Abstract

Blood glucose monitoring is essential to avoid the unwanted consequences of glucose level fluctuations. Optical monitors are of special interest because they can be non-invasive. Among optical glucose sensors, fluorescent upconversion nanoparticles (UCNPs) have the advantage of good photostability, low toxicity, and exceptional autofluorescence suppression. However, to sense glucose, UCNPs normally need surface functionalization, and this can be easily affected by other factors in biological systems, and may also affect their ability for real-time sensing of both increasing and decreasing glucose levels. Here, we report YVO4 : Yb3+, Er3+@Nd3+ core/shell UCNPs with Nd and Yb shell and GdVO4 : Yb3+, Er3+@Nd3+ core/shell UCNPs with Nd and Yb shell that show sensitive, reversible, and selective optical glucose detection without the need for any surface functionalization or modifications.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Multifunctional nanoheater based on NaGdF4:Yb3+, Er3+ upconversion nanoparticles

Qiyue Shao, Lilai Ouyang, Lifei Jin, and Jianqing Jiang
Opt. Express 23(23) 30057-30066 (2015)

Sub-5-nm lanthanide-doped ZrO2@NaYF4 nanodots as efficient upconverting probes for rapid scanning microscopy and aptamer-mediated bioimaging

Jing Liu, Nana Li, Ruitao Wu, Yuxiang Zhao, Qiuqiang Zhan, and Sailing He
Opt. Mater. Express 5(8) 1759-1771 (2015)

Engineering water-tolerant core/shell upconversion nanoparticles for optical temperature sensing

Masfer H. Alkahtani, Carmen L. Gomes, and Philip R. Hemmer
Opt. Lett. 42(13) 2451-2454 (2017)

References

  • View by:
  • |
  • |
  • |

  1. H. Wang, J. Yi, Y. Yu, and S. Zhou, “NIR upconversion fluorescence glucose sensing and glucose-responsive insulin release of carbon dot-immobilized hybrid microgels at physiological pH,” Nanoscale 9(2), 509–516 (2017).
    [Crossref]
  2. Centers for Disease Control and Prevention, National Diabetes Statistics Report, 2017 Atlanta, GA, Centers for Disease Control and Prevention, U.S. Dept of Health and Human Services (2017).
  3. M. Zhang, C. Liao, C. H. Mak, P. You, C. L. Mak, and F. Yan, “Highly sensitive glucose sensors based on enzyme – modified whole-graphene solution-gated transistors,” Sci. Rep. 5, 8311 (2015).
    [Crossref]
  4. E. H. Yoo and S. Y. Lee, “Glucose Biosensors: An Overview of Use in Clinical Practice,” Sensors 10(5), 4558–4576 (2010).
    [Crossref] [PubMed]
  5. H. Wang, J. Yi, D. Velado, Y. Yu, and S. Zhou, “Immobilization of Carbon Dots in Molecularly Imprinted Microgels for Optical Sensing of Glucose at Physiological pH,” ACS Applied Materials and Interfaces 7(29), 15735–15745 (2015).
    [Crossref] [PubMed]
  6. H. E. Koschwanez and W. M. Reichert, “In vitro, in vivo and post explantation testing of glucose-detecting biosensors: current methods and recommendations,” Biomaterials 28(25), 3687–3703 (2007).
    [Crossref] [PubMed]
  7. J. Durner, “Clinical chemistry: challenges for analytical chemistry and the nanosciences from medicine,” Angew. Chem. Int. Ed. 49(6), 1026–1051 (2010).
    [Crossref]
  8. D. Rodbard, “Continuous Glucose Monitoring: A Review of Successes, Challenges, and Opportunities,” Diabetes Technol. Ther. 18(2), S3–S13 (2016).
    [Crossref] [PubMed]
  9. T. Lin, A. Gal, Y. Mayzel, K. Horman, and K. Bahartan, “Non-Invasive Glucose Monitoring: A Review of Challenges and Recent Advances,” Current Trends in Biomedical Engineering & Biosciences 6 (5), 001–008 (2017).
    [Crossref]
  10. Dexcom G5 Mobile System for Non-Adjunctive Use. Clinical Chemistry and Clinical Toxicology Devices Panel, July 21, (2016).
  11. Z. Blum, D. Pankratov, and S. Shleev, “Powering electronic contact lenses: current achievements, challenges, and perspectives,” Expert Rev. Ophthalmol 9(4), 269–273 (2014).
    [Crossref]
  12. J. S Hansen and J. B. Christensen, “Recent advances in fluorescent arylboronic acids for glucose sensing,” Biosensors 3(4), 400–418 (2013).
    [Crossref] [PubMed]
  13. X. Zhang, Ch. Gao, Sh. Lu, H. Duan, N. Jing, D. Dong, C. Shi, and M. Liu,“Anti-photobleaching flower-like microgels as optical nanobiosensors with high selectivity at physiological conditions for continuous glucose monitoring,” Journal of Materials Chemistry B 2(33), 5452–5460 (2014).
    [Crossref]
  14. M. Mesch, Ch. Zhang, P. V. Braun, and H. Giessen, “Functionalized Hydrogel on Plasmonic Nanoantennas for Noninvasive Glucose Sensing,” ACS Photonics 2(4), 475–480 (2015).
    [Crossref]
  15. W. Wu, N. Mitra, E. C. Y. Yan, and Sh. Zhou, “Multifunctional Hybrid Nanogel for Integration of Optical Glucose Sensing and Self – Regulated Insulin Release at Physiological pH,” ACS Nano. 4(8), 4831–4839 (2010).
    [Crossref] [PubMed]
  16. W. Wu, T. Zhou, J. Shen, and Sh. Zhou, “Optical detection of glucose by CdS quantum dots immobilized in smart microgels, ” Chem. Commun. 29, 4390–4392 (2009).
    [Crossref]
  17. D. Wang, T. Liu, Jun Yin, and Sh. Liu, “Stimuli-Responsive Fluorescent Poly(N-isopropylacrylamide) Microgels Labeled with Phenylboronic Acid Moieties as Multifunctional Ratiometric Probes for Glucose and Temperatures,” Macromolecules 44(7), 2282–2290 (2011).
    [Crossref]
  18. V. I. Shubayev, T. R. Pisanic, and S. Jin,“ Magnetic nanoparticles for theragnostics,” Adv. Drug Deliv. Rev. 61(6), 467–477 (2009).
    [Crossref] [PubMed]
  19. T.R. Pisanic, J. D. Blackwell, V. I. Shubayev, R. R. Fiñones, and S. Jin, “Nanotoxicity of iron oxide nanoparticle internalization in growing neurons,” Biomaterials 28(16), 2572–2581 (2007).
    [Crossref] [PubMed]
  20. Y. Pan, S. Neuss, A. Leifert, M. Fischler, F. Wen, U. Simon, G. Schmid, W. Brandau, and W. Jahnen-Dechent, “Size-dependent cytotoxicity of gold nanoparticles,” Small 3(11), 1941–1949 (2007).
    [Crossref] [PubMed]
  21. V. Klochkov, N. Kavok, G. Grygorova, O. Sedyh, and Y. Malyukin, “Size and shape influence of luminescent orthovanadate nanoparticles on their accumulation in nuclear compartments of rat hepatocytes,” Mater. Sci. Eng. C. Mater. Biol. Appl. 33(5), 2708–2712 (2013).
    [Crossref] [PubMed]
  22. D. K. Chatterjee, A. J. Rufaihah, and Y. Zhang, “Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystal,” Biomaterials 29(7), 937–943 (2008).
    [Crossref]
  23. L. Rao, L. L. Bu, B. Cai, H. J. Xu, A. Li, W. F. Zhang, Z. J. Sun, S. S. Guo, W. Liu, T. H. Wang, and X.Z. Zhao, “Cancer Cell Membrane-Coated Upconversion Nanoprobes for Highly Specific Tumor Imaging,” Adv. Mater. 28(18), 3460–3666 (2016).
    [Crossref] [PubMed]
  24. L. Rao, Q.F. Meng, L. L. Bu, B. Cai, Q. Huang, Z. J. Sun, W. F. Zhang, A. Li, Sh. Sh. Guo, W. Liu, T. H. Wang, and X. Z. Zhao, “Erythrocyte Membrane-Coated Upconversion Nanoparticles with Minimal Protein Adsorption for Enhanced Tumor Imaging,” ACS Appl. Mater Interfaces 9(3), 2159–2168 (2017).
    [Crossref] [PubMed]
  25. K. S. Layland, I. Riemann, O. Damour, U. A. Stock, and K. König, “Two-photon microscopes and in vivo multiphoton tomographs – Powerful diagnostic tools for tissue engineering and drug delivery, ” Advanced Drug Delivery Reviews 58(7), 878–896 (2006).
    [Crossref]
  26. J. Chen and J.X. Zhao, “Upconversion nanomaterials: synthesis, mechanism, and applications in sensing,” Sensors 12(3), 2414–2435 (2012).
    [Crossref] [PubMed]
  27. T. X. Can, Q. Zhan, H. Liu, G. Somesfalean, J. Qian, S. He, and S. A. Engels, “Upconverting nanoparticles for pre – clinical diffuse optical imaging, microscopy and sensing: Current trends and future challenges,” Laser & Photonics Reviews 7(5), 663–697 (2013).
    [Crossref]
  28. J. Yuan, Y. Cen, X.J. Kong, Sh. Wu Ch, L. Liu, R. Q. Yu, and X. Chu, “MnO2-Nanosheet-Modified Upconversion Nanosystem for Sensitive Turn-On Fluorescence Detection of H2O2 and Glucose in Blood,” ACS Applied Materials & Interfaces 7(19), 10548–10555 (2015).
    [Crossref]
  29. M.K. Balaconis, Y. Luo, and H.A. Clark, “Glucose-sensitive nanofiber scaffolds with an improved sensing design for physiological conditions,” Analyst 140(3), 716–723 (2015).
    [Crossref]
  30. X. Xie, N. Gao, R. Deng, Q. Sun, Q. H. Xu, and X. Liu, “Mechanistic Investigation of Photon Upconversion in N d3+-Sensitized Core–Shell Nanoparticles,” Journal of the American Chemical Society 135(34), 12608–12611 (2013).
    [Crossref] [PubMed]
  31. Y. F. Wang, G. Y. Liu, L. D. Sun, J. W. Xiao, J. C. Zhou, and C. H. Yan, “N d3+-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect,” ACS Nano. 7(8), 7200–7206 (2013).
    [Crossref] [PubMed]
  32. H. Lu, H. Hao, G. Shi, Y. Gao, R. Wang, Y. Song, Y. Wang, and X. Zhang, “Optical temperature sensing in [small beta]-N aLuF4 : Yb3+/Er3+/T m3+ based on thermal, quasi-thermal and non-thermal coupling levels,” RSC Advances 6(60), 55307–55311 (2016).
    [Crossref]
  33. O. A. Savchuk, J. J. Carvajal, C. Cascales, J. Massons, M. Aguilo, and F. Diaz, “Thermochromic upconversion nanoparticles for visual temperature sensors with high thermal, spatial and temporal resolution,” Journal of Materials Chemistry C 4(27), 6602–6613 (2016).
    [Crossref]
  34. X. Zhu, W. Feng, J. Chang, Y. W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437 (2016).
    [Crossref] [PubMed]
  35. T. V. Gavrilovic, D. J. Jovanovic, V. Lojpur, and M. D. Dramicanin, “Multifunctional Eu3+ – and Er3+/Yb3+ – doped GdVO4 nanoparticles synthesized by reverse micelle method,” Sci. Rep. 4, 4209 (2014).
    [Crossref]
  36. M. H. Alkahtani, C. L. Gomes, and P. R. Hemmer, “Engineering water – tolerant core/shell upconversion nanoparticles for optical temperature sensing,” Opt. Lett. 42(13), 2451–2454 (2017).
    [Crossref] [PubMed]
  37. M. H. Alkahtani, L. Jiang, R. Brick, P. R. Hemmer, and M. Scully, “Nanometer-scale luminescent thermometry in bovine embryos,” Opt. Lett. 42(23), 4812–4815 (2017).
    [Crossref] [PubMed]
  38. T. Scior, J. A. G.-Garcia, Q. T. Do, P. Bernard, and S. Laufer, “Why antidiabetic vanadium complexes are not in the pipeline of “big pharma” drug research? A Critical Review,” Curr Med. Chem. 23(25), 2874–2891 (2016).
    [Crossref] [PubMed]
  39. E. Kioseoglou, S. Petanidis, C. Gabriel, and A. Salifoglou, “The chemistry and biology of vanadium compounds in cancer therapeutics,” Coordination Chemistry Reviews 301–302, 87–105 (2015).
  40. C. C. McLauchlan, J. D. Hooker, M. A. Jones, Z. Dymon, E. A. Backhus, B. A. Greiner, N. A. Dorefer, M. A. Youkhana, and L. M. Manus, “Inhibition of acid, alkaline, and tyrosine (ptp1b) phosphatases by novel vanadium complexes,” J. Inorg. Biochem. 104(3), 274–281 (2010).
    [Crossref] [PubMed]
  41. L. Zhang, Y. Zhang, Q. Xia, X. M. Zhao, H. X. Cai, D. W. Li, X. D. Yang, K. Wang, and Z. L. Xia, “Effective control of blood glucose status and toxicity in streptozotocin-induced diabetic rats by orally administration of vanadate in an herbal decoction,” Food Chem. Toxicol. 46(9), 2996–3002 (2008).
    [Crossref] [PubMed]
  42. G. Mialon, S. Türkcan, A. Alexandrou, T. Gacoin, and J. P. Boilot, “New insights into size effects in luminescent oxide nanocrystals,” Journal of Physical Chemistry C 113(43), 18699–18706 (2009).
    [Crossref]
  43. G. Mialon, S. Türkcan, G. Dantelle, D. P. Collins, M. Hadjipanayi, R. A. Taylor, T. Gacoin, A. Alexandrou, and J. P. Boilot, “High up-conversion efficiency of YVO4 : Yb, Er nanoparticles in water down to the single-particle level,” The Journal of Physical Chemistry C 114(51), 22449–22454 (2010).
    [Crossref]
  44. M. H Alkahtani, F. S. Alghannam, C. Sanchez, C. L. Gomes, H. Liang, and P. R. Hemmer, “High efficiency upconversion nanophosphors for high – contrast bioimaging,” Nanotechnology 27(48), 485–501 (2016).
    [Crossref]
  45. P. Shen and Y. Xia, “Synthesis-modification integration: one – step fabrication of boronic acid functionalized carbon dots for fluorescent blood sugar sensing,” Anal. Chem. 86(11), 5323–5329 (2014).
    [Crossref] [PubMed]
  46. N. Sekar, J. Li, Z. He, D. Gefel, and Y. Shechter, “Independent Signal-Transduction Pathways for Vanadate and for Insulin in the Activation of Glycogen Synthase and Glycogenesis in Rat Adipocytes,” Endocrinology 140(3), 1125 (1999).
    [Crossref] [PubMed]
  47. W. A. Wilson, W. E. Hughes, W. Tomamichel, and P. J. Roach, “Increased glycogen storage in yeast results in less branched glycogen,”Biochemical and Biophysical Research Communications 320(2), 416–423 (2004).
    [Crossref] [PubMed]
  48. W. Zheng, P. Huang, D. Tu, E. Ma, H. Zhu, and X. Chen, “Lanthanide-doped upconversion nano-bioprobes: electronic structures, optical properties, and biodetection,” Chemical Society Reviews 44(6), 1379–1415 (2015).
    [Crossref]
  49. R. Wu, Q. Zhan, H. Liu, X. Wen, B. Wang, and S. He, “Optical depletion mechanism of upconverting luminescence and its potential for multi-photon STED-like microscopy,” Opt. Express 23 (25), 32401–32412 (2015).
    [Crossref] [PubMed]
  50. Q. Zhan, J. Qian, H. Liang, G. Somesfalean, D. Wang, S. He, Z. Zhang, and S. Andersson-Engels, “Using 915 nm Laser Excited Tm3+/Er3+/Ho3+-Doped NaYbF4 Upconversion Nanoparticles for in Vitro and Deeper in Vivo Bioimaging without Overheating Irradiation,” ACS Nano. 5 (5), 3744–3757 (2011).
    [Crossref] [PubMed]

