Abstract

We report on the preparation and characterization of the planar and ridge waveguides in TGG crystals. The planar waveguide was formed by the 6.0-MeV Si-ion implantation with a dose of 2.0 × 1015 ions/cm2 and the precise diamond blade dicing technique was applied to manufacture the surface of the planar waveguide to construct the ridge structure. The images of planar and ridge cross-sections were photographed by a metallographic microscope. The SRIM 2013 was utilized to achieve the energy loss profiles of electrons and nuclei. The dark-mode spectra and the guiding properties were separately measured by the prism coupling and end-face coupling methods. The simulation processing on the refractive index profile and the near-field mode distribution were operated by the RCM and the BPM software, respectively. In consideration of the high-quality optical propagation performances, the TGG planar and ridge waveguides can serve as superior candidates in the magneto-optical devices.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Planar and ridge ZnO optical waveguides produced by 15 MeV C5+ ion irradiation

Yicun Yao, Wenjun Wang, Dong Zhang, and Xuexi Gao
Opt. Mater. Express 5(7) 1498-1504 (2015)

Nd:Li6Y(BO3)3 crystal waveguide properties at wavelengths of 633 and 1539 nm produced by oxygen or silicon ion implantation

Peng Liu, Qing Huang, Tao Liu, Sha-Sha Guo, Lian Zhang, and Xue-Lin Wang
Appl. Opt. 51(11) 1681-1687 (2012)

Optical waveguides in TiO2 formed by He ion implantation

Zhuan-Fang Bi, Lei Wang, Xiu-Hong Liu, Shao-Mei Zhang, Ming-Ming Dong, Quan-Zhong Zhao, Xiang-Long Wu, and Ke-Ming Wang
Opt. Express 20(6) 6712-6719 (2012)

References

  • View by:
  • |
  • |
  • |

  1. P. Wang, I. Jeon, Z. Lin, M. D. Peeks, S. Savagatrup, S. E. Kooi, T. Van Voorhis, and T. M. Swager, “Insights into magneto-optics of helical conjugated polymers,” J. Am. Chem. Soc. 140(20), 6501–6508 (2018).
    [Crossref] [PubMed]
  2. G. H. Wang and X. S. Yan, “Magneto-optic effects in subwavelength nonlinear plasmonic waveguides,” Plasmonics 12(4), 1131–1135 (2017).
    [Crossref]
  3. L. D. Tzuang, K. J. Fang, P. Nussenzveig, S. H. Fan, and M. Lipson, “Non-reciprocal phase shift induced by an effective magnetic flux for light,” Nat. Photonics 8(9), 701–705 (2014).
    [Crossref]
  4. X. Huang, R. Li, H. C. Yang, and M. Levy, “Multimodal and birefringence effects in magnetic photonic crystals,” J. Magn. Magn. Mater. 300(1), 112–116 (2006).
    [Crossref]
  5. Z. Chen, L. Yang, Y. Hang, and X. Y. Wang, “Faraday effect improvement by Dy3+-doping of terbium gallium garnet single crystal,” J. Solid State Chem. 233, 277–281 (2016).
    [Crossref]
  6. A. V. Starobor, R. Yasuhara, D. S. Zheleznov, O. V. Palashov, and E. A. Khazanov, “Cryogenic faraday isolator based of TGG ceramics,” IEEE J. Quantum Electron. 50(9), 749–754 (2014).
    [Crossref]
  7. K. M. Samirand and J. H. S. Bethanie, “Novel designs for integrating YIG/air photonic crystal slab polarizers with waveguide faraday rotators,” IEEE Photonic. Tech. L. 17(1), 127–129 (2005).
    [Crossref]
  8. M. Ekici, Q. Zhou, A. Sonmezoglu, S. P. Moshokoa, M. Z. Ullah, A. Biswas, and M. Belic, “Solitons in magneto-optic waveguides by extended trial function scheme,” Superlattices Microstruct. 107, 197–218 (2017).
    [Crossref]
  9. Y. L. Ruan, A. Jarvis, A. V. Rode, S. Madden, L. Davies, and Berry, “Wavelength dispersion of Verdet constants in chalcogenide glasses for magneto-optical waveguide devices,” Opt. Commun. 252(1-3), 39–45 (2005).
    [Crossref]
  10. Y. Tan, J. R. Vázquez de Aldana, and F. Chen, “Femtosecond laser written lithium niobate waveguide laser operating at 1085 nm,” Opt. Eng. 53(10), 107109 (2014).
    [Crossref]
  11. Y. M. Sgibnev, N. V. Nikonorov, V. N. Vasilev, and A. I. Ignatiev, “Optical gradient waveguides in photo-thermo-refractive glass formed by ion exchange method,” J. Lightwave Technol. 33(17), 3730–3735 (2015).
    [Crossref]
  12. M. Qiao, T. J. Wang, H. L. Song, J. Zhang, Y. Liu, P. Liu, H. J. Zhang, and X. L. Wang, “The lattice structure and optical properties of neodymium-doped gadolinium vanadate crystals induced by ion irradiation,” IEEE Photonics J. 9, 1–10 (2017).
    [Crossref]
  13. H. Hu, R. Ricken, and W. Sohler, “Low-loss ridge waveguides on lithium niobate fabricated by local diffusion doping with titanium,” Appl. Phys. B 98(4), 677–679 (2010).
    [Crossref]
  14. F. Chen, “Micro- and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications,” Laser Photonics Rev. 6(5), 622–640 (2012).
    [Crossref]
  15. G. V. Vázquez, R. Valiente, S. Gómez-Salces, E. Flores-Romero, J. Rickards, and R. Trejo-Luna, “Carbon implanted waveguides in soda lime glass doped with Yb3+ and Er3+ for visible light emission,” Opt. Laser Technol. 79, 132–136 (2016).
    [Crossref]
  16. L. N. Ma, Y. Tan, M. Ghorbani-Asl, R. Boettger, S. Kretschmer, S. Zhou, Z. Huang, A. V. Krasheninnikov, and F. Chen, “Tailoring the optical properties of atomically-thin WS2via ion irradiation,” Nanoscale 9(31), 11027–11034 (2017).
    [Crossref] [PubMed]
  17. G. Ulliac, A. Lecestre, B. Guichardaz, J. Dahdah, F. I. Baida, M. P. Bernal, and N. Courjal, “Fabrication of Bragg Gratings on LiNbO3 optical waveguides,” Microelectron. Eng. 97, 185–188 (2012).
    [Crossref]
  18. R. Yoshimura, M. Hikita, M. Usui, S. Tomaru, and S. Imamura, “Polymeric optical waveguide films with 45° mirrors formed with a 90° V-shaped diamond blade,” Electron. Lett. 33(15), 1311–1312 (1997).
    [Crossref]
  19. Y. C. Jia, E. R. Rüter, S. Akhmadaliev, S. Q. Zhou, F. Chen, and D. Kip, “Ridge waveguide lasers in Nd:YAG crystals produced by combining swift heavy ion irradiation and precise diamond blade dicing,” Opt. Mater. Express 3(4), 433 (2013).
    [Crossref]
  20. Y. Z. Cheng, J. M. Lv, S. Akhmadaliev, S. Q. Zhou, and F. Chen, “Optical ridge waveguides in Nd:LGS crystal produced by combination of swift C5+ ion irradiation and precise diamond blade dicing,” Opt. Laser Technol. 81, 122–126 (2016).
    [Crossref]
  21. M. F. Volk, C. E. Rüter, M. Santandrea, C. Eigner, L. Padberg, H. Herrmann, C. Silberhorn, and D. Kip, “Fabrication of low-loss Rb-exchanged ridge waveguides in z-cut KTiOPO4,” Opt. Mater. Express 8(1), 82–87 (2018).
    [Crossref]

