembly of Grape-Like Ferroferric Oxide and Carbon Nanotubes: A Smart Absorber Prototype Varying Temperature to Tune Intensities,” ACS Appl. Mater. Interfaces 7(34), 19408–19415 (2015).
[Crossref] [PubMed]

B. Wen, M. S. Cao, Z. L. Hou, W. L. Song, L. Zhang, M. M. Lu, H. B. Jin, X. Y. Fang, W. Z. Wang, and J. Yuan, “Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites,” Carbon 65(12), 124–139 (2013).
[Crossref]

Wang, Y.

R. Qiang, Y. C. Du, H. T. Zhao, Y. Wang, C. H. Tian, Z. G. Li, X. J. Han, and P. Xu, “Metal organic framework-derived Fe/C nanocubes toward efficient microwave absorption,” J. Mater. Chem. A Mater. Energy Sustain. 3(25), 13426–13434 (2015).
[Crossref]

Y. Du, W. Liu, R. Qiang, Y. Wang, X. Han, J. Ma, and P. Xu, “Shell thickness-dependent microwave absorption of core-shell Fe3O4@C composites,” ACS Appl. Mater. Interfaces 6(15), 12997–13006 (2014).
[Crossref] [PubMed]

Wang, Z. L.

Z. L. Zhang, Z. L. Wang, L. Y. Heng, S. Wang, X. Q. Chen, X. Q. Fu, Y. H. Zou, and Z. X. Tang, “Improving the Electromagnetic Wave Absorption Properties of the Layered MoS2 by Cladding with Ni Nanoparticles,” J. Phys. Soc. Jpn. 87(5), 054402 (2018).
[Crossref]

Wei, J. J.

H. Guo, Y. Q. Zhan, Z. R. Chen, F. B. Meng, J. J. Wei, and X. B. Liu, “Decoration of basalt fibers with hybrid Fe3O4 microspheres and their microwave absorption application in bisphthalonitrile composites,” J. Mater. Chem. A Mater. Energy Sustain. 1(6), 2286–2296 (2013).
[Crossref]

Wei, S.

Wei, X.

Y. Yin, X. Liu, X. Wei, R. Yu, and J. Shui, “Porous CNTs/Co Composite Derived from Zeolitic Imidazolate Framework: A Lightweight, Ultrathin, and Highly Efficient Electromagnetic Wave Absorber,” ACS Appl. Mater. Interfaces 8(50), 34686–34698 (2016).
[Crossref] [PubMed]

Wen, B.

B. Wen, M. S. Cao, Z. L. Hou, W. L. Song, L. Zhang, M. M. Lu, H. B. Jin, X. Y. Fang, W. Z. Wang, and J. Yuan, “Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites,” Carbon 65(12), 124–139 (2013).
[Crossref]

Wen, F. S.

F. S. Wen, F. Zhang, and Z. Y. Liu, “Investigation on Microwave Absorption Properties for Multiwalled Carbon Nanotubes/Fe/Co/Ni Nanopowders as Lightweight Absorbers,” J. Phys. Chem. C 115(29), 14025–14030 (2011).
[Crossref]

Wen, S. C.

Y. H. Zou, L. Y. Jiang, S. C. Wen, W. X. Shu, Y. J. Qing, Z. X. Tang, H. L. Luo, and D. Y. Fan, “Enhancing and tuning absorption properties of microwave absorbing materials using metamaterials,” Appl. Phys. Lett. 93(26), 261115 (2008).
[Crossref]

Wong, C. P.

X. G. Huang, J. Zhang, W. F. Rao, T. Y. Sang, B. Song, and C. P. Wong, “Tunable electromagnetic properties and enhanced microwave absorption ability of flaky graphite/cobalt zinc ferrite composites,” J. Alloys Compd. 662, 409–414 (2016).
[Crossref]

X. G. Huang, J. Zhang, Z. H. Liu, T. Y. Sang, B. Song, H. L. Zhu, and C. P. Wong, “Facile preparation and microwave absorption properties of porous hollow BaFe12O19 /CoFe2O4 composite microrods,” J. Alloys Compd. 648, 1072–1075 (2015).
[Crossref]

Wu, H. C.

M. J. Youh, H. C. Wu, W. H. Lin, S. C. Chiu, C. F. Huang, H. C. Yu, J. S. Hsu, and Y. Y. Li, “A carbonyl iron/carbon fiber material for electromagnetic wave absorption,” J. Nanosci. Nanotechnol. 11(3), 2315–2320 (2011).
[Crossref] [PubMed]

Wu, Q.

J. Liu, R. Che, H. Chen, F. Zhang, F. Xia, Q. Wu, and M. Wang, “Microwave absorption enhancement of multifunctional composite microspheres with spinel Fe3 O4 Cores and Anatase TiO2 shells,” Small 8(8), 1214–1221 (2012).
[Crossref] [PubMed]

Wu, W.

Wu, W. H.

G. X. Tong, J. H. Yuan, W. H. Wu, Q. Hu, H. S. Qian, L. C. Li, and J. P. Shen, “Flower-like Co superstructures: Morphology and phase evolution mechanism and novel microwave electromagnetic characteristics,” CrystEngComm 14(6), 2071–2079 (2012).
[Crossref]

Wu, Y. H.

