Abstract

Optical isolators are unidirectional devices that employ the magneto-optical (MO) property of iron garnets to block the reflected light in almost all optical systems. Sputter deposition of either doped yttrium iron garnets (YIG) with seed-layers or seed-layer free terbium iron garnets (TIG) will help realize integrated planar isolators. Faraday rotation waveguides are designed as a viable solution to enable these monolithically integrated garnets to overcome the limitations inherent to hybrid integration of interferometric devices. In fact, small footprint Faraday rotation devices have been achieved using doped TIG for both TE/TM modes with sufficiently low loss and large isolation ratios.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Integration of bulk-quality thin film magneto-optical cerium-doped yttrium iron garnet on silicon nitride photonic substrates

Mehmet C. Onbasli, Taichi Goto, Xueyin Sun, Nathalie Huynh, and C. A. Ross
Opt. Express 22(21) 25183-25192 (2014)

Design of a compact waveguide optical isolator based on multimode interferometers using magneto-optical oxide thin films grown on silicon-on-insulator substrates

Keyi Shui, Lixia Nie, Yan Zhang, Bo Peng, Jianliang Xie, Longjiang Deng, and Lei Bi
Opt. Express 24(12) 12856-12867 (2016)

References

  • View by:
  • |
  • |
  • |

  1. R. Soref, “The Past, Present, and Future of Silicon Photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
    [Crossref]
  2. J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
    [Crossref]
  3. R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S. Y. Wang, and R. S. Williams, “Nanoelectronic and nanophotonic interconnect,” Proc. IEEE 96, 230–247 (2008).
    [Crossref]
  4. J. D. Meindl, “Beyond Moore’s Law: The interconnect era,” Comput. Sci. & Eng. 5, 20–24 (2003).
    [Crossref]
  5. R. Nagarajan, C. H. Joyner, R. P. Schneider, J. S. Bostak, T. Butrie, A. G. Dentai, V. G. Dominic, et al. Van Leeuwen, J. Webjorn, M. Ziari, D. Perkins, J. Singh, S. G. Grubb, M. S. Reffle, D. G. Mehuys, F. A. Kish, and D. F. Welch, “Large-scale photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 11, 50–65 (2005).
    [Crossref]
  6. A. C. Nilsson, C. H. Joyner, D. F. Welch, D. D. Perkins, F. A. Kish, M. L. Mitchell, and R. Nagarajan, “The realization of large-scale photonic integrated circuits and the associated impact on fiber-optic communication systems,” J. Light. Tech. 24, 4674–4683 (2006).
    [Crossref]
  7. D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
    [Crossref]
  8. M. Shirasaki and K. Asama, “Compact optical isolator for fibers using birefringent wedges,” Appl. Opt. 21, 4296–4299 (1982).
    [Crossref] [PubMed]
  9. D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is – and what is not – an optical isolator,” Nat. Photonics 7, 579–582 (2013).
    [Crossref]
  10. B. J. H. Stadler and T. Mizumoto, “Integrated magneto-optical materials and isolators: A review,” IEEE Photonics J. 6, 1–15 (2014).
    [Crossref]
  11. B. J. H. Stadler and D. C. Hutchings, “Sputter-deposited magneto-optical garnet for all-mode (transverse electric/transverse magnetic) Faraday rotators,” MRS Bull. 43, 430–435 (2018).
    [Crossref]
  12. J. F. Dillon, “Origin and Uses of the Faraday Rotation in Magnetic Crystals,” J. Appl. Phys. 39, 922–929 (1968).
    [Crossref]
  13. V. Fratello and R. Wolfe, Epitaxial Garnet Films for Nonreciprocal Magneto-Optic Devices in Handbook of Thin Films (SPIE Press, 2000).
  14. T. Tepper, F. Ilievski, C. A. Ross, T. R. Zaman, R. J. Ram, S. Y. Sung, and B. J. H. Stadler, “Magneto-optical properties of iron oxide films,” J. Appl. Phys. 93, 6948 (2003).
    [Crossref]
  15. M. C. Onbasli, L. Beran, M. Zahradník, M. Kučera, R. Antoš, J. Mistrík, G. F. Dionne, M. Veis, and C. A. Ross, “Optical and magneto-optical behavior of Cerium Yttrium Iron Garnet thin films at wavelengths of 200–1770 nm,” Sci. Reports 6, 23640 (2016).
    [Crossref]
  16. K. Srinivasan, T. E. Gage, and B. J. H. Stadler, “Seed-Layer Free Cerium-Doped Terbium Iron Garnet on Non-Garnet Substrates for Photonic Isolators,” in Conference on Lasers and Electro-Optics, (Optical Society of America, San Jose, California, 2018), OSA Technical Digest (online), p. SW4I.5.
    [Crossref]
  17. M. Takenaka and Y. Nakano, “Proposal of a novel semiconductor optical waveguide isolator,” in Conference Proceedings. Eleventh International Conference on Indium Phosphide and Related Materials (IPRM’99) (Cat. No.99CH36362), (IEEE, 1999), pp. 289–292.
    [Crossref]
  18. Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3, 91–94 (2009).
    [Crossref]
  19. S. Ghosh, S. Keyvaninia, Y. Shoji, W. Van Roy, T. Mizumoto, G. Roelkens, and R. G. Baets, “Compact Mach-Zehnder interferometer Ce:YIG/SOI optical isolators,” IEEE Photonics Technol. Lett. 24, 1653–1656 (2012).
    [Crossref]
  20. L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5, 758–762 (2011).
    [Crossref]
  21. H. Shimizu and Y. Nakano, “Fabrication and Characterization of an InGaAsp/InP Active Waveguide Optical Isolator With 14.7 dB/mm TE Mode Nonreciprocal Attenuation,” J. Light. Tech. 24, 38 (2006).
    [Crossref]
  22. P. Pintus, F. Di Pasquale, and J. E. Bowers, “Design of transverse electric ring isolators for ultra-low-loss Si3N4 waveguides based on the finite element method,” Opt. Lett. 36, 4599–4601 (2011).
    [Crossref] [PubMed]
  23. C. Zhang, P. Dulal, B. J. H. Stadler, and D. C. Hutchings, “Monolithically-Integrated TE-mode 1D Silicon-on-Insulator Isolators using Seedlayer-Free Garnet,” Sci. Reports 7, 5820 (2017).
    [Crossref]
  24. D. C. Hutchings, B. M. Holmes, C. Zhang, P. Dulal, A. D. Block, S. Y. Sung, N. C. A. Seaton, and B. J. H. Stadler, “Quasi-phase-matched Faraday rotation in semiconductor waveguides with a magnetooptic cladding for monolithically integrated optical isolators,” IEEE Photonics J. 5, 6602512 (2013).
    [Crossref]
  25. T. Aichele, A. Lorenz, R. Hergt, and P. Görnert, “Garnet layers prepared by liquid phase epitaxy for microwave and magneto-optical applications – a review,” Cryst. Res. Technol. 38, 575–587 (2003).
    [Crossref]
  26. B. Stadler, K. Vaccaro, P. Yip, J. Lorenzo, Y. Li, and M. Cherif, “Integration of Magneto-Optical Garnet Films by Metal – Organic,” Chem. Vap. Deposition 38, 1564–1567 (2002).
  27. S. Y. Sung, X. Qi, and B. J. H. Stadler, “Integrating yttrium iron garnet onto nongarnet substrates with faster deposition rates and high reliability,” Appl. Phys. Lett. 87, 1–3 (2005).
    [Crossref]
  28. S.-Y. Sung, A. Sharma, A. Block, K. Keuhn, and B. J. H. Stadler, “Magneto-optical garnet waveguides on semiconductor platforms: Magnetics, mechanics, and photonics,” J. Appl. Phys. 109, 07B738 (2011).
    [Crossref]
  29. Y. Shoji and T. Mizumoto, “Wideband design of nonreciprocal phase shift magneto-optical isolators using phase adjustment in Mach-Zehnder interferometers,” Appl. Opt. 45, 7144–7150 (2006).
    [Crossref] [PubMed]
  30. M. C. Onbasli, T. Goto, X. Sun, N. Huynh, and C. A. Ross, “Integration of bulk-quality thin film magneto-optical cerium-doped yttrium iron garnet on silicon nitride photonic substrates,” Opt. Express 22, 25183–25192 (2014).
    [Crossref] [PubMed]
  31. V. J. Fratello, S. J. Licht, and C. D. Brandle, “Innovative improvements in bismuth-doped rare-earth iron garnet Faraday rotators,” IEEE Transactions on Magn. 32, 4102–4107 (1996).
    [Crossref]
  32. L. Bi, J. Hu, G. F. Dionne, L. Kimerling, and C. A. Ross, “Monolithic integration of chalcogenide glass/iron garnet waveguides and resonators for on-chip nonreciprocal photonic devices,” SPIE 7941, 794105 (2011).
  33. T. Goto, M. C. Onbaşlı, and C. A. Ross, “Magneto-optical properties of cerium substituted yttrium iron garnet films with reduced thermal budget for monolithic photonic integrated circuits,” Opt. Express 20, 28507–28517 (2012).
    [Crossref] [PubMed]
  34. A. D. Block, P. Dulal, B. J. H. Stadler, and N. C. A. Seaton, “Growth Parameters of Fully Crystallized YIG, Bi:YIG, and Ce:YIG Films With High Faraday Rotations,” IEEE Photonics J. 6, 1–8 (2014).
    [Crossref]
  35. S. Ghosh, S. Keyvavinia, W. Van Roy, T. Mizumoto, G. Roelkens, and R. Baets, “Ce:YIG/Silicon-on-Insulator waveguide optical isolator realized by adhesive bonding,” Opt. Express 20, 1839–1848 (2012).
    [Crossref] [PubMed]
  36. X. Y. Sun, Q. Du, T. Goto, M. C. Onbasli, D. H. Kim, N. M. Aimon, J. Hu, and C. A. Ross, “Single-Step Deposition of Cerium-Substituted Yttrium Iron Garnet for Monolithic On-Chip Optical Isolation,” ACS Photonics 7, 856–863 (2015).
  37. T. E. Gage, P. Dulal, P. A. Solheid, D. J. Flannigan, T. E. Gage, P. Dulal, P. A. Solheid, and D. J. Flannigan, “Si-integrated ultrathin films of phase-pure Y 3 Fe 5 O 12 (YIG) via novel two-step rapid thermal anneal,” Mater. Res. Lett. 0, 1–7 (2017).
  38. P. Dulal, A. D. Block, T. E. Gage, H. A. Haldren, S. Y. Sung, D. C. Hutchings, and B. J. H. Stadler, “Optimized Magneto-optical Isolator Designs Inspired by Seedlayer-Free Terbium Iron Garnets with Opposite Chirality,” ACS Photonics 3, 1818–1825 (2016).
    [Crossref]
  39. P. Dulal, T. E. Gage, A. D. Block, E. Cofell, D. C. Hutchings, and B. J. H. Stadler, “Sputter-deposited seedlayer-free cerium-doped terbium iron garnets for SOI waveguide isolators,” in 2016 IEEE Photonics Conference (IPC) (IEEE, 2016).
    [Crossref]
  40. Y. Shoji, K. Miura, and T. Mizumoto, “Optical nonreciprocal devices based on magneto-optical phase shift in silicon photonics,” J. Opt. 18, 13001 (2016).
    [Crossref]
  41. D. Huang, P. Pintus, C. Zhang, P. Morton, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Dynamically reconfigurable integrated optical circulators,” Optica 4, 23 (2017).
    [Crossref]
  42. D. Huang, P. Pintus, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Electrically driven and thermally tunable integrated optical isolators for silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 22, 271–278 (2016).
    [Crossref]
  43. S. Ghosh, S. Keyvaninia, W. Van Roy, T. Mizumoto, G. Roelkens, and R. Baets, “Adhesively bonded Ce:YIG/SOI integrated optical circulator,” Opt. Lett. 38, 965–967 (2013).
    [Crossref] [PubMed]
  44. S. Ghosh, S. Keyvaninia, Y. Shirato, T. Mizumoto, G. Roelkens, and R. Baets, “Optical isolator for TE polarized light realized by adhesive bonding of Ce:YIG on silicon-on-insulator waveguide circuits,” IEEE Photonics J. 5, 6601108 (2013).
    [Crossref]
  45. D. C. Hutchings, C. Zhang, B. M. Holmes, P. Dulal, A. D. Block, and B. J. H. Stadler, “Faraday polarisation mode conversion in semiconductor waveguides incorporating periodic garnet claddings,” Proc. SPIE 9750, 97500V (2016).
    [Crossref]
  46. D. C. Hutchings and B. M. Holmes, “A waveguide polarization toolset design based on mode beating,” IEEE Photonics J. 3, 450–461 (2011).
    [Crossref]

