Abstract

In this work, we study the effect of the average shortest interaction distance between zinc oxide nanocrystals (ZnO-nc) and Europium (Eu3+) ions and between two Eu3+ ions in the energy transfer process between ZnO-nc and Eu3+ ions embedded in a SiO2 matrix fabricated by a combination of sol-gel and the sputtering technique. A detailed model to calculate the two interaction distances based on the ratio of Zn, Si and Eu3+ ions in the samples and using the density and molecular mass of ZnO and SiO2 is presented. Based on these calculations together with the photoluminescence emission from the samples, it is clearly shown that the energy transfer from ZnO-nc to Eu3+ ions is higher in samples with a shorter distance between the ZnO-nc and Eu3+ ions. The maximum red emission at 614 nm due to the efficient energy transfer from ZnO-nc to Eu3+ was found in the sample with 5.11 nm distance between the ZnO-nc and Eu3+ ions. However, the red emission from the Eu3+ ions does not increase as the distance between the ZnO-nc and Eu3+ ions is reduced below 5.11 nm by increasing the Eu3+ concentration. This is due to the Eu3+ ion concentration quenching effect, where the distances between the Eu3+ ions become shorter than 0.57 nm, resulting in a migration of energy between the Eu3+ ions that is non-radiatively dissipated. It is also shown that the energy transfer from ZnO-nc to Eu3+ ions occur mostly due to the radiative energy transfer process when the interaction distance between the ZnO-nc and Eu3+ ions is 6.53 nm or greater.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Intense near-infrared emission from ZnO-LiYbO2 hybrid phosphors through efficient energy transfer from ZnO to Yb3+

Song Ye, Nan Jiang, Feng He, Xiaofeng Liu, Bin Zhu, Yu Teng, and Jian Rong Qiu
Opt. Express 18(2) 639-644 (2010)

Ho3+-doped ZnO nano phosphor for low-threshold sharp red light emission at elevated temperatures