2018 (2)

P. Wang, I. Jeon, Z. Lin, M. D. Peeks, S. Savagatrup, S. E. Kooi, T. Van Voorhis, and T. M. Swager, “Insights into magneto-optics of helical conjugated polymers,” J. Am. Chem. Soc. 140(20), 6501–6508 (2018).
[Crossref] [PubMed]

M. F. Volk, C. E. Rüter, M. Santandrea, C. Eigner, L. Padberg, H. Herrmann, C. Silberhorn, and D. Kip, “Fabrication of low-loss Rb-exchanged ridge waveguides in z-cut KTiOPO4,” Opt. Mater. Express 8(1), 82–87 (2018).
[Crossref]

2017 (4)

G. H. Wang and X. S. Yan, “Magneto-optic effects in subwavelength nonlinear plasmonic waveguides,” Plasmonics 12(4), 1131–1135 (2017).
[Crossref]

M. Ekici, Q. Zhou, A. Sonmezoglu, S. P. Moshokoa, M. Z. Ullah, A. Biswas, and M. Belic, “Solitons in magneto-optic waveguides by extended trial function scheme,” Superlattices Microstruct. 107, 197–218 (2017).
[Crossref]

M. Qiao, T. J. Wang, H. L. Song, J. Zhang, Y. Liu, P. Liu, H. J. Zhang, and X. L. Wang, “The lattice structure and optical properties of neodymium-doped gadolinium vanadate crystals induced by ion irradiation,” IEEE Photonics J. 9, 1–10 (2017).
[Crossref]

L. N. Ma, Y. Tan, M. Ghorbani-Asl, R. Boettger, S. Kretschmer, S. Zhou, Z. Huang, A. V. Krasheninnikov, and F. Chen, “Tailoring the optical properties of atomically-thin WS2via ion irradiation,” Nanoscale 9(31), 11027–11034 (2017).
[Crossref] [PubMed]

2016 (3)

Y. Z. Cheng, J. M. Lv, S. Akhmadaliev, S. Q. Zhou, and F. Chen, “Optical ridge waveguides in Nd:LGS crystal produced by combination of swift C5+ ion irradiation and precise diamond blade dicing,” Opt. Laser Technol. 81, 122–126 (2016).
[Crossref]

Z. Chen, L. Yang, Y. Hang, and X. Y. Wang, “Faraday effect improvement by Dy3+-doping of terbium gallium garnet single crystal,” J. Solid State Chem. 233, 277–281 (2016).
[Crossref]

G. V. Vázquez, R. Valiente, S. Gómez-Salces, E. Flores-Romero, J. Rickards, and R. Trejo-Luna, “Carbon implanted waveguides in soda lime glass doped with Yb3+ and Er3+ for visible light emission,” Opt. Laser Technol. 79, 132–136 (2016).
[Crossref]

2015 (1)

2014 (3)

A. V. Starobor, R. Yasuhara, D. S. Zheleznov, O. V. Palashov, and E. A. Khazanov, “Cryogenic faraday isolator based of TGG ceramics,” IEEE J. Quantum Electron. 50(9), 749–754 (2014).
[Crossref]

L. D. Tzuang, K. J. Fang, P. Nussenzveig, S. H. Fan, and M. Lipson, “Non-reciprocal phase shift induced by an effective magnetic flux for light,” Nat. Photonics 8(9), 701–705 (2014).
[Crossref]

Y. Tan, J. R. Vázquez de Aldana, and F. Chen, “Femtosecond laser written lithium niobate waveguide laser operating at 1085 nm,” Opt. Eng. 53(10), 107109 (2014).
[Crossref]

2013 (1)

2012 (2)

G. Ulliac, A. Lecestre, B. Guichardaz, J. Dahdah, F. I. Baida, M. P. Bernal, and N. Courjal, “Fabrication of Bragg Gratings on LiNbO3 optical waveguides,” Microelectron. Eng. 97, 185–188 (2012).
[Crossref]

F. Chen, “Micro- and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications,” Laser Photonics Rev. 6(5), 622–640 (2012).
[Crossref]

2010 (1)

H. Hu, R. Ricken, and W. Sohler, “Low-loss ridge waveguides on lithium niobate fabricated by local diffusion doping with titanium,” Appl. Phys. B 98(4), 677–679 (2010).
[Crossref]

2006 (1)

X. Huang, R. Li, H. C. Yang, and M. Levy, “Multimodal and birefringence effects in magnetic photonic crystals,” J. Magn. Magn. Mater. 300(1), 112–116 (2006).
[Crossref]

2005 (2)

K. M. Samirand and J. H. S. Bethanie, “Novel designs for integrating YIG/air photonic crystal slab polarizers with waveguide faraday rotators,” IEEE Photonic. Tech. L. 17(1), 127–129 (2005).
[Crossref]

Y. L. Ruan, A. Jarvis, A. V. Rode, S. Madden, L. Davies, and Berry, “Wavelength dispersion of Verdet constants in chalcogenide glasses for magneto-optical waveguide devices,” Opt. Commun. 252(1-3), 39–45 (2005).
[Crossref]

1997 (1)

R. Yoshimura, M. Hikita, M. Usui, S. Tomaru, and S. Imamura, “Polymeric optical waveguide films with 45° mirrors formed with a 90° V-shaped diamond blade,” Electron. Lett. 33(15), 1311–1312 (1997).
[Crossref]

Akhmadaliev, S.