2018 (1)

B. J. H. Stadler and D. C. Hutchings, “Sputter-deposited magneto-optical garnet for all-mode (transverse electric/transverse magnetic) Faraday rotators,” MRS Bull. 43, 430–435 (2018).
[Crossref]

2017 (3)

C. Zhang, P. Dulal, B. J. H. Stadler, and D. C. Hutchings, “Monolithically-Integrated TE-mode 1D Silicon-on-Insulator Isolators using Seedlayer-Free Garnet,” Sci. Reports 7, 5820 (2017).
[Crossref]

T. E. Gage, P. Dulal, P. A. Solheid, D. J. Flannigan, T. E. Gage, P. Dulal, P. A. Solheid, and D. J. Flannigan, “Si-integrated ultrathin films of phase-pure Y 3 Fe 5 O 12 (YIG) via novel two-step rapid thermal anneal,” Mater. Res. Lett. 0, 1–7 (2017).

D. Huang, P. Pintus, C. Zhang, P. Morton, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Dynamically reconfigurable integrated optical circulators,” Optica 4, 23 (2017).
[Crossref]

2016 (6)

D. Huang, P. Pintus, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Electrically driven and thermally tunable integrated optical isolators for silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 22, 271–278 (2016).
[Crossref]

D. C. Hutchings, C. Zhang, B. M. Holmes, P. Dulal, A. D. Block, and B. J. H. Stadler, “Faraday polarisation mode conversion in semiconductor waveguides incorporating periodic garnet claddings,” Proc. SPIE 9750, 97500V (2016).
[Crossref]

P. Dulal, A. D. Block, T. E. Gage, H. A. Haldren, S. Y. Sung, D. C. Hutchings, and B. J. H. Stadler, “Optimized Magneto-optical Isolator Designs Inspired by Seedlayer-Free Terbium Iron Garnets with Opposite Chirality,” ACS Photonics 3, 1818–1825 (2016).
[Crossref]

Y. Shoji, K. Miura, and T. Mizumoto, “Optical nonreciprocal devices based on magneto-optical phase shift in silicon photonics,” J. Opt. 18, 13001 (2016).
[Crossref]

M. C. Onbasli, L. Beran, M. Zahradník, M. Kučera, R. Antoš, J. Mistrík, G. F. Dionne, M. Veis, and C. A. Ross, “Optical and magneto-optical behavior of Cerium Yttrium Iron Garnet thin films at wavelengths of 200–1770 nm,” Sci. Reports 6, 23640 (2016).
[Crossref]

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

2015 (1)

X. Y. Sun, Q. Du, T. Goto, M. C. Onbasli, D. H. Kim, N. M. Aimon, J. Hu, and C. A. Ross, “Single-Step Deposition of Cerium-Substituted Yttrium Iron Garnet for Monolithic On-Chip Optical Isolation,” ACS Photonics 7, 856–863 (2015).

2014 (3)

B. J. H. Stadler and T. Mizumoto, “Integrated magneto-optical materials and isolators: A review,” IEEE Photonics J. 6, 1–15 (2014).
[Crossref]

A. D. Block, P. Dulal, B. J. H. Stadler, and N. C. A. Seaton, “Growth Parameters of Fully Crystallized YIG, Bi:YIG, and Ce:YIG Films With High Faraday Rotations,” IEEE Photonics J. 6, 1–8 (2014).
[Crossref]

M. C. Onbasli, T. Goto, X. Sun, N. Huynh, and C. A. Ross, “Integration of bulk-quality thin film magneto-optical cerium-doped yttrium iron garnet on silicon nitride photonic substrates,” Opt. Express 22, 25183–25192 (2014).
[Crossref] [PubMed]

2013 (4)

D. C. Hutchings, B. M. Holmes, C. Zhang, P. Dulal, A. D. Block, S. Y. Sung, N. C. A. Seaton, and B. J. H. Stadler, “Quasi-phase-matched Faraday rotation in semiconductor waveguides with a magnetooptic cladding for monolithically integrated optical isolators,” IEEE Photonics J. 5, 6602512 (2013).
[Crossref]

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is – and what is not – an optical isolator,” Nat. Photonics 7, 579–582 (2013).
[Crossref]

S. Ghosh, S. Keyvaninia, W. Van Roy, T. Mizumoto, G. Roelkens, and R. Baets, “Adhesively bonded Ce:YIG/SOI integrated optical circulator,” Opt. Lett. 38, 965–967 (2013).
[Crossref] [PubMed]

S. Ghosh, S. Keyvaninia, Y. Shirato, T. Mizumoto, G. Roelkens, and R. Baets, “Optical isolator for TE polarized light realized by adhesive bonding of Ce:YIG on silicon-on-insulator waveguide circuits,” IEEE Photonics J. 5, 6601108 (2013).
[Crossref]

2012 (3)

2011 (5)

L. Bi, J. Hu, G. F. Dionne, L. Kimerling, and C. A. Ross, “Monolithic integration of chalcogenide glass/iron garnet waveguides and resonators for on-chip nonreciprocal photonic devices,” SPIE 7941, 794105 (2011).

P. Pintus, F. Di Pasquale, and J. E. Bowers, “Design of transverse electric ring isolators for ultra-low-loss Si3N4 waveguides based on the finite element method,” Opt. Lett. 36, 4599–4601 (2011).
[Crossref] [PubMed]

S.-Y. Sung, A. Sharma, A. Block, K. Keuhn, and B. J. H. Stadler, “Magneto-optical garnet waveguides on semiconductor platforms: Magnetics, mechanics, and photonics,” J. Appl. Phys. 109, 07B738 (2011).
[Crossref]

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5, 758–762 (2011).
[Crossref]

D. C. Hutchings and B. M. Holmes, “A waveguide polarization toolset design based on mode beating,” IEEE Photonics J. 3, 450–461 (2011).
[Crossref]

2010 (1)

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
[Crossref]

2009 (1)

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3, 91–94 (2009).
[Crossref]

2008 (1)

R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S. Y. Wang, and R. S. Williams, “Nanoelectronic and nanophotonic interconnect,” Proc. IEEE 96, 230–247 (2008).
[Crossref]

2006 (4)

R. Soref, “The Past, Present, and Future of Silicon Photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
[Crossref]

A. C. Nilsson, C. H. Joyner, D. F. Welch, D. D. Perkins, F. A. Kish, M. L. Mitchell, and R. Nagarajan, “The realization of large-scale photonic integrated circuits and the associated impact on fiber-optic communication systems,” J. Light. Tech. 24, 4674–4683 (2006).
[Crossref]

H. Shimizu and Y. Nakano, “Fabrication and Characterization of an InGaAsp/InP Active Waveguide Optical Isolator With 14.7 dB/mm TE Mode Nonreciprocal Attenuation,” J. Light. Tech. 24, 38 (2006).
[Crossref]

Y. Shoji and T. Mizumoto, “Wideband design of nonreciprocal phase shift magneto-optical isolators using phase adjustment in Mach-Zehnder interferometers,” Appl. Opt. 45, 7144–7150 (2006).
[Crossref] [PubMed]

2005 (2)

S. Y. Sung, X. Qi, and B. J. H. Stadler, “Integrating yttrium iron garnet onto nongarnet substrates with faster deposition rates and high reliability,” Appl. Phys. Lett. 87, 1–3 (2005).
[Crossref]

R. Nagarajan, C. H. Joyner, R. P. Schneider, J. S. Bostak, T. Butrie, A. G. Dentai, V. G. Dominic, et al. Van Leeuwen, J. Webjorn, M. Ziari, D. Perkins, J. Singh, S. G. Grubb, M. S. Reffle, D. G. Mehuys, F. A. Kish, and D. F. Welch, “Large-scale photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 11, 50–65 (2005).
[Crossref]

2003 (3)

J. D. Meindl, “Beyond Moore’s Law: The interconnect era,” Comput. Sci. & Eng. 5, 20–24 (2003).
[Crossref]

T. Tepper, F. Ilievski, C. A. Ross, T. R. Zaman, R. J. Ram, S. Y. Sung, and B. J. H. Stadler, “Magneto-optical properties of iron oxide films,” J. Appl. Phys. 93, 6948 (2003).
[Crossref]

T. Aichele, A. Lorenz, R. Hergt, and P. Görnert, “Garnet layers prepared by liquid phase epitaxy for microwave and magneto-optical applications – a review,” Cryst. Res. Technol. 38, 575–587 (2003).
[Crossref]

2002 (1)

B. Stadler, K. Vaccaro, P. Yip, J. Lorenzo, Y. Li, and M. Cherif, “Integration of Magneto-Optical Garnet Films by Metal – Organic,” Chem. Vap. Deposition 38, 1564–1567 (2002).

1996 (1)

V. J. Fratello, S. J. Licht, and C. D. Brandle, “Innovative improvements in bismuth-doped rare-earth iron garnet Faraday rotators,” IEEE Transactions on Magn. 32, 4102–4107 (1996).
[Crossref]

1982 (1)

1968 (1)

J. F. Dillon, “Origin and Uses of the Faraday Rotation in Magnetic Crystals,” J. Appl. Phys. 39, 922–929 (1968).
[Crossref]

Aichele, T.

T. Aichele, A. Lorenz, R. Hergt, and P. Görnert, “Garnet layers prepared by liquid phase epitaxy for microwave and magneto-optical applications – a review,” Cryst. Res. Technol. 38, 575–587 (2003).
[Crossref]

Aimon, N. M.

X. Y. Sun, Q. Du, T. Goto, M. C. Onbasli, D. H. Kim, N. M. Aimon, J. Hu, and C. A. Ross, “Single-Step Deposition of Cerium-Substituted Yttrium Iron Garnet for Monolithic On-Chip Optical Isolation,” ACS Photonics 7, 856–863 (2015).

Antoš, R.

M. C. Onbasli, L. Beran, M. Zahradník, M. Kučera, R. Antoš, J. Mistrík, G. F. Dionne, M. Veis, and C. A. Ross, “Optical and magneto-optical behavior of Cerium Yttrium Iron Garnet thin films at wavelengths of 200–1770 nm,” Sci. Reports 6, 23640 (2016).
[Crossref]

Asama, K.

Baets, R.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is – and what is not – an optical isolator,” Nat. Photonics 7, 579–582 (2013).
[Crossref]

S. Ghosh, S. Keyvaninia, W. Van Roy, T. Mizumoto, G. Roelkens, and R. Baets, “Adhesively bonded Ce:YIG/SOI integrated optical circulator,” Opt. Lett. 38, 965–967 (2013).
[Crossref] [PubMed]

S. Ghosh, S. Keyvaninia, Y. Shirato, T. Mizumoto, G. Roelkens, and R. Baets, “Optical isolator for TE polarized light realized by adhesive bonding of Ce:YIG on silicon-on-insulator waveguide circuits,” IEEE Photonics J. 5, 6601108 (2013).
[Crossref]

S. Ghosh, S. Keyvavinia, W. Van Roy, T. Mizumoto, G. Roelkens, and R. Baets, “Ce:YIG/Silicon-on-Insulator waveguide optical isolator realized by adhesive bonding,” Opt. Express 20, 1839–1848 (2012).
[Crossref] [PubMed]

Baets, R. G.