Wu, Y. Y.

G. S. Wang, Y. Y. Wu, X. J. Zhang, Y. Li, L. Guo, and M. S. Cao, “Controllable synthesis of uniform ZnO nanorods and their enhanced dielectric and absorption properties,” J. Mater. Chem. A Mater. Energy Sustain. 2(23), 8644–8651 (2014).
[Crossref]

Xia, F.

J. Liu, R. Che, H. Chen, F. Zhang, F. Xia, Q. Wu, and M. Wang, “Microwave absorption enhancement of multifunctional composite microspheres with spinel Fe3 O4 Cores and Anatase TiO2 shells,” Small 8(8), 1214–1221 (2012).
[Crossref] [PubMed]

Xiao, P.

Y. Zhang, Y. Huang, T. Zhang, H. Chang, P. Xiao, H. Chen, Z. Huang, and Y. Chen, “Broadband and Tunable High-Performance Microwave Absorption of an Ultralight and Highly Compressible Graphene Foam,” Adv. Mater. 27(12), 2049–2053 (2015).
[Crossref] [PubMed]

Xu, H. L.

J. Sun, H. L. Xu, Y. Shen, H. Bi, W. F. Liang, and R. B. Yang, “Enhanced microwave absorption properties of the milled flake-shaped FeSiAl/graphite composites,” J. Alloys Compd. 548, 18–22 (2013).
[Crossref]

Xu, P.

R. Qiang, Y. C. Du, H. T. Zhao, Y. Wang, C. H. Tian, Z. G. Li, X. J. Han, and P. Xu, “Metal organic framework-derived Fe/C nanocubes toward efficient microwave absorption,” J. Mater. Chem. A Mater. Energy Sustain. 3(25), 13426–13434 (2015).
[Crossref]

Y. Du, W. Liu, R. Qiang, Y. Wang, X. Han, J. Ma, and P. Xu, “Shell thickness-dependent microwave absorption of core-shell Fe3O4@C composites,” ACS Appl. Mater. Interfaces 6(15), 12997–13006 (2014).
[Crossref] [PubMed]

Xue, H. R.

Z. T. Zhu, X. Sun, H. R. Xue, H. Guo, X. L. Fan, X. C. Pan, and J. P. He, “Graphene–carbonyl iron cross-linked composites with excellent electromagnetic wave absorption properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(32), 6582–6591 (2014).
[Crossref]

Z. T. Zhu, X. Sun, H. R. Xue, H. Guo, X. Fan, X. Pan, and J. He, “Graphene-carbonyl iron cross-linked composites with excellent electromagnetic wave absorption properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(32), 6582–6591 (2014).
[Crossref]

X. Sun, J. P. He, G. X. Li, J. Tang, T. Wang, Y. X. Guo, and H. R. Xue, “Laminated magnetic graphene with enhanced electromagnetic wave absorption properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(4), 765–777 (2013).
[Crossref]

Yang, H.

J. Li, W. J. Feng, J. S. Wang, X. Zhao, W. Q. Zheng, and H. Yang, “Impact of silica-coating on the microwave absorption properties of carbonyl iron powder,” J. Magn. Magn. Mater. 393, 82–87 (2015).
[Crossref]

Yang, R. B.

J. Sun, H. L. Xu, Y. Shen, H. Bi, W. F. Liang, and R. B. Yang, “Enhanced microwave absorption properties of the milled flake-shaped FeSiAl/graphite composites,” J. Alloys Compd. 548, 18–22 (2013).
[Crossref]

Yang, X.

G. Pan, J. Zhu, S. Ma, G. Sun, and X. Yang, “Enhancing the Electromagnetic Performance of Co through the Phase-Controlled Synthesis of Hexagonal and Cubic Co Nanocrystals Grown on Graphene,” ACS Appl. Mater. Interfaces 5(23), 12716–12724 (2013).
[Crossref] [PubMed]

Yang, Z.

H. Sun, R. Che, X. You, Y. Jiang, Z. Yang, J. Deng, L. Qiu, and H. Peng, “Cross-Stacking Aligned Carbon-Nanotube Films to Tune Microwave Absorption Frequencies and Increase Absorption Intensities,” Adv. Mater. 26(48), 8120–8125 (2014).
[Crossref] [PubMed]

Yin, P. G.

X. J. Zhang, G. C. Lv, G. S. Wang, T. Y. Bai, J. K. Qu, X. F. Liu, and P. G. Yin, “High-performance microwave absorption of flexible nanocomposites based on flower-like Co superstructures and polyvinylidene fluoride,” RSC Advances 5(68), 55468–55473 (2015).
[Crossref]

Yin, Y.

Y. Yin, X. Liu, X. Wei, R. Yu, and J. Shui, “Porous CNTs/Co Composite Derived from Zeolitic Imidazolate Framework: A Lightweight, Ultrathin, and Highly Efficient Electromagnetic Wave Absorber,” ACS Appl. Mater. Interfaces 8(50), 34686–34698 (2016).
[Crossref] [PubMed]

You, X.