Y. Z. Cheng, J. M. Lv, S. Akhmadaliev, S. Q. Zhou, and F. Chen, “Optical ridge waveguides in Nd:LGS crystal produced by combination of swift C5+ ion irradiation and precise diamond blade dicing,” Opt. Laser Technol. 81, 122–126 (2016).
[Crossref]

Y. C. Jia, E. R. Rüter, S. Akhmadaliev, S. Q. Zhou, F. Chen, and D. Kip, “Ridge waveguide lasers in Nd:YAG crystals produced by combining swift heavy ion irradiation and precise diamond blade dicing,” Opt. Mater. Express 3(4), 433 (2013).
[Crossref]

Baida, F. I.

G. Ulliac, A. Lecestre, B. Guichardaz, J. Dahdah, F. I. Baida, M. P. Bernal, and N. Courjal, “Fabrication of Bragg Gratings on LiNbO3 optical waveguides,” Microelectron. Eng. 97, 185–188 (2012).
[Crossref]

Belic, M.

M. Ekici, Q. Zhou, A. Sonmezoglu, S. P. Moshokoa, M. Z. Ullah, A. Biswas, and M. Belic, “Solitons in magneto-optic waveguides by extended trial function scheme,” Superlattices Microstruct. 107, 197–218 (2017).
[Crossref]

Bernal, M. P.

G. Ulliac, A. Lecestre, B. Guichardaz, J. Dahdah, F. I. Baida, M. P. Bernal, and N. Courjal, “Fabrication of Bragg Gratings on LiNbO3 optical waveguides,” Microelectron. Eng. 97, 185–188 (2012).
[Crossref]

Berry,

Y. L. Ruan, A. Jarvis, A. V. Rode, S. Madden, L. Davies, and Berry, “Wavelength dispersion of Verdet constants in chalcogenide glasses for magneto-optical waveguide devices,” Opt. Commun. 252(1-3), 39–45 (2005).
[Crossref]

Bethanie, J. H. S.

K. M. Samirand and J. H. S. Bethanie, “Novel designs for integrating YIG/air photonic crystal slab polarizers with waveguide faraday rotators,” IEEE Photonic. Tech. L. 17(1), 127–129 (2005).
[Crossref]

Biswas, A.

M. Ekici, Q. Zhou, A. Sonmezoglu, S. P. Moshokoa, M. Z. Ullah, A. Biswas, and M. Belic, “Solitons in magneto-optic waveguides by extended trial function scheme,” Superlattices Microstruct. 107, 197–218 (2017).
[Crossref]

Boettger, R.

L. N. Ma, Y. Tan, M. Ghorbani-Asl, R. Boettger, S. Kretschmer, S. Zhou, Z. Huang, A. V. Krasheninnikov, and F. Chen, “Tailoring the optical properties of atomically-thin WS2via ion irradiation,” Nanoscale 9(31), 11027–11034 (2017).
[Crossref] [PubMed]

Chen, F.

L. N. Ma, Y. Tan, M. Ghorbani-Asl, R. Boettger, S. Kretschmer, S. Zhou, Z. Huang, A. V. Krasheninnikov, and F. Chen, “Tailoring the optical properties of atomically-thin WS2via ion irradiation,” Nanoscale 9(31), 11027–11034 (2017).
[Crossref] [PubMed]

Y. Z. Cheng, J. M. Lv, S. Akhmadaliev, S. Q. Zhou, and F. Chen, “Optical ridge waveguides in Nd:LGS crystal produced by combination of swift C5+ ion irradiation and precise diamond blade dicing,” Opt. Laser Technol. 81, 122–126 (2016).
[Crossref]

Y. Tan, J. R. Vázquez de Aldana, and F. Chen, “Femtosecond laser written lithium niobate waveguide laser operating at 1085 nm,” Opt. Eng. 53(10), 107109 (2014).
[Crossref]

Y. C. Jia, E. R. Rüter, S. Akhmadaliev, S. Q. Zhou, F. Chen, and D. Kip, “Ridge waveguide lasers in Nd:YAG crystals produced by combining swift heavy ion irradiation and precise diamond blade dicing,” Opt. Mater. Express 3(4), 433 (2013).
[Crossref]

F. Chen, “Micro- and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications,” Laser Photonics Rev. 6(5), 622–640 (2012).
[Crossref]

Chen, Z.

Z. Chen, L. Yang, Y. Hang, and X. Y. Wang, “Faraday effect improvement by Dy3+-doping of terbium gallium garnet single crystal,” J. Solid State Chem. 233, 277–281 (2016).
[Crossref]

Cheng, Y. Z.

Y. Z. Cheng, J. M. Lv, S. Akhmadaliev, S. Q. Zhou, and F. Chen, “Optical ridge waveguides in Nd:LGS crystal produced by combination of swift C5+ ion irradiation and precise diamond blade dicing,” Opt. Laser Technol. 81, 122–126 (2016).
[Crossref]

Courjal, N.

G. Ulliac, A. Lecestre, B. Guichardaz, J. Dahdah, F. I. Baida, M. P. Bernal, and N. Courjal, “Fabrication of Bragg Gratings on LiNbO3 optical waveguides,” Microelectron. Eng. 97, 185–188 (2012).
[Crossref]

Dahdah, J.