S. Ghosh, S. Keyvaninia, Y. Shoji, W. Van Roy, T. Mizumoto, G. Roelkens, and R. G. Baets, “Compact Mach-Zehnder interferometer Ce:YIG/SOI optical isolators,” IEEE Photonics Technol. Lett. 24, 1653–1656 (2012).
[Crossref]

Beausoleil, R. G.

R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S. Y. Wang, and R. S. Williams, “Nanoelectronic and nanophotonic interconnect,” Proc. IEEE 96, 230–247 (2008).
[Crossref]

Beran, L.

M. C. Onbasli, L. Beran, M. Zahradník, M. Kučera, R. Antoš, J. Mistrík, G. F. Dionne, M. Veis, and C. A. Ross, “Optical and magneto-optical behavior of Cerium Yttrium Iron Garnet thin films at wavelengths of 200–1770 nm,” Sci. Reports 6, 23640 (2016).
[Crossref]

Bi, L.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5, 758–762 (2011).
[Crossref]

L. Bi, J. Hu, G. F. Dionne, L. Kimerling, and C. A. Ross, “Monolithic integration of chalcogenide glass/iron garnet waveguides and resonators for on-chip nonreciprocal photonic devices,” SPIE 7941, 794105 (2011).

Block, A.

S.-Y. Sung, A. Sharma, A. Block, K. Keuhn, and B. J. H. Stadler, “Magneto-optical garnet waveguides on semiconductor platforms: Magnetics, mechanics, and photonics,” J. Appl. Phys. 109, 07B738 (2011).
[Crossref]

Block, A. D.

P. Dulal, A. D. Block, T. E. Gage, H. A. Haldren, S. Y. Sung, D. C. Hutchings, and B. J. H. Stadler, “Optimized Magneto-optical Isolator Designs Inspired by Seedlayer-Free Terbium Iron Garnets with Opposite Chirality,” ACS Photonics 3, 1818–1825 (2016).
[Crossref]

D. C. Hutchings, C. Zhang, B. M. Holmes, P. Dulal, A. D. Block, and B. J. H. Stadler, “Faraday polarisation mode conversion in semiconductor waveguides incorporating periodic garnet claddings,” Proc. SPIE 9750, 97500V (2016).
[Crossref]

A. D. Block, P. Dulal, B. J. H. Stadler, and N. C. A. Seaton, “Growth Parameters of Fully Crystallized YIG, Bi:YIG, and Ce:YIG Films With High Faraday Rotations,” IEEE Photonics J. 6, 1–8 (2014).
[Crossref]

D. C. Hutchings, B. M. Holmes, C. Zhang, P. Dulal, A. D. Block, S. Y. Sung, N. C. A. Seaton, and B. J. H. Stadler, “Quasi-phase-matched Faraday rotation in semiconductor waveguides with a magnetooptic cladding for monolithically integrated optical isolators,” IEEE Photonics J. 5, 6602512 (2013).
[Crossref]

P. Dulal, T. E. Gage, A. D. Block, E. Cofell, D. C. Hutchings, and B. J. H. Stadler, “Sputter-deposited seedlayer-free cerium-doped terbium iron garnets for SOI waveguide isolators,” in 2016 IEEE Photonics Conference (IPC) (IEEE, 2016).
[Crossref]

Boeuf, F.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Bostak, J. S.

R. Nagarajan, C. H. Joyner, R. P. Schneider, J. S. Bostak, T. Butrie, A. G. Dentai, V. G. Dominic, et al. Van Leeuwen, J. Webjorn, M. Ziari, D. Perkins, J. Singh, S. G. Grubb, M. S. Reffle, D. G. Mehuys, F. A. Kish, and D. F. Welch, “Large-scale photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 11, 50–65 (2005).
[Crossref]

Bowers, J. E.

D. Huang, P. Pintus, C. Zhang, P. Morton, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Dynamically reconfigurable integrated optical circulators,” Optica 4, 23 (2017).
[Crossref]

D. Huang, P. Pintus, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Electrically driven and thermally tunable integrated optical isolators for silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 22, 271–278 (2016).
[Crossref]

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

P. Pintus, F. Di Pasquale, and J. E. Bowers, “Design of transverse electric ring isolators for ultra-low-loss Si3N4 waveguides based on the finite element method,” Opt. Lett. 36, 4599–4601 (2011).
[Crossref] [PubMed]

Brandle, C. D.

V. J. Fratello, S. J. Licht, and C. D. Brandle, “Innovative improvements in bismuth-doped rare-earth iron garnet Faraday rotators,” IEEE Transactions on Magn. 32, 4102–4107 (1996).
[Crossref]

Butrie, T.

R. Nagarajan, C. H. Joyner, R. P. Schneider, J. S. Bostak, T. Butrie, A. G. Dentai, V. G. Dominic, et al. Van Leeuwen, J. Webjorn, M. Ziari, D. Perkins, J. Singh, S. G. Grubb, M. S. Reffle, D. G. Mehuys, F. A. Kish, and D. F. Welch, “Large-scale photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 11, 50–65 (2005).
[Crossref]

Cassan, E.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Cherif, M.

B. Stadler, K. Vaccaro, P. Yip, J. Lorenzo, Y. Li, and M. Cherif, “Integration of Magneto-Optical Garnet Films by Metal – Organic,” Chem. Vap. Deposition 38, 1564–1567 (2002).

Cofell, E.

P. Dulal, T. E. Gage, A. D. Block, E. Cofell, D. C. Hutchings, and B. J. H. Stadler, “Sputter-deposited seedlayer-free cerium-doped terbium iron garnets for SOI waveguide isolators,” in 2016 IEEE Photonics Conference (IPC) (IEEE, 2016).
[Crossref]

Dentai, A. G.

R. Nagarajan, C. H. Joyner, R. P. Schneider, J. S. Bostak, T. Butrie, A. G. Dentai, V. G. Dominic, et al. Van Leeuwen, J. Webjorn, M. Ziari, D. Perkins, J. Singh, S. G. Grubb, M. S. Reffle, D. G. Mehuys, F. A. Kish, and D. F. Welch, “Large-scale photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 11, 50–65 (2005).
[Crossref]

Di Pasquale, F.

Dillon, J. F.

J. F. Dillon, “Origin and Uses of the Faraday Rotation in Magnetic Crystals,” J. Appl. Phys. 39, 922–929 (1968).
[Crossref]

Dionne, G. F.

M. C. Onbasli, L. Beran, M. Zahradník, M. Kučera, R. Antoš, J. Mistrík, G. F. Dionne, M. Veis, and C. A. Ross, “Optical and magneto-optical behavior of Cerium Yttrium Iron Garnet thin films at wavelengths of 200–1770 nm,” Sci. Reports 6, 23640 (2016).
[Crossref]

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5, 758–762 (2011).
[Crossref]

L. Bi, J. Hu, G. F. Dionne, L. Kimerling, and C. A. Ross, “Monolithic integration of chalcogenide glass/iron garnet waveguides and resonators for on-chip nonreciprocal photonic devices,” SPIE 7941, 794105 (2011).

Doerr, C. R.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is – and what is not – an optical isolator,” Nat. Photonics 7, 579–582 (2013).
[Crossref]

Dominic, V. G.

R. Nagarajan, C. H. Joyner, R. P. Schneider, J. S. Bostak, T. Butrie, A. G. Dentai, V. G. Dominic, et al. Van Leeuwen, J. Webjorn, M. Ziari, D. Perkins, J. Singh, S. G. Grubb, M. S. Reffle, D. G. Mehuys, F. A. Kish, and D. F. Welch, “Large-scale photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 11, 50–65 (2005).
[Crossref]

Du, Q.

X. Y. Sun, Q. Du, T. Goto, M. C. Onbasli, D. H. Kim, N. M. Aimon, J. Hu, and C. A. Ross, “Single-Step Deposition of Cerium-Substituted Yttrium Iron Garnet for Monolithic On-Chip Optical Isolation,” ACS Photonics 7, 856–863 (2015).

Dulal, P.

T. E. Gage, P. Dulal, P. A. Solheid, D. J. Flannigan, T. E. Gage, P. Dulal, P. A. Solheid, and D. J. Flannigan, “Si-integrated ultrathin films of phase-pure Y 3 Fe 5 O 12 (YIG) via novel two-step rapid thermal anneal,” Mater. Res. Lett. 0, 1–7 (2017).

T. E. Gage, P. Dulal, P. A. Solheid, D. J. Flannigan, T. E. Gage, P. Dulal, P. A. Solheid, and D. J. Flannigan, “Si-integrated ultrathin films of phase-pure Y 3 Fe 5 O 12 (YIG) via novel two-step rapid thermal anneal,” Mater. Res. Lett. 0, 1–7 (2017).

C. Zhang, P. Dulal, B. J. H. Stadler, and D. C. Hutchings, “Monolithically-Integrated TE-mode 1D Silicon-on-Insulator Isolators using Seedlayer-Free Garnet,” Sci. Reports 7, 5820 (2017).
[Crossref]

P. Dulal, A. D. Block, T. E. Gage, H. A. Haldren, S. Y. Sung, D. C. Hutchings, and B. J. H. Stadler, “Optimized Magneto-optical Isolator Designs Inspired by Seedlayer-Free Terbium Iron Garnets with Opposite Chirality,” ACS Photonics 3, 1818–1825 (2016).
[Crossref]

D. C. Hutchings, C. Zhang, B. M. Holmes, P. Dulal, A. D. Block, and B. J. H. Stadler, “Faraday polarisation mode conversion in semiconductor waveguides incorporating periodic garnet claddings,” Proc. SPIE 9750, 97500V (2016).
[Crossref]

A. D. Block, P. Dulal, B. J. H. Stadler, and N. C. A. Seaton, “Growth Parameters of Fully Crystallized YIG, Bi:YIG, and Ce:YIG Films With High Faraday Rotations,” IEEE Photonics J. 6, 1–8 (2014).
[Crossref]

D. C. Hutchings, B. M. Holmes, C. Zhang, P. Dulal, A. D. Block, S. Y. Sung, N. C. A. Seaton, and B. J. H. Stadler, “Quasi-phase-matched Faraday rotation in semiconductor waveguides with a magnetooptic cladding for monolithically integrated optical isolators,” IEEE Photonics J. 5, 6602512 (2013).
[Crossref]

P. Dulal, T. E. Gage, A. D. Block, E. Cofell, D. C. Hutchings, and B. J. H. Stadler, “Sputter-deposited seedlayer-free cerium-doped terbium iron garnets for SOI waveguide isolators,” in 2016 IEEE Photonics Conference (IPC) (IEEE, 2016).
[Crossref]

Eich, M.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is – and what is not – an optical isolator,” Nat. Photonics 7, 579–582 (2013).
[Crossref]

Fan, S.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is – and what is not – an optical isolator,” Nat. Photonics 7, 579–582 (2013).
[Crossref]

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3, 91–94 (2009).
[Crossref]

Fédéli, J.-M.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Flannigan, D. J.

T. E. Gage, P. Dulal, P. A. Solheid, D. J. Flannigan, T. E. Gage, P. Dulal, P. A. Solheid, and D. J. Flannigan, “Si-integrated ultrathin films of phase-pure Y 3 Fe 5 O 12 (YIG) via novel two-step rapid thermal anneal,” Mater. Res. Lett. 0, 1–7 (2017).