H. Sun, R. Che, X. You, Y. Jiang, Z. Yang, J. Deng, L. Qiu, and H. Peng, “Cross-Stacking Aligned Carbon-Nanotube Films to Tune Microwave Absorption Frequencies and Increase Absorption Intensities,” Adv. Mater. 26(48), 8120–8125 (2014).
[Crossref] [PubMed]

Youh, M. J.

M. J. Youh, H. C. Wu, W. H. Lin, S. C. Chiu, C. F. Huang, H. C. Yu, J. S. Hsu, and Y. Y. Li, “A carbonyl iron/carbon fiber material for electromagnetic wave absorption,” J. Nanosci. Nanotechnol. 11(3), 2315–2320 (2011).
[Crossref] [PubMed]

Yu, H. C.

M. J. Youh, H. C. Wu, W. H. Lin, S. C. Chiu, C. F. Huang, H. C. Yu, J. S. Hsu, and Y. Y. Li, “A carbonyl iron/carbon fiber material for electromagnetic wave absorption,” J. Nanosci. Nanotechnol. 11(3), 2315–2320 (2011).
[Crossref] [PubMed]

Yu, R.

Y. Yin, X. Liu, X. Wei, R. Yu, and J. Shui, “Porous CNTs/Co Composite Derived from Zeolitic Imidazolate Framework: A Lightweight, Ultrathin, and Highly Efficient Electromagnetic Wave Absorber,” ACS Appl. Mater. Interfaces 8(50), 34686–34698 (2016).
[Crossref] [PubMed]

Yuan, J.

M. M. Lu, M. S. Cao, Y. H. Chen, W. Q. Cao, J. Liu, H. L. Shi, D. Q. Zhang, W. Z. Wang, and J. Yuan, “Multiscale Assembly of Grape-Like Ferroferric Oxide and Carbon Nanotubes: A Smart Absorber Prototype Varying Temperature to Tune Intensities,” ACS Appl. Mater. Interfaces 7(34), 19408–19415 (2015).
[Crossref] [PubMed]

B. Wen, M. S. Cao, Z. L. Hou, W. L. Song, L. Zhang, M. M. Lu, H. B. Jin, X. Y. Fang, W. Z. Wang, and J. Yuan, “Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites,” Carbon 65(12), 124–139 (2013).
[Crossref]

Yuan, J. H.

G. X. Tong, J. H. Yuan, W. H. Wu, Q. Hu, H. S. Qian, L. C. Li, and J. P. Shen, “Flower-like Co superstructures: Morphology and phase evolution mechanism and novel microwave electromagnetic characteristics,” CrystEngComm 14(6), 2071–2079 (2012).
[Crossref]

Yusoff, A. N.

A. N. Yusoff, M. H. Abdullah, S. H. Ahmad, S. F. Jusoh, A. A. Mansor, and S. A. A. Hamid, “Electromagnetic and absorption properties of some microwave absorbers,” J. Appl. Phys. 92(2), 876–882 (2002).
[Crossref]

Zhan, Y. Q.

H. Guo, Y. Q. Zhan, Z. R. Chen, F. B. Meng, J. J. Wei, and X. B. Liu, “Decoration of basalt fibers with hybrid Fe3O4 microspheres and their microwave absorption application in bisphthalonitrile composites,” J. Mater. Chem. A Mater. Energy Sustain. 1(6), 2286–2296 (2013).
[Crossref]

Zhang, D. Q.

M. M. Lu, M. S. Cao, Y. H. Chen, W. Q. Cao, J. Liu, H. L. Shi, D. Q. Zhang, W. Z. Wang, and J. Yuan, “Multiscale Assembly of Grape-Like Ferroferric Oxide and Carbon Nanotubes: A Smart Absorber Prototype Varying Temperature to Tune Intensities,” ACS Appl. Mater. Interfaces 7(34), 19408–19415 (2015).
[Crossref] [PubMed]

Zhang, F.

J. Liu, R. Che, H. Chen, F. Zhang, F. Xia, Q. Wu, and M. Wang, “Microwave absorption enhancement of multifunctional composite microspheres with spinel Fe3 O4 Cores and Anatase TiO2 shells,” Small 8(8), 1214–1221 (2012).
[Crossref] [PubMed]

F. S. Wen, F. Zhang, and Z. Y. Liu, “Investigation on Microwave Absorption Properties for Multiwalled Carbon Nanotubes/Fe/Co/Ni Nanopowders as Lightweight Absorbers,” J. Phys. Chem. C 115(29), 14025–14030 (2011).
[Crossref]

Zhang, H. L.

X. H. Li, J. Feng, Y. P. Du, J. T. Bai, H. M. Fan, H. L. Zhang, Y. Peng, and F. S. Li, “One-pot synthesis of CoFe2O4/graphene oxide hybrids and their conversion into FeCo/graphene hybrids for lightweight and highly efficient microwave absorber,” J. Mater. Chem. A Mater. Energy Sustain. 3(10), 5535–5546 (2015).
[Crossref]

Zhang, J.