G. Ulliac, A. Lecestre, B. Guichardaz, J. Dahdah, F. I. Baida, M. P. Bernal, and N. Courjal, “Fabrication of Bragg Gratings on LiNbO3 optical waveguides,” Microelectron. Eng. 97, 185–188 (2012).
[Crossref]

Davies, L.

Y. L. Ruan, A. Jarvis, A. V. Rode, S. Madden, L. Davies, and Berry, “Wavelength dispersion of Verdet constants in chalcogenide glasses for magneto-optical waveguide devices,” Opt. Commun. 252(1-3), 39–45 (2005).
[Crossref]

Eigner, C.

Ekici, M.

M. Ekici, Q. Zhou, A. Sonmezoglu, S. P. Moshokoa, M. Z. Ullah, A. Biswas, and M. Belic, “Solitons in magneto-optic waveguides by extended trial function scheme,” Superlattices Microstruct. 107, 197–218 (2017).
[Crossref]

Fan, S. H.

L. D. Tzuang, K. J. Fang, P. Nussenzveig, S. H. Fan, and M. Lipson, “Non-reciprocal phase shift induced by an effective magnetic flux for light,” Nat. Photonics 8(9), 701–705 (2014).
[Crossref]

Fang, K. J.

L. D. Tzuang, K. J. Fang, P. Nussenzveig, S. H. Fan, and M. Lipson, “Non-reciprocal phase shift induced by an effective magnetic flux for light,” Nat. Photonics 8(9), 701–705 (2014).
[Crossref]

Flores-Romero, E.

G. V. Vázquez, R. Valiente, S. Gómez-Salces, E. Flores-Romero, J. Rickards, and R. Trejo-Luna, “Carbon implanted waveguides in soda lime glass doped with Yb3+ and Er3+ for visible light emission,” Opt. Laser Technol. 79, 132–136 (2016).
[Crossref]

Ghorbani-Asl, M.

L. N. Ma, Y. Tan, M. Ghorbani-Asl, R. Boettger, S. Kretschmer, S. Zhou, Z. Huang, A. V. Krasheninnikov, and F. Chen, “Tailoring the optical properties of atomically-thin WS2via ion irradiation,” Nanoscale 9(31), 11027–11034 (2017).
[Crossref] [PubMed]

Gómez-Salces, S.

G. V. Vázquez, R. Valiente, S. Gómez-Salces, E. Flores-Romero, J. Rickards, and R. Trejo-Luna, “Carbon implanted waveguides in soda lime glass doped with Yb3+ and Er3+ for visible light emission,” Opt. Laser Technol. 79, 132–136 (2016).
[Crossref]

Guichardaz, B.

G. Ulliac, A. Lecestre, B. Guichardaz, J. Dahdah, F. I. Baida, M. P. Bernal, and N. Courjal, “Fabrication of Bragg Gratings on LiNbO3 optical waveguides,” Microelectron. Eng. 97, 185–188 (2012).
[Crossref]

Hang, Y.

Z. Chen, L. Yang, Y. Hang, and X. Y. Wang, “Faraday effect improvement by Dy3+-doping of terbium gallium garnet single crystal,” J. Solid State Chem. 233, 277–281 (2016).
[Crossref]

Herrmann, H.

Hikita, M.

R. Yoshimura, M. Hikita, M. Usui, S. Tomaru, and S. Imamura, “Polymeric optical waveguide films with 45° mirrors formed with a 90° V-shaped diamond blade,” Electron. Lett. 33(15), 1311–1312 (1997).
[Crossref]

Hu, H.

H. Hu, R. Ricken, and W. Sohler, “Low-loss ridge waveguides on lithium niobate fabricated by local diffusion doping with titanium,” Appl. Phys. B 98(4), 677–679 (2010).
[Crossref]

Huang, X.

X. Huang, R. Li, H. C. Yang, and M. Levy, “Multimodal and birefringence effects in magnetic photonic crystals,” J. Magn. Magn. Mater. 300(1), 112–116 (2006).
[Crossref]

Huang, Z.

L. N. Ma, Y. Tan, M. Ghorbani-Asl, R. Boettger, S. Kretschmer, S. Zhou, Z. Huang, A. V. Krasheninnikov, and F. Chen, “Tailoring the optical properties of atomically-thin WS2via ion irradiation,” Nanoscale 9(31), 11027–11034 (2017).
[Crossref] [PubMed]

Ignatiev, A. I.

Imamura, S.

R. Yoshimura, M. Hikita, M. Usui, S. Tomaru, and S. Imamura, “Polymeric optical waveguide films with 45° mirrors formed with a 90° V-shaped diamond blade,” Electron. Lett. 33(15), 1311–1312 (1997).
[Crossref]

Jarvis, A.

Y. L. Ruan, A. Jarvis, A. V. Rode, S. Madden, L. Davies, and Berry, “Wavelength dispersion of Verdet constants in chalcogenide glasses for magneto-optical waveguide devices,” Opt. Commun. 252(1-3), 39–45 (2005).
[Crossref]

Jeon, I.

P. Wang, I. Jeon, Z. Lin, M. D. Peeks, S. Savagatrup, S. E. Kooi, T. Van Voorhis, and T. M. Swager, “Insights into magneto-optics of helical conjugated polymers,” J. Am. Chem. Soc. 140(20), 6501–6508 (2018).
[Crossref] [PubMed]

Jia, Y. C.

Khazanov, E. A.

A. V. Starobor, R. Yasuhara, D. S. Zheleznov, O. V. Palashov, and E. A. Khazanov, “Cryogenic faraday isolator based of TGG ceramics,” IEEE J. Quantum Electron. 50(9), 749–754 (2014).
[Crossref]

Kip, D.

Kooi, S. E.

P. Wang, I. Jeon, Z. Lin, M. D. Peeks, S. Savagatrup, S. E. Kooi, T. Van Voorhis, and T. M. Swager, “Insights into magneto-optics of helical conjugated polymers,” J. Am. Chem. Soc. 140(20), 6501–6508 (2018).
[Crossref] [PubMed]

Krasheninnikov, A. V.

L. N. Ma, Y. Tan, M. Ghorbani-Asl, R. Boettger, S. Kretschmer, S. Zhou, Z. Huang, A. V. Krasheninnikov, and F. Chen, “Tailoring the optical properties of atomically-thin WS2via ion irradiation,” Nanoscale 9(31), 11027–11034 (2017).
[Crossref] [PubMed]

Kretschmer, S.