T. E. Gage, P. Dulal, P. A. Solheid, D. J. Flannigan, T. E. Gage, P. Dulal, P. A. Solheid, and D. J. Flannigan, “Si-integrated ultrathin films of phase-pure Y 3 Fe 5 O 12 (YIG) via novel two-step rapid thermal anneal,” Mater. Res. Lett. 0, 1–7 (2017).

Fratello, V.

V. Fratello and R. Wolfe, Epitaxial Garnet Films for Nonreciprocal Magneto-Optic Devices in Handbook of Thin Films (SPIE Press, 2000).

Fratello, V. J.

V. J. Fratello, S. J. Licht, and C. D. Brandle, “Innovative improvements in bismuth-doped rare-earth iron garnet Faraday rotators,” IEEE Transactions on Magn. 32, 4102–4107 (1996).
[Crossref]

Freude, W.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is – and what is not – an optical isolator,” Nat. Photonics 7, 579–582 (2013).
[Crossref]

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
[Crossref]

Gage, T. E.

T. E. Gage, P. Dulal, P. A. Solheid, D. J. Flannigan, T. E. Gage, P. Dulal, P. A. Solheid, and D. J. Flannigan, “Si-integrated ultrathin films of phase-pure Y 3 Fe 5 O 12 (YIG) via novel two-step rapid thermal anneal,” Mater. Res. Lett. 0, 1–7 (2017).

T. E. Gage, P. Dulal, P. A. Solheid, D. J. Flannigan, T. E. Gage, P. Dulal, P. A. Solheid, and D. J. Flannigan, “Si-integrated ultrathin films of phase-pure Y 3 Fe 5 O 12 (YIG) via novel two-step rapid thermal anneal,” Mater. Res. Lett. 0, 1–7 (2017).

P. Dulal, A. D. Block, T. E. Gage, H. A. Haldren, S. Y. Sung, D. C. Hutchings, and B. J. H. Stadler, “Optimized Magneto-optical Isolator Designs Inspired by Seedlayer-Free Terbium Iron Garnets with Opposite Chirality,” ACS Photonics 3, 1818–1825 (2016).
[Crossref]

P. Dulal, T. E. Gage, A. D. Block, E. Cofell, D. C. Hutchings, and B. J. H. Stadler, “Sputter-deposited seedlayer-free cerium-doped terbium iron garnets for SOI waveguide isolators,” in 2016 IEEE Photonics Conference (IPC) (IEEE, 2016).
[Crossref]

K. Srinivasan, T. E. Gage, and B. J. H. Stadler, “Seed-Layer Free Cerium-Doped Terbium Iron Garnet on Non-Garnet Substrates for Photonic Isolators,” in Conference on Lasers and Electro-Optics, (Optical Society of America, San Jose, California, 2018), OSA Technical Digest (online), p. SW4I.5.
[Crossref]

Ghosh, S.

S. Ghosh, S. Keyvaninia, W. Van Roy, T. Mizumoto, G. Roelkens, and R. Baets, “Adhesively bonded Ce:YIG/SOI integrated optical circulator,” Opt. Lett. 38, 965–967 (2013).
[Crossref] [PubMed]

S. Ghosh, S. Keyvaninia, Y. Shirato, T. Mizumoto, G. Roelkens, and R. Baets, “Optical isolator for TE polarized light realized by adhesive bonding of Ce:YIG on silicon-on-insulator waveguide circuits,” IEEE Photonics J. 5, 6601108 (2013).
[Crossref]

S. Ghosh, S. Keyvavinia, W. Van Roy, T. Mizumoto, G. Roelkens, and R. Baets, “Ce:YIG/Silicon-on-Insulator waveguide optical isolator realized by adhesive bonding,” Opt. Express 20, 1839–1848 (2012).
[Crossref] [PubMed]

S. Ghosh, S. Keyvaninia, Y. Shoji, W. Van Roy, T. Mizumoto, G. Roelkens, and R. G. Baets, “Compact Mach-Zehnder interferometer Ce:YIG/SOI optical isolators,” IEEE Photonics Technol. Lett. 24, 1653–1656 (2012).
[Crossref]

Görnert, P.

T. Aichele, A. Lorenz, R. Hergt, and P. Görnert, “Garnet layers prepared by liquid phase epitaxy for microwave and magneto-optical applications – a review,” Cryst. Res. Technol. 38, 575–587 (2003).
[Crossref]

Goto, T.

Grubb, S. G.

R. Nagarajan, C. H. Joyner, R. P. Schneider, J. S. Bostak, T. Butrie, A. G. Dentai, V. G. Dominic, et al. Van Leeuwen, J. Webjorn, M. Ziari, D. Perkins, J. Singh, S. G. Grubb, M. S. Reffle, D. G. Mehuys, F. A. Kish, and D. F. Welch, “Large-scale photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 11, 50–65 (2005).
[Crossref]

Haldren, H. A.

P. Dulal, A. D. Block, T. E. Gage, H. A. Haldren, S. Y. Sung, D. C. Hutchings, and B. J. H. Stadler, “Optimized Magneto-optical Isolator Designs Inspired by Seedlayer-Free Terbium Iron Garnets with Opposite Chirality,” ACS Photonics 3, 1818–1825 (2016).
[Crossref]

Hartmann, J.-M.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Hergt, R.

T. Aichele, A. Lorenz, R. Hergt, and P. Görnert, “Garnet layers prepared by liquid phase epitaxy for microwave and magneto-optical applications – a review,” Cryst. Res. Technol. 38, 575–587 (2003).
[Crossref]

Holmes, B. M.

D. C. Hutchings, C. Zhang, B. M. Holmes, P. Dulal, A. D. Block, and B. J. H. Stadler, “Faraday polarisation mode conversion in semiconductor waveguides incorporating periodic garnet claddings,” Proc. SPIE 9750, 97500V (2016).
[Crossref]

D. C. Hutchings, B. M. Holmes, C. Zhang, P. Dulal, A. D. Block, S. Y. Sung, N. C. A. Seaton, and B. J. H. Stadler, “Quasi-phase-matched Faraday rotation in semiconductor waveguides with a magnetooptic cladding for monolithically integrated optical isolators,” IEEE Photonics J. 5, 6602512 (2013).
[Crossref]

D. C. Hutchings and B. M. Holmes, “A waveguide polarization toolset design based on mode beating,” IEEE Photonics J. 3, 450–461 (2011).
[Crossref]

Hu, J.

X. Y. Sun, Q. Du, T. Goto, M. C. Onbasli, D. H. Kim, N. M. Aimon, J. Hu, and C. A. Ross, “Single-Step Deposition of Cerium-Substituted Yttrium Iron Garnet for Monolithic On-Chip Optical Isolation,” ACS Photonics 7, 856–863 (2015).

L. Bi, J. Hu, G. F. Dionne, L. Kimerling, and C. A. Ross, “Monolithic integration of chalcogenide glass/iron garnet waveguides and resonators for on-chip nonreciprocal photonic devices,” SPIE 7941, 794105 (2011).

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5, 758–762 (2011).
[Crossref]

Huang, D.

D. Huang, P. Pintus, C. Zhang, P. Morton, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Dynamically reconfigurable integrated optical circulators,” Optica 4, 23 (2017).
[Crossref]

D. Huang, P. Pintus, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Electrically driven and thermally tunable integrated optical isolators for silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 22, 271–278 (2016).
[Crossref]

Hutchings, D. C.

B. J. H. Stadler and D. C. Hutchings, “Sputter-deposited magneto-optical garnet for all-mode (transverse electric/transverse magnetic) Faraday rotators,” MRS Bull. 43, 430–435 (2018).
[Crossref]

C. Zhang, P. Dulal, B. J. H. Stadler, and D. C. Hutchings, “Monolithically-Integrated TE-mode 1D Silicon-on-Insulator Isolators using Seedlayer-Free Garnet,” Sci. Reports 7, 5820 (2017).
[Crossref]

P. Dulal, A. D. Block, T. E. Gage, H. A. Haldren, S. Y. Sung, D. C. Hutchings, and B. J. H. Stadler, “Optimized Magneto-optical Isolator Designs Inspired by Seedlayer-Free Terbium Iron Garnets with Opposite Chirality,” ACS Photonics 3, 1818–1825 (2016).
[Crossref]

D. C. Hutchings, C. Zhang, B. M. Holmes, P. Dulal, A. D. Block, and B. J. H. Stadler, “Faraday polarisation mode conversion in semiconductor waveguides incorporating periodic garnet claddings,” Proc. SPIE 9750, 97500V (2016).
[Crossref]

D. C. Hutchings, B. M. Holmes, C. Zhang, P. Dulal, A. D. Block, S. Y. Sung, N. C. A. Seaton, and B. J. H. Stadler, “Quasi-phase-matched Faraday rotation in semiconductor waveguides with a magnetooptic cladding for monolithically integrated optical isolators,” IEEE Photonics J. 5, 6602512 (2013).
[Crossref]

D. C. Hutchings and B. M. Holmes, “A waveguide polarization toolset design based on mode beating,” IEEE Photonics J. 3, 450–461 (2011).
[Crossref]

P. Dulal, T. E. Gage, A. D. Block, E. Cofell, D. C. Hutchings, and B. J. H. Stadler, “Sputter-deposited seedlayer-free cerium-doped terbium iron garnets for SOI waveguide isolators,” in 2016 IEEE Photonics Conference (IPC) (IEEE, 2016).
[Crossref]

Huynh, N.

Ilievski, F.

T. Tepper, F. Ilievski, C. A. Ross, T. R. Zaman, R. J. Ram, S. Y. Sung, and B. J. H. Stadler, “Magneto-optical properties of iron oxide films,” J. Appl. Phys. 93, 6948 (2003).
[Crossref]

Jalas, D.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is – and what is not – an optical isolator,” Nat. Photonics 7, 579–582 (2013).
[Crossref]

Jiang, P.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5, 758–762 (2011).
[Crossref]

Joannopoulos, J. D.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is – and what is not – an optical isolator,” Nat. Photonics 7, 579–582 (2013).
[Crossref]

Joyner, C. H.

A. C. Nilsson, C. H. Joyner, D. F. Welch, D. D. Perkins, F. A. Kish, M. L. Mitchell, and R. Nagarajan, “The realization of large-scale photonic integrated circuits and the associated impact on fiber-optic communication systems,” J. Light. Tech. 24, 4674–4683 (2006).
[Crossref]

R. Nagarajan, C. H. Joyner, R. P. Schneider, J. S. Bostak, T. Butrie, A. G. Dentai, V. G. Dominic, et al. Van Leeuwen, J. Webjorn, M. Ziari, D. Perkins, J. Singh, S. G. Grubb, M. S. Reffle, D. G. Mehuys, F. A. Kish, and D. F. Welch, “Large-scale photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 11, 50–65 (2005).
[Crossref]

Keuhn, K.

S.-Y. Sung, A. Sharma, A. Block, K. Keuhn, and B. J. H. Stadler, “Magneto-optical garnet waveguides on semiconductor platforms: Magnetics, mechanics, and photonics,” J. Appl. Phys. 109, 07B738 (2011).
[Crossref]

Keyvaninia, S.