X. G. Huang, J. Zhang, W. F. Rao, T. Y. Sang, B. Song, and C. P. Wong, “Tunable electromagnetic properties and enhanced microwave absorption ability of flaky graphite/cobalt zinc ferrite composites,” J. Alloys Compd. 662, 409–414 (2016).
[Crossref]

X. G. Huang, J. Zhang, Z. H. Liu, T. Y. Sang, B. Song, H. L. Zhu, and C. P. Wong, “Facile preparation and microwave absorption properties of porous hollow BaFe12O19 /CoFe2O4 composite microrods,” J. Alloys Compd. 648, 1072–1075 (2015).
[Crossref]

Zhang, L.

B. Wen, M. S. Cao, Z. L. Hou, W. L. Song, L. Zhang, M. M. Lu, H. B. Jin, X. Y. Fang, W. Z. Wang, and J. Yuan, “Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites,” Carbon 65(12), 124–139 (2013).
[Crossref]

Zhang, R.

B. Zhao, G. Shao, B. B. Fan, W. Y. Zhao, Y. Q. Chen, and R. Zhang, “Facile synthesis of crumpled ZnS net-wrapped Ni walnut spheres with enhanced microwave absorption properties,” RSC Advances 5(13), 9806–9814 (2015).
[Crossref]

Zhang, S. H.

X. L. Li, Z. X. Li, X. G. Liu, S. H. Zhang, and S. L. Ran, “Fe/amorphous ceramics core/shell structured nanoflakes-assembled rod-like architecture for efficient microwave absorber,” J. Phys. D Appl. Phys. 50(48), 485302 (2017).
[Crossref]

Zhang, T.

Y. Zhang, Y. Huang, T. Zhang, H. Chang, P. Xiao, H. Chen, Z. Huang, and Y. Chen, “Broadband and Tunable High-Performance Microwave Absorption of an Ultralight and Highly Compressible Graphene Foam,” Adv. Mater. 27(12), 2049–2053 (2015).
[Crossref] [PubMed]

Zhang, W. Q.

W. Q. Zhang, S. W. Bie, H. C. Chen, Y. Lu, and J. J. Jiang, “Electromagnetic and microwave absorption properties of carbonyl iron/MnO2 composite,” J. Magn. Magn. Mater. 358–359, 1–4 (2014).
[Crossref]

Zhang, X. J.

X. J. Zhang, G. C. Lv, G. S. Wang, T. Y. Bai, J. K. Qu, X. F. Liu, and P. G. Yin, “High-performance microwave absorption of flexible nanocomposites based on flower-like Co superstructures and polyvinylidene fluoride,” RSC Advances 5(68), 55468–55473 (2015).
[Crossref]

G. S. Wang, Y. Y. Wu, X. J. Zhang, Y. Li, L. Guo, and M. S. Cao, “Controllable synthesis of uniform ZnO nanorods and their enhanced dielectric and absorption properties,” J. Mater. Chem. A Mater. Energy Sustain. 2(23), 8644–8651 (2014).
[Crossref]

Zhang, Y.

Y. Zhang, Y. Huang, T. Zhang, H. Chang, P. Xiao, H. Chen, Z. Huang, and Y. Chen, “Broadband and Tunable High-Performance Microwave Absorption of an Ultralight and Highly Compressible Graphene Foam,” Adv. Mater. 27(12), 2049–2053 (2015).
[Crossref] [PubMed]

Zhang, Y. N.

W. Liu, L. Liu, G. B. Ji, D. R. Li, Y. N. Zhang, J. N. Ma, and Y. W. Du, “Composition Design and Structural Characterization of MOF-Derived Composites with Controllable Electromagnetic Properties,” ACS Sustain. Chem.& Eng. 5(9), 7961–7971 (2017).
[Crossref]

Zhang, Z.

J. Jiang, D. Li, D. Geng, J. An, J. He, W. Liu, and Z. Zhang, “Microwave absorption properties of core double-shell FeCo/C/BaTiO3 nanocomposites,” Nanoscale 6(8), 3967–3971 (2014).
[Crossref] [PubMed]

Zhang, Z. L.

Z. L. Zhang, Z. L. Wang, L. Y. Heng, S. Wang, X. Q. Chen, X. Q. Fu, Y. H. Zou, and Z. X. Tang, “Improving the Electromagnetic Wave Absorption Properties of the Layered MoS2 by Cladding with Ni Nanoparticles,” J. Phys. Soc. Jpn. 87(5), 054402 (2018).
[Crossref]

Zhao, B.

B. Zhao, G. Shao, B. B. Fan, W. Y. Zhao, Y. Q. Chen, and R. Zhang, “Facile synthesis of crumpled ZnS net-wrapped Ni walnut spheres with enhanced microwave absorption properties,” RSC Advances 5(13), 9806–9814 (2015).
[Crossref]

Zhao, H. T.

R. Qiang, Y. C. Du, H. T. Zhao, Y. Wang, C. H. Tian, Z. G. Li, X. J. Han, and P. Xu, “Metal organic framework-derived Fe/C nanocubes toward efficient microwave absorption,” J. Mater. Chem. A Mater. Energy Sustain. 3(25), 13426–13434 (2015).
[Crossref]

Zhao, J.

Zhao, W. Y.

B. Zhao, G. Shao, B. B. Fan, W. Y. Zhao, Y. Q. Chen, and R. Zhang, “Facile synthesis of crumpled ZnS net-wrapped Ni walnut spheres with enhanced microwave absorption properties,” RSC Advances 5(13), 9806–9814 (2015).
[Crossref]

Zhao, X.