L. N. Ma, Y. Tan, M. Ghorbani-Asl, R. Boettger, S. Kretschmer, S. Zhou, Z. Huang, A. V. Krasheninnikov, and F. Chen, “Tailoring the optical properties of atomically-thin WS2via ion irradiation,” Nanoscale 9(31), 11027–11034 (2017).
[Crossref] [PubMed]

Lecestre, A.

G. Ulliac, A. Lecestre, B. Guichardaz, J. Dahdah, F. I. Baida, M. P. Bernal, and N. Courjal, “Fabrication of Bragg Gratings on LiNbO3 optical waveguides,” Microelectron. Eng. 97, 185–188 (2012).
[Crossref]

Levy, M.

X. Huang, R. Li, H. C. Yang, and M. Levy, “Multimodal and birefringence effects in magnetic photonic crystals,” J. Magn. Magn. Mater. 300(1), 112–116 (2006).
[Crossref]

Li, R.

X. Huang, R. Li, H. C. Yang, and M. Levy, “Multimodal and birefringence effects in magnetic photonic crystals,” J. Magn. Magn. Mater. 300(1), 112–116 (2006).
[Crossref]

Lin, Z.

P. Wang, I. Jeon, Z. Lin, M. D. Peeks, S. Savagatrup, S. E. Kooi, T. Van Voorhis, and T. M. Swager, “Insights into magneto-optics of helical conjugated polymers,” J. Am. Chem. Soc. 140(20), 6501–6508 (2018).
[Crossref] [PubMed]

Lipson, M.

L. D. Tzuang, K. J. Fang, P. Nussenzveig, S. H. Fan, and M. Lipson, “Non-reciprocal phase shift induced by an effective magnetic flux for light,” Nat. Photonics 8(9), 701–705 (2014).
[Crossref]

Liu, P.

M. Qiao, T. J. Wang, H. L. Song, J. Zhang, Y. Liu, P. Liu, H. J. Zhang, and X. L. Wang, “The lattice structure and optical properties of neodymium-doped gadolinium vanadate crystals induced by ion irradiation,” IEEE Photonics J. 9, 1–10 (2017).
[Crossref]

Liu, Y.

M. Qiao, T. J. Wang, H. L. Song, J. Zhang, Y. Liu, P. Liu, H. J. Zhang, and X. L. Wang, “The lattice structure and optical properties of neodymium-doped gadolinium vanadate crystals induced by ion irradiation,” IEEE Photonics J. 9, 1–10 (2017).
[Crossref]

Lv, J. M.

Y. Z. Cheng, J. M. Lv, S. Akhmadaliev, S. Q. Zhou, and F. Chen, “Optical ridge waveguides in Nd:LGS crystal produced by combination of swift C5+ ion irradiation and precise diamond blade dicing,” Opt. Laser Technol. 81, 122–126 (2016).
[Crossref]

Ma, L. N.

L. N. Ma, Y. Tan, M. Ghorbani-Asl, R. Boettger, S. Kretschmer, S. Zhou, Z. Huang, A. V. Krasheninnikov, and F. Chen, “Tailoring the optical properties of atomically-thin WS2via ion irradiation,” Nanoscale 9(31), 11027–11034 (2017).
[Crossref] [PubMed]

Madden, S.

Y. L. Ruan, A. Jarvis, A. V. Rode, S. Madden, L. Davies, and Berry, “Wavelength dispersion of Verdet constants in chalcogenide glasses for magneto-optical waveguide devices,” Opt. Commun. 252(1-3), 39–45 (2005).
[Crossref]

Moshokoa, S. P.

M. Ekici, Q. Zhou, A. Sonmezoglu, S. P. Moshokoa, M. Z. Ullah, A. Biswas, and M. Belic, “Solitons in magneto-optic waveguides by extended trial function scheme,” Superlattices Microstruct. 107, 197–218 (2017).
[Crossref]

Nikonorov, N. V.

Nussenzveig, P.

L. D. Tzuang, K. J. Fang, P. Nussenzveig, S. H. Fan, and M. Lipson, “Non-reciprocal phase shift induced by an effective magnetic flux for light,” Nat. Photonics 8(9), 701–705 (2014).
[Crossref]

Padberg, L.

Palashov, O. V.

A. V. Starobor, R. Yasuhara, D. S. Zheleznov, O. V. Palashov, and E. A. Khazanov, “Cryogenic faraday isolator based of TGG ceramics,” IEEE J. Quantum Electron. 50(9), 749–754 (2014).
[Crossref]

Peeks, M. D.

P. Wang, I. Jeon, Z. Lin, M. D. Peeks, S. Savagatrup, S. E. Kooi, T. Van Voorhis, and T. M. Swager, “Insights into magneto-optics of helical conjugated polymers,” J. Am. Chem. Soc. 140(20), 6501–6508 (2018).
[Crossref] [PubMed]

Qiao, M.

M. Qiao, T. J. Wang, H. L. Song, J. Zhang, Y. Liu, P. Liu, H. J. Zhang, and X. L. Wang, “The lattice structure and optical properties of neodymium-doped gadolinium vanadate crystals induced by ion irradiation,” IEEE Photonics J. 9, 1–10 (2017).
[Crossref]

Rickards, J.

G. V. Vázquez, R. Valiente, S. Gómez-Salces, E. Flores-Romero, J. Rickards, and R. Trejo-Luna, “Carbon implanted waveguides in soda lime glass doped with Yb3+ and Er3+ for visible light emission,” Opt. Laser Technol. 79, 132–136 (2016).
[Crossref]

Ricken, R.

H. Hu, R. Ricken, and W. Sohler, “Low-loss ridge waveguides on lithium niobate fabricated by local diffusion doping with titanium,” Appl. Phys. B 98(4), 677–679 (2010).
[Crossref]

Rode, A. V.

Y. L. Ruan, A. Jarvis, A. V. Rode, S. Madden, L. Davies, and Berry, “Wavelength dispersion of Verdet constants in chalcogenide glasses for magneto-optical waveguide devices,” Opt. Commun. 252(1-3), 39–45 (2005).
[Crossref]

Ruan, Y. L.