2017 (5)

H. Wang, J. Yi, Y. Yu, and S. Zhou, “NIR upconversion fluorescence glucose sensing and glucose-responsive insulin release of carbon dot-immobilized hybrid microgels at physiological pH,” Nanoscale 9(2), 509–516 (2017).
[Crossref]

T. Lin, A. Gal, Y. Mayzel, K. Horman, and K. Bahartan, “Non-Invasive Glucose Monitoring: A Review of Challenges and Recent Advances,” Current Trends in Biomedical Engineering & Biosciences 6 (5), 001–008 (2017).
[Crossref]

L. Rao, Q.F. Meng, L. L. Bu, B. Cai, Q. Huang, Z. J. Sun, W. F. Zhang, A. Li, Sh. Sh. Guo, W. Liu, T. H. Wang, and X. Z. Zhao, “Erythrocyte Membrane-Coated Upconversion Nanoparticles with Minimal Protein Adsorption for Enhanced Tumor Imaging,” ACS Appl. Mater Interfaces 9(3), 2159–2168 (2017).
[Crossref] [PubMed]

M. H. Alkahtani, C. L. Gomes, and P. R. Hemmer, “Engineering water – tolerant core/shell upconversion nanoparticles for optical temperature sensing,” Opt. Lett. 42(13), 2451–2454 (2017).
[Crossref] [PubMed]

M. H. Alkahtani, L. Jiang, R. Brick, P. R. Hemmer, and M. Scully, “Nanometer-scale luminescent thermometry in bovine embryos,” Opt. Lett. 42(23), 4812–4815 (2017).
[Crossref] [PubMed]

2016 (7)

T. Scior, J. A. G.-Garcia, Q. T. Do, P. Bernard, and S. Laufer, “Why antidiabetic vanadium complexes are not in the pipeline of “big pharma” drug research? A Critical Review,” Curr Med. Chem. 23(25), 2874–2891 (2016).
[Crossref] [PubMed]

H. Lu, H. Hao, G. Shi, Y. Gao, R. Wang, Y. Song, Y. Wang, and X. Zhang, “Optical temperature sensing in [small beta]-N aLuF4 : Yb3+/Er3+/T m3+ based on thermal, quasi-thermal and non-thermal coupling levels,” RSC Advances 6(60), 55307–55311 (2016).
[Crossref]

O. A. Savchuk, J. J. Carvajal, C. Cascales, J. Massons, M. Aguilo, and F. Diaz, “Thermochromic upconversion nanoparticles for visual temperature sensors with high thermal, spatial and temporal resolution,” Journal of Materials Chemistry C 4(27), 6602–6613 (2016).
[Crossref]

X. Zhu, W. Feng, J. Chang, Y. W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437 (2016).
[Crossref] [PubMed]

L. Rao, L. L. Bu, B. Cai, H. J. Xu, A. Li, W. F. Zhang, Z. J. Sun, S. S. Guo, W. Liu, T. H. Wang, and X.Z. Zhao, “Cancer Cell Membrane-Coated Upconversion Nanoprobes for Highly Specific Tumor Imaging,” Adv. Mater. 28(18), 3460–3666 (2016).
[Crossref] [PubMed]

D. Rodbard, “Continuous Glucose Monitoring: A Review of Successes, Challenges, and Opportunities,” Diabetes Technol. Ther. 18(2), S3–S13 (2016).
[Crossref] [PubMed]

M. H Alkahtani, F. S. Alghannam, C. Sanchez, C. L. Gomes, H. Liang, and P. R. Hemmer, “High efficiency upconversion nanophosphors for high – contrast bioimaging,” Nanotechnology 27(48), 485–501 (2016).
[Crossref]

2015 (8)

W. Zheng, P. Huang, D. Tu, E. Ma, H. Zhu, and X. Chen, “Lanthanide-doped upconversion nano-bioprobes: electronic structures, optical properties, and biodetection,” Chemical Society Reviews 44(6), 1379–1415 (2015).
[Crossref]

R. Wu, Q. Zhan, H. Liu, X. Wen, B. Wang, and S. He, “Optical depletion mechanism of upconverting luminescence and its potential for multi-photon STED-like microscopy,” Opt. Express 23 (25), 32401–32412 (2015).
[Crossref] [PubMed]

M. Zhang, C. Liao, C. H. Mak, P. You, C. L. Mak, and F. Yan, “Highly sensitive glucose sensors based on enzyme – modified whole-graphene solution-gated transistors,” Sci. Rep. 5, 8311 (2015).
[Crossref]

H. Wang, J. Yi, D. Velado, Y. Yu, and S. Zhou, “Immobilization of Carbon Dots in Molecularly Imprinted Microgels for Optical Sensing of Glucose at Physiological pH,” ACS Applied Materials and Interfaces 7(29), 15735–15745 (2015).
[Crossref] [PubMed]

M. Mesch, Ch. Zhang, P. V. Braun, and H. Giessen, “Functionalized Hydrogel on Plasmonic Nanoantennas for Noninvasive Glucose Sensing,” ACS Photonics 2(4), 475–480 (2015).
[Crossref]

J. Yuan, Y. Cen, X.J. Kong, Sh. Wu Ch, L. Liu, R. Q. Yu, and X. Chu, “MnO2-Nanosheet-Modified Upconversion Nanosystem for Sensitive Turn-On Fluorescence Detection of H2O2 and Glucose in Blood,” ACS Applied Materials & Interfaces 7(19), 10548–10555 (2015).
[Crossref]

M.K. Balaconis, Y. Luo, and H.A. Clark, “Glucose-sensitive nanofiber scaffolds with an improved sensing design for physiological conditions,” Analyst 140(3), 716–723 (2015).
[Crossref]

E. Kioseoglou, S. Petanidis, C. Gabriel, and A. Salifoglou, “The chemistry and biology of vanadium compounds in cancer therapeutics,” Coordination Chemistry Reviews 301–302, 87–105 (2015).

2014 (4)

T. V. Gavrilovic, D. J. Jovanovic, V. Lojpur, and M. D. Dramicanin, “Multifunctional Eu3+ – and Er3+/Yb3+ – doped GdVO4 nanoparticles synthesized by reverse micelle method,” Sci. Rep. 4, 4209 (2014).
[Crossref]

X. Zhang, Ch. Gao, Sh. Lu, H. Duan, N. Jing, D. Dong, C. Shi, and M. Liu,“Anti-photobleaching flower-like microgels as optical nanobiosensors with high selectivity at physiological conditions for continuous glucose monitoring,” Journal of Materials Chemistry B 2(33), 5452–5460 (2014).
[Crossref]

Z. Blum, D. Pankratov, and S. Shleev, “Powering electronic contact lenses: current achievements, challenges, and perspectives,” Expert Rev. Ophthalmol 9(4), 269–273 (2014).
[Crossref]

P. Shen and Y. Xia, “Synthesis-modification integration: one – step fabrication of boronic acid functionalized carbon dots for fluorescent blood sugar sensing,” Anal. Chem. 86(11), 5323–5329 (2014).
[Crossref] [PubMed]

2013 (5)

T. X. Can, Q. Zhan, H. Liu, G. Somesfalean, J. Qian, S. He, and S. A. Engels, “Upconverting nanoparticles for pre – clinical diffuse optical imaging, microscopy and sensing: Current trends and future challenges,” Laser & Photonics Reviews 7(5), 663–697 (2013).
[Crossref]

J. S Hansen and J. B. Christensen, “Recent advances in fluorescent arylboronic acids for glucose sensing,” Biosensors 3(4), 400–418 (2013).
[Crossref] [PubMed]

V. Klochkov, N. Kavok, G. Grygorova, O. Sedyh, and Y. Malyukin, “Size and shape influence of luminescent orthovanadate nanoparticles on their accumulation in nuclear compartments of rat hepatocytes,” Mater. Sci. Eng. C. Mater. Biol. Appl. 33(5), 2708–2712 (2013).
[Crossref] [PubMed]

X. Xie, N. Gao, R. Deng, Q. Sun, Q. H. Xu, and X. Liu, “Mechanistic Investigation of Photon Upconversion in N d3+-Sensitized Core–Shell Nanoparticles,” Journal of the American Chemical Society 135(34), 12608–12611 (2013).
[Crossref] [PubMed]

Y. F. Wang, G. Y. Liu, L. D. Sun, J. W. Xiao, J. C. Zhou, and C. H. Yan, “N d3+-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect,” ACS Nano. 7(8), 7200–7206 (2013).
[Crossref] [PubMed]

2012 (1)

J. Chen and J.X. Zhao, “Upconversion nanomaterials: synthesis, mechanism, and applications in sensing,” Sensors 12(3), 2414–2435 (2012).
[Crossref] [PubMed]

2011 (2)

Q. Zhan, J. Qian, H. Liang, G. Somesfalean, D. Wang, S. He, Z. Zhang, and S. Andersson-Engels, “Using 915 nm Laser Excited Tm3+/Er3+/Ho3+-Doped NaYbF4 Upconversion Nanoparticles for in Vitro and Deeper in Vivo Bioimaging without Overheating Irradiation,” ACS Nano. 5 (5), 3744–3757 (2011).
[Crossref] [PubMed]

D. Wang, T. Liu, Jun Yin, and Sh. Liu, “Stimuli-Responsive Fluorescent Poly(N-isopropylacrylamide) Microgels Labeled with Phenylboronic Acid Moieties as Multifunctional Ratiometric Probes for Glucose and Temperatures,” Macromolecules 44(7), 2282–2290 (2011).
[Crossref]

2010 (5)

W. Wu, N. Mitra, E. C. Y. Yan, and Sh. Zhou, “Multifunctional Hybrid Nanogel for Integration of Optical Glucose Sensing and Self – Regulated Insulin Release at Physiological pH,” ACS Nano. 4(8), 4831–4839 (2010).
[Crossref] [PubMed]

J. Durner, “Clinical chemistry: challenges for analytical chemistry and the nanosciences from medicine,” Angew. Chem. Int. Ed. 49(6), 1026–1051 (2010).
[Crossref]

E. H. Yoo and S. Y. Lee, “Glucose Biosensors: An Overview of Use in Clinical Practice,” Sensors 10(5), 4558–4576 (2010).
[Crossref] [PubMed]

C. C. McLauchlan, J. D. Hooker, M. A. Jones, Z. Dymon, E. A. Backhus, B. A. Greiner, N. A. Dorefer, M. A. Youkhana, and L. M. Manus, “Inhibition of acid, alkaline, and tyrosine (ptp1b) phosphatases by novel vanadium complexes,” J. Inorg. Biochem. 104(3), 274–281 (2010).
[Crossref] [PubMed]

G. Mialon, S. Türkcan, G. Dantelle, D. P. Collins, M. Hadjipanayi, R. A. Taylor, T. Gacoin, A. Alexandrou, and J. P. Boilot, “High up-conversion efficiency of YVO4 : Yb, Er nanoparticles in water down to the single-particle level,” The Journal of Physical Chemistry C 114(51), 22449–22454 (2010).
[Crossref]

2009 (3)

G. Mialon, S. Türkcan, A. Alexandrou, T. Gacoin, and J. P. Boilot, “New insights into size effects in luminescent oxide nanocrystals,” Journal of Physical Chemistry C 113(43), 18699–18706 (2009).
[Crossref]

W. Wu, T. Zhou, J. Shen, and Sh. Zhou, “Optical detection of glucose by CdS quantum dots immobilized in smart microgels, ” Chem. Commun. 29, 4390–4392 (2009).
[Crossref]

V. I. Shubayev, T. R. Pisanic, and S. Jin,“ Magnetic nanoparticles for theragnostics,” Adv. Drug Deliv. Rev. 61(6), 467–477 (2009).
[Crossref] [PubMed]

2008 (2)

D. K. Chatterjee, A. J. Rufaihah, and Y. Zhang, “Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystal,” Biomaterials 29(7), 937–943 (2008).
[Crossref]

L. Zhang, Y. Zhang, Q. Xia, X. M. Zhao, H. X. Cai, D. W. Li, X. D. Yang, K. Wang, and Z. L. Xia, “Effective control of blood glucose status and toxicity in streptozotocin-induced diabetic rats by orally administration of vanadate in an herbal decoction,” Food Chem. Toxicol. 46(9), 2996–3002 (2008).
[Crossref] [PubMed]

2007 (3)

T.R. Pisanic, J. D. Blackwell, V. I. Shubayev, R. R. Fiñones, and S. Jin, “Nanotoxicity of iron oxide nanoparticle internalization in growing neurons,” Biomaterials 28(16), 2572–2581 (2007).
[Crossref] [PubMed]

Y. Pan, S. Neuss, A. Leifert, M. Fischler, F. Wen, U. Simon, G. Schmid, W. Brandau, and W. Jahnen-Dechent, “Size-dependent cytotoxicity of gold nanoparticles,” Small 3(11), 1941–1949 (2007).
[Crossref] [PubMed]

H. E. Koschwanez and W. M. Reichert, “In vitro, in vivo and post explantation testing of glucose-detecting biosensors: current methods and recommendations,” Biomaterials 28(25), 3687–3703 (2007).
[Crossref] [PubMed]

2006 (1)

K. S. Layland, I. Riemann, O. Damour, U. A. Stock, and K. König, “Two-photon microscopes and in vivo multiphoton tomographs – Powerful diagnostic tools for tissue engineering and drug delivery, ” Advanced Drug Delivery Reviews 58(7), 878–896 (2006).
[Crossref]

2004 (1)

W. A. Wilson, W. E. Hughes, W. Tomamichel, and P. J. Roach, “Increased glycogen storage in yeast results in less branched glycogen,”Biochemical and Biophysical Research Communications 320(2), 416–423 (2004).
[Crossref] [PubMed]

1999 (1)

N. Sekar, J. Li, Z. He, D. Gefel, and Y. Shechter, “Independent Signal-Transduction Pathways for Vanadate and for Insulin in the Activation of Glycogen Synthase and Glycogenesis in Rat Adipocytes,” Endocrinology 140(3), 1125 (1999).
[Crossref] [PubMed]

Aguilo, M.

O. A. Savchuk, J. J. Carvajal, C. Cascales, J. Massons, M. Aguilo, and F. Diaz, “Thermochromic upconversion nanoparticles for visual temperature sensors with high thermal, spatial and temporal resolution,” Journal of Materials Chemistry C 4(27), 6602–6613 (2016).
[Crossref]

Alexandrou, A.

G. Mialon, S. Türkcan, G. Dantelle, D. P. Collins, M. Hadjipanayi, R. A. Taylor, T. Gacoin, A. Alexandrou, and J. P. Boilot, “High up-conversion efficiency of YVO4 : Yb, Er nanoparticles in water down to the single-particle level,” The Journal of Physical Chemistry C 114(51), 22449–22454 (2010).
[Crossref]

G. Mialon, S. Türkcan, A. Alexandrou, T. Gacoin, and J. P. Boilot, “New insights into size effects in luminescent oxide nanocrystals,” Journal of Physical Chemistry C 113(43), 18699–18706 (2009).
[Crossref]

Alghannam, F. S.

M. H Alkahtani, F. S. Alghannam, C. Sanchez, C. L. Gomes, H. Liang, and P. R. Hemmer, “High efficiency upconversion nanophosphors for high – contrast bioimaging,” Nanotechnology 27(48), 485–501 (2016).
[Crossref]

Alkahtani, M. H

M. H Alkahtani, F. S. Alghannam, C. Sanchez, C. L. Gomes, H. Liang, and P. R. Hemmer, “High efficiency upconversion nanophosphors for high – contrast bioimaging,” Nanotechnology 27(48), 485–501 (2016).
[Crossref]

Alkahtani, M. H.