S. Ghosh, S. Keyvaninia, Y. Shirato, T. Mizumoto, G. Roelkens, and R. Baets, “Optical isolator for TE polarized light realized by adhesive bonding of Ce:YIG on silicon-on-insulator waveguide circuits,” IEEE Photonics J. 5, 6601108 (2013).
[Crossref]

S. Ghosh, S. Keyvaninia, W. Van Roy, T. Mizumoto, G. Roelkens, and R. Baets, “Adhesively bonded Ce:YIG/SOI integrated optical circulator,” Opt. Lett. 38, 965–967 (2013).
[Crossref] [PubMed]

S. Ghosh, S. Keyvaninia, Y. Shoji, W. Van Roy, T. Mizumoto, G. Roelkens, and R. G. Baets, “Compact Mach-Zehnder interferometer Ce:YIG/SOI optical isolators,” IEEE Photonics Technol. Lett. 24, 1653–1656 (2012).
[Crossref]

Keyvavinia, S.

Kim, D. H.

X. Y. Sun, Q. Du, T. Goto, M. C. Onbasli, D. H. Kim, N. M. Aimon, J. Hu, and C. A. Ross, “Single-Step Deposition of Cerium-Substituted Yttrium Iron Garnet for Monolithic On-Chip Optical Isolation,” ACS Photonics 7, 856–863 (2015).

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5, 758–762 (2011).
[Crossref]

Kimerling, L.

L. Bi, J. Hu, G. F. Dionne, L. Kimerling, and C. A. Ross, “Monolithic integration of chalcogenide glass/iron garnet waveguides and resonators for on-chip nonreciprocal photonic devices,” SPIE 7941, 794105 (2011).

Kimerling, L. C.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5, 758–762 (2011).
[Crossref]

Kish, F. A.

A. C. Nilsson, C. H. Joyner, D. F. Welch, D. D. Perkins, F. A. Kish, M. L. Mitchell, and R. Nagarajan, “The realization of large-scale photonic integrated circuits and the associated impact on fiber-optic communication systems,” J. Light. Tech. 24, 4674–4683 (2006).
[Crossref]

R. Nagarajan, C. H. Joyner, R. P. Schneider, J. S. Bostak, T. Butrie, A. G. Dentai, V. G. Dominic, et al. Van Leeuwen, J. Webjorn, M. Ziari, D. Perkins, J. Singh, S. G. Grubb, M. S. Reffle, D. G. Mehuys, F. A. Kish, and D. F. Welch, “Large-scale photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 11, 50–65 (2005).
[Crossref]

Komljenovic, T.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Koos, C.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
[Crossref]

Kucera, M.

M. C. Onbasli, L. Beran, M. Zahradník, M. Kučera, R. Antoš, J. Mistrík, G. F. Dionne, M. Veis, and C. A. Ross, “Optical and magneto-optical behavior of Cerium Yttrium Iron Garnet thin films at wavelengths of 200–1770 nm,” Sci. Reports 6, 23640 (2016).
[Crossref]

Kuekes, P. J.

R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S. Y. Wang, and R. S. Williams, “Nanoelectronic and nanophotonic interconnect,” Proc. IEEE 96, 230–247 (2008).
[Crossref]

Leuthold, J.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
[Crossref]

Li, Y.

B. Stadler, K. Vaccaro, P. Yip, J. Lorenzo, Y. Li, and M. Cherif, “Integration of Magneto-Optical Garnet Films by Metal – Organic,” Chem. Vap. Deposition 38, 1564–1567 (2002).

Licht, S. J.

V. J. Fratello, S. J. Licht, and C. D. Brandle, “Innovative improvements in bismuth-doped rare-earth iron garnet Faraday rotators,” IEEE Transactions on Magn. 32, 4102–4107 (1996).
[Crossref]

Lorenz, A.

T. Aichele, A. Lorenz, R. Hergt, and P. Görnert, “Garnet layers prepared by liquid phase epitaxy for microwave and magneto-optical applications – a review,” Cryst. Res. Technol. 38, 575–587 (2003).
[Crossref]

Lorenzo, J.

B. Stadler, K. Vaccaro, P. Yip, J. Lorenzo, Y. Li, and M. Cherif, “Integration of Magneto-Optical Garnet Films by Metal – Organic,” Chem. Vap. Deposition 38, 1564–1567 (2002).

Marris-Morini, D.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Mashanovich, G. Z.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Mehuys, D. G.

R. Nagarajan, C. H. Joyner, R. P. Schneider, J. S. Bostak, T. Butrie, A. G. Dentai, V. G. Dominic, et al. Van Leeuwen, J. Webjorn, M. Ziari, D. Perkins, J. Singh, S. G. Grubb, M. S. Reffle, D. G. Mehuys, F. A. Kish, and D. F. Welch, “Large-scale photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 11, 50–65 (2005).
[Crossref]

Meindl, J. D.

J. D. Meindl, “Beyond Moore’s Law: The interconnect era,” Comput. Sci. & Eng. 5, 20–24 (2003).
[Crossref]

Melloni, A.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is – and what is not – an optical isolator,” Nat. Photonics 7, 579–582 (2013).
[Crossref]

Mistrík, J.

M. C. Onbasli, L. Beran, M. Zahradník, M. Kučera, R. Antoš, J. Mistrík, G. F. Dionne, M. Veis, and C. A. Ross, “Optical and magneto-optical behavior of Cerium Yttrium Iron Garnet thin films at wavelengths of 200–1770 nm,” Sci. Reports 6, 23640 (2016).
[Crossref]

Mitchell, M. L.

A. C. Nilsson, C. H. Joyner, D. F. Welch, D. D. Perkins, F. A. Kish, M. L. Mitchell, and R. Nagarajan, “The realization of large-scale photonic integrated circuits and the associated impact on fiber-optic communication systems,” J. Light. Tech. 24, 4674–4683 (2006).
[Crossref]

Miura, K.

Y. Shoji, K. Miura, and T. Mizumoto, “Optical nonreciprocal devices based on magneto-optical phase shift in silicon photonics,” J. Opt. 18, 13001 (2016).
[Crossref]

Mizumoto, T.

D. Huang, P. Pintus, C. Zhang, P. Morton, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Dynamically reconfigurable integrated optical circulators,” Optica 4, 23 (2017).
[Crossref]

D. Huang, P. Pintus, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Electrically driven and thermally tunable integrated optical isolators for silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 22, 271–278 (2016).
[Crossref]

Y. Shoji, K. Miura, and T. Mizumoto, “Optical nonreciprocal devices based on magneto-optical phase shift in silicon photonics,” J. Opt. 18, 13001 (2016).
[Crossref]

B. J. H. Stadler and T. Mizumoto, “Integrated magneto-optical materials and isolators: A review,” IEEE Photonics J. 6, 1–15 (2014).
[Crossref]

S. Ghosh, S. Keyvaninia, W. Van Roy, T. Mizumoto, G. Roelkens, and R. Baets, “Adhesively bonded Ce:YIG/SOI integrated optical circulator,” Opt. Lett. 38, 965–967 (2013).
[Crossref] [PubMed]

S. Ghosh, S. Keyvaninia, Y. Shirato, T. Mizumoto, G. Roelkens, and R. Baets, “Optical isolator for TE polarized light realized by adhesive bonding of Ce:YIG on silicon-on-insulator waveguide circuits,” IEEE Photonics J. 5, 6601108 (2013).
[Crossref]

S. Ghosh, S. Keyvavinia, W. Van Roy, T. Mizumoto, G. Roelkens, and R. Baets, “Ce:YIG/Silicon-on-Insulator waveguide optical isolator realized by adhesive bonding,” Opt. Express 20, 1839–1848 (2012).
[Crossref] [PubMed]

S. Ghosh, S. Keyvaninia, Y. Shoji, W. Van Roy, T. Mizumoto, G. Roelkens, and R. G. Baets, “Compact Mach-Zehnder interferometer Ce:YIG/SOI optical isolators,” IEEE Photonics Technol. Lett. 24, 1653–1656 (2012).
[Crossref]

Y. Shoji and T. Mizumoto, “Wideband design of nonreciprocal phase shift magneto-optical isolators using phase adjustment in Mach-Zehnder interferometers,” Appl. Opt. 45, 7144–7150 (2006).
[Crossref] [PubMed]

Morton, P.

Nagarajan, R.

A. C. Nilsson, C. H. Joyner, D. F. Welch, D. D. Perkins, F. A. Kish, M. L. Mitchell, and R. Nagarajan, “The realization of large-scale photonic integrated circuits and the associated impact on fiber-optic communication systems,” J. Light. Tech. 24, 4674–4683 (2006).
[Crossref]

R. Nagarajan, C. H. Joyner, R. P. Schneider, J. S. Bostak, T. Butrie, A. G. Dentai, V. G. Dominic, et al. Van Leeuwen, J. Webjorn, M. Ziari, D. Perkins, J. Singh, S. G. Grubb, M. S. Reffle, D. G. Mehuys, F. A. Kish, and D. F. Welch, “Large-scale photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 11, 50–65 (2005).
[Crossref]

Nakano, Y.

H. Shimizu and Y. Nakano, “Fabrication and Characterization of an InGaAsp/InP Active Waveguide Optical Isolator With 14.7 dB/mm TE Mode Nonreciprocal Attenuation,” J. Light. Tech. 24, 38 (2006).
[Crossref]

M. Takenaka and Y. Nakano, “Proposal of a novel semiconductor optical waveguide isolator,” in Conference Proceedings. Eleventh International Conference on Indium Phosphide and Related Materials (IPRM’99) (Cat. No.99CH36362), (IEEE, 1999), pp. 289–292.
[Crossref]

Nedeljkovic, M.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Nilsson, A. C.

A. C. Nilsson, C. H. Joyner, D. F. Welch, D. D. Perkins, F. A. Kish, M. L. Mitchell, and R. Nagarajan, “The realization of large-scale photonic integrated circuits and the associated impact on fiber-optic communication systems,” J. Light. Tech. 24, 4674–4683 (2006).
[Crossref]

O’Brien, P.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Onbasli, M. C.

M. C. Onbasli, L. Beran, M. Zahradník, M. Kučera, R. Antoš, J. Mistrík, G. F. Dionne, M. Veis, and C. A. Ross, “Optical and magneto-optical behavior of Cerium Yttrium Iron Garnet thin films at wavelengths of 200–1770 nm,” Sci. Reports 6, 23640 (2016).
[Crossref]

X. Y. Sun, Q. Du, T. Goto, M. C. Onbasli, D. H. Kim, N. M. Aimon, J. Hu, and C. A. Ross, “Single-Step Deposition of Cerium-Substituted Yttrium Iron Garnet for Monolithic On-Chip Optical Isolation,” ACS Photonics 7, 856–863 (2015).

M. C. Onbasli, T. Goto, X. Sun, N. Huynh, and C. A. Ross, “Integration of bulk-quality thin film magneto-optical cerium-doped yttrium iron garnet on silicon nitride photonic substrates,” Opt. Express 22, 25183–25192 (2014).
[Crossref] [PubMed]

T. Goto, M. C. Onbaşlı, and C. A. Ross, “Magneto-optical properties of cerium substituted yttrium iron garnet films with reduced thermal budget for monolithic photonic integrated circuits,” Opt. Express 20, 28507–28517 (2012).
[Crossref] [PubMed]

Perkins, D.

R. Nagarajan, C. H. Joyner, R. P. Schneider, J. S. Bostak, T. Butrie, A. G. Dentai, V. G. Dominic, et al. Van Leeuwen, J. Webjorn, M. Ziari, D. Perkins, J. Singh, S. G. Grubb, M. S. Reffle, D. G. Mehuys, F. A. Kish, and D. F. Welch, “Large-scale photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 11, 50–65 (2005).
[Crossref]

Perkins, D. D.

A. C. Nilsson, C. H. Joyner, D. F. Welch, D. D. Perkins, F. A. Kish, M. L. Mitchell, and R. Nagarajan, “The realization of large-scale photonic integrated circuits and the associated impact on fiber-optic communication systems,” J. Light. Tech. 24, 4674–4683 (2006).
[Crossref]

Petrov, A.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is – and what is not – an optical isolator,” Nat. Photonics 7, 579–582 (2013).
[Crossref]

Pintus, P.