J. Li, W. J. Feng, J. S. Wang, X. Zhao, W. Q. Zheng, and H. Yang, “Impact of silica-coating on the microwave absorption properties of carbonyl iron powder,” J. Magn. Magn. Mater. 393, 82–87 (2015).
[Crossref]

Zheng, W. Q.

J. Li, W. J. Feng, J. S. Wang, X. Zhao, W. Q. Zheng, and H. Yang, “Impact of silica-coating on the microwave absorption properties of carbonyl iron powder,” J. Magn. Magn. Mater. 393, 82–87 (2015).
[Crossref]

Zhu, B.

Zhu, H. L.

X. G. Huang, J. Zhang, Z. H. Liu, T. Y. Sang, B. Song, H. L. Zhu, and C. P. Wong, “Facile preparation and microwave absorption properties of porous hollow BaFe12O19 /CoFe2O4 composite microrods,” J. Alloys Compd. 648, 1072–1075 (2015).
[Crossref]

Zhu, J.

G. Pan, J. Zhu, S. Ma, G. Sun, and X. Yang, “Enhancing the Electromagnetic Performance of Co through the Phase-Controlled Synthesis of Hexagonal and Cubic Co Nanocrystals Grown on Graphene,” ACS Appl. Mater. Interfaces 5(23), 12716–12724 (2013).
[Crossref] [PubMed]

Zhu, Z. T.

Z. T. Zhu, X. Sun, H. R. Xue, H. Guo, X. Fan, X. Pan, and J. He, “Graphene-carbonyl iron cross-linked composites with excellent electromagnetic wave absorption properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(32), 6582–6591 (2014).
[Crossref]

Z. T. Zhu, X. Sun, H. R. Xue, H. Guo, X. L. Fan, X. C. Pan, and J. P. He, “Graphene–carbonyl iron cross-linked composites with excellent electromagnetic wave absorption properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(32), 6582–6591 (2014).
[Crossref]

Zou, Y. H.

Z. L. Zhang, Z. L. Wang, L. Y. Heng, S. Wang, X. Q. Chen, X. Q. Fu, Y. H. Zou, and Z. X. Tang, “Improving the Electromagnetic Wave Absorption Properties of the Layered MoS2 by Cladding with Ni Nanoparticles,” J. Phys. Soc. Jpn. 87(5), 054402 (2018).
[Crossref]

Y. H. Zou, L. Y. Jiang, S. C. Wen, W. X. Shu, Y. J. Qing, Z. X. Tang, H. L. Luo, and D. Y. Fan, “Enhancing and tuning absorption properties of microwave absorbing materials using metamaterials,” Appl. Phys. Lett. 93(26), 261115 (2008).
[Crossref]

ACS Appl. Mater. Interfaces (5)

M. M. Lu, M. S. Cao, Y. H. Chen, W. Q. Cao, J. Liu, H. L. Shi, D. Q. Zhang, W. Z. Wang, and J. Yuan, “Multiscale Assembly of Grape-Like Ferroferric Oxide and Carbon Nanotubes: A Smart Absorber Prototype Varying Temperature to Tune Intensities,” ACS Appl. Mater. Interfaces 7(34), 19408–19415 (2015).
[Crossref] [PubMed]

Y. Yin, X. Liu, X. Wei, R. Yu, and J. Shui, “Porous CNTs/Co Composite Derived from Zeolitic Imidazolate Framework: A Lightweight, Ultrathin, and Highly Efficient Electromagnetic Wave Absorber,” ACS Appl. Mater. Interfaces 8(50), 34686–34698 (2016).
[Crossref] [PubMed]

G. Pan, J. Zhu, S. Ma, G. Sun, and X. Yang, “Enhancing the Electromagnetic Performance of Co through the Phase-Controlled Synthesis of Hexagonal and Cubic Co Nanocrystals Grown on Graphene,” ACS Appl. Mater. Interfaces 5(23), 12716–12724 (2013).
[Crossref] [PubMed]

Y. Kang, Z. Jiang, T. Ma, Z. Chu, and G. Li, “Hybrids of Reduced Graphene Oxide and Hexagonal Boron Nitride: Lightweight Absorbers with Tunable and Highly Efficient Microwave Attenuation Properties,” ACS Appl. Mater. Interfaces 8(47), 32468–32476 (2016).
[Crossref] [PubMed]

Y. Du, W. Liu, R. Qiang, Y. Wang, X. Han, J. Ma, and P. Xu, “Shell thickness-dependent microwave absorption of core-shell Fe3O4@C composites,” ACS Appl. Mater. Interfaces 6(15), 12997–13006 (2014).
[Crossref] [PubMed]

ACS Sustain. Chem.& Eng. (1)

W. Liu, L. Liu, G. B. Ji, D. R. Li, Y. N. Zhang, J. N. Ma, and Y. W. Du, “Composition Design and Structural Characterization of MOF-Derived Composites with Controllable Electromagnetic Properties,” ACS Sustain. Chem.& Eng. 5(9), 7961–7971 (2017).
[Crossref]