Andersson-Engels, S.

Q. Zhan, J. Qian, H. Liang, G. Somesfalean, D. Wang, S. He, Z. Zhang, and S. Andersson-Engels, “Using 915 nm Laser Excited Tm3+/Er3+/Ho3+-Doped NaYbF4 Upconversion Nanoparticles for in Vitro and Deeper in Vivo Bioimaging without Overheating Irradiation,” ACS Nano. 5 (5), 3744–3757 (2011).
[Crossref] [PubMed]

Backhus, E. A.

C. C. McLauchlan, J. D. Hooker, M. A. Jones, Z. Dymon, E. A. Backhus, B. A. Greiner, N. A. Dorefer, M. A. Youkhana, and L. M. Manus, “Inhibition of acid, alkaline, and tyrosine (ptp1b) phosphatases by novel vanadium complexes,” J. Inorg. Biochem. 104(3), 274–281 (2010).
[Crossref] [PubMed]

Bahartan, K.

T. Lin, A. Gal, Y. Mayzel, K. Horman, and K. Bahartan, “Non-Invasive Glucose Monitoring: A Review of Challenges and Recent Advances,” Current Trends in Biomedical Engineering & Biosciences 6 (5), 001–008 (2017).
[Crossref]

Balaconis, M.K.

M.K. Balaconis, Y. Luo, and H.A. Clark, “Glucose-sensitive nanofiber scaffolds with an improved sensing design for physiological conditions,” Analyst 140(3), 716–723 (2015).
[Crossref]

Bernard, P.

T. Scior, J. A. G.-Garcia, Q. T. Do, P. Bernard, and S. Laufer, “Why antidiabetic vanadium complexes are not in the pipeline of “big pharma” drug research? A Critical Review,” Curr Med. Chem. 23(25), 2874–2891 (2016).
[Crossref] [PubMed]

Blackwell, J. D.

T.R. Pisanic, J. D. Blackwell, V. I. Shubayev, R. R. Fiñones, and S. Jin, “Nanotoxicity of iron oxide nanoparticle internalization in growing neurons,” Biomaterials 28(16), 2572–2581 (2007).
[Crossref] [PubMed]

Blum, Z.

Z. Blum, D. Pankratov, and S. Shleev, “Powering electronic contact lenses: current achievements, challenges, and perspectives,” Expert Rev. Ophthalmol 9(4), 269–273 (2014).
[Crossref]

Boilot, J. P.

G. Mialon, S. Türkcan, G. Dantelle, D. P. Collins, M. Hadjipanayi, R. A. Taylor, T. Gacoin, A. Alexandrou, and J. P. Boilot, “High up-conversion efficiency of YVO4 : Yb, Er nanoparticles in water down to the single-particle level,” The Journal of Physical Chemistry C 114(51), 22449–22454 (2010).
[Crossref]

G. Mialon, S. Türkcan, A. Alexandrou, T. Gacoin, and J. P. Boilot, “New insights into size effects in luminescent oxide nanocrystals,” Journal of Physical Chemistry C 113(43), 18699–18706 (2009).
[Crossref]

Brandau, W.

Y. Pan, S. Neuss, A. Leifert, M. Fischler, F. Wen, U. Simon, G. Schmid, W. Brandau, and W. Jahnen-Dechent, “Size-dependent cytotoxicity of gold nanoparticles,” Small 3(11), 1941–1949 (2007).
[Crossref] [PubMed]

Braun, P. V.

M. Mesch, Ch. Zhang, P. V. Braun, and H. Giessen, “Functionalized Hydrogel on Plasmonic Nanoantennas for Noninvasive Glucose Sensing,” ACS Photonics 2(4), 475–480 (2015).
[Crossref]

Brick, R.

Bu, L. L.

L. Rao, Q.F. Meng, L. L. Bu, B. Cai, Q. Huang, Z. J. Sun, W. F. Zhang, A. Li, Sh. Sh. Guo, W. Liu, T. H. Wang, and X. Z. Zhao, “Erythrocyte Membrane-Coated Upconversion Nanoparticles with Minimal Protein Adsorption for Enhanced Tumor Imaging,” ACS Appl. Mater Interfaces 9(3), 2159–2168 (2017).
[Crossref] [PubMed]

L. Rao, L. L. Bu, B. Cai, H. J. Xu, A. Li, W. F. Zhang, Z. J. Sun, S. S. Guo, W. Liu, T. H. Wang, and X.Z. Zhao, “Cancer Cell Membrane-Coated Upconversion Nanoprobes for Highly Specific Tumor Imaging,” Adv. Mater. 28(18), 3460–3666 (2016).
[Crossref] [PubMed]

Cai, B.

L. Rao, Q.F. Meng, L. L. Bu, B. Cai, Q. Huang, Z. J. Sun, W. F. Zhang, A. Li, Sh. Sh. Guo, W. Liu, T. H. Wang, and X. Z. Zhao, “Erythrocyte Membrane-Coated Upconversion Nanoparticles with Minimal Protein Adsorption for Enhanced Tumor Imaging,” ACS Appl. Mater Interfaces 9(3), 2159–2168 (2017).
[Crossref] [PubMed]

L. Rao, L. L. Bu, B. Cai, H. J. Xu, A. Li, W. F. Zhang, Z. J. Sun, S. S. Guo, W. Liu, T. H. Wang, and X.Z. Zhao, “Cancer Cell Membrane-Coated Upconversion Nanoprobes for Highly Specific Tumor Imaging,” Adv. Mater. 28(18), 3460–3666 (2016).
[Crossref] [PubMed]

Cai, H. X.

L. Zhang, Y. Zhang, Q. Xia, X. M. Zhao, H. X. Cai, D. W. Li, X. D. Yang, K. Wang, and Z. L. Xia, “Effective control of blood glucose status and toxicity in streptozotocin-induced diabetic rats by orally administration of vanadate in an herbal decoction,” Food Chem. Toxicol. 46(9), 2996–3002 (2008).
[Crossref] [PubMed]

Can, T. X.

T. X. Can, Q. Zhan, H. Liu, G. Somesfalean, J. Qian, S. He, and S. A. Engels, “Upconverting nanoparticles for pre – clinical diffuse optical imaging, microscopy and sensing: Current trends and future challenges,” Laser & Photonics Reviews 7(5), 663–697 (2013).
[Crossref]

Carvajal, J. J.

O. A. Savchuk, J. J. Carvajal, C. Cascales, J. Massons, M. Aguilo, and F. Diaz, “Thermochromic upconversion nanoparticles for visual temperature sensors with high thermal, spatial and temporal resolution,” Journal of Materials Chemistry C 4(27), 6602–6613 (2016).
[Crossref]

Cascales, C.

O. A. Savchuk, J. J. Carvajal, C. Cascales, J. Massons, M. Aguilo, and F. Diaz, “Thermochromic upconversion nanoparticles for visual temperature sensors with high thermal, spatial and temporal resolution,” Journal of Materials Chemistry C 4(27), 6602–6613 (2016).
[Crossref]

Cen, Y.

J. Yuan, Y. Cen, X.J. Kong, Sh. Wu Ch, L. Liu, R. Q. Yu, and X. Chu, “MnO2-Nanosheet-Modified Upconversion Nanosystem for Sensitive Turn-On Fluorescence Detection of H2O2 and Glucose in Blood,” ACS Applied Materials & Interfaces 7(19), 10548–10555 (2015).
[Crossref]

Ch, Sh. Wu

J. Yuan, Y. Cen, X.J. Kong, Sh. Wu Ch, L. Liu, R. Q. Yu, and X. Chu, “MnO2-Nanosheet-Modified Upconversion Nanosystem for Sensitive Turn-On Fluorescence Detection of H2O2 and Glucose in Blood,” ACS Applied Materials & Interfaces 7(19), 10548–10555 (2015).
[Crossref]

Chang, J.

X. Zhu, W. Feng, J. Chang, Y. W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437 (2016).
[Crossref] [PubMed]

Chatterjee, D. K.

D. K. Chatterjee, A. J. Rufaihah, and Y. Zhang, “Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystal,” Biomaterials 29(7), 937–943 (2008).
[Crossref]

Chen, J.

J. Chen and J.X. Zhao, “Upconversion nanomaterials: synthesis, mechanism, and applications in sensing,” Sensors 12(3), 2414–2435 (2012).
[Crossref] [PubMed]

Chen, M.

X. Zhu, W. Feng, J. Chang, Y. W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437 (2016).
[Crossref] [PubMed]

Chen, X.

W. Zheng, P. Huang, D. Tu, E. Ma, H. Zhu, and X. Chen, “Lanthanide-doped upconversion nano-bioprobes: electronic structures, optical properties, and biodetection,” Chemical Society Reviews 44(6), 1379–1415 (2015).
[Crossref]

Christensen, J. B.

J. S Hansen and J. B. Christensen, “Recent advances in fluorescent arylboronic acids for glucose sensing,” Biosensors 3(4), 400–418 (2013).
[Crossref] [PubMed]

Chu, X.

J. Yuan, Y. Cen, X.J. Kong, Sh. Wu Ch, L. Liu, R. Q. Yu, and X. Chu, “MnO2-Nanosheet-Modified Upconversion Nanosystem for Sensitive Turn-On Fluorescence Detection of H2O2 and Glucose in Blood,” ACS Applied Materials & Interfaces 7(19), 10548–10555 (2015).
[Crossref]

Clark, H.A.

M.K. Balaconis, Y. Luo, and H.A. Clark, “Glucose-sensitive nanofiber scaffolds with an improved sensing design for physiological conditions,” Analyst 140(3), 716–723 (2015).
[Crossref]

Collins, D. P.

G. Mialon, S. Türkcan, G. Dantelle, D. P. Collins, M. Hadjipanayi, R. A. Taylor, T. Gacoin, A. Alexandrou, and J. P. Boilot, “High up-conversion efficiency of YVO4 : Yb, Er nanoparticles in water down to the single-particle level,” The Journal of Physical Chemistry C 114(51), 22449–22454 (2010).
[Crossref]

Damour, O.

K. S. Layland, I. Riemann, O. Damour, U. A. Stock, and K. König, “Two-photon microscopes and in vivo multiphoton tomographs – Powerful diagnostic tools for tissue engineering and drug delivery, ” Advanced Drug Delivery Reviews 58(7), 878–896 (2006).
[Crossref]

Dantelle, G.

G. Mialon, S. Türkcan, G. Dantelle, D. P. Collins, M. Hadjipanayi, R. A. Taylor, T. Gacoin, A. Alexandrou, and J. P. Boilot, “High up-conversion efficiency of YVO4 : Yb, Er nanoparticles in water down to the single-particle level,” The Journal of Physical Chemistry C 114(51), 22449–22454 (2010).
[Crossref]

Deng, R.

X. Xie, N. Gao, R. Deng, Q. Sun, Q. H. Xu, and X. Liu, “Mechanistic Investigation of Photon Upconversion in N d3+-Sensitized Core–Shell Nanoparticles,” Journal of the American Chemical Society 135(34), 12608–12611 (2013).
[Crossref] [PubMed]

Diaz, F.

O. A. Savchuk, J. J. Carvajal, C. Cascales, J. Massons, M. Aguilo, and F. Diaz, “Thermochromic upconversion nanoparticles for visual temperature sensors with high thermal, spatial and temporal resolution,” Journal of Materials Chemistry C 4(27), 6602–6613 (2016).
[Crossref]

Do, Q. T.

T. Scior, J. A. G.-Garcia, Q. T. Do, P. Bernard, and S. Laufer, “Why antidiabetic vanadium complexes are not in the pipeline of “big pharma” drug research? A Critical Review,” Curr Med. Chem. 23(25), 2874–2891 (2016).
[Crossref] [PubMed]

Dong, D.

X. Zhang, Ch. Gao, Sh. Lu, H. Duan, N. Jing, D. Dong, C. Shi, and M. Liu,“Anti-photobleaching flower-like microgels as optical nanobiosensors with high selectivity at physiological conditions for continuous glucose monitoring,” Journal of Materials Chemistry B 2(33), 5452–5460 (2014).
[Crossref]

Dorefer, N. A.

C. C. McLauchlan, J. D. Hooker, M. A. Jones, Z. Dymon, E. A. Backhus, B. A. Greiner, N. A. Dorefer, M. A. Youkhana, and L. M. Manus, “Inhibition of acid, alkaline, and tyrosine (ptp1b) phosphatases by novel vanadium complexes,” J. Inorg. Biochem. 104(3), 274–281 (2010).
[Crossref] [PubMed]

Dramicanin, M. D.

T. V. Gavrilovic, D. J. Jovanovic, V. Lojpur, and M. D. Dramicanin, “Multifunctional Eu3+ – and Er3+/Yb3+ – doped GdVO4 nanoparticles synthesized by reverse micelle method,” Sci. Rep. 4, 4209 (2014).
[Crossref]

Duan, H.

X. Zhang, Ch. Gao, Sh. Lu, H. Duan, N. Jing, D. Dong, C. Shi, and M. Liu,“Anti-photobleaching flower-like microgels as optical nanobiosensors with high selectivity at physiological conditions for continuous glucose monitoring,” Journal of Materials Chemistry B 2(33), 5452–5460 (2014).
[Crossref]

Durner, J.

J. Durner, “Clinical chemistry: challenges for analytical chemistry and the nanosciences from medicine,” Angew. Chem. Int. Ed. 49(6), 1026–1051 (2010).
[Crossref]

Dymon, Z.

C. C. McLauchlan, J. D. Hooker, M. A. Jones, Z. Dymon, E. A. Backhus, B. A. Greiner, N. A. Dorefer, M. A. Youkhana, and L. M. Manus, “Inhibition of acid, alkaline, and tyrosine (ptp1b) phosphatases by novel vanadium complexes,” J. Inorg. Biochem. 104(3), 274–281 (2010).
[Crossref] [PubMed]

Engels, S. A.

T. X. Can, Q. Zhan, H. Liu, G. Somesfalean, J. Qian, S. He, and S. A. Engels, “Upconverting nanoparticles for pre – clinical diffuse optical imaging, microscopy and sensing: Current trends and future challenges,” Laser & Photonics Reviews 7(5), 663–697 (2013).
[Crossref]

Feng, W.

X. Zhu, W. Feng, J. Chang, Y. W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437 (2016).
[Crossref] [PubMed]

Fiñones, R. R.

T.R. Pisanic, J. D. Blackwell, V. I. Shubayev, R. R. Fiñones, and S. Jin, “Nanotoxicity of iron oxide nanoparticle internalization in growing neurons,” Biomaterials 28(16), 2572–2581 (2007).
[Crossref] [PubMed]

Fischler, M.

Y. Pan, S. Neuss, A. Leifert, M. Fischler, F. Wen, U. Simon, G. Schmid, W. Brandau, and W. Jahnen-Dechent, “Size-dependent cytotoxicity of gold nanoparticles,” Small 3(11), 1941–1949 (2007).
[Crossref] [PubMed]

G.-Garcia, J. A.

T. Scior, J. A. G.-Garcia, Q. T. Do, P. Bernard, and S. Laufer, “Why antidiabetic vanadium complexes are not in the pipeline of “big pharma” drug research? A Critical Review,” Curr Med. Chem. 23(25), 2874–2891 (2016).
[Crossref] [PubMed]

Gabriel, C.

E. Kioseoglou, S. Petanidis, C. Gabriel, and A. Salifoglou, “The chemistry and biology of vanadium compounds in cancer therapeutics,” Coordination Chemistry Reviews 301–302, 87–105 (2015).

Gacoin, T.