Y. L. Ruan, A. Jarvis, A. V. Rode, S. Madden, L. Davies, and Berry, “Wavelength dispersion of Verdet constants in chalcogenide glasses for magneto-optical waveguide devices,” Opt. Commun. 252(1-3), 39–45 (2005).
[Crossref]

Rüter, C. E.

Rüter, E. R.

Samirand, K. M.

K. M. Samirand and J. H. S. Bethanie, “Novel designs for integrating YIG/air photonic crystal slab polarizers with waveguide faraday rotators,” IEEE Photonic. Tech. L. 17(1), 127–129 (2005).
[Crossref]

Santandrea, M.

Savagatrup, S.

P. Wang, I. Jeon, Z. Lin, M. D. Peeks, S. Savagatrup, S. E. Kooi, T. Van Voorhis, and T. M. Swager, “Insights into magneto-optics of helical conjugated polymers,” J. Am. Chem. Soc. 140(20), 6501–6508 (2018).
[Crossref] [PubMed]

Sgibnev, Y. M.

Silberhorn, C.

Sohler, W.

H. Hu, R. Ricken, and W. Sohler, “Low-loss ridge waveguides on lithium niobate fabricated by local diffusion doping with titanium,” Appl. Phys. B 98(4), 677–679 (2010).
[Crossref]

Song, H. L.

M. Qiao, T. J. Wang, H. L. Song, J. Zhang, Y. Liu, P. Liu, H. J. Zhang, and X. L. Wang, “The lattice structure and optical properties of neodymium-doped gadolinium vanadate crystals induced by ion irradiation,” IEEE Photonics J. 9, 1–10 (2017).
[Crossref]

Sonmezoglu, A.

M. Ekici, Q. Zhou, A. Sonmezoglu, S. P. Moshokoa, M. Z. Ullah, A. Biswas, and M. Belic, “Solitons in magneto-optic waveguides by extended trial function scheme,” Superlattices Microstruct. 107, 197–218 (2017).
[Crossref]

Starobor, A. V.

A. V. Starobor, R. Yasuhara, D. S. Zheleznov, O. V. Palashov, and E. A. Khazanov, “Cryogenic faraday isolator based of TGG ceramics,” IEEE J. Quantum Electron. 50(9), 749–754 (2014).
[Crossref]

Swager, T. M.

P. Wang, I. Jeon, Z. Lin, M. D. Peeks, S. Savagatrup, S. E. Kooi, T. Van Voorhis, and T. M. Swager, “Insights into magneto-optics of helical conjugated polymers,” J. Am. Chem. Soc. 140(20), 6501–6508 (2018).
[Crossref] [PubMed]

Tan, Y.

L. N. Ma, Y. Tan, M. Ghorbani-Asl, R. Boettger, S. Kretschmer, S. Zhou, Z. Huang, A. V. Krasheninnikov, and F. Chen, “Tailoring the optical properties of atomically-thin WS2via ion irradiation,” Nanoscale 9(31), 11027–11034 (2017).
[Crossref] [PubMed]

Y. Tan, J. R. Vázquez de Aldana, and F. Chen, “Femtosecond laser written lithium niobate waveguide laser operating at 1085 nm,” Opt. Eng. 53(10), 107109 (2014).
[Crossref]

Tomaru, S.

R. Yoshimura, M. Hikita, M. Usui, S. Tomaru, and S. Imamura, “Polymeric optical waveguide films with 45° mirrors formed with a 90° V-shaped diamond blade,” Electron. Lett. 33(15), 1311–1312 (1997).
[Crossref]

Trejo-Luna, R.

G. V. Vázquez, R. Valiente, S. Gómez-Salces, E. Flores-Romero, J. Rickards, and R. Trejo-Luna, “Carbon implanted waveguides in soda lime glass doped with Yb3+ and Er3+ for visible light emission,” Opt. Laser Technol. 79, 132–136 (2016).
[Crossref]

Tzuang, L. D.

L. D. Tzuang, K. J. Fang, P. Nussenzveig, S. H. Fan, and M. Lipson, “Non-reciprocal phase shift induced by an effective magnetic flux for light,” Nat. Photonics 8(9), 701–705 (2014).
[Crossref]

Ullah, M. Z.

M. Ekici, Q. Zhou, A. Sonmezoglu, S. P. Moshokoa, M. Z. Ullah, A. Biswas, and M. Belic, “Solitons in magneto-optic waveguides by extended trial function scheme,” Superlattices Microstruct. 107, 197–218 (2017).
[Crossref]

Ulliac, G.

G. Ulliac, A. Lecestre, B. Guichardaz, J. Dahdah, F. I. Baida, M. P. Bernal, and N. Courjal, “Fabrication of Bragg Gratings on LiNbO3 optical waveguides,” Microelectron. Eng. 97, 185–188 (2012).
[Crossref]

Usui, M.

R. Yoshimura, M. Hikita, M. Usui, S. Tomaru, and S. Imamura, “Polymeric optical waveguide films with 45° mirrors formed with a 90° V-shaped diamond blade,” Electron. Lett. 33(15), 1311–1312 (1997).
[Crossref]

Valiente, R.

G. V. Vázquez, R. Valiente, S. Gómez-Salces, E. Flores-Romero, J. Rickards, and R. Trejo-Luna, “Carbon implanted waveguides in soda lime glass doped with Yb3+ and Er3+ for visible light emission,” Opt. Laser Technol. 79, 132–136 (2016).
[Crossref]

Van Voorhis, T.

P. Wang, I. Jeon, Z. Lin, M. D. Peeks, S. Savagatrup, S. E. Kooi, T. Van Voorhis, and T. M. Swager, “Insights into magneto-optics of helical conjugated polymers,” J. Am. Chem. Soc. 140(20), 6501–6508 (2018).
[Crossref] [PubMed]

Vasilev, V. N.

Vázquez, G. V.

G. V. Vázquez, R. Valiente, S. Gómez-Salces, E. Flores-Romero, J. Rickards, and R. Trejo-Luna, “Carbon implanted waveguides in soda lime glass doped with Yb3+ and Er3+ for visible light emission,” Opt. Laser Technol. 79, 132–136 (2016).
[Crossref]

Vázquez de Aldana, J. R.