Adv. Mater. (2)

Y. Zhang, Y. Huang, T. Zhang, H. Chang, P. Xiao, H. Chen, Z. Huang, and Y. Chen, “Broadband and Tunable High-Performance Microwave Absorption of an Ultralight and Highly Compressible Graphene Foam,” Adv. Mater. 27(12), 2049–2053 (2015).
[Crossref] [PubMed]

H. Sun, R. Che, X. You, Y. Jiang, Z. Yang, J. Deng, L. Qiu, and H. Peng, “Cross-Stacking Aligned Carbon-Nanotube Films to Tune Microwave Absorption Frequencies and Increase Absorption Intensities,” Adv. Mater. 26(48), 8120–8125 (2014).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

J. R. Liu, M. Itoh, and K. Machida, “Electromagnetic wave absorption properties of α-Fe/Fe3B/Y2O3 nanocomposites in gigahertz range,” Appl. Phys. Lett. 83(19), 4017–4019 (2003).
[Crossref]

A. Wadhawan, D. Garrett, and J. M. Perez, “Nanoparticle-assisted microwave absorption by single-wall carbon nanotubes,” Appl. Phys. Lett. 83(13), 2683–2685 (2003).
[Crossref]

Y. H. Zou, L. Y. Jiang, S. C. Wen, W. X. Shu, Y. J. Qing, Z. X. Tang, H. L. Luo, and D. Y. Fan, “Enhancing and tuning absorption properties of microwave absorbing materials using metamaterials,” Appl. Phys. Lett. 93(26), 261115 (2008).
[Crossref]

Carbon (2)

B. Wen, M. S. Cao, Z. L. Hou, W. L. Song, L. Zhang, M. M. Lu, H. B. Jin, X. Y. Fang, W. Z. Wang, and J. Yuan, “Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites,” Carbon 65(12), 124–139 (2013).
[Crossref]

M. H. Al-Saleh and U. Sundararaj, “Electromagnetic interference shielding mechanisms of CNT/polymer composites,” Carbon 47(7), 1738–1746 (2009).
[Crossref]

Chem. Mater. (1)

O. Ghodbane, L. Roué, and D. Bélanger, “Study of the Electroless Deposition of Pd on Cu-Modified Graphite Electrodes by Metal Exchange Reaction,” Chem. Mater. 20(10), 3495–3504 (2008).
[Crossref]

CrystEngComm (1)

G. X. Tong, J. H. Yuan, W. H. Wu, Q. Hu, H. S. Qian, L. C. Li, and J. P. Shen, “Flower-like Co superstructures: Morphology and phase evolution mechanism and novel microwave electromagnetic characteristics,” CrystEngComm 14(6), 2071–2079 (2012).
[Crossref]

J. Alloys Compd. (4)

S. Sugimoto, T. Maeda, D. Book, T. Kagotani, K. Inomata, M. Homma, H. Ota, Y. Houjou, and R. Sato, “GHz microwave absorption of a fine α-Fe structure produced by the disproportionation of Sm2Fe17 in hydrogen,” J. Alloys Compd. 330(330), 301–306 (2002).
[Crossref]

X. G. Huang, J. Zhang, W. F. Rao, T. Y. Sang, B. Song, and C. P. Wong, “Tunable electromagnetic properties and enhanced microwave absorption ability of flaky graphite/cobalt zinc ferrite composites,” J. Alloys Compd. 662, 409–414 (2016).
[Crossref]

J. Sun, H. L. Xu, Y. Shen, H. Bi, W. F. Liang, and R. B. Yang, “Enhanced microwave absorption properties of the milled flake-shaped FeSiAl/graphite composites,” J. Alloys Compd. 548, 18–22 (2013).
[Crossref]

X. G. Huang, J. Zhang, Z. H. Liu, T. Y. Sang, B. Song, H. L. Zhu, and C. P. Wong, “Facile preparation and microwave absorption properties of porous hollow BaFe12O19 /CoFe2O4 composite microrods,” J. Alloys Compd. 648, 1072–1075 (2015).
[Crossref]

J. Appl. Phys. (1)

A. N. Yusoff, M. H. Abdullah, S. H. Ahmad, S. F. Jusoh, A. A. Mansor, and S. A. A. Hamid, “Electromagnetic and absorption properties of some microwave absorbers,” J. Appl. Phys. 92(2), 876–882 (2002).
[Crossref]

J. Magn. Magn. Mater. (4)

S. M. Abbas, A. K. Dixit, R. Chatterjee, and T. C. Goel, “Complex permittivity, complex permeability and microwave absorption properties of ferrite-polymer composites,” J. Magn. Magn. Mater. 309(1), 20–24 (2007).
[Crossref]

W. Q. Zhang, S. W. Bie, H. C. Chen, Y. Lu, and J. J. Jiang, “Electromagnetic and microwave absorption properties of carbonyl iron/MnO2 composite,” J. Magn. Magn. Mater. 358–359, 1–4 (2014).
[Crossref]

S. Kimura, T. Kato, T. Hyodo, Y. Shimizu, and M. Egashira, “Electromagnetic wave absorption properties of carbonyl iron-ferrite/PMMA composites fabricated by hybridization method,” J. Magn. Magn. Mater. 312(1), 181–186 (2007).
[Crossref]