G. Mialon, S. Türkcan, G. Dantelle, D. P. Collins, M. Hadjipanayi, R. A. Taylor, T. Gacoin, A. Alexandrou, and J. P. Boilot, “High up-conversion efficiency of YVO4 : Yb, Er nanoparticles in water down to the single-particle level,” The Journal of Physical Chemistry C 114(51), 22449–22454 (2010).
[Crossref]

G. Mialon, S. Türkcan, A. Alexandrou, T. Gacoin, and J. P. Boilot, “New insights into size effects in luminescent oxide nanocrystals,” Journal of Physical Chemistry C 113(43), 18699–18706 (2009).
[Crossref]

Gal, A.

T. Lin, A. Gal, Y. Mayzel, K. Horman, and K. Bahartan, “Non-Invasive Glucose Monitoring: A Review of Challenges and Recent Advances,” Current Trends in Biomedical Engineering & Biosciences 6 (5), 001–008 (2017).
[Crossref]

Gao, Ch.

X. Zhang, Ch. Gao, Sh. Lu, H. Duan, N. Jing, D. Dong, C. Shi, and M. Liu,“Anti-photobleaching flower-like microgels as optical nanobiosensors with high selectivity at physiological conditions for continuous glucose monitoring,” Journal of Materials Chemistry B 2(33), 5452–5460 (2014).
[Crossref]

Gao, N.

X. Xie, N. Gao, R. Deng, Q. Sun, Q. H. Xu, and X. Liu, “Mechanistic Investigation of Photon Upconversion in N d3+-Sensitized Core–Shell Nanoparticles,” Journal of the American Chemical Society 135(34), 12608–12611 (2013).
[Crossref] [PubMed]

Gao, Y.

H. Lu, H. Hao, G. Shi, Y. Gao, R. Wang, Y. Song, Y. Wang, and X. Zhang, “Optical temperature sensing in [small beta]-N aLuF4 : Yb3+/Er3+/T m3+ based on thermal, quasi-thermal and non-thermal coupling levels,” RSC Advances 6(60), 55307–55311 (2016).
[Crossref]

Gavrilovic, T. V.

T. V. Gavrilovic, D. J. Jovanovic, V. Lojpur, and M. D. Dramicanin, “Multifunctional Eu3+ – and Er3+/Yb3+ – doped GdVO4 nanoparticles synthesized by reverse micelle method,” Sci. Rep. 4, 4209 (2014).
[Crossref]

Gefel, D.

N. Sekar, J. Li, Z. He, D. Gefel, and Y. Shechter, “Independent Signal-Transduction Pathways for Vanadate and for Insulin in the Activation of Glycogen Synthase and Glycogenesis in Rat Adipocytes,” Endocrinology 140(3), 1125 (1999).
[Crossref] [PubMed]

Giessen, H.

M. Mesch, Ch. Zhang, P. V. Braun, and H. Giessen, “Functionalized Hydrogel on Plasmonic Nanoantennas for Noninvasive Glucose Sensing,” ACS Photonics 2(4), 475–480 (2015).
[Crossref]

Gomes, C. L.

M. H. Alkahtani, C. L. Gomes, and P. R. Hemmer, “Engineering water – tolerant core/shell upconversion nanoparticles for optical temperature sensing,” Opt. Lett. 42(13), 2451–2454 (2017).
[Crossref] [PubMed]

M. H Alkahtani, F. S. Alghannam, C. Sanchez, C. L. Gomes, H. Liang, and P. R. Hemmer, “High efficiency upconversion nanophosphors for high – contrast bioimaging,” Nanotechnology 27(48), 485–501 (2016).
[Crossref]

Greiner, B. A.

C. C. McLauchlan, J. D. Hooker, M. A. Jones, Z. Dymon, E. A. Backhus, B. A. Greiner, N. A. Dorefer, M. A. Youkhana, and L. M. Manus, “Inhibition of acid, alkaline, and tyrosine (ptp1b) phosphatases by novel vanadium complexes,” J. Inorg. Biochem. 104(3), 274–281 (2010).
[Crossref] [PubMed]

Grygorova, G.

V. Klochkov, N. Kavok, G. Grygorova, O. Sedyh, and Y. Malyukin, “Size and shape influence of luminescent orthovanadate nanoparticles on their accumulation in nuclear compartments of rat hepatocytes,” Mater. Sci. Eng. C. Mater. Biol. Appl. 33(5), 2708–2712 (2013).
[Crossref] [PubMed]

Guo, S. S.

L. Rao, L. L. Bu, B. Cai, H. J. Xu, A. Li, W. F. Zhang, Z. J. Sun, S. S. Guo, W. Liu, T. H. Wang, and X.Z. Zhao, “Cancer Cell Membrane-Coated Upconversion Nanoprobes for Highly Specific Tumor Imaging,” Adv. Mater. 28(18), 3460–3666 (2016).
[Crossref] [PubMed]

Guo, Sh. Sh.

L. Rao, Q.F. Meng, L. L. Bu, B. Cai, Q. Huang, Z. J. Sun, W. F. Zhang, A. Li, Sh. Sh. Guo, W. Liu, T. H. Wang, and X. Z. Zhao, “Erythrocyte Membrane-Coated Upconversion Nanoparticles with Minimal Protein Adsorption for Enhanced Tumor Imaging,” ACS Appl. Mater Interfaces 9(3), 2159–2168 (2017).
[Crossref] [PubMed]

Hadjipanayi, M.

G. Mialon, S. Türkcan, G. Dantelle, D. P. Collins, M. Hadjipanayi, R. A. Taylor, T. Gacoin, A. Alexandrou, and J. P. Boilot, “High up-conversion efficiency of YVO4 : Yb, Er nanoparticles in water down to the single-particle level,” The Journal of Physical Chemistry C 114(51), 22449–22454 (2010).
[Crossref]

Hansen, J. S

J. S Hansen and J. B. Christensen, “Recent advances in fluorescent arylboronic acids for glucose sensing,” Biosensors 3(4), 400–418 (2013).
[Crossref] [PubMed]

Hao, H.

H. Lu, H. Hao, G. Shi, Y. Gao, R. Wang, Y. Song, Y. Wang, and X. Zhang, “Optical temperature sensing in [small beta]-N aLuF4 : Yb3+/Er3+/T m3+ based on thermal, quasi-thermal and non-thermal coupling levels,” RSC Advances 6(60), 55307–55311 (2016).
[Crossref]

He, S.

R. Wu, Q. Zhan, H. Liu, X. Wen, B. Wang, and S. He, “Optical depletion mechanism of upconverting luminescence and its potential for multi-photon STED-like microscopy,” Opt. Express 23 (25), 32401–32412 (2015).
[Crossref] [PubMed]

T. X. Can, Q. Zhan, H. Liu, G. Somesfalean, J. Qian, S. He, and S. A. Engels, “Upconverting nanoparticles for pre – clinical diffuse optical imaging, microscopy and sensing: Current trends and future challenges,” Laser & Photonics Reviews 7(5), 663–697 (2013).
[Crossref]

Q. Zhan, J. Qian, H. Liang, G. Somesfalean, D. Wang, S. He, Z. Zhang, and S. Andersson-Engels, “Using 915 nm Laser Excited Tm3+/Er3+/Ho3+-Doped NaYbF4 Upconversion Nanoparticles for in Vitro and Deeper in Vivo Bioimaging without Overheating Irradiation,” ACS Nano. 5 (5), 3744–3757 (2011).
[Crossref] [PubMed]

He, Z.

N. Sekar, J. Li, Z. He, D. Gefel, and Y. Shechter, “Independent Signal-Transduction Pathways for Vanadate and for Insulin in the Activation of Glycogen Synthase and Glycogenesis in Rat Adipocytes,” Endocrinology 140(3), 1125 (1999).
[Crossref] [PubMed]

Hemmer, P. R.

Hooker, J. D.

C. C. McLauchlan, J. D. Hooker, M. A. Jones, Z. Dymon, E. A. Backhus, B. A. Greiner, N. A. Dorefer, M. A. Youkhana, and L. M. Manus, “Inhibition of acid, alkaline, and tyrosine (ptp1b) phosphatases by novel vanadium complexes,” J. Inorg. Biochem. 104(3), 274–281 (2010).
[Crossref] [PubMed]

Horman, K.

T. Lin, A. Gal, Y. Mayzel, K. Horman, and K. Bahartan, “Non-Invasive Glucose Monitoring: A Review of Challenges and Recent Advances,” Current Trends in Biomedical Engineering & Biosciences 6 (5), 001–008 (2017).
[Crossref]

Huang, P.

W. Zheng, P. Huang, D. Tu, E. Ma, H. Zhu, and X. Chen, “Lanthanide-doped upconversion nano-bioprobes: electronic structures, optical properties, and biodetection,” Chemical Society Reviews 44(6), 1379–1415 (2015).
[Crossref]

Huang, Q.

L. Rao, Q.F. Meng, L. L. Bu, B. Cai, Q. Huang, Z. J. Sun, W. F. Zhang, A. Li, Sh. Sh. Guo, W. Liu, T. H. Wang, and X. Z. Zhao, “Erythrocyte Membrane-Coated Upconversion Nanoparticles with Minimal Protein Adsorption for Enhanced Tumor Imaging,” ACS Appl. Mater Interfaces 9(3), 2159–2168 (2017).
[Crossref] [PubMed]

Hughes, W. E.

W. A. Wilson, W. E. Hughes, W. Tomamichel, and P. J. Roach, “Increased glycogen storage in yeast results in less branched glycogen,”Biochemical and Biophysical Research Communications 320(2), 416–423 (2004).
[Crossref] [PubMed]

Jahnen-Dechent, W.

Y. Pan, S. Neuss, A. Leifert, M. Fischler, F. Wen, U. Simon, G. Schmid, W. Brandau, and W. Jahnen-Dechent, “Size-dependent cytotoxicity of gold nanoparticles,” Small 3(11), 1941–1949 (2007).
[Crossref] [PubMed]

Jiang, L.

Jin, S.

V. I. Shubayev, T. R. Pisanic, and S. Jin,“ Magnetic nanoparticles for theragnostics,” Adv. Drug Deliv. Rev. 61(6), 467–477 (2009).
[Crossref] [PubMed]

T.R. Pisanic, J. D. Blackwell, V. I. Shubayev, R. R. Fiñones, and S. Jin, “Nanotoxicity of iron oxide nanoparticle internalization in growing neurons,” Biomaterials 28(16), 2572–2581 (2007).
[Crossref] [PubMed]

Jing, N.

X. Zhang, Ch. Gao, Sh. Lu, H. Duan, N. Jing, D. Dong, C. Shi, and M. Liu,“Anti-photobleaching flower-like microgels as optical nanobiosensors with high selectivity at physiological conditions for continuous glucose monitoring,” Journal of Materials Chemistry B 2(33), 5452–5460 (2014).
[Crossref]

Jones, M. A.

C. C. McLauchlan, J. D. Hooker, M. A. Jones, Z. Dymon, E. A. Backhus, B. A. Greiner, N. A. Dorefer, M. A. Youkhana, and L. M. Manus, “Inhibition of acid, alkaline, and tyrosine (ptp1b) phosphatases by novel vanadium complexes,” J. Inorg. Biochem. 104(3), 274–281 (2010).
[Crossref] [PubMed]

Jovanovic, D. J.

T. V. Gavrilovic, D. J. Jovanovic, V. Lojpur, and M. D. Dramicanin, “Multifunctional Eu3+ – and Er3+/Yb3+ – doped GdVO4 nanoparticles synthesized by reverse micelle method,” Sci. Rep. 4, 4209 (2014).
[Crossref]

Kavok, N.

V. Klochkov, N. Kavok, G. Grygorova, O. Sedyh, and Y. Malyukin, “Size and shape influence of luminescent orthovanadate nanoparticles on their accumulation in nuclear compartments of rat hepatocytes,” Mater. Sci. Eng. C. Mater. Biol. Appl. 33(5), 2708–2712 (2013).
[Crossref] [PubMed]

Kioseoglou, E.

E. Kioseoglou, S. Petanidis, C. Gabriel, and A. Salifoglou, “The chemistry and biology of vanadium compounds in cancer therapeutics,” Coordination Chemistry Reviews 301–302, 87–105 (2015).

Klochkov, V.

V. Klochkov, N. Kavok, G. Grygorova, O. Sedyh, and Y. Malyukin, “Size and shape influence of luminescent orthovanadate nanoparticles on their accumulation in nuclear compartments of rat hepatocytes,” Mater. Sci. Eng. C. Mater. Biol. Appl. 33(5), 2708–2712 (2013).
[Crossref] [PubMed]

Kong, X.J.

J. Yuan, Y. Cen, X.J. Kong, Sh. Wu Ch, L. Liu, R. Q. Yu, and X. Chu, “MnO2-Nanosheet-Modified Upconversion Nanosystem for Sensitive Turn-On Fluorescence Detection of H2O2 and Glucose in Blood,” ACS Applied Materials & Interfaces 7(19), 10548–10555 (2015).
[Crossref]

König, K.

K. S. Layland, I. Riemann, O. Damour, U. A. Stock, and K. König, “Two-photon microscopes and in vivo multiphoton tomographs – Powerful diagnostic tools for tissue engineering and drug delivery, ” Advanced Drug Delivery Reviews 58(7), 878–896 (2006).
[Crossref]

Koschwanez, H. E.

H. E. Koschwanez and W. M. Reichert, “In vitro, in vivo and post explantation testing of glucose-detecting biosensors: current methods and recommendations,” Biomaterials 28(25), 3687–3703 (2007).
[Crossref] [PubMed]

Laufer, S.

T. Scior, J. A. G.-Garcia, Q. T. Do, P. Bernard, and S. Laufer, “Why antidiabetic vanadium complexes are not in the pipeline of “big pharma” drug research? A Critical Review,” Curr Med. Chem. 23(25), 2874–2891 (2016).
[Crossref] [PubMed]

Layland, K. S.

K. S. Layland, I. Riemann, O. Damour, U. A. Stock, and K. König, “Two-photon microscopes and in vivo multiphoton tomographs – Powerful diagnostic tools for tissue engineering and drug delivery, ” Advanced Drug Delivery Reviews 58(7), 878–896 (2006).
[Crossref]

Lee, S. Y.

E. H. Yoo and S. Y. Lee, “Glucose Biosensors: An Overview of Use in Clinical Practice,” Sensors 10(5), 4558–4576 (2010).
[Crossref] [PubMed]

Leifert, A.

Y. Pan, S. Neuss, A. Leifert, M. Fischler, F. Wen, U. Simon, G. Schmid, W. Brandau, and W. Jahnen-Dechent, “Size-dependent cytotoxicity of gold nanoparticles,” Small 3(11), 1941–1949 (2007).
[Crossref] [PubMed]

Li, A.

L. Rao, Q.F. Meng, L. L. Bu, B. Cai, Q. Huang, Z. J. Sun, W. F. Zhang, A. Li, Sh. Sh. Guo, W. Liu, T. H. Wang, and X. Z. Zhao, “Erythrocyte Membrane-Coated Upconversion Nanoparticles with Minimal Protein Adsorption for Enhanced Tumor Imaging,” ACS Appl. Mater Interfaces 9(3), 2159–2168 (2017).
[Crossref] [PubMed]

L. Rao, L. L. Bu, B. Cai, H. J. Xu, A. Li, W. F. Zhang, Z. J. Sun, S. S. Guo, W. Liu, T. H. Wang, and X.Z. Zhao, “Cancer Cell Membrane-Coated Upconversion Nanoprobes for Highly Specific Tumor Imaging,” Adv. Mater. 28(18), 3460–3666 (2016).
[Crossref] [PubMed]

Li, D. W.

L. Zhang, Y. Zhang, Q. Xia, X. M. Zhao, H. X. Cai, D. W. Li, X. D. Yang, K. Wang, and Z. L. Xia, “Effective control of blood glucose status and toxicity in streptozotocin-induced diabetic rats by orally administration of vanadate in an herbal decoction,” Food Chem. Toxicol. 46(9), 2996–3002 (2008).
[Crossref] [PubMed]

Li, F.

X. Zhu, W. Feng, J. Chang, Y. W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437 (2016).
[Crossref] [PubMed]

Li, J.