Popovic, M.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is – and what is not – an optical isolator,” Nat. Photonics 7, 579–582 (2013).
[Crossref]

Qi, X.

S. Y. Sung, X. Qi, and B. J. H. Stadler, “Integrating yttrium iron garnet onto nongarnet substrates with faster deposition rates and high reliability,” Appl. Phys. Lett. 87, 1–3 (2005).
[Crossref]

Ram, R. J.

T. Tepper, F. Ilievski, C. A. Ross, T. R. Zaman, R. J. Ram, S. Y. Sung, and B. J. H. Stadler, “Magneto-optical properties of iron oxide films,” J. Appl. Phys. 93, 6948 (2003).
[Crossref]

Reed, G. T.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Reffle, M. S.

R. Nagarajan, C. H. Joyner, R. P. Schneider, J. S. Bostak, T. Butrie, A. G. Dentai, V. G. Dominic, et al. Van Leeuwen, J. Webjorn, M. Ziari, D. Perkins, J. Singh, S. G. Grubb, M. S. Reffle, D. G. Mehuys, F. A. Kish, and D. F. Welch, “Large-scale photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 11, 50–65 (2005).
[Crossref]

Renner, H.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is – and what is not – an optical isolator,” Nat. Photonics 7, 579–582 (2013).
[Crossref]

Roelkens, G.

S. Ghosh, S. Keyvaninia, Y. Shirato, T. Mizumoto, G. Roelkens, and R. Baets, “Optical isolator for TE polarized light realized by adhesive bonding of Ce:YIG on silicon-on-insulator waveguide circuits,” IEEE Photonics J. 5, 6601108 (2013).
[Crossref]

S. Ghosh, S. Keyvaninia, W. Van Roy, T. Mizumoto, G. Roelkens, and R. Baets, “Adhesively bonded Ce:YIG/SOI integrated optical circulator,” Opt. Lett. 38, 965–967 (2013).
[Crossref] [PubMed]

S. Ghosh, S. Keyvavinia, W. Van Roy, T. Mizumoto, G. Roelkens, and R. Baets, “Ce:YIG/Silicon-on-Insulator waveguide optical isolator realized by adhesive bonding,” Opt. Express 20, 1839–1848 (2012).
[Crossref] [PubMed]

S. Ghosh, S. Keyvaninia, Y. Shoji, W. Van Roy, T. Mizumoto, G. Roelkens, and R. G. Baets, “Compact Mach-Zehnder interferometer Ce:YIG/SOI optical isolators,” IEEE Photonics Technol. Lett. 24, 1653–1656 (2012).
[Crossref]

Ross, C. A.

M. C. Onbasli, L. Beran, M. Zahradník, M. Kučera, R. Antoš, J. Mistrík, G. F. Dionne, M. Veis, and C. A. Ross, “Optical and magneto-optical behavior of Cerium Yttrium Iron Garnet thin films at wavelengths of 200–1770 nm,” Sci. Reports 6, 23640 (2016).
[Crossref]

X. Y. Sun, Q. Du, T. Goto, M. C. Onbasli, D. H. Kim, N. M. Aimon, J. Hu, and C. A. Ross, “Single-Step Deposition of Cerium-Substituted Yttrium Iron Garnet for Monolithic On-Chip Optical Isolation,” ACS Photonics 7, 856–863 (2015).

M. C. Onbasli, T. Goto, X. Sun, N. Huynh, and C. A. Ross, “Integration of bulk-quality thin film magneto-optical cerium-doped yttrium iron garnet on silicon nitride photonic substrates,” Opt. Express 22, 25183–25192 (2014).
[Crossref] [PubMed]

T. Goto, M. C. Onbaşlı, and C. A. Ross, “Magneto-optical properties of cerium substituted yttrium iron garnet films with reduced thermal budget for monolithic photonic integrated circuits,” Opt. Express 20, 28507–28517 (2012).
[Crossref] [PubMed]

L. Bi, J. Hu, G. F. Dionne, L. Kimerling, and C. A. Ross, “Monolithic integration of chalcogenide glass/iron garnet waveguides and resonators for on-chip nonreciprocal photonic devices,” SPIE 7941, 794105 (2011).

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5, 758–762 (2011).
[Crossref]

T. Tepper, F. Ilievski, C. A. Ross, T. R. Zaman, R. J. Ram, S. Y. Sung, and B. J. H. Stadler, “Magneto-optical properties of iron oxide films,” J. Appl. Phys. 93, 6948 (2003).
[Crossref]

Schmid, J. H.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Schneider, R. P.

R. Nagarajan, C. H. Joyner, R. P. Schneider, J. S. Bostak, T. Butrie, A. G. Dentai, V. G. Dominic, et al. Van Leeuwen, J. Webjorn, M. Ziari, D. Perkins, J. Singh, S. G. Grubb, M. S. Reffle, D. G. Mehuys, F. A. Kish, and D. F. Welch, “Large-scale photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 11, 50–65 (2005).
[Crossref]

Seaton, N. C. A.

A. D. Block, P. Dulal, B. J. H. Stadler, and N. C. A. Seaton, “Growth Parameters of Fully Crystallized YIG, Bi:YIG, and Ce:YIG Films With High Faraday Rotations,” IEEE Photonics J. 6, 1–8 (2014).
[Crossref]

D. C. Hutchings, B. M. Holmes, C. Zhang, P. Dulal, A. D. Block, S. Y. Sung, N. C. A. Seaton, and B. J. H. Stadler, “Quasi-phase-matched Faraday rotation in semiconductor waveguides with a magnetooptic cladding for monolithically integrated optical isolators,” IEEE Photonics J. 5, 6602512 (2013).
[Crossref]

Sharma, A.

S.-Y. Sung, A. Sharma, A. Block, K. Keuhn, and B. J. H. Stadler, “Magneto-optical garnet waveguides on semiconductor platforms: Magnetics, mechanics, and photonics,” J. Appl. Phys. 109, 07B738 (2011).
[Crossref]

Shimizu, H.

H. Shimizu and Y. Nakano, “Fabrication and Characterization of an InGaAsp/InP Active Waveguide Optical Isolator With 14.7 dB/mm TE Mode Nonreciprocal Attenuation,” J. Light. Tech. 24, 38 (2006).
[Crossref]

Shirasaki, M.

Shirato, Y.

S. Ghosh, S. Keyvaninia, Y. Shirato, T. Mizumoto, G. Roelkens, and R. Baets, “Optical isolator for TE polarized light realized by adhesive bonding of Ce:YIG on silicon-on-insulator waveguide circuits,” IEEE Photonics J. 5, 6601108 (2013).
[Crossref]

Shoji, Y.

D. Huang, P. Pintus, C. Zhang, P. Morton, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Dynamically reconfigurable integrated optical circulators,” Optica 4, 23 (2017).
[Crossref]

Y. Shoji, K. Miura, and T. Mizumoto, “Optical nonreciprocal devices based on magneto-optical phase shift in silicon photonics,” J. Opt. 18, 13001 (2016).
[Crossref]

D. Huang, P. Pintus, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Electrically driven and thermally tunable integrated optical isolators for silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 22, 271–278 (2016).
[Crossref]

S. Ghosh, S. Keyvaninia, Y. Shoji, W. Van Roy, T. Mizumoto, G. Roelkens, and R. G. Baets, “Compact Mach-Zehnder interferometer Ce:YIG/SOI optical isolators,” IEEE Photonics Technol. Lett. 24, 1653–1656 (2012).
[Crossref]

Y. Shoji and T. Mizumoto, “Wideband design of nonreciprocal phase shift magneto-optical isolators using phase adjustment in Mach-Zehnder interferometers,” Appl. Opt. 45, 7144–7150 (2006).
[Crossref] [PubMed]

Singh, J.

R. Nagarajan, C. H. Joyner, R. P. Schneider, J. S. Bostak, T. Butrie, A. G. Dentai, V. G. Dominic, et al. Van Leeuwen, J. Webjorn, M. Ziari, D. Perkins, J. Singh, S. G. Grubb, M. S. Reffle, D. G. Mehuys, F. A. Kish, and D. F. Welch, “Large-scale photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 11, 50–65 (2005).
[Crossref]

Snider, G. S.

R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S. Y. Wang, and R. S. Williams, “Nanoelectronic and nanophotonic interconnect,” Proc. IEEE 96, 230–247 (2008).
[Crossref]

Solheid, P. A.

T. E. Gage, P. Dulal, P. A. Solheid, D. J. Flannigan, T. E. Gage, P. Dulal, P. A. Solheid, and D. J. Flannigan, “Si-integrated ultrathin films of phase-pure Y 3 Fe 5 O 12 (YIG) via novel two-step rapid thermal anneal,” Mater. Res. Lett. 0, 1–7 (2017).

T. E. Gage, P. Dulal, P. A. Solheid, D. J. Flannigan, T. E. Gage, P. Dulal, P. A. Solheid, and D. J. Flannigan, “Si-integrated ultrathin films of phase-pure Y 3 Fe 5 O 12 (YIG) via novel two-step rapid thermal anneal,” Mater. Res. Lett. 0, 1–7 (2017).

Soref, R.

R. Soref, “The Past, Present, and Future of Silicon Photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
[Crossref]

Srinivasan, K.

K. Srinivasan, T. E. Gage, and B. J. H. Stadler, “Seed-Layer Free Cerium-Doped Terbium Iron Garnet on Non-Garnet Substrates for Photonic Isolators,” in Conference on Lasers and Electro-Optics, (Optical Society of America, San Jose, California, 2018), OSA Technical Digest (online), p. SW4I.5.
[Crossref]

Stadler, B.

B. Stadler, K. Vaccaro, P. Yip, J. Lorenzo, Y. Li, and M. Cherif, “Integration of Magneto-Optical Garnet Films by Metal – Organic,” Chem. Vap. Deposition 38, 1564–1567 (2002).

Stadler, B. J. H.

B. J. H. Stadler and D. C. Hutchings, “Sputter-deposited magneto-optical garnet for all-mode (transverse electric/transverse magnetic) Faraday rotators,” MRS Bull. 43, 430–435 (2018).
[Crossref]

C. Zhang, P. Dulal, B. J. H. Stadler, and D. C. Hutchings, “Monolithically-Integrated TE-mode 1D Silicon-on-Insulator Isolators using Seedlayer-Free Garnet,” Sci. Reports 7, 5820 (2017).
[Crossref]

P. Dulal, A. D. Block, T. E. Gage, H. A. Haldren, S. Y. Sung, D. C. Hutchings, and B. J. H. Stadler, “Optimized Magneto-optical Isolator Designs Inspired by Seedlayer-Free Terbium Iron Garnets with Opposite Chirality,” ACS Photonics 3, 1818–1825 (2016).
[Crossref]

D. C. Hutchings, C. Zhang, B. M. Holmes, P. Dulal, A. D. Block, and B. J. H. Stadler, “Faraday polarisation mode conversion in semiconductor waveguides incorporating periodic garnet claddings,” Proc. SPIE 9750, 97500V (2016).
[Crossref]

A. D. Block, P. Dulal, B. J. H. Stadler, and N. C. A. Seaton, “Growth Parameters of Fully Crystallized YIG, Bi:YIG, and Ce:YIG Films With High Faraday Rotations,” IEEE Photonics J. 6, 1–8 (2014).
[Crossref]

B. J. H. Stadler and T. Mizumoto, “Integrated magneto-optical materials and isolators: A review,” IEEE Photonics J. 6, 1–15 (2014).
[Crossref]

D. C. Hutchings, B. M. Holmes, C. Zhang, P. Dulal, A. D. Block, S. Y. Sung, N. C. A. Seaton, and B. J. H. Stadler, “Quasi-phase-matched Faraday rotation in semiconductor waveguides with a magnetooptic cladding for monolithically integrated optical isolators,” IEEE Photonics J. 5, 6602512 (2013).
[Crossref]

S.-Y. Sung, A. Sharma, A. Block, K. Keuhn, and B. J. H. Stadler, “Magneto-optical garnet waveguides on semiconductor platforms: Magnetics, mechanics, and photonics,” J. Appl. Phys. 109, 07B738 (2011).
[Crossref]

S. Y. Sung, X. Qi, and B. J. H. Stadler, “Integrating yttrium iron garnet onto nongarnet substrates with faster deposition rates and high reliability,” Appl. Phys. Lett. 87, 1–3 (2005).
[Crossref]

T. Tepper, F. Ilievski, C. A. Ross, T. R. Zaman, R. J. Ram, S. Y. Sung, and B. J. H. Stadler, “Magneto-optical properties of iron oxide films,” J. Appl. Phys. 93, 6948 (2003).
[Crossref]

K. Srinivasan, T. E. Gage, and B. J. H. Stadler, “Seed-Layer Free Cerium-Doped Terbium Iron Garnet on Non-Garnet Substrates for Photonic Isolators,” in Conference on Lasers and Electro-Optics, (Optical Society of America, San Jose, California, 2018), OSA Technical Digest (online), p. SW4I.5.
[Crossref]

P. Dulal, T. E. Gage, A. D. Block, E. Cofell, D. C. Hutchings, and B. J. H. Stadler, “Sputter-deposited seedlayer-free cerium-doped terbium iron garnets for SOI waveguide isolators,” in 2016 IEEE Photonics Conference (IPC) (IEEE, 2016).
[Crossref]

Sun, X.