J. Li, W. J. Feng, J. S. Wang, X. Zhao, W. Q. Zheng, and H. Yang, “Impact of silica-coating on the microwave absorption properties of carbonyl iron powder,” J. Magn. Magn. Mater. 393, 82–87 (2015).
[Crossref]

J. Mater. Chem. A Mater. Energy Sustain. (4)

G. S. Wang, Y. Y. Wu, X. J. Zhang, Y. Li, L. Guo, and M. S. Cao, “Controllable synthesis of uniform ZnO nanorods and their enhanced dielectric and absorption properties,” J. Mater. Chem. A Mater. Energy Sustain. 2(23), 8644–8651 (2014).
[Crossref]

X. H. Li, J. Feng, Y. P. Du, J. T. Bai, H. M. Fan, H. L. Zhang, Y. Peng, and F. S. Li, “One-pot synthesis of CoFe2O4/graphene oxide hybrids and their conversion into FeCo/graphene hybrids for lightweight and highly efficient microwave absorber,” J. Mater. Chem. A Mater. Energy Sustain. 3(10), 5535–5546 (2015).
[Crossref]

R. Qiang, Y. C. Du, H. T. Zhao, Y. Wang, C. H. Tian, Z. G. Li, X. J. Han, and P. Xu, “Metal organic framework-derived Fe/C nanocubes toward efficient microwave absorption,” J. Mater. Chem. A Mater. Energy Sustain. 3(25), 13426–13434 (2015).
[Crossref]

H. Guo, Y. Q. Zhan, Z. R. Chen, F. B. Meng, J. J. Wei, and X. B. Liu, “Decoration of basalt fibers with hybrid Fe3O4 microspheres and their microwave absorption application in bisphthalonitrile composites,” J. Mater. Chem. A Mater. Energy Sustain. 1(6), 2286–2296 (2013).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (3)

Z. T. Zhu, X. Sun, H. R. Xue, H. Guo, X. Fan, X. Pan, and J. He, “Graphene-carbonyl iron cross-linked composites with excellent electromagnetic wave absorption properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(32), 6582–6591 (2014).
[Crossref]

X. Sun, J. P. He, G. X. Li, J. Tang, T. Wang, Y. X. Guo, and H. R. Xue, “Laminated magnetic graphene with enhanced electromagnetic wave absorption properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(4), 765–777 (2013).
[Crossref]

Z. T. Zhu, X. Sun, H. R. Xue, H. Guo, X. L. Fan, X. C. Pan, and J. P. He, “Graphene–carbonyl iron cross-linked composites with excellent electromagnetic wave absorption properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(32), 6582–6591 (2014).
[Crossref]

J. Mater. Sci. (2)

V. T. Truong, S. Z. Riddell, and R. F. Muscat, “Polypyrrole based microwave absorbers,” J. Mater. Sci. 33(20), 4971–4976 (1998).
[Crossref]

S. B. Cho, D. H. Kang, and J. H. Oh, “Relationship between magnetic properties and microwave-absorbing characteristics of NiZnCo ferrite composites,” J. Mater. Sci. 31(17), 4719–4722 (1996).
[Crossref]

J. Nanosci. Nanotechnol. (1)

M. J. Youh, H. C. Wu, W. H. Lin, S. C. Chiu, C. F. Huang, H. C. Yu, J. S. Hsu, and Y. Y. Li, “A carbonyl iron/carbon fiber material for electromagnetic wave absorption,” J. Nanosci. Nanotechnol. 11(3), 2315–2320 (2011).
[Crossref] [PubMed]

J. Phys. Chem. C (1)

F. S. Wen, F. Zhang, and Z. Y. Liu, “Investigation on Microwave Absorption Properties for Multiwalled Carbon Nanotubes/Fe/Co/Ni Nanopowders as Lightweight Absorbers,” J. Phys. Chem. C 115(29), 14025–14030 (2011).
[Crossref]

J. Phys. D Appl. Phys. (1)

X. L. Li, Z. X. Li, X. G. Liu, S. H. Zhang, and S. L. Ran, “Fe/amorphous ceramics core/shell structured nanoflakes-assembled rod-like architecture for efficient microwave absorber,” J. Phys. D Appl. Phys. 50(48), 485302 (2017).
[Crossref]

J. Phys. Soc. Jpn. (1)

Z. L. Zhang, Z. L. Wang, L. Y. Heng, S. Wang, X. Q. Chen, X. Q. Fu, Y. H. Zou, and Z. X. Tang, “Improving the Electromagnetic Wave Absorption Properties of the Layered MoS2 by Cladding with Ni Nanoparticles,” J. Phys. Soc. Jpn. 87(5), 054402 (2018).
[Crossref]

Mater. Chem. Phys. (1)

P. Saini, V. Choudhary, B. P. Singh, R. B. Mathur, and S. K. Dhawan, “Polyaniline-MWCNT nanocomposites for microwave absorption and EMI shielding,” Mater. Chem. Phys. 113(2), 919–926 (2009).
[Crossref]

Mater. Sci. Eng. A (1)