X. Zhu, W. Feng, J. Chang, Y. W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437 (2016).
[Crossref] [PubMed]

N. Sekar, J. Li, Z. He, D. Gefel, and Y. Shechter, “Independent Signal-Transduction Pathways for Vanadate and for Insulin in the Activation of Glycogen Synthase and Glycogenesis in Rat Adipocytes,” Endocrinology 140(3), 1125 (1999).
[Crossref] [PubMed]

Liang, H.

M. H Alkahtani, F. S. Alghannam, C. Sanchez, C. L. Gomes, H. Liang, and P. R. Hemmer, “High efficiency upconversion nanophosphors for high – contrast bioimaging,” Nanotechnology 27(48), 485–501 (2016).
[Crossref]

Q. Zhan, J. Qian, H. Liang, G. Somesfalean, D. Wang, S. He, Z. Zhang, and S. Andersson-Engels, “Using 915 nm Laser Excited Tm3+/Er3+/Ho3+-Doped NaYbF4 Upconversion Nanoparticles for in Vitro and Deeper in Vivo Bioimaging without Overheating Irradiation,” ACS Nano. 5 (5), 3744–3757 (2011).
[Crossref] [PubMed]

Liao, C.

M. Zhang, C. Liao, C. H. Mak, P. You, C. L. Mak, and F. Yan, “Highly sensitive glucose sensors based on enzyme – modified whole-graphene solution-gated transistors,” Sci. Rep. 5, 8311 (2015).
[Crossref]

Lin, T.

T. Lin, A. Gal, Y. Mayzel, K. Horman, and K. Bahartan, “Non-Invasive Glucose Monitoring: A Review of Challenges and Recent Advances,” Current Trends in Biomedical Engineering & Biosciences 6 (5), 001–008 (2017).
[Crossref]

Liu, G. Y.

Y. F. Wang, G. Y. Liu, L. D. Sun, J. W. Xiao, J. C. Zhou, and C. H. Yan, “N d3+-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect,” ACS Nano. 7(8), 7200–7206 (2013).
[Crossref] [PubMed]

Liu, H.

R. Wu, Q. Zhan, H. Liu, X. Wen, B. Wang, and S. He, “Optical depletion mechanism of upconverting luminescence and its potential for multi-photon STED-like microscopy,” Opt. Express 23 (25), 32401–32412 (2015).
[Crossref] [PubMed]

T. X. Can, Q. Zhan, H. Liu, G. Somesfalean, J. Qian, S. He, and S. A. Engels, “Upconverting nanoparticles for pre – clinical diffuse optical imaging, microscopy and sensing: Current trends and future challenges,” Laser & Photonics Reviews 7(5), 663–697 (2013).
[Crossref]

Liu, L.

J. Yuan, Y. Cen, X.J. Kong, Sh. Wu Ch, L. Liu, R. Q. Yu, and X. Chu, “MnO2-Nanosheet-Modified Upconversion Nanosystem for Sensitive Turn-On Fluorescence Detection of H2O2 and Glucose in Blood,” ACS Applied Materials & Interfaces 7(19), 10548–10555 (2015).
[Crossref]

Liu, M.

X. Zhang, Ch. Gao, Sh. Lu, H. Duan, N. Jing, D. Dong, C. Shi, and M. Liu,“Anti-photobleaching flower-like microgels as optical nanobiosensors with high selectivity at physiological conditions for continuous glucose monitoring,” Journal of Materials Chemistry B 2(33), 5452–5460 (2014).
[Crossref]

Liu, Sh.

D. Wang, T. Liu, Jun Yin, and Sh. Liu, “Stimuli-Responsive Fluorescent Poly(N-isopropylacrylamide) Microgels Labeled with Phenylboronic Acid Moieties as Multifunctional Ratiometric Probes for Glucose and Temperatures,” Macromolecules 44(7), 2282–2290 (2011).
[Crossref]

Liu, T.

D. Wang, T. Liu, Jun Yin, and Sh. Liu, “Stimuli-Responsive Fluorescent Poly(N-isopropylacrylamide) Microgels Labeled with Phenylboronic Acid Moieties as Multifunctional Ratiometric Probes for Glucose and Temperatures,” Macromolecules 44(7), 2282–2290 (2011).
[Crossref]

Liu, W.

L. Rao, Q.F. Meng, L. L. Bu, B. Cai, Q. Huang, Z. J. Sun, W. F. Zhang, A. Li, Sh. Sh. Guo, W. Liu, T. H. Wang, and X. Z. Zhao, “Erythrocyte Membrane-Coated Upconversion Nanoparticles with Minimal Protein Adsorption for Enhanced Tumor Imaging,” ACS Appl. Mater Interfaces 9(3), 2159–2168 (2017).
[Crossref] [PubMed]

L. Rao, L. L. Bu, B. Cai, H. J. Xu, A. Li, W. F. Zhang, Z. J. Sun, S. S. Guo, W. Liu, T. H. Wang, and X.Z. Zhao, “Cancer Cell Membrane-Coated Upconversion Nanoprobes for Highly Specific Tumor Imaging,” Adv. Mater. 28(18), 3460–3666 (2016).
[Crossref] [PubMed]

Liu, X.

X. Xie, N. Gao, R. Deng, Q. Sun, Q. H. Xu, and X. Liu, “Mechanistic Investigation of Photon Upconversion in N d3+-Sensitized Core–Shell Nanoparticles,” Journal of the American Chemical Society 135(34), 12608–12611 (2013).
[Crossref] [PubMed]

Lojpur, V.

T. V. Gavrilovic, D. J. Jovanovic, V. Lojpur, and M. D. Dramicanin, “Multifunctional Eu3+ – and Er3+/Yb3+ – doped GdVO4 nanoparticles synthesized by reverse micelle method,” Sci. Rep. 4, 4209 (2014).
[Crossref]

Lu, H.

H. Lu, H. Hao, G. Shi, Y. Gao, R. Wang, Y. Song, Y. Wang, and X. Zhang, “Optical temperature sensing in [small beta]-N aLuF4 : Yb3+/Er3+/T m3+ based on thermal, quasi-thermal and non-thermal coupling levels,” RSC Advances 6(60), 55307–55311 (2016).
[Crossref]

Lu, Sh.

X. Zhang, Ch. Gao, Sh. Lu, H. Duan, N. Jing, D. Dong, C. Shi, and M. Liu,“Anti-photobleaching flower-like microgels as optical nanobiosensors with high selectivity at physiological conditions for continuous glucose monitoring,” Journal of Materials Chemistry B 2(33), 5452–5460 (2014).
[Crossref]

Luo, Y.

M.K. Balaconis, Y. Luo, and H.A. Clark, “Glucose-sensitive nanofiber scaffolds with an improved sensing design for physiological conditions,” Analyst 140(3), 716–723 (2015).
[Crossref]

Ma, E.

W. Zheng, P. Huang, D. Tu, E. Ma, H. Zhu, and X. Chen, “Lanthanide-doped upconversion nano-bioprobes: electronic structures, optical properties, and biodetection,” Chemical Society Reviews 44(6), 1379–1415 (2015).
[Crossref]

Mak, C. H.

M. Zhang, C. Liao, C. H. Mak, P. You, C. L. Mak, and F. Yan, “Highly sensitive glucose sensors based on enzyme – modified whole-graphene solution-gated transistors,” Sci. Rep. 5, 8311 (2015).
[Crossref]

Mak, C. L.

M. Zhang, C. Liao, C. H. Mak, P. You, C. L. Mak, and F. Yan, “Highly sensitive glucose sensors based on enzyme – modified whole-graphene solution-gated transistors,” Sci. Rep. 5, 8311 (2015).
[Crossref]

Malyukin, Y.

V. Klochkov, N. Kavok, G. Grygorova, O. Sedyh, and Y. Malyukin, “Size and shape influence of luminescent orthovanadate nanoparticles on their accumulation in nuclear compartments of rat hepatocytes,” Mater. Sci. Eng. C. Mater. Biol. Appl. 33(5), 2708–2712 (2013).
[Crossref] [PubMed]

Manus, L. M.

C. C. McLauchlan, J. D. Hooker, M. A. Jones, Z. Dymon, E. A. Backhus, B. A. Greiner, N. A. Dorefer, M. A. Youkhana, and L. M. Manus, “Inhibition of acid, alkaline, and tyrosine (ptp1b) phosphatases by novel vanadium complexes,” J. Inorg. Biochem. 104(3), 274–281 (2010).
[Crossref] [PubMed]

Massons, J.

O. A. Savchuk, J. J. Carvajal, C. Cascales, J. Massons, M. Aguilo, and F. Diaz, “Thermochromic upconversion nanoparticles for visual temperature sensors with high thermal, spatial and temporal resolution,” Journal of Materials Chemistry C 4(27), 6602–6613 (2016).
[Crossref]

Mayzel, Y.

T. Lin, A. Gal, Y. Mayzel, K. Horman, and K. Bahartan, “Non-Invasive Glucose Monitoring: A Review of Challenges and Recent Advances,” Current Trends in Biomedical Engineering & Biosciences 6 (5), 001–008 (2017).
[Crossref]

McLauchlan, C. C.

C. C. McLauchlan, J. D. Hooker, M. A. Jones, Z. Dymon, E. A. Backhus, B. A. Greiner, N. A. Dorefer, M. A. Youkhana, and L. M. Manus, “Inhibition of acid, alkaline, and tyrosine (ptp1b) phosphatases by novel vanadium complexes,” J. Inorg. Biochem. 104(3), 274–281 (2010).
[Crossref] [PubMed]

Meng, Q.F.

L. Rao, Q.F. Meng, L. L. Bu, B. Cai, Q. Huang, Z. J. Sun, W. F. Zhang, A. Li, Sh. Sh. Guo, W. Liu, T. H. Wang, and X. Z. Zhao, “Erythrocyte Membrane-Coated Upconversion Nanoparticles with Minimal Protein Adsorption for Enhanced Tumor Imaging,” ACS Appl. Mater Interfaces 9(3), 2159–2168 (2017).
[Crossref] [PubMed]

Mesch, M.

M. Mesch, Ch. Zhang, P. V. Braun, and H. Giessen, “Functionalized Hydrogel on Plasmonic Nanoantennas for Noninvasive Glucose Sensing,” ACS Photonics 2(4), 475–480 (2015).
[Crossref]

Mialon, G.

G. Mialon, S. Türkcan, G. Dantelle, D. P. Collins, M. Hadjipanayi, R. A. Taylor, T. Gacoin, A. Alexandrou, and J. P. Boilot, “High up-conversion efficiency of YVO4 : Yb, Er nanoparticles in water down to the single-particle level,” The Journal of Physical Chemistry C 114(51), 22449–22454 (2010).
[Crossref]

G. Mialon, S. Türkcan, A. Alexandrou, T. Gacoin, and J. P. Boilot, “New insights into size effects in luminescent oxide nanocrystals,” Journal of Physical Chemistry C 113(43), 18699–18706 (2009).
[Crossref]

Mitra, N.

W. Wu, N. Mitra, E. C. Y. Yan, and Sh. Zhou, “Multifunctional Hybrid Nanogel for Integration of Optical Glucose Sensing and Self – Regulated Insulin Release at Physiological pH,” ACS Nano. 4(8), 4831–4839 (2010).
[Crossref] [PubMed]

Neuss, S.

Y. Pan, S. Neuss, A. Leifert, M. Fischler, F. Wen, U. Simon, G. Schmid, W. Brandau, and W. Jahnen-Dechent, “Size-dependent cytotoxicity of gold nanoparticles,” Small 3(11), 1941–1949 (2007).
[Crossref] [PubMed]

Pan, Y.

Y. Pan, S. Neuss, A. Leifert, M. Fischler, F. Wen, U. Simon, G. Schmid, W. Brandau, and W. Jahnen-Dechent, “Size-dependent cytotoxicity of gold nanoparticles,” Small 3(11), 1941–1949 (2007).
[Crossref] [PubMed]

Pankratov, D.

Z. Blum, D. Pankratov, and S. Shleev, “Powering electronic contact lenses: current achievements, challenges, and perspectives,” Expert Rev. Ophthalmol 9(4), 269–273 (2014).
[Crossref]

Petanidis, S.

E. Kioseoglou, S. Petanidis, C. Gabriel, and A. Salifoglou, “The chemistry and biology of vanadium compounds in cancer therapeutics,” Coordination Chemistry Reviews 301–302, 87–105 (2015).

Pisanic, T. R.

V. I. Shubayev, T. R. Pisanic, and S. Jin,“ Magnetic nanoparticles for theragnostics,” Adv. Drug Deliv. Rev. 61(6), 467–477 (2009).
[Crossref] [PubMed]

Pisanic, T.R.

T.R. Pisanic, J. D. Blackwell, V. I. Shubayev, R. R. Fiñones, and S. Jin, “Nanotoxicity of iron oxide nanoparticle internalization in growing neurons,” Biomaterials 28(16), 2572–2581 (2007).
[Crossref] [PubMed]

Qian, J.

T. X. Can, Q. Zhan, H. Liu, G. Somesfalean, J. Qian, S. He, and S. A. Engels, “Upconverting nanoparticles for pre – clinical diffuse optical imaging, microscopy and sensing: Current trends and future challenges,” Laser & Photonics Reviews 7(5), 663–697 (2013).
[Crossref]

Q. Zhan, J. Qian, H. Liang, G. Somesfalean, D. Wang, S. He, Z. Zhang, and S. Andersson-Engels, “Using 915 nm Laser Excited Tm3+/Er3+/Ho3+-Doped NaYbF4 Upconversion Nanoparticles for in Vitro and Deeper in Vivo Bioimaging without Overheating Irradiation,” ACS Nano. 5 (5), 3744–3757 (2011).
[Crossref] [PubMed]

Rao, L.

L. Rao, Q.F. Meng, L. L. Bu, B. Cai, Q. Huang, Z. J. Sun, W. F. Zhang, A. Li, Sh. Sh. Guo, W. Liu, T. H. Wang, and X. Z. Zhao, “Erythrocyte Membrane-Coated Upconversion Nanoparticles with Minimal Protein Adsorption for Enhanced Tumor Imaging,” ACS Appl. Mater Interfaces 9(3), 2159–2168 (2017).
[Crossref] [PubMed]

L. Rao, L. L. Bu, B. Cai, H. J. Xu, A. Li, W. F. Zhang, Z. J. Sun, S. S. Guo, W. Liu, T. H. Wang, and X.Z. Zhao, “Cancer Cell Membrane-Coated Upconversion Nanoprobes for Highly Specific Tumor Imaging,” Adv. Mater. 28(18), 3460–3666 (2016).
[Crossref] [PubMed]

Reichert, W. M.

H. E. Koschwanez and W. M. Reichert, “In vitro, in vivo and post explantation testing of glucose-detecting biosensors: current methods and recommendations,” Biomaterials 28(25), 3687–3703 (2007).
[Crossref] [PubMed]

Riemann, I.

K. S. Layland, I. Riemann, O. Damour, U. A. Stock, and K. König, “Two-photon microscopes and in vivo multiphoton tomographs – Powerful diagnostic tools for tissue engineering and drug delivery, ” Advanced Drug Delivery Reviews 58(7), 878–896 (2006).
[Crossref]

Roach, P. J.

W. A. Wilson, W. E. Hughes, W. Tomamichel, and P. J. Roach, “Increased glycogen storage in yeast results in less branched glycogen,”Biochemical and Biophysical Research Communications 320(2), 416–423 (2004).
[Crossref] [PubMed]

Rodbard, D.

D. Rodbard, “Continuous Glucose Monitoring: A Review of Successes, Challenges, and Opportunities,” Diabetes Technol. Ther. 18(2), S3–S13 (2016).
[Crossref] [PubMed]

Rufaihah, A. J.

D. K. Chatterjee, A. J. Rufaihah, and Y. Zhang, “Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystal,” Biomaterials 29(7), 937–943 (2008).
[Crossref]

Salifoglou, A.