Sun, X. Y.

X. Y. Sun, Q. Du, T. Goto, M. C. Onbasli, D. H. Kim, N. M. Aimon, J. Hu, and C. A. Ross, “Single-Step Deposition of Cerium-Substituted Yttrium Iron Garnet for Monolithic On-Chip Optical Isolation,” ACS Photonics 7, 856–863 (2015).

Sung, S. Y.

P. Dulal, A. D. Block, T. E. Gage, H. A. Haldren, S. Y. Sung, D. C. Hutchings, and B. J. H. Stadler, “Optimized Magneto-optical Isolator Designs Inspired by Seedlayer-Free Terbium Iron Garnets with Opposite Chirality,” ACS Photonics 3, 1818–1825 (2016).
[Crossref]

D. C. Hutchings, B. M. Holmes, C. Zhang, P. Dulal, A. D. Block, S. Y. Sung, N. C. A. Seaton, and B. J. H. Stadler, “Quasi-phase-matched Faraday rotation in semiconductor waveguides with a magnetooptic cladding for monolithically integrated optical isolators,” IEEE Photonics J. 5, 6602512 (2013).
[Crossref]

S. Y. Sung, X. Qi, and B. J. H. Stadler, “Integrating yttrium iron garnet onto nongarnet substrates with faster deposition rates and high reliability,” Appl. Phys. Lett. 87, 1–3 (2005).
[Crossref]

T. Tepper, F. Ilievski, C. A. Ross, T. R. Zaman, R. J. Ram, S. Y. Sung, and B. J. H. Stadler, “Magneto-optical properties of iron oxide films,” J. Appl. Phys. 93, 6948 (2003).
[Crossref]

Sung, S.-Y.

S.-Y. Sung, A. Sharma, A. Block, K. Keuhn, and B. J. H. Stadler, “Magneto-optical garnet waveguides on semiconductor platforms: Magnetics, mechanics, and photonics,” J. Appl. Phys. 109, 07B738 (2011).
[Crossref]

Takenaka, M.

M. Takenaka and Y. Nakano, “Proposal of a novel semiconductor optical waveguide isolator,” in Conference Proceedings. Eleventh International Conference on Indium Phosphide and Related Materials (IPRM’99) (Cat. No.99CH36362), (IEEE, 1999), pp. 289–292.
[Crossref]

Tepper, T.

T. Tepper, F. Ilievski, C. A. Ross, T. R. Zaman, R. J. Ram, S. Y. Sung, and B. J. H. Stadler, “Magneto-optical properties of iron oxide films,” J. Appl. Phys. 93, 6948 (2003).
[Crossref]

Thomson, D.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Vaccaro, K.

B. Stadler, K. Vaccaro, P. Yip, J. Lorenzo, Y. Li, and M. Cherif, “Integration of Magneto-Optical Garnet Films by Metal – Organic,” Chem. Vap. Deposition 38, 1564–1567 (2002).

Van Leeuwen,

R. Nagarajan, C. H. Joyner, R. P. Schneider, J. S. Bostak, T. Butrie, A. G. Dentai, V. G. Dominic, et al. Van Leeuwen, J. Webjorn, M. Ziari, D. Perkins, J. Singh, S. G. Grubb, M. S. Reffle, D. G. Mehuys, F. A. Kish, and D. F. Welch, “Large-scale photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 11, 50–65 (2005).
[Crossref]

Van Roy, W.

Vanwolleghem, M.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is – and what is not – an optical isolator,” Nat. Photonics 7, 579–582 (2013).
[Crossref]

Veis, M.

M. C. Onbasli, L. Beran, M. Zahradník, M. Kučera, R. Antoš, J. Mistrík, G. F. Dionne, M. Veis, and C. A. Ross, “Optical and magneto-optical behavior of Cerium Yttrium Iron Garnet thin films at wavelengths of 200–1770 nm,” Sci. Reports 6, 23640 (2016).
[Crossref]

Virot, L.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Vivien, L.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Wang, S. Y.

R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S. Y. Wang, and R. S. Williams, “Nanoelectronic and nanophotonic interconnect,” Proc. IEEE 96, 230–247 (2008).
[Crossref]

Webjorn, J.

R. Nagarajan, C. H. Joyner, R. P. Schneider, J. S. Bostak, T. Butrie, A. G. Dentai, V. G. Dominic, et al. Van Leeuwen, J. Webjorn, M. Ziari, D. Perkins, J. Singh, S. G. Grubb, M. S. Reffle, D. G. Mehuys, F. A. Kish, and D. F. Welch, “Large-scale photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 11, 50–65 (2005).
[Crossref]

Welch, D. F.

A. C. Nilsson, C. H. Joyner, D. F. Welch, D. D. Perkins, F. A. Kish, M. L. Mitchell, and R. Nagarajan, “The realization of large-scale photonic integrated circuits and the associated impact on fiber-optic communication systems,” J. Light. Tech. 24, 4674–4683 (2006).
[Crossref]

R. Nagarajan, C. H. Joyner, R. P. Schneider, J. S. Bostak, T. Butrie, A. G. Dentai, V. G. Dominic, et al. Van Leeuwen, J. Webjorn, M. Ziari, D. Perkins, J. Singh, S. G. Grubb, M. S. Reffle, D. G. Mehuys, F. A. Kish, and D. F. Welch, “Large-scale photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 11, 50–65 (2005).
[Crossref]

Williams, R. S.

R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S. Y. Wang, and R. S. Williams, “Nanoelectronic and nanophotonic interconnect,” Proc. IEEE 96, 230–247 (2008).
[Crossref]

Wolfe, R.

V. Fratello and R. Wolfe, Epitaxial Garnet Films for Nonreciprocal Magneto-Optic Devices in Handbook of Thin Films (SPIE Press, 2000).

Xu, D.-X.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Yip, P.

B. Stadler, K. Vaccaro, P. Yip, J. Lorenzo, Y. Li, and M. Cherif, “Integration of Magneto-Optical Garnet Films by Metal – Organic,” Chem. Vap. Deposition 38, 1564–1567 (2002).

Yu, Z.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is – and what is not – an optical isolator,” Nat. Photonics 7, 579–582 (2013).
[Crossref]

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3, 91–94 (2009).
[Crossref]

Zahradník, M.

M. C. Onbasli, L. Beran, M. Zahradník, M. Kučera, R. Antoš, J. Mistrík, G. F. Dionne, M. Veis, and C. A. Ross, “Optical and magneto-optical behavior of Cerium Yttrium Iron Garnet thin films at wavelengths of 200–1770 nm,” Sci. Reports 6, 23640 (2016).
[Crossref]

Zaman, T. R.

T. Tepper, F. Ilievski, C. A. Ross, T. R. Zaman, R. J. Ram, S. Y. Sung, and B. J. H. Stadler, “Magneto-optical properties of iron oxide films,” J. Appl. Phys. 93, 6948 (2003).
[Crossref]

Zhang, C.

C. Zhang, P. Dulal, B. J. H. Stadler, and D. C. Hutchings, “Monolithically-Integrated TE-mode 1D Silicon-on-Insulator Isolators using Seedlayer-Free Garnet,” Sci. Reports 7, 5820 (2017).
[Crossref]

D. Huang, P. Pintus, C. Zhang, P. Morton, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Dynamically reconfigurable integrated optical circulators,” Optica 4, 23 (2017).
[Crossref]

D. Huang, P. Pintus, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Electrically driven and thermally tunable integrated optical isolators for silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 22, 271–278 (2016).
[Crossref]

D. C. Hutchings, C. Zhang, B. M. Holmes, P. Dulal, A. D. Block, and B. J. H. Stadler, “Faraday polarisation mode conversion in semiconductor waveguides incorporating periodic garnet claddings,” Proc. SPIE 9750, 97500V (2016).
[Crossref]

D. C. Hutchings, B. M. Holmes, C. Zhang, P. Dulal, A. D. Block, S. Y. Sung, N. C. A. Seaton, and B. J. H. Stadler, “Quasi-phase-matched Faraday rotation in semiconductor waveguides with a magnetooptic cladding for monolithically integrated optical isolators,” IEEE Photonics J. 5, 6602512 (2013).
[Crossref]

Ziari, M.

R. Nagarajan, C. H. Joyner, R. P. Schneider, J. S. Bostak, T. Butrie, A. G. Dentai, V. G. Dominic, et al. Van Leeuwen, J. Webjorn, M. Ziari, D. Perkins, J. Singh, S. G. Grubb, M. S. Reffle, D. G. Mehuys, F. A. Kish, and D. F. Welch, “Large-scale photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 11, 50–65 (2005).
[Crossref]

Zilkie, A.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

ACS Photonics (2)

X. Y. Sun, Q. Du, T. Goto, M. C. Onbasli, D. H. Kim, N. M. Aimon, J. Hu, and C. A. Ross, “Single-Step Deposition of Cerium-Substituted Yttrium Iron Garnet for Monolithic On-Chip Optical Isolation,” ACS Photonics 7, 856–863 (2015).

P. Dulal, A. D. Block, T. E. Gage, H. A. Haldren, S. Y. Sung, D. C. Hutchings, and B. J. H. Stadler, “Optimized Magneto-optical Isolator Designs Inspired by Seedlayer-Free Terbium Iron Garnets with Opposite Chirality,” ACS Photonics 3, 1818–1825 (2016).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

S. Y. Sung, X. Qi, and B. J. H. Stadler, “Integrating yttrium iron garnet onto nongarnet substrates with faster deposition rates and high reliability,” Appl. Phys. Lett. 87, 1–3 (2005).
[Crossref]

Chem. Vap. Deposition (1)

B. Stadler, K. Vaccaro, P. Yip, J. Lorenzo, Y. Li, and M. Cherif, “Integration of Magneto-Optical Garnet Films by Metal – Organic,” Chem. Vap. Deposition 38, 1564–1567 (2002).