M. Palaniappa, G. V. Babu, and K. Balasubramanian, “Electroless nickel-phosphorus plating on graphite powder,” Mater. Sci. Eng. A 471(1), 165–168 (2007).
[Crossref]

Mater. Sci. Eng. B (1)

P. Singh, V. K. Babbar, A. Razdan, S. L. Srivastava, and R. K. Puri, “Complex permeability and permittivity, and microwave absorption studies of Ca(CoTi)xFe12-2xO19 hexaferrite composites in X-band microwave frequencies,” Mater. Sci. Eng. B 67(3), 132–138 (1999).
[Crossref]

Nanoscale (1)

J. Jiang, D. Li, D. Geng, J. An, J. He, W. Liu, and Z. Zhang, “Microwave absorption properties of core double-shell FeCo/C/BaTiO3 nanocomposites,” Nanoscale 6(8), 3967–3971 (2014).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Mater. Express (2)

Philos Trans A Math Phys Eng Sci (1)

S. Reich and C. Thomsen, “Raman spectroscopy of graphite,” Philos Trans A Math Phys Eng Sci 362(1824), 2271–2288 (2004).
[Crossref] [PubMed]

Phys. Chem. Chem. Phys. (1)

L. Wang, Y. Huang, C. Li, J. Chen, and X. Sun, “Hierarchical graphene@Fe3O4 nanocluster@carbon@MnO2 nanosheet array composites: synthesis and microwave absorption performance,” Phys. Chem. Chem. Phys. 17(8), 5878–5886 (2015).
[Crossref] [PubMed]

Phys. Rev. B Condens. Matter (1)

E. J. Pakulis and T. Osada, “Microwave absorption studies of Y-Ba-Cu-O,” Phys. Rev. B Condens. Matter 37(10), 5940–5942 (1988).
[Crossref] [PubMed]

RSC Advances (2)

X. J. Zhang, G. C. Lv, G. S. Wang, T. Y. Bai, J. K. Qu, X. F. Liu, and P. G. Yin, “High-performance microwave absorption of flexible nanocomposites based on flower-like Co superstructures and polyvinylidene fluoride,” RSC Advances 5(68), 55468–55473 (2015).
[Crossref]

B. Zhao, G. Shao, B. B. Fan, W. Y. Zhao, Y. Q. Chen, and R. Zhang, “Facile synthesis of crumpled ZnS net-wrapped Ni walnut spheres with enhanced microwave absorption properties,” RSC Advances 5(13), 9806–9814 (2015).
[Crossref]

Small (1)

J. Liu, R. Che, H. Chen, F. Zhang, F. Xia, Q. Wu, and M. Wang, “Microwave absorption enhancement of multifunctional composite microspheres with spinel Fe3 O4 Cores and Anatase TiO2 shells,” Small 8(8), 1214–1221 (2012).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 XRD patterns of as-prepared (a) ball-milling graphite and (b) carbonyl iron/graphite microspheres. (c) Raman spectra of different carbonyl iron/graphite composites. XPS survey spectra (d), C 1s (e), and Fe 2p (f) spectra for composite microspheres (C2).
Fig. 2
Fig. 2 SEM images of milled graphite and carbonyl iron/graphite composite microspheres obtained by mechanical milling: (a) H0, (b) H12, (c) H24, (d) H48, (e) carbonyl iron, (f) C1, (g) C2, (h) C3.
Fig. 3
Fig. 3 TEM images of the as-synthesized sample of C2.
Fig. 4
Fig. 4 The electrical conductivities for all ball-milling graphite samples.
Fig. 5
Fig. 5 Frequency dependences of real parts (a) and imaginary parts (b) of the complex permeability, (c) relative input impedance and (d) reflection losses with matching thickness of 2 mm for milling graphite paraffin wax composite.
Fig. 6
Fig. 6 Frequency dependence of real and imaginary parts of complex permittivity and permeability of milled graphite and carbonyl iron/graphite microspheres: C0 (a), C1 (b), C2 (c), and C3 (d).
Fig. 7
Fig. 7 The real and imaginary parts of complex permeability and corresponding fitting data.
Fig. 8
Fig. 8 Plots of εʺ versus εʹ for milled graphite and carbonyl iron/graphite microspheres: (a) C0, (b) C1, (c) C2, and (d) C3 in the frequency range of 2−18 GHz.
Fig. 9
Fig. 9 Frequency dependent reflection loss (RL) curves of milled graphite and carbonyl iron/graphite composites with different carbonyl iron weight ratios ((a) C0, (b) C1, (c) C2, (d) C3).
Fig. 10
Fig. 10 Frequency dependence of (a) relative input impedance and (b) attenuation constant of milled graphite and carbonyl iron/graphite microspheres.

Tables (1)

Tables Icon

Table 1 Comparison of microwave absorption properties of with other materials from previous studies

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Z in = Z 0 ( μ r / ε r ) 1/2 tanh[j(2πfd) ( μ r ε r ) 1/2 /c]
RL=20log| ( Z in Z 0 )/( Z in + Z 0 ) |
t m =nλ/4=nc/(4 f m  | μ r || ε r | )( n = 1, 3, 5, ... )
α= 2 πf c × (μεμε)+ (μεμε) 2 + (μεμε) 2