E. Kioseoglou, S. Petanidis, C. Gabriel, and A. Salifoglou, “The chemistry and biology of vanadium compounds in cancer therapeutics,” Coordination Chemistry Reviews 301–302, 87–105 (2015).

Sanchez, C.

M. H Alkahtani, F. S. Alghannam, C. Sanchez, C. L. Gomes, H. Liang, and P. R. Hemmer, “High efficiency upconversion nanophosphors for high – contrast bioimaging,” Nanotechnology 27(48), 485–501 (2016).
[Crossref]

Savchuk, O. A.

O. A. Savchuk, J. J. Carvajal, C. Cascales, J. Massons, M. Aguilo, and F. Diaz, “Thermochromic upconversion nanoparticles for visual temperature sensors with high thermal, spatial and temporal resolution,” Journal of Materials Chemistry C 4(27), 6602–6613 (2016).
[Crossref]

Schmid, G.

Y. Pan, S. Neuss, A. Leifert, M. Fischler, F. Wen, U. Simon, G. Schmid, W. Brandau, and W. Jahnen-Dechent, “Size-dependent cytotoxicity of gold nanoparticles,” Small 3(11), 1941–1949 (2007).
[Crossref] [PubMed]

Scior, T.

T. Scior, J. A. G.-Garcia, Q. T. Do, P. Bernard, and S. Laufer, “Why antidiabetic vanadium complexes are not in the pipeline of “big pharma” drug research? A Critical Review,” Curr Med. Chem. 23(25), 2874–2891 (2016).
[Crossref] [PubMed]

Scully, M.

Sedyh, O.

V. Klochkov, N. Kavok, G. Grygorova, O. Sedyh, and Y. Malyukin, “Size and shape influence of luminescent orthovanadate nanoparticles on their accumulation in nuclear compartments of rat hepatocytes,” Mater. Sci. Eng. C. Mater. Biol. Appl. 33(5), 2708–2712 (2013).
[Crossref] [PubMed]

Sekar, N.

N. Sekar, J. Li, Z. He, D. Gefel, and Y. Shechter, “Independent Signal-Transduction Pathways for Vanadate and for Insulin in the Activation of Glycogen Synthase and Glycogenesis in Rat Adipocytes,” Endocrinology 140(3), 1125 (1999).
[Crossref] [PubMed]

Shechter, Y.

N. Sekar, J. Li, Z. He, D. Gefel, and Y. Shechter, “Independent Signal-Transduction Pathways for Vanadate and for Insulin in the Activation of Glycogen Synthase and Glycogenesis in Rat Adipocytes,” Endocrinology 140(3), 1125 (1999).
[Crossref] [PubMed]

Shen, J.

W. Wu, T. Zhou, J. Shen, and Sh. Zhou, “Optical detection of glucose by CdS quantum dots immobilized in smart microgels, ” Chem. Commun. 29, 4390–4392 (2009).
[Crossref]

Shen, P.

P. Shen and Y. Xia, “Synthesis-modification integration: one – step fabrication of boronic acid functionalized carbon dots for fluorescent blood sugar sensing,” Anal. Chem. 86(11), 5323–5329 (2014).
[Crossref] [PubMed]

Shi, C.

X. Zhang, Ch. Gao, Sh. Lu, H. Duan, N. Jing, D. Dong, C. Shi, and M. Liu,“Anti-photobleaching flower-like microgels as optical nanobiosensors with high selectivity at physiological conditions for continuous glucose monitoring,” Journal of Materials Chemistry B 2(33), 5452–5460 (2014).
[Crossref]

Shi, G.

H. Lu, H. Hao, G. Shi, Y. Gao, R. Wang, Y. Song, Y. Wang, and X. Zhang, “Optical temperature sensing in [small beta]-N aLuF4 : Yb3+/Er3+/T m3+ based on thermal, quasi-thermal and non-thermal coupling levels,” RSC Advances 6(60), 55307–55311 (2016).
[Crossref]

Shleev, S.

Z. Blum, D. Pankratov, and S. Shleev, “Powering electronic contact lenses: current achievements, challenges, and perspectives,” Expert Rev. Ophthalmol 9(4), 269–273 (2014).
[Crossref]

Shubayev, V. I.

V. I. Shubayev, T. R. Pisanic, and S. Jin,“ Magnetic nanoparticles for theragnostics,” Adv. Drug Deliv. Rev. 61(6), 467–477 (2009).
[Crossref] [PubMed]

T.R. Pisanic, J. D. Blackwell, V. I. Shubayev, R. R. Fiñones, and S. Jin, “Nanotoxicity of iron oxide nanoparticle internalization in growing neurons,” Biomaterials 28(16), 2572–2581 (2007).
[Crossref] [PubMed]

Simon, U.

Y. Pan, S. Neuss, A. Leifert, M. Fischler, F. Wen, U. Simon, G. Schmid, W. Brandau, and W. Jahnen-Dechent, “Size-dependent cytotoxicity of gold nanoparticles,” Small 3(11), 1941–1949 (2007).
[Crossref] [PubMed]

Somesfalean, G.

T. X. Can, Q. Zhan, H. Liu, G. Somesfalean, J. Qian, S. He, and S. A. Engels, “Upconverting nanoparticles for pre – clinical diffuse optical imaging, microscopy and sensing: Current trends and future challenges,” Laser & Photonics Reviews 7(5), 663–697 (2013).
[Crossref]

Q. Zhan, J. Qian, H. Liang, G. Somesfalean, D. Wang, S. He, Z. Zhang, and S. Andersson-Engels, “Using 915 nm Laser Excited Tm3+/Er3+/Ho3+-Doped NaYbF4 Upconversion Nanoparticles for in Vitro and Deeper in Vivo Bioimaging without Overheating Irradiation,” ACS Nano. 5 (5), 3744–3757 (2011).
[Crossref] [PubMed]

Song, Y.

H. Lu, H. Hao, G. Shi, Y. Gao, R. Wang, Y. Song, Y. Wang, and X. Zhang, “Optical temperature sensing in [small beta]-N aLuF4 : Yb3+/Er3+/T m3+ based on thermal, quasi-thermal and non-thermal coupling levels,” RSC Advances 6(60), 55307–55311 (2016).
[Crossref]

Stock, U. A.

K. S. Layland, I. Riemann, O. Damour, U. A. Stock, and K. König, “Two-photon microscopes and in vivo multiphoton tomographs – Powerful diagnostic tools for tissue engineering and drug delivery, ” Advanced Drug Delivery Reviews 58(7), 878–896 (2006).
[Crossref]

Sun, L. D.

Y. F. Wang, G. Y. Liu, L. D. Sun, J. W. Xiao, J. C. Zhou, and C. H. Yan, “N d3+-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect,” ACS Nano. 7(8), 7200–7206 (2013).
[Crossref] [PubMed]

Sun, Q.

X. Xie, N. Gao, R. Deng, Q. Sun, Q. H. Xu, and X. Liu, “Mechanistic Investigation of Photon Upconversion in N d3+-Sensitized Core–Shell Nanoparticles,” Journal of the American Chemical Society 135(34), 12608–12611 (2013).
[Crossref] [PubMed]

Sun, Y.

X. Zhu, W. Feng, J. Chang, Y. W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437 (2016).
[Crossref] [PubMed]

Sun, Z. J.

L. Rao, Q.F. Meng, L. L. Bu, B. Cai, Q. Huang, Z. J. Sun, W. F. Zhang, A. Li, Sh. Sh. Guo, W. Liu, T. H. Wang, and X. Z. Zhao, “Erythrocyte Membrane-Coated Upconversion Nanoparticles with Minimal Protein Adsorption for Enhanced Tumor Imaging,” ACS Appl. Mater Interfaces 9(3), 2159–2168 (2017).
[Crossref] [PubMed]

L. Rao, L. L. Bu, B. Cai, H. J. Xu, A. Li, W. F. Zhang, Z. J. Sun, S. S. Guo, W. Liu, T. H. Wang, and X.Z. Zhao, “Cancer Cell Membrane-Coated Upconversion Nanoprobes for Highly Specific Tumor Imaging,” Adv. Mater. 28(18), 3460–3666 (2016).
[Crossref] [PubMed]

Tan, Y. W.

X. Zhu, W. Feng, J. Chang, Y. W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437 (2016).
[Crossref] [PubMed]

Taylor, R. A.

G. Mialon, S. Türkcan, G. Dantelle, D. P. Collins, M. Hadjipanayi, R. A. Taylor, T. Gacoin, A. Alexandrou, and J. P. Boilot, “High up-conversion efficiency of YVO4 : Yb, Er nanoparticles in water down to the single-particle level,” The Journal of Physical Chemistry C 114(51), 22449–22454 (2010).
[Crossref]

Tomamichel, W.

W. A. Wilson, W. E. Hughes, W. Tomamichel, and P. J. Roach, “Increased glycogen storage in yeast results in less branched glycogen,”Biochemical and Biophysical Research Communications 320(2), 416–423 (2004).
[Crossref] [PubMed]

Tu, D.

W. Zheng, P. Huang, D. Tu, E. Ma, H. Zhu, and X. Chen, “Lanthanide-doped upconversion nano-bioprobes: electronic structures, optical properties, and biodetection,” Chemical Society Reviews 44(6), 1379–1415 (2015).
[Crossref]

Türkcan, S.

G. Mialon, S. Türkcan, G. Dantelle, D. P. Collins, M. Hadjipanayi, R. A. Taylor, T. Gacoin, A. Alexandrou, and J. P. Boilot, “High up-conversion efficiency of YVO4 : Yb, Er nanoparticles in water down to the single-particle level,” The Journal of Physical Chemistry C 114(51), 22449–22454 (2010).
[Crossref]

G. Mialon, S. Türkcan, A. Alexandrou, T. Gacoin, and J. P. Boilot, “New insights into size effects in luminescent oxide nanocrystals,” Journal of Physical Chemistry C 113(43), 18699–18706 (2009).
[Crossref]

Velado, D.

H. Wang, J. Yi, D. Velado, Y. Yu, and S. Zhou, “Immobilization of Carbon Dots in Molecularly Imprinted Microgels for Optical Sensing of Glucose at Physiological pH,” ACS Applied Materials and Interfaces 7(29), 15735–15745 (2015).
[Crossref] [PubMed]

Wang, B.

Wang, D.

Q. Zhan, J. Qian, H. Liang, G. Somesfalean, D. Wang, S. He, Z. Zhang, and S. Andersson-Engels, “Using 915 nm Laser Excited Tm3+/Er3+/Ho3+-Doped NaYbF4 Upconversion Nanoparticles for in Vitro and Deeper in Vivo Bioimaging without Overheating Irradiation,” ACS Nano. 5 (5), 3744–3757 (2011).
[Crossref] [PubMed]

D. Wang, T. Liu, Jun Yin, and Sh. Liu, “Stimuli-Responsive Fluorescent Poly(N-isopropylacrylamide) Microgels Labeled with Phenylboronic Acid Moieties as Multifunctional Ratiometric Probes for Glucose and Temperatures,” Macromolecules 44(7), 2282–2290 (2011).
[Crossref]

Wang, H.

H. Wang, J. Yi, Y. Yu, and S. Zhou, “NIR upconversion fluorescence glucose sensing and glucose-responsive insulin release of carbon dot-immobilized hybrid microgels at physiological pH,” Nanoscale 9(2), 509–516 (2017).
[Crossref]

H. Wang, J. Yi, D. Velado, Y. Yu, and S. Zhou, “Immobilization of Carbon Dots in Molecularly Imprinted Microgels for Optical Sensing of Glucose at Physiological pH,” ACS Applied Materials and Interfaces 7(29), 15735–15745 (2015).
[Crossref] [PubMed]

Wang, K.

L. Zhang, Y. Zhang, Q. Xia, X. M. Zhao, H. X. Cai, D. W. Li, X. D. Yang, K. Wang, and Z. L. Xia, “Effective control of blood glucose status and toxicity in streptozotocin-induced diabetic rats by orally administration of vanadate in an herbal decoction,” Food Chem. Toxicol. 46(9), 2996–3002 (2008).
[Crossref] [PubMed]

Wang, R.

H. Lu, H. Hao, G. Shi, Y. Gao, R. Wang, Y. Song, Y. Wang, and X. Zhang, “Optical temperature sensing in [small beta]-N aLuF4 : Yb3+/Er3+/T m3+ based on thermal, quasi-thermal and non-thermal coupling levels,” RSC Advances 6(60), 55307–55311 (2016).
[Crossref]

Wang, T. H.

L. Rao, Q.F. Meng, L. L. Bu, B. Cai, Q. Huang, Z. J. Sun, W. F. Zhang, A. Li, Sh. Sh. Guo, W. Liu, T. H. Wang, and X. Z. Zhao, “Erythrocyte Membrane-Coated Upconversion Nanoparticles with Minimal Protein Adsorption for Enhanced Tumor Imaging,” ACS Appl. Mater Interfaces 9(3), 2159–2168 (2017).
[Crossref] [PubMed]

L. Rao, L. L. Bu, B. Cai, H. J. Xu, A. Li, W. F. Zhang, Z. J. Sun, S. S. Guo, W. Liu, T. H. Wang, and X.Z. Zhao, “Cancer Cell Membrane-Coated Upconversion Nanoprobes for Highly Specific Tumor Imaging,” Adv. Mater. 28(18), 3460–3666 (2016).
[Crossref] [PubMed]

Wang, Y.

H. Lu, H. Hao, G. Shi, Y. Gao, R. Wang, Y. Song, Y. Wang, and X. Zhang, “Optical temperature sensing in [small beta]-N aLuF4 : Yb3+/Er3+/T m3+ based on thermal, quasi-thermal and non-thermal coupling levels,” RSC Advances 6(60), 55307–55311 (2016).
[Crossref]

Wang, Y. F.

Y. F. Wang, G. Y. Liu, L. D. Sun, J. W. Xiao, J. C. Zhou, and C. H. Yan, “N d3+-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect,” ACS Nano. 7(8), 7200–7206 (2013).
[Crossref] [PubMed]

Wen, F.

Y. Pan, S. Neuss, A. Leifert, M. Fischler, F. Wen, U. Simon, G. Schmid, W. Brandau, and W. Jahnen-Dechent, “Size-dependent cytotoxicity of gold nanoparticles,” Small 3(11), 1941–1949 (2007).
[Crossref] [PubMed]

Wen, X.

Wilson, W. A.

W. A. Wilson, W. E. Hughes, W. Tomamichel, and P. J. Roach, “Increased glycogen storage in yeast results in less branched glycogen,”Biochemical and Biophysical Research Communications 320(2), 416–423 (2004).
[Crossref] [PubMed]

Wu, R.

Wu, W.

W. Wu, N. Mitra, E. C. Y. Yan, and Sh. Zhou, “Multifunctional Hybrid Nanogel for Integration of Optical Glucose Sensing and Self – Regulated Insulin Release at Physiological pH,” ACS Nano. 4(8), 4831–4839 (2010).
[Crossref] [PubMed]

W. Wu, T. Zhou, J. Shen, and Sh. Zhou, “Optical detection of glucose by CdS quantum dots immobilized in smart microgels, ” Chem. Commun. 29, 4390–4392 (2009).
[Crossref]

Xia, Q.

L. Zhang, Y. Zhang, Q. Xia, X. M. Zhao, H. X. Cai, D. W. Li, X. D. Yang, K. Wang, and Z. L. Xia, “Effective control of blood glucose status and toxicity in streptozotocin-induced diabetic rats by orally administration of vanadate in an herbal decoction,” Food Chem. Toxicol. 46(9), 2996–3002 (2008).
[Crossref] [PubMed]

Xia, Y.

P. Shen and Y. Xia, “Synthesis-modification integration: one – step fabrication of boronic acid functionalized carbon dots for fluorescent blood sugar sensing,” Anal. Chem. 86(11), 5323–5329 (2014).
[Crossref] [PubMed]

Xia, Z. L.