Y. Tan, J. R. Vázquez de Aldana, and F. Chen, “Femtosecond laser written lithium niobate waveguide laser operating at 1085 nm,” Opt. Eng. 53(10), 107109 (2014).
[Crossref]

Volk, M. F.

Wang, G. H.

G. H. Wang and X. S. Yan, “Magneto-optic effects in subwavelength nonlinear plasmonic waveguides,” Plasmonics 12(4), 1131–1135 (2017).
[Crossref]

Wang, P.

P. Wang, I. Jeon, Z. Lin, M. D. Peeks, S. Savagatrup, S. E. Kooi, T. Van Voorhis, and T. M. Swager, “Insights into magneto-optics of helical conjugated polymers,” J. Am. Chem. Soc. 140(20), 6501–6508 (2018).
[Crossref] [PubMed]

Wang, T. J.

M. Qiao, T. J. Wang, H. L. Song, J. Zhang, Y. Liu, P. Liu, H. J. Zhang, and X. L. Wang, “The lattice structure and optical properties of neodymium-doped gadolinium vanadate crystals induced by ion irradiation,” IEEE Photonics J. 9, 1–10 (2017).
[Crossref]

Wang, X. L.

M. Qiao, T. J. Wang, H. L. Song, J. Zhang, Y. Liu, P. Liu, H. J. Zhang, and X. L. Wang, “The lattice structure and optical properties of neodymium-doped gadolinium vanadate crystals induced by ion irradiation,” IEEE Photonics J. 9, 1–10 (2017).
[Crossref]

Wang, X. Y.

Z. Chen, L. Yang, Y. Hang, and X. Y. Wang, “Faraday effect improvement by Dy3+-doping of terbium gallium garnet single crystal,” J. Solid State Chem. 233, 277–281 (2016).
[Crossref]

Yan, X. S.

G. H. Wang and X. S. Yan, “Magneto-optic effects in subwavelength nonlinear plasmonic waveguides,” Plasmonics 12(4), 1131–1135 (2017).
[Crossref]

Yang, H. C.

X. Huang, R. Li, H. C. Yang, and M. Levy, “Multimodal and birefringence effects in magnetic photonic crystals,” J. Magn. Magn. Mater. 300(1), 112–116 (2006).
[Crossref]

Yang, L.

Z. Chen, L. Yang, Y. Hang, and X. Y. Wang, “Faraday effect improvement by Dy3+-doping of terbium gallium garnet single crystal,” J. Solid State Chem. 233, 277–281 (2016).
[Crossref]

Yasuhara, R.

A. V. Starobor, R. Yasuhara, D. S. Zheleznov, O. V. Palashov, and E. A. Khazanov, “Cryogenic faraday isolator based of TGG ceramics,” IEEE J. Quantum Electron. 50(9), 749–754 (2014).
[Crossref]

Yoshimura, R.

R. Yoshimura, M. Hikita, M. Usui, S. Tomaru, and S. Imamura, “Polymeric optical waveguide films with 45° mirrors formed with a 90° V-shaped diamond blade,” Electron. Lett. 33(15), 1311–1312 (1997).
[Crossref]

Zhang, H. J.

M. Qiao, T. J. Wang, H. L. Song, J. Zhang, Y. Liu, P. Liu, H. J. Zhang, and X. L. Wang, “The lattice structure and optical properties of neodymium-doped gadolinium vanadate crystals induced by ion irradiation,” IEEE Photonics J. 9, 1–10 (2017).
[Crossref]

Zhang, J.

M. Qiao, T. J. Wang, H. L. Song, J. Zhang, Y. Liu, P. Liu, H. J. Zhang, and X. L. Wang, “The lattice structure and optical properties of neodymium-doped gadolinium vanadate crystals induced by ion irradiation,” IEEE Photonics J. 9, 1–10 (2017).
[Crossref]

Zheleznov, D. S.

A. V. Starobor, R. Yasuhara, D. S. Zheleznov, O. V. Palashov, and E. A. Khazanov, “Cryogenic faraday isolator based of TGG ceramics,” IEEE J. Quantum Electron. 50(9), 749–754 (2014).
[Crossref]

Zhou, Q.

M. Ekici, Q. Zhou, A. Sonmezoglu, S. P. Moshokoa, M. Z. Ullah, A. Biswas, and M. Belic, “Solitons in magneto-optic waveguides by extended trial function scheme,” Superlattices Microstruct. 107, 197–218 (2017).
[Crossref]

Zhou, S.

L. N. Ma, Y. Tan, M. Ghorbani-Asl, R. Boettger, S. Kretschmer, S. Zhou, Z. Huang, A. V. Krasheninnikov, and F. Chen, “Tailoring the optical properties of atomically-thin WS2via ion irradiation,” Nanoscale 9(31), 11027–11034 (2017).
[Crossref] [PubMed]

Zhou, S. Q.

Y. Z. Cheng, J. M. Lv, S. Akhmadaliev, S. Q. Zhou, and F. Chen, “Optical ridge waveguides in Nd:LGS crystal produced by combination of swift C5+ ion irradiation and precise diamond blade dicing,” Opt. Laser Technol. 81, 122–126 (2016).
[Crossref]

Y. C. Jia, E. R. Rüter, S. Akhmadaliev, S. Q. Zhou, F. Chen, and D. Kip, “Ridge waveguide lasers in Nd:YAG crystals produced by combining swift heavy ion irradiation and precise diamond blade dicing,” Opt. Mater. Express 3(4), 433 (2013).
[Crossref]

Appl. Phys. B (1)

H. Hu, R. Ricken, and W. Sohler, “Low-loss ridge waveguides on lithium niobate fabricated by local diffusion doping with titanium,” Appl. Phys. B 98(4), 677–679 (2010).
[Crossref]

Electron. Lett. (1)

R. Yoshimura, M. Hikita, M. Usui, S. Tomaru, and S. Imamura, “Polymeric optical waveguide films with 45° mirrors formed with a 90° V-shaped diamond blade,” Electron. Lett. 33(15), 1311–1312 (1997).
[Crossref]

IEEE J. Quantum Electron. (1)