Comput. Sci. & Eng. (1)

J. D. Meindl, “Beyond Moore’s Law: The interconnect era,” Comput. Sci. & Eng. 5, 20–24 (2003).
[Crossref]

Cryst. Res. Technol. (1)

T. Aichele, A. Lorenz, R. Hergt, and P. Görnert, “Garnet layers prepared by liquid phase epitaxy for microwave and magneto-optical applications – a review,” Cryst. Res. Technol. 38, 575–587 (2003).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

R. Nagarajan, C. H. Joyner, R. P. Schneider, J. S. Bostak, T. Butrie, A. G. Dentai, V. G. Dominic, et al. Van Leeuwen, J. Webjorn, M. Ziari, D. Perkins, J. Singh, S. G. Grubb, M. S. Reffle, D. G. Mehuys, F. A. Kish, and D. F. Welch, “Large-scale photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 11, 50–65 (2005).
[Crossref]

R. Soref, “The Past, Present, and Future of Silicon Photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
[Crossref]

D. Huang, P. Pintus, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Electrically driven and thermally tunable integrated optical isolators for silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 22, 271–278 (2016).
[Crossref]

IEEE Photonics J. (5)

S. Ghosh, S. Keyvaninia, Y. Shirato, T. Mizumoto, G. Roelkens, and R. Baets, “Optical isolator for TE polarized light realized by adhesive bonding of Ce:YIG on silicon-on-insulator waveguide circuits,” IEEE Photonics J. 5, 6601108 (2013).
[Crossref]

D. C. Hutchings and B. M. Holmes, “A waveguide polarization toolset design based on mode beating,” IEEE Photonics J. 3, 450–461 (2011).
[Crossref]

B. J. H. Stadler and T. Mizumoto, “Integrated magneto-optical materials and isolators: A review,” IEEE Photonics J. 6, 1–15 (2014).
[Crossref]

D. C. Hutchings, B. M. Holmes, C. Zhang, P. Dulal, A. D. Block, S. Y. Sung, N. C. A. Seaton, and B. J. H. Stadler, “Quasi-phase-matched Faraday rotation in semiconductor waveguides with a magnetooptic cladding for monolithically integrated optical isolators,” IEEE Photonics J. 5, 6602512 (2013).
[Crossref]

A. D. Block, P. Dulal, B. J. H. Stadler, and N. C. A. Seaton, “Growth Parameters of Fully Crystallized YIG, Bi:YIG, and Ce:YIG Films With High Faraday Rotations,” IEEE Photonics J. 6, 1–8 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (1)

S. Ghosh, S. Keyvaninia, Y. Shoji, W. Van Roy, T. Mizumoto, G. Roelkens, and R. G. Baets, “Compact Mach-Zehnder interferometer Ce:YIG/SOI optical isolators,” IEEE Photonics Technol. Lett. 24, 1653–1656 (2012).
[Crossref]

IEEE Transactions on Magn. (1)

V. J. Fratello, S. J. Licht, and C. D. Brandle, “Innovative improvements in bismuth-doped rare-earth iron garnet Faraday rotators,” IEEE Transactions on Magn. 32, 4102–4107 (1996).
[Crossref]

J. Appl. Phys. (3)

S.-Y. Sung, A. Sharma, A. Block, K. Keuhn, and B. J. H. Stadler, “Magneto-optical garnet waveguides on semiconductor platforms: Magnetics, mechanics, and photonics,” J. Appl. Phys. 109, 07B738 (2011).
[Crossref]

J. F. Dillon, “Origin and Uses of the Faraday Rotation in Magnetic Crystals,” J. Appl. Phys. 39, 922–929 (1968).
[Crossref]

T. Tepper, F. Ilievski, C. A. Ross, T. R. Zaman, R. J. Ram, S. Y. Sung, and B. J. H. Stadler, “Magneto-optical properties of iron oxide films,” J. Appl. Phys. 93, 6948 (2003).
[Crossref]

J. Light. Tech. (2)

A. C. Nilsson, C. H. Joyner, D. F. Welch, D. D. Perkins, F. A. Kish, M. L. Mitchell, and R. Nagarajan, “The realization of large-scale photonic integrated circuits and the associated impact on fiber-optic communication systems,” J. Light. Tech. 24, 4674–4683 (2006).
[Crossref]

H. Shimizu and Y. Nakano, “Fabrication and Characterization of an InGaAsp/InP Active Waveguide Optical Isolator With 14.7 dB/mm TE Mode Nonreciprocal Attenuation,” J. Light. Tech. 24, 38 (2006).
[Crossref]

J. Opt. (2)

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Y. Shoji, K. Miura, and T. Mizumoto, “Optical nonreciprocal devices based on magneto-optical phase shift in silicon photonics,” J. Opt. 18, 13001 (2016).
[Crossref]

Mater. Res. Lett. (1)

T. E. Gage, P. Dulal, P. A. Solheid, D. J. Flannigan, T. E. Gage, P. Dulal, P. A. Solheid, and D. J. Flannigan, “Si-integrated ultrathin films of phase-pure Y 3 Fe 5 O 12 (YIG) via novel two-step rapid thermal anneal,” Mater. Res. Lett. 0, 1–7 (2017).

MRS Bull. (1)

B. J. H. Stadler and D. C. Hutchings, “Sputter-deposited magneto-optical garnet for all-mode (transverse electric/transverse magnetic) Faraday rotators,” MRS Bull. 43, 430–435 (2018).
[Crossref]

Nat. Photonics (4)

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
[Crossref]

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is – and what is not – an optical isolator,” Nat. Photonics 7, 579–582 (2013).
[Crossref]

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5, 758–762 (2011).
[Crossref]

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3, 91–94 (2009).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Optica (1)

Proc. IEEE (1)

R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S. Y. Wang, and R. S. Williams, “Nanoelectronic and nanophotonic interconnect,” Proc. IEEE 96, 230–247 (2008).
[Crossref]

Proc. SPIE (1)

D. C. Hutchings, C. Zhang, B. M. Holmes, P. Dulal, A. D. Block, and B. J. H. Stadler, “Faraday polarisation mode conversion in semiconductor waveguides incorporating periodic garnet claddings,” Proc. SPIE 9750, 97500V (2016).
[Crossref]

Sci. Reports (2)

M. C. Onbasli, L. Beran, M. Zahradník, M. Kučera, R. Antoš, J. Mistrík, G. F. Dionne, M. Veis, and C. A. Ross, “Optical and magneto-optical behavior of Cerium Yttrium Iron Garnet thin films at wavelengths of 200–1770 nm,” Sci. Reports 6, 23640 (2016).
[Crossref]

C. Zhang, P. Dulal, B. J. H. Stadler, and D. C. Hutchings, “Monolithically-Integrated TE-mode 1D Silicon-on-Insulator Isolators using Seedlayer-Free Garnet,” Sci. Reports 7, 5820 (2017).
[Crossref]

SPIE (1)

L. Bi, J. Hu, G. F. Dionne, L. Kimerling, and C. A. Ross, “Monolithic integration of chalcogenide glass/iron garnet waveguides and resonators for on-chip nonreciprocal photonic devices,” SPIE 7941, 794105 (2011).

Other (4)

K. Srinivasan, T. E. Gage, and B. J. H. Stadler, “Seed-Layer Free Cerium-Doped Terbium Iron Garnet on Non-Garnet Substrates for Photonic Isolators,” in Conference on Lasers and Electro-Optics, (Optical Society of America, San Jose, California, 2018), OSA Technical Digest (online), p. SW4I.5.
[Crossref]

M. Takenaka and Y. Nakano, “Proposal of a novel semiconductor optical waveguide isolator,” in Conference Proceedings. Eleventh International Conference on Indium Phosphide and Related Materials (IPRM’99) (Cat. No.99CH36362), (IEEE, 1999), pp. 289–292.
[Crossref]

V. Fratello and R. Wolfe, Epitaxial Garnet Films for Nonreciprocal Magneto-Optic Devices in Handbook of Thin Films (SPIE Press, 2000).

P. Dulal, T. E. Gage, A. D. Block, E. Cofell, D. C. Hutchings, and B. J. H. Stadler, “Sputter-deposited seedlayer-free cerium-doped terbium iron garnets for SOI waveguide isolators,” in 2016 IEEE Photonics Conference (IPC) (IEEE, 2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Graphical representation of an optical isolator based on Faraday rotation. The reflected light is filtered out by a TE mode polarizer, protecting the laser source. Reproduced with permission from [11]. (b) Structure of yttrium iron garnet (YIG) in two representations highlighting the different lattice sites. ©2018 IEEE. Reprinted, with permission, from [10].
Fig. 2
Fig. 2 (a) Phase diagram representing the different phases obtained in sputter deposition of YIG from Fe and Y metallic targets in oxygen. The obtained phases are plotted with respect to their gas flow rate ratio and Y/Fe sputtering bias voltage ratios. Reprinted from [27], with the permission of AIP Publishing. (b) Optical micrograph of patterned YIG/SiO2/Si waveguides annealed at 700 – 800°C for 10–120 s in oxygen. The wide alignment bar (500μm) cracked on annealing and the inset shows a waveguide without any damage due to high temperature. Reprinted from [28], with the permission of AIP Publishing.
Fig. 3
Fig. 3 (a) Scanning electron micrograph of YIG seed layer of varying thicknesses showing a steady increase in crystallinity of the seed layer. The inset is an electron backscatter diffraction (EBSD) image indicative of the film morphology. (b) X-ray diffraction (XRD) spectra of Ce:YIG grown on YIG seed layer of different thicknesses. The 45 nm seed layer gives the best quality Ce:YIG films. ©2018 IEEE. Reprinted, with permission, from [34].
Fig. 4
Fig. 4 (a) Bright-field TEM images of 25 nm YIG films on SiO2 (a) annealed at 400°C for 3 min, followed by another anneal at 800°C for 3 min and (b) annealed at 800°C for 3 min in a single step. (c) The radial integration of select area diffraction patterns for films from (a) and (b). The two-step anneal in (a) has produced pure phase YIG in comparison to a single step anneal [37].
Fig. 5
Fig. 5 (a) Finite difference time domain (FDTD) simulation to analyze the effect of seed layer thickness on the average S3 Stokes parameter for TE-modes in SOI waveguides with garnet cladding. The cross sectional schematic is a reference to the structure simulated. (b) FDTD simulation of garnet core push-pull isolator device with alternate segments of +FR and FR. The FR vs length of the waveguide data shows the 45° rotation can be achieved at lengths of 360μm. Reprinted with permission from [38]. Copyright 2018 American Chemical Society.
Fig. 6
Fig. 6 XRD spectra of Ce:TIG grown on non-garnet substrates without a seed layer. The characteristic garnet peaks indicate the crystallization in the desired phase [16].
Fig. 7
Fig. 7 Schematic representation of isolators based on NRMC (Faraday rotation) and NRPS (MZI) designs. (a) TE-mode MZI device with two full RPC and bi-directional field with hybrid integration of garnet cladding. (b) Effects of phase velocity mismatch is reflected periodically for a 2π period and it is overcome by QPM. (c) Faraday rotation waveguide isolator with a quasi-phase matched segmented garnet cladding. Reproduced from [23] under the Creative Commons license.
Fig. 8
Fig. 8 (a) Poincaré sphere illustrating the change in the polarization state of the light as it propagates through the isolator. The solid lines correspond to non-reciprocal Faraday rotation and the dashed lines to the half reciprocal phase conversion. (b) Optical measurements for 340 nm Si core SOI device with Bi:TIG cladding having a maximum Stokes angle of 0.83π and an isolation of −11 dB. Reproduced from [23] under the Creative Commons license.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

= [ x x 0 i x z 0 y y 0 i x z 0 z z ]
x z = ( n λ θ F ) π
Isolation ratio ( dB ) = 20 log 10 | cos θ 2 | = 10 log 10 1 2 ( 1 + S + S )