L. Zhang, Y. Zhang, Q. Xia, X. M. Zhao, H. X. Cai, D. W. Li, X. D. Yang, K. Wang, and Z. L. Xia, “Effective control of blood glucose status and toxicity in streptozotocin-induced diabetic rats by orally administration of vanadate in an herbal decoction,” Food Chem. Toxicol. 46(9), 2996–3002 (2008).
[Crossref] [PubMed]

Xiao, J. W.

Y. F. Wang, G. Y. Liu, L. D. Sun, J. W. Xiao, J. C. Zhou, and C. H. Yan, “N d3+-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect,” ACS Nano. 7(8), 7200–7206 (2013).
[Crossref] [PubMed]

Xie, X.

X. Xie, N. Gao, R. Deng, Q. Sun, Q. H. Xu, and X. Liu, “Mechanistic Investigation of Photon Upconversion in N d3+-Sensitized Core–Shell Nanoparticles,” Journal of the American Chemical Society 135(34), 12608–12611 (2013).
[Crossref] [PubMed]

Xu, H. J.

L. Rao, L. L. Bu, B. Cai, H. J. Xu, A. Li, W. F. Zhang, Z. J. Sun, S. S. Guo, W. Liu, T. H. Wang, and X.Z. Zhao, “Cancer Cell Membrane-Coated Upconversion Nanoprobes for Highly Specific Tumor Imaging,” Adv. Mater. 28(18), 3460–3666 (2016).
[Crossref] [PubMed]

Xu, Q. H.

X. Xie, N. Gao, R. Deng, Q. Sun, Q. H. Xu, and X. Liu, “Mechanistic Investigation of Photon Upconversion in N d3+-Sensitized Core–Shell Nanoparticles,” Journal of the American Chemical Society 135(34), 12608–12611 (2013).
[Crossref] [PubMed]

Yan, C. H.

Y. F. Wang, G. Y. Liu, L. D. Sun, J. W. Xiao, J. C. Zhou, and C. H. Yan, “N d3+-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect,” ACS Nano. 7(8), 7200–7206 (2013).
[Crossref] [PubMed]

Yan, E. C. Y.

W. Wu, N. Mitra, E. C. Y. Yan, and Sh. Zhou, “Multifunctional Hybrid Nanogel for Integration of Optical Glucose Sensing and Self – Regulated Insulin Release at Physiological pH,” ACS Nano. 4(8), 4831–4839 (2010).
[Crossref] [PubMed]

Yan, F.

M. Zhang, C. Liao, C. H. Mak, P. You, C. L. Mak, and F. Yan, “Highly sensitive glucose sensors based on enzyme – modified whole-graphene solution-gated transistors,” Sci. Rep. 5, 8311 (2015).
[Crossref]

Yang, X. D.

L. Zhang, Y. Zhang, Q. Xia, X. M. Zhao, H. X. Cai, D. W. Li, X. D. Yang, K. Wang, and Z. L. Xia, “Effective control of blood glucose status and toxicity in streptozotocin-induced diabetic rats by orally administration of vanadate in an herbal decoction,” Food Chem. Toxicol. 46(9), 2996–3002 (2008).
[Crossref] [PubMed]

Yi, J.

H. Wang, J. Yi, Y. Yu, and S. Zhou, “NIR upconversion fluorescence glucose sensing and glucose-responsive insulin release of carbon dot-immobilized hybrid microgels at physiological pH,” Nanoscale 9(2), 509–516 (2017).
[Crossref]

H. Wang, J. Yi, D. Velado, Y. Yu, and S. Zhou, “Immobilization of Carbon Dots in Molecularly Imprinted Microgels for Optical Sensing of Glucose at Physiological pH,” ACS Applied Materials and Interfaces 7(29), 15735–15745 (2015).
[Crossref] [PubMed]

Yin, Jun

D. Wang, T. Liu, Jun Yin, and Sh. Liu, “Stimuli-Responsive Fluorescent Poly(N-isopropylacrylamide) Microgels Labeled with Phenylboronic Acid Moieties as Multifunctional Ratiometric Probes for Glucose and Temperatures,” Macromolecules 44(7), 2282–2290 (2011).
[Crossref]

Yoo, E. H.

E. H. Yoo and S. Y. Lee, “Glucose Biosensors: An Overview of Use in Clinical Practice,” Sensors 10(5), 4558–4576 (2010).
[Crossref] [PubMed]

You, P.

M. Zhang, C. Liao, C. H. Mak, P. You, C. L. Mak, and F. Yan, “Highly sensitive glucose sensors based on enzyme – modified whole-graphene solution-gated transistors,” Sci. Rep. 5, 8311 (2015).
[Crossref]

Youkhana, M. A.

C. C. McLauchlan, J. D. Hooker, M. A. Jones, Z. Dymon, E. A. Backhus, B. A. Greiner, N. A. Dorefer, M. A. Youkhana, and L. M. Manus, “Inhibition of acid, alkaline, and tyrosine (ptp1b) phosphatases by novel vanadium complexes,” J. Inorg. Biochem. 104(3), 274–281 (2010).
[Crossref] [PubMed]

Yu, R. Q.

J. Yuan, Y. Cen, X.J. Kong, Sh. Wu Ch, L. Liu, R. Q. Yu, and X. Chu, “MnO2-Nanosheet-Modified Upconversion Nanosystem for Sensitive Turn-On Fluorescence Detection of H2O2 and Glucose in Blood,” ACS Applied Materials & Interfaces 7(19), 10548–10555 (2015).
[Crossref]

Yu, Y.

H. Wang, J. Yi, Y. Yu, and S. Zhou, “NIR upconversion fluorescence glucose sensing and glucose-responsive insulin release of carbon dot-immobilized hybrid microgels at physiological pH,” Nanoscale 9(2), 509–516 (2017).
[Crossref]

H. Wang, J. Yi, D. Velado, Y. Yu, and S. Zhou, “Immobilization of Carbon Dots in Molecularly Imprinted Microgels for Optical Sensing of Glucose at Physiological pH,” ACS Applied Materials and Interfaces 7(29), 15735–15745 (2015).
[Crossref] [PubMed]

Yuan, J.

J. Yuan, Y. Cen, X.J. Kong, Sh. Wu Ch, L. Liu, R. Q. Yu, and X. Chu, “MnO2-Nanosheet-Modified Upconversion Nanosystem for Sensitive Turn-On Fluorescence Detection of H2O2 and Glucose in Blood,” ACS Applied Materials & Interfaces 7(19), 10548–10555 (2015).
[Crossref]

Zhan, Q.

R. Wu, Q. Zhan, H. Liu, X. Wen, B. Wang, and S. He, “Optical depletion mechanism of upconverting luminescence and its potential for multi-photon STED-like microscopy,” Opt. Express 23 (25), 32401–32412 (2015).
[Crossref] [PubMed]

T. X. Can, Q. Zhan, H. Liu, G. Somesfalean, J. Qian, S. He, and S. A. Engels, “Upconverting nanoparticles for pre – clinical diffuse optical imaging, microscopy and sensing: Current trends and future challenges,” Laser & Photonics Reviews 7(5), 663–697 (2013).
[Crossref]

Q. Zhan, J. Qian, H. Liang, G. Somesfalean, D. Wang, S. He, Z. Zhang, and S. Andersson-Engels, “Using 915 nm Laser Excited Tm3+/Er3+/Ho3+-Doped NaYbF4 Upconversion Nanoparticles for in Vitro and Deeper in Vivo Bioimaging without Overheating Irradiation,” ACS Nano. 5 (5), 3744–3757 (2011).
[Crossref] [PubMed]

Zhang, Ch.

M. Mesch, Ch. Zhang, P. V. Braun, and H. Giessen, “Functionalized Hydrogel on Plasmonic Nanoantennas for Noninvasive Glucose Sensing,” ACS Photonics 2(4), 475–480 (2015).
[Crossref]

Zhang, L.

L. Zhang, Y. Zhang, Q. Xia, X. M. Zhao, H. X. Cai, D. W. Li, X. D. Yang, K. Wang, and Z. L. Xia, “Effective control of blood glucose status and toxicity in streptozotocin-induced diabetic rats by orally administration of vanadate in an herbal decoction,” Food Chem. Toxicol. 46(9), 2996–3002 (2008).
[Crossref] [PubMed]

Zhang, M.

M. Zhang, C. Liao, C. H. Mak, P. You, C. L. Mak, and F. Yan, “Highly sensitive glucose sensors based on enzyme – modified whole-graphene solution-gated transistors,” Sci. Rep. 5, 8311 (2015).
[Crossref]

Zhang, W. F.

L. Rao, Q.F. Meng, L. L. Bu, B. Cai, Q. Huang, Z. J. Sun, W. F. Zhang, A. Li, Sh. Sh. Guo, W. Liu, T. H. Wang, and X. Z. Zhao, “Erythrocyte Membrane-Coated Upconversion Nanoparticles with Minimal Protein Adsorption for Enhanced Tumor Imaging,” ACS Appl. Mater Interfaces 9(3), 2159–2168 (2017).
[Crossref] [PubMed]

L. Rao, L. L. Bu, B. Cai, H. J. Xu, A. Li, W. F. Zhang, Z. J. Sun, S. S. Guo, W. Liu, T. H. Wang, and X.Z. Zhao, “Cancer Cell Membrane-Coated Upconversion Nanoprobes for Highly Specific Tumor Imaging,” Adv. Mater. 28(18), 3460–3666 (2016).
[Crossref] [PubMed]

Zhang, X.

H. Lu, H. Hao, G. Shi, Y. Gao, R. Wang, Y. Song, Y. Wang, and X. Zhang, “Optical temperature sensing in [small beta]-N aLuF4 : Yb3+/Er3+/T m3+ based on thermal, quasi-thermal and non-thermal coupling levels,” RSC Advances 6(60), 55307–55311 (2016).
[Crossref]

X. Zhang, Ch. Gao, Sh. Lu, H. Duan, N. Jing, D. Dong, C. Shi, and M. Liu,“Anti-photobleaching flower-like microgels as optical nanobiosensors with high selectivity at physiological conditions for continuous glucose monitoring,” Journal of Materials Chemistry B 2(33), 5452–5460 (2014).
[Crossref]

Zhang, Y.

D. K. Chatterjee, A. J. Rufaihah, and Y. Zhang, “Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystal,” Biomaterials 29(7), 937–943 (2008).
[Crossref]

L. Zhang, Y. Zhang, Q. Xia, X. M. Zhao, H. X. Cai, D. W. Li, X. D. Yang, K. Wang, and Z. L. Xia, “Effective control of blood glucose status and toxicity in streptozotocin-induced diabetic rats by orally administration of vanadate in an herbal decoction,” Food Chem. Toxicol. 46(9), 2996–3002 (2008).
[Crossref] [PubMed]

Zhang, Z.

Q. Zhan, J. Qian, H. Liang, G. Somesfalean, D. Wang, S. He, Z. Zhang, and S. Andersson-Engels, “Using 915 nm Laser Excited Tm3+/Er3+/Ho3+-Doped NaYbF4 Upconversion Nanoparticles for in Vitro and Deeper in Vivo Bioimaging without Overheating Irradiation,” ACS Nano. 5 (5), 3744–3757 (2011).
[Crossref] [PubMed]

Zhao, J.X.

J. Chen and J.X. Zhao, “Upconversion nanomaterials: synthesis, mechanism, and applications in sensing,” Sensors 12(3), 2414–2435 (2012).
[Crossref] [PubMed]

Zhao, X. M.

L. Zhang, Y. Zhang, Q. Xia, X. M. Zhao, H. X. Cai, D. W. Li, X. D. Yang, K. Wang, and Z. L. Xia, “Effective control of blood glucose status and toxicity in streptozotocin-induced diabetic rats by orally administration of vanadate in an herbal decoction,” Food Chem. Toxicol. 46(9), 2996–3002 (2008).
[Crossref] [PubMed]

Zhao, X. Z.

L. Rao, Q.F. Meng, L. L. Bu, B. Cai, Q. Huang, Z. J. Sun, W. F. Zhang, A. Li, Sh. Sh. Guo, W. Liu, T. H. Wang, and X. Z. Zhao, “Erythrocyte Membrane-Coated Upconversion Nanoparticles with Minimal Protein Adsorption for Enhanced Tumor Imaging,” ACS Appl. Mater Interfaces 9(3), 2159–2168 (2017).
[Crossref] [PubMed]

Zhao, X.Z.

L. Rao, L. L. Bu, B. Cai, H. J. Xu, A. Li, W. F. Zhang, Z. J. Sun, S. S. Guo, W. Liu, T. H. Wang, and X.Z. Zhao, “Cancer Cell Membrane-Coated Upconversion Nanoprobes for Highly Specific Tumor Imaging,” Adv. Mater. 28(18), 3460–3666 (2016).
[Crossref] [PubMed]

Zheng, W.

W. Zheng, P. Huang, D. Tu, E. Ma, H. Zhu, and X. Chen, “Lanthanide-doped upconversion nano-bioprobes: electronic structures, optical properties, and biodetection,” Chemical Society Reviews 44(6), 1379–1415 (2015).
[Crossref]

Zhou, J. C.

Y. F. Wang, G. Y. Liu, L. D. Sun, J. W. Xiao, J. C. Zhou, and C. H. Yan, “N d3+-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect,” ACS Nano. 7(8), 7200–7206 (2013).
[Crossref] [PubMed]

Zhou, S.

H. Wang, J. Yi, Y. Yu, and S. Zhou, “NIR upconversion fluorescence glucose sensing and glucose-responsive insulin release of carbon dot-immobilized hybrid microgels at physiological pH,” Nanoscale 9(2), 509–516 (2017).
[Crossref]

H. Wang, J. Yi, D. Velado, Y. Yu, and S. Zhou, “Immobilization of Carbon Dots in Molecularly Imprinted Microgels for Optical Sensing of Glucose at Physiological pH,” ACS Applied Materials and Interfaces 7(29), 15735–15745 (2015).
[Crossref] [PubMed]

Zhou, Sh.

W. Wu, N. Mitra, E. C. Y. Yan, and Sh. Zhou, “Multifunctional Hybrid Nanogel for Integration of Optical Glucose Sensing and Self – Regulated Insulin Release at Physiological pH,” ACS Nano. 4(8), 4831–4839 (2010).
[Crossref] [PubMed]

W. Wu, T. Zhou, J. Shen, and Sh. Zhou, “Optical detection of glucose by CdS quantum dots immobilized in smart microgels, ” Chem. Commun. 29, 4390–4392 (2009).
[Crossref]

Zhou, T.

W. Wu, T. Zhou, J. Shen, and Sh. Zhou, “Optical detection of glucose by CdS quantum dots immobilized in smart microgels, ” Chem. Commun. 29, 4390–4392 (2009).
[Crossref]

Zhu, H.

W. Zheng, P. Huang, D. Tu, E. Ma, H. Zhu, and X. Chen, “Lanthanide-doped upconversion nano-bioprobes: electronic structures, optical properties, and biodetection,” Chemical Society Reviews 44(6), 1379–1415 (2015).
[Crossref]

Zhu, X.