A. V. Starobor, R. Yasuhara, D. S. Zheleznov, O. V. Palashov, and E. A. Khazanov, “Cryogenic faraday isolator based of TGG ceramics,” IEEE J. Quantum Electron. 50(9), 749–754 (2014).
[Crossref]

IEEE Photonic. Tech. L. (1)

K. M. Samirand and J. H. S. Bethanie, “Novel designs for integrating YIG/air photonic crystal slab polarizers with waveguide faraday rotators,” IEEE Photonic. Tech. L. 17(1), 127–129 (2005).
[Crossref]

IEEE Photonics J. (1)

M. Qiao, T. J. Wang, H. L. Song, J. Zhang, Y. Liu, P. Liu, H. J. Zhang, and X. L. Wang, “The lattice structure and optical properties of neodymium-doped gadolinium vanadate crystals induced by ion irradiation,” IEEE Photonics J. 9, 1–10 (2017).
[Crossref]

J. Am. Chem. Soc. (1)

P. Wang, I. Jeon, Z. Lin, M. D. Peeks, S. Savagatrup, S. E. Kooi, T. Van Voorhis, and T. M. Swager, “Insights into magneto-optics of helical conjugated polymers,” J. Am. Chem. Soc. 140(20), 6501–6508 (2018).
[Crossref] [PubMed]

J. Lightwave Technol. (1)

J. Magn. Magn. Mater. (1)

X. Huang, R. Li, H. C. Yang, and M. Levy, “Multimodal and birefringence effects in magnetic photonic crystals,” J. Magn. Magn. Mater. 300(1), 112–116 (2006).
[Crossref]

J. Solid State Chem. (1)

Z. Chen, L. Yang, Y. Hang, and X. Y. Wang, “Faraday effect improvement by Dy3+-doping of terbium gallium garnet single crystal,” J. Solid State Chem. 233, 277–281 (2016).
[Crossref]

Laser Photonics Rev. (1)

F. Chen, “Micro- and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications,” Laser Photonics Rev. 6(5), 622–640 (2012).
[Crossref]

Microelectron. Eng. (1)

G. Ulliac, A. Lecestre, B. Guichardaz, J. Dahdah, F. I. Baida, M. P. Bernal, and N. Courjal, “Fabrication of Bragg Gratings on LiNbO3 optical waveguides,” Microelectron. Eng. 97, 185–188 (2012).
[Crossref]

Nanoscale (1)

L. N. Ma, Y. Tan, M. Ghorbani-Asl, R. Boettger, S. Kretschmer, S. Zhou, Z. Huang, A. V. Krasheninnikov, and F. Chen, “Tailoring the optical properties of atomically-thin WS2via ion irradiation,” Nanoscale 9(31), 11027–11034 (2017).
[Crossref] [PubMed]

Nat. Photonics (1)

L. D. Tzuang, K. J. Fang, P. Nussenzveig, S. H. Fan, and M. Lipson, “Non-reciprocal phase shift induced by an effective magnetic flux for light,” Nat. Photonics 8(9), 701–705 (2014).
[Crossref]

Opt. Commun. (1)

Y. L. Ruan, A. Jarvis, A. V. Rode, S. Madden, L. Davies, and Berry, “Wavelength dispersion of Verdet constants in chalcogenide glasses for magneto-optical waveguide devices,” Opt. Commun. 252(1-3), 39–45 (2005).
[Crossref]

Opt. Eng. (1)

Y. Tan, J. R. Vázquez de Aldana, and F. Chen, “Femtosecond laser written lithium niobate waveguide laser operating at 1085 nm,” Opt. Eng. 53(10), 107109 (2014).
[Crossref]

Opt. Laser Technol. (2)

G. V. Vázquez, R. Valiente, S. Gómez-Salces, E. Flores-Romero, J. Rickards, and R. Trejo-Luna, “Carbon implanted waveguides in soda lime glass doped with Yb3+ and Er3+ for visible light emission,” Opt. Laser Technol. 79, 132–136 (2016).
[Crossref]

Y. Z. Cheng, J. M. Lv, S. Akhmadaliev, S. Q. Zhou, and F. Chen, “Optical ridge waveguides in Nd:LGS crystal produced by combination of swift C5+ ion irradiation and precise diamond blade dicing,” Opt. Laser Technol. 81, 122–126 (2016).
[Crossref]

Opt. Mater. Express (2)

Plasmonics (1)

G. H. Wang and X. S. Yan, “Magneto-optic effects in subwavelength nonlinear plasmonic waveguides,” Plasmonics 12(4), 1131–1135 (2017).
[Crossref]

Superlattices Microstruct. (1)

M. Ekici, Q. Zhou, A. Sonmezoglu, S. P. Moshokoa, M. Z. Ullah, A. Biswas, and M. Belic, “Solitons in magneto-optic waveguides by extended trial function scheme,” Superlattices Microstruct. 107, 197–218 (2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Fabrication schematic process of the TGG ridge waveguide: (a) 6.0 MeV Si ion implantation and (b) diamond blade dicing.
Fig. 2
Fig. 2 (a) Function curves of the electronic (black line) and nuclear (blue line) energy losses with the penetration depth and (b) cross-sectional photograph collected by a metallographic microscope for the planar waveguide.
Fig. 3
Fig. 3 Dark-mode spectrum of the Si-implanted TGG planar waveguide at the wavelength of 632.8 nm.
Fig. 4
Fig. 4 Reconstructed refractive index curve as a function of the penetration depth for the Si-implanted TGG planar waveguide.
Fig. 5
Fig. 5 Near-field mode profiles of the Si-ion implanted planar waveguide (a) collected by a CCD after the annealing treatment and (b) simulated by the FD-BPM.
Fig. 6
Fig. 6 (a) Top-face image collected by the SEM and (b) cross-sectional photograph captured by a metallographic microscope for the ridge waveguide.
Fig. 7
Fig. 7 Schematic setup of the end-face coupling for detecting the guide-mode characteristics. The inset is the annealed mode image measured by the end-face coupling system for the ridge waveguide.

Tables (1)

Tables Icon

Table 1 Effective refractive indices of the measured and calculated modes for the silicon-implanted TGG waveguide.

Metrics