X. Zhu, W. Feng, J. Chang, Y. W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437 (2016).
[Crossref] [PubMed]

ACS Appl. Mater Interfaces (1)

L. Rao, Q.F. Meng, L. L. Bu, B. Cai, Q. Huang, Z. J. Sun, W. F. Zhang, A. Li, Sh. Sh. Guo, W. Liu, T. H. Wang, and X. Z. Zhao, “Erythrocyte Membrane-Coated Upconversion Nanoparticles with Minimal Protein Adsorption for Enhanced Tumor Imaging,” ACS Appl. Mater Interfaces 9(3), 2159–2168 (2017).
[Crossref] [PubMed]

ACS Applied Materials & Interfaces (1)

J. Yuan, Y. Cen, X.J. Kong, Sh. Wu Ch, L. Liu, R. Q. Yu, and X. Chu, “MnO2-Nanosheet-Modified Upconversion Nanosystem for Sensitive Turn-On Fluorescence Detection of H2O2 and Glucose in Blood,” ACS Applied Materials & Interfaces 7(19), 10548–10555 (2015).
[Crossref]

ACS Applied Materials and Interfaces (1)

H. Wang, J. Yi, D. Velado, Y. Yu, and S. Zhou, “Immobilization of Carbon Dots in Molecularly Imprinted Microgels for Optical Sensing of Glucose at Physiological pH,” ACS Applied Materials and Interfaces 7(29), 15735–15745 (2015).
[Crossref] [PubMed]

ACS Nano. (3)

W. Wu, N. Mitra, E. C. Y. Yan, and Sh. Zhou, “Multifunctional Hybrid Nanogel for Integration of Optical Glucose Sensing and Self – Regulated Insulin Release at Physiological pH,” ACS Nano. 4(8), 4831–4839 (2010).
[Crossref] [PubMed]

Y. F. Wang, G. Y. Liu, L. D. Sun, J. W. Xiao, J. C. Zhou, and C. H. Yan, “N d3+-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect,” ACS Nano. 7(8), 7200–7206 (2013).
[Crossref] [PubMed]

Q. Zhan, J. Qian, H. Liang, G. Somesfalean, D. Wang, S. He, Z. Zhang, and S. Andersson-Engels, “Using 915 nm Laser Excited Tm3+/Er3+/Ho3+-Doped NaYbF4 Upconversion Nanoparticles for in Vitro and Deeper in Vivo Bioimaging without Overheating Irradiation,” ACS Nano. 5 (5), 3744–3757 (2011).
[Crossref] [PubMed]

ACS Photonics (1)

M. Mesch, Ch. Zhang, P. V. Braun, and H. Giessen, “Functionalized Hydrogel on Plasmonic Nanoantennas for Noninvasive Glucose Sensing,” ACS Photonics 2(4), 475–480 (2015).
[Crossref]

Adv. Drug Deliv. Rev. (1)

V. I. Shubayev, T. R. Pisanic, and S. Jin,“ Magnetic nanoparticles for theragnostics,” Adv. Drug Deliv. Rev. 61(6), 467–477 (2009).
[Crossref] [PubMed]

Adv. Mater. (1)

L. Rao, L. L. Bu, B. Cai, H. J. Xu, A. Li, W. F. Zhang, Z. J. Sun, S. S. Guo, W. Liu, T. H. Wang, and X.Z. Zhao, “Cancer Cell Membrane-Coated Upconversion Nanoprobes for Highly Specific Tumor Imaging,” Adv. Mater. 28(18), 3460–3666 (2016).
[Crossref] [PubMed]

Advanced Drug Delivery Reviews (1)

K. S. Layland, I. Riemann, O. Damour, U. A. Stock, and K. König, “Two-photon microscopes and in vivo multiphoton tomographs – Powerful diagnostic tools for tissue engineering and drug delivery, ” Advanced Drug Delivery Reviews 58(7), 878–896 (2006).
[Crossref]

Anal. Chem. (1)

P. Shen and Y. Xia, “Synthesis-modification integration: one – step fabrication of boronic acid functionalized carbon dots for fluorescent blood sugar sensing,” Anal. Chem. 86(11), 5323–5329 (2014).
[Crossref] [PubMed]

Analyst (1)

M.K. Balaconis, Y. Luo, and H.A. Clark, “Glucose-sensitive nanofiber scaffolds with an improved sensing design for physiological conditions,” Analyst 140(3), 716–723 (2015).
[Crossref]

Angew. Chem. Int. Ed. (1)

J. Durner, “Clinical chemistry: challenges for analytical chemistry and the nanosciences from medicine,” Angew. Chem. Int. Ed. 49(6), 1026–1051 (2010).
[Crossref]

Biochemical and Biophysical Research Communications (1)

W. A. Wilson, W. E. Hughes, W. Tomamichel, and P. J. Roach, “Increased glycogen storage in yeast results in less branched glycogen,”Biochemical and Biophysical Research Communications 320(2), 416–423 (2004).
[Crossref] [PubMed]

Biomaterials (3)

H. E. Koschwanez and W. M. Reichert, “In vitro, in vivo and post explantation testing of glucose-detecting biosensors: current methods and recommendations,” Biomaterials 28(25), 3687–3703 (2007).
[Crossref] [PubMed]

T.R. Pisanic, J. D. Blackwell, V. I. Shubayev, R. R. Fiñones, and S. Jin, “Nanotoxicity of iron oxide nanoparticle internalization in growing neurons,” Biomaterials 28(16), 2572–2581 (2007).
[Crossref] [PubMed]

D. K. Chatterjee, A. J. Rufaihah, and Y. Zhang, “Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystal,” Biomaterials 29(7), 937–943 (2008).
[Crossref]

Biosensors (1)

J. S Hansen and J. B. Christensen, “Recent advances in fluorescent arylboronic acids for glucose sensing,” Biosensors 3(4), 400–418 (2013).
[Crossref] [PubMed]

Chem. Commun. (1)

W. Wu, T. Zhou, J. Shen, and Sh. Zhou, “Optical detection of glucose by CdS quantum dots immobilized in smart microgels, ” Chem. Commun. 29, 4390–4392 (2009).
[Crossref]

Chemical Society Reviews (1)

W. Zheng, P. Huang, D. Tu, E. Ma, H. Zhu, and X. Chen, “Lanthanide-doped upconversion nano-bioprobes: electronic structures, optical properties, and biodetection,” Chemical Society Reviews 44(6), 1379–1415 (2015).
[Crossref]

Coordination Chemistry Reviews (1)

E. Kioseoglou, S. Petanidis, C. Gabriel, and A. Salifoglou, “The chemistry and biology of vanadium compounds in cancer therapeutics,” Coordination Chemistry Reviews 301–302, 87–105 (2015).

Curr Med. Chem. (1)

T. Scior, J. A. G.-Garcia, Q. T. Do, P. Bernard, and S. Laufer, “Why antidiabetic vanadium complexes are not in the pipeline of “big pharma” drug research? A Critical Review,” Curr Med. Chem. 23(25), 2874–2891 (2016).
[Crossref] [PubMed]

Current Trends in Biomedical Engineering & Biosciences (1)

T. Lin, A. Gal, Y. Mayzel, K. Horman, and K. Bahartan, “Non-Invasive Glucose Monitoring: A Review of Challenges and Recent Advances,” Current Trends in Biomedical Engineering & Biosciences 6 (5), 001–008 (2017).
[Crossref]

Diabetes Technol. Ther. (1)

D. Rodbard, “Continuous Glucose Monitoring: A Review of Successes, Challenges, and Opportunities,” Diabetes Technol. Ther. 18(2), S3–S13 (2016).
[Crossref] [PubMed]

Endocrinology (1)

N. Sekar, J. Li, Z. He, D. Gefel, and Y. Shechter, “Independent Signal-Transduction Pathways for Vanadate and for Insulin in the Activation of Glycogen Synthase and Glycogenesis in Rat Adipocytes,” Endocrinology 140(3), 1125 (1999).
[Crossref] [PubMed]

Expert Rev. Ophthalmol (1)

Z. Blum, D. Pankratov, and S. Shleev, “Powering electronic contact lenses: current achievements, challenges, and perspectives,” Expert Rev. Ophthalmol 9(4), 269–273 (2014).
[Crossref]

Food Chem. Toxicol. (1)

L. Zhang, Y. Zhang, Q. Xia, X. M. Zhao, H. X. Cai, D. W. Li, X. D. Yang, K. Wang, and Z. L. Xia, “Effective control of blood glucose status and toxicity in streptozotocin-induced diabetic rats by orally administration of vanadate in an herbal decoction,” Food Chem. Toxicol. 46(9), 2996–3002 (2008).
[Crossref] [PubMed]

J. Inorg. Biochem. (1)

C. C. McLauchlan, J. D. Hooker, M. A. Jones, Z. Dymon, E. A. Backhus, B. A. Greiner, N. A. Dorefer, M. A. Youkhana, and L. M. Manus, “Inhibition of acid, alkaline, and tyrosine (ptp1b) phosphatases by novel vanadium complexes,” J. Inorg. Biochem. 104(3), 274–281 (2010).
[Crossref] [PubMed]

Journal of Materials Chemistry B (1)

X. Zhang, Ch. Gao, Sh. Lu, H. Duan, N. Jing, D. Dong, C. Shi, and M. Liu,“Anti-photobleaching flower-like microgels as optical nanobiosensors with high selectivity at physiological conditions for continuous glucose monitoring,” Journal of Materials Chemistry B 2(33), 5452–5460 (2014).
[Crossref]

Journal of Materials Chemistry C (1)

O. A. Savchuk, J. J. Carvajal, C. Cascales, J. Massons, M. Aguilo, and F. Diaz, “Thermochromic upconversion nanoparticles for visual temperature sensors with high thermal, spatial and temporal resolution,” Journal of Materials Chemistry C 4(27), 6602–6613 (2016).
[Crossref]

Journal of Physical Chemistry C (1)

G. Mialon, S. Türkcan, A. Alexandrou, T. Gacoin, and J. P. Boilot, “New insights into size effects in luminescent oxide nanocrystals,” Journal of Physical Chemistry C 113(43), 18699–18706 (2009).
[Crossref]

Journal of the American Chemical Society (1)

X. Xie, N. Gao, R. Deng, Q. Sun, Q. H. Xu, and X. Liu, “Mechanistic Investigation of Photon Upconversion in N d3+-Sensitized Core–Shell Nanoparticles,” Journal of the American Chemical Society 135(34), 12608–12611 (2013).
[Crossref] [PubMed]

Laser & Photonics Reviews (1)

T. X. Can, Q. Zhan, H. Liu, G. Somesfalean, J. Qian, S. He, and S. A. Engels, “Upconverting nanoparticles for pre – clinical diffuse optical imaging, microscopy and sensing: Current trends and future challenges,” Laser & Photonics Reviews 7(5), 663–697 (2013).
[Crossref]

Macromolecules (1)

D. Wang, T. Liu, Jun Yin, and Sh. Liu, “Stimuli-Responsive Fluorescent Poly(N-isopropylacrylamide) Microgels Labeled with Phenylboronic Acid Moieties as Multifunctional Ratiometric Probes for Glucose and Temperatures,” Macromolecules 44(7), 2282–2290 (2011).
[Crossref]

Mater. Sci. Eng. C. Mater. Biol. Appl. (1)

V. Klochkov, N. Kavok, G. Grygorova, O. Sedyh, and Y. Malyukin, “Size and shape influence of luminescent orthovanadate nanoparticles on their accumulation in nuclear compartments of rat hepatocytes,” Mater. Sci. Eng. C. Mater. Biol. Appl. 33(5), 2708–2712 (2013).
[Crossref] [PubMed]

Nanoscale (1)

H. Wang, J. Yi, Y. Yu, and S. Zhou, “NIR upconversion fluorescence glucose sensing and glucose-responsive insulin release of carbon dot-immobilized hybrid microgels at physiological pH,” Nanoscale 9(2), 509–516 (2017).
[Crossref]

Nanotechnology (1)

M. H Alkahtani, F. S. Alghannam, C. Sanchez, C. L. Gomes, H. Liang, and P. R. Hemmer, “High efficiency upconversion nanophosphors for high – contrast bioimaging,” Nanotechnology 27(48), 485–501 (2016).
[Crossref]

Nat. Commun. (1)

X. Zhu, W. Feng, J. Chang, Y. W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437 (2016).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (2)

RSC Advances (1)

H. Lu, H. Hao, G. Shi, Y. Gao, R. Wang, Y. Song, Y. Wang, and X. Zhang, “Optical temperature sensing in [small beta]-N aLuF4 : Yb3+/Er3+/T m3+ based on thermal, quasi-thermal and non-thermal coupling levels,” RSC Advances 6(60), 55307–55311 (2016).
[Crossref]

Sci. Rep. (2)

T. V. Gavrilovic, D. J. Jovanovic, V. Lojpur, and M. D. Dramicanin, “Multifunctional Eu3+ – and Er3+/Yb3+ – doped GdVO4 nanoparticles synthesized by reverse micelle method,” Sci. Rep. 4, 4209 (2014).
[Crossref]

M. Zhang, C. Liao, C. H. Mak, P. You, C. L. Mak, and F. Yan, “Highly sensitive glucose sensors based on enzyme – modified whole-graphene solution-gated transistors,” Sci. Rep. 5, 8311 (2015).
[Crossref]

Sensors (2)

E. H. Yoo and S. Y. Lee, “Glucose Biosensors: An Overview of Use in Clinical Practice,” Sensors 10(5), 4558–4576 (2010).
[Crossref] [PubMed]

J. Chen and J.X. Zhao, “Upconversion nanomaterials: synthesis, mechanism, and applications in sensing,” Sensors 12(3), 2414–2435 (2012).
[Crossref] [PubMed]

Small (1)

Y. Pan, S. Neuss, A. Leifert, M. Fischler, F. Wen, U. Simon, G. Schmid, W. Brandau, and W. Jahnen-Dechent, “Size-dependent cytotoxicity of gold nanoparticles,” Small 3(11), 1941–1949 (2007).
[Crossref] [PubMed]

The Journal of Physical Chemistry C (1)

G. Mialon, S. Türkcan, G. Dantelle, D. P. Collins, M. Hadjipanayi, R. A. Taylor, T. Gacoin, A. Alexandrou, and J. P. Boilot, “High up-conversion efficiency of YVO4 : Yb, Er nanoparticles in water down to the single-particle level,” The Journal of Physical Chemistry C 114(51), 22449–22454 (2010).
[Crossref]

Other (2)

Centers for Disease Control and Prevention, National Diabetes Statistics Report, 2017 Atlanta, GA, Centers for Disease Control and Prevention, U.S. Dept of Health and Human Services (2017).

Dexcom G5 Mobile System for Non-Adjunctive Use. Clinical Chemistry and Clinical Toxicology Devices Panel, July 21, (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Upconversion luminescence spectrum of GdVO4 : Er3+, Yb3+@Nd3+ core/shell UCNPs. (b) The TEM image of GdVO4 : Er3+, Yb3+@Nd3+ core/shell UCNPs. (c) Upconversion luminescence spectrum of YVO4 : Er3+, Yb3+@Nd3+ core/shell UCNPs. (d) The TEM image of YVO4 : Er3+, Yb3+@Nd3+ core/shell UCNPs. (e) An illustration of a home-made confocal microscope equipped with visible-near-infrared objective, NIR laser, and spectrometer. (f) Energy transfer mechanism and electronic structure of YVO4 : Er3+, Yb3+@Nd3+ core/shell UCNPs.
Fig. 2
Fig. 2 (a) Upconversion luminescence spectra of YVO4 : Er3+, Yb3+@Nd3+ core/shell UCNPs recorded as a function of different glucose concentrations (0–30 mM). (b) Influence of the glucose concentrations on the quenching efficiency at 552.8 nm for the glucose concentrations of 1 mM, 10 mM and 100 mM.
Fig. 3
Fig. 3 (a) Upconverion luminescence spectra of GdVO4 : Yb3+, Er3+@Nd3+ core/shell UCNPs recorded as a function of high and low glucose concentration ranges. (b) Influence of the glucose concentrations on the quenching efficiency at 552.8 nm for the glucose concentrations of 1 mM, 10 mM, and 100 mM.
Fig. 4
Fig. 4 (a) Reversible upconversion luminescence spectra of GdVO4 : Yb3+, Er3+@Nd3+ core/shell UCNPs after adding and then washing away 10 mM glucose concentrations (b) Unchanged upconversion spectra of GdVO4 : Yb3+, Er3+@Nd3+ core/shell UCNPs after adding and then washing away various fructose concentrations. (c) Normalized upconversion spectra of YVO4 : Yb3+, Er3+@Nd3+ core/shell UCNPs as a function of glucose concentrations.