K. Fabitha and M. S. Ramachandra Rao
J. Opt. Soc. Am. B 34(12) 2485-2492 (2017)

References

  • View by:
  • |
  • |
  • |

  1. Q. Shi, C. Wang, S. Li, Q. Wang, B. Zhang, W. Wang, J. Zhang, and H. Zhu, “Enhancing blue luminescence from Ce-doped ZnO nanophosphor by Li doping,” Nanoscale Res. Lett. 9(1), 480 (2014).
    [Crossref] [PubMed]
  2. L. Luo, F. Y. Huang, G. S. Dong, Y. H. Wang, Z. F. Hu, and J. Chen, “White Light Emission and Luminescence Dynamics in Eu3+/Dy3+ Codoped ZnO Nanocrystals,” J. Nanosci. Nanotechnol. 16(1), 619–625 (2016).
    [Crossref] [PubMed]
  3. R. Das, N. Khichar, and S. Chawla, “Dual mode luminescence in rare earth (Er3+/Ho3+) doped ZnO nanoparticles fabricated by inclusive co precipitation technique,” J. Mater. Sci. Mater. Electron. 26(9), 7174–7182 (2015).
    [Crossref]
  4. L. Luo, F. Y. Huang, G. S. Dong, H. H. Fan, K. F. Li, K. W. Cheah, and J. Chen, “Strong luminescence and efficient energy transfer in Eu3+/Tb3+-codoped ZnO nanocrystals,” Opt. Mater. 37, 470–475 (2014).
    [Crossref]
  5. V. Kumar, S. Som, V. Kumar, V. Kumar, O. M. Ntwaeaborwa, E. Coetsee, and H. C. Swart, “Tunable and white emission from ZnO:Tb3+ nanophosphors for solid state lighting applications,” Chem. Eng. J. 255, 541–552 (2014).
    [Crossref]
  6. R. Zamiri, A. F. Lemos, A. Reblo, H. A. Ahangar, and J. M. F. Ferreira, “Effects of rare-earth (Er, La and Yb) doping on morphology and structure properties of ZnO nanostructures prepared by wet chemical method,” Ceram. Int. 40(1), 523–529 (2014).
    [Crossref]
  7. F. Xiao, R. Chen, Y. Q. Shen, Z. L. Dong, H. H. Wang, Q. Y. Zhang, and H. D. Sun, “Efficient energy transfer and enhanced infrared emission in Er-doped ZnO-SiO2 composites,” J. Phys. Chem. C 116(24), 13458–13462 (2012).
    [Crossref]
  8. J. Huang, S. Liu, B. Gao, T. Jiang, Y. Zhao, S. Liu, L. Kuang, and X. Xu, “Synthesis and optical properties of Eu3+ doped ZnO nanoparticles used for white light emitting diodes,” J. Nanosci. Nanotechnol. 14(4), 3052–3055 (2014).
    [Crossref] [PubMed]
  9. V. Mangalam and K. Pita, “Energy transfer from ZnO nanocrystals to Terbium3+ ions: A spectral overlap study,” in 2016 IEEE Photonics Conference (IPC) (IEEE, 2016), 190–191.
  10. G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
    [Crossref] [PubMed]
  11. G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
    [Crossref] [PubMed]
  12. E. Shkondin, O. Takayama, M. E. A. Panah, P. Liu, P. V. Larsen, M. D. Mar, F. Jensen, and A. V. Lavrinenko, “Large-scale high aspect ratio Al-doped ZnO nanopillars arrays as anisotropic metamaterials,” Opt. Mater. Express 7(5), 1606–1627 (2017).
    [Crossref]
  13. A. Ishizumi, S. Fujita, and H. Yanagi, “Influence of atmosphere on photoluminescence properties of Eu-doped ZnO nanocrystals,” Opt. Mater. 33(7), 1116–1119 (2011).
    [Crossref]
  14. L. Luo, F. Y. Huang, G. J. Guo, P. A. Tanner, J. Chen, Y. T. Tao, J. Zhou, L. Y. Yuan, S. Y. Chen, Y. L. Chueh, H. H. Fan, K. F. Li, and K. W. Cheah, “Efficient doping and energy transfer from ZnO to Eu3+ ions in Eu3+- doped ZnO nanocrystals,” J. Nanosci. Nanotechnol. 12(3), 2417–2423 (2012).
    [Crossref] [PubMed]
  15. Y. Zhang, Y. Liu, X. Li, Q. J. Wang, and E. Xie, “Room temperature enhanced red emission from novel Eu3+ doped ZnO nanocrystals uniformly dispersed in nanofibers,” Nanotechnology 22(41), 415702 (2011).
    [Crossref] [PubMed]
  16. T. Lin, X. Zhang, Y. Wang, J. Xu, N. Wan, J. Liu, L. Xu, and K. Chen, “Luminescence enhancement due to energy transfer in ZnO nanoparticles and Eu3+ ions co-doped silica,” Thin Solid Films 520(17), 5815–5819 (2012).
    [Crossref]
  17. V. Kumar, V. Kumar, S. Som, M. M. Duvenhage, O. M. Ntwaeaborwa, and H. C. Swart, “Effect of Eu doping on the photoluminescence properties of ZnO nanophosphors for red emission applications,” Appl. Surf. Sci. 308, 419–430 (2014).
    [Crossref]
  18. M. Najafi and H. Haratizadeh, “The effect of growth conditions and morphology on photoluminescence properties of Eu-doped ZnO nanostructures,” Solid State Sci. 41, 48–51 (2015).
    [Crossref]
  19. M. Najafi and H. Haratizadeh, “Investigation of intrinsic and extrinsic defects effective role on producing intense red emission in ZnO:Eu nanostructures,” Mater. Res. Bull. 65, 103–109 (2015).
    [Crossref]
  20. H. V. S. Pessoni, L. J. Q. Maia, and A. Franco., “Eu-doped ZnO nanoparticles prepared by the combustion reaction method: Structural, photoluminescence and dielectric characterization,” Mater. Sci. Semicond. Process. 30, 135–141 (2015).
    [Crossref]
  21. L. Singh, “Photoluminescence studies of ZnO, ZnO:Eu and ZnO:Eu nanoparticles covered with Y2O3 Matrix,” Mater. Sci. Appl. 6(04), 269–278 (2015).
    [Crossref]
  22. O. M. Ntwaeaborwa, S. J. Mofokeng, V. Kumar, and R. E. Kroon, “Structural, optical and photoluminescence properties of Eu3+ doped ZnO nanoparticles,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 182, 42–49 (2017).
    [Crossref] [PubMed]
  23. V. Mangalam, K. Pita, and C. Couteau, “Study of energy transfer mechanism from ZnO nanocrystals to Eu3+ ions,” Nanoscale Res. Lett. 11(1), 73 (2016).
    [Crossref] [PubMed]
  24. V. Mangalam and K. Pita, “Energy transfer efficiency from ZnO-nanocrystals to Eu3+ ions embedded in SiO2 film for emission at 614 nm,” Materials (Basel) 10(8), 930 (2017).
    [Crossref] [PubMed]
  25. K. Pita, P. Baudin, Q. V. Vu, R. Aad, C. Couteau, and G. Lérondel, “Annealing temperature and environment effects on ZnO nanocrystals embedded in SiO2: a photoluminescence and TEM study,” Nanoscale Res. Lett. 8(1), 517 (2013).
    [Crossref] [PubMed]
  26. H. Benhebal, M. Chaib, T. Salmon, J. Geens, A. Leonard, S. D. Lambert, M. Crine, and B. Heinrichs, “Photocatalytic degradation of phenol and benzoic acid using zinc oxide powders prepared by the sol–gel process,” Alexandria Engineering Journal 52(3), 517–523 (2013).
    [Crossref]
  27. A. Layek, S. De, R. Thorat, and A. Chowdhury, “Spectrally Resolved Photoluminescence Imaging of ZnO nanocrystals at single-particle levels,” J. Phys. Chem. Lett. 2(11), 1241–1247 (2011).
    [Crossref] [PubMed]
  28. S. Panigrahi, A. Bera, and D. Basak, “Ordered dispersion of ZnO quantum dots in SiO2 matrix and its strong emission properties,” J. Colloid Interface Sci. 353(1), 30–38 (2011).
    [Crossref] [PubMed]
  29. M. Vafaee and M. S. Ghamsari, “Preparation and characterization of ZnO nanoparticles by a novel sol–gel route,” Mater. Lett. 61(14-15), 3265–3268 (2007).
    [Crossref]
  30. T. Forster, “10th Spiers Memorial Lecture. Transfer mechanisms of electronic excitation,” Discuss. Faraday Soc. 27(0), 7–17 (1959).
    [Crossref]
  31. J. Heitmann, M. Schmidt, M. Zacharias, V. Y. Timoshenko, M. G. Lisachenko, and P. K. Kashkarov, “Fabrication and photoluminescence properties of erbium doped size-controlled silicon nanocrystals,” Mater. Sci. Eng. B 105(1-3), 214–220 (2003).
    [Crossref]
  32. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006).
  33. M. K. Chong, K. Pita, and C. H. Kam, “Photoluminescence of Y2O3:Eu3+ thin film phosphors by sol–gel deposition and rapid thermal annealing,” J. Phys. Chem. Solids 66(1), 213–217 (2005).
    [Crossref]
  34. E. A. Meulenkamp, “Synthesis and growth of ZnO nanoparticles,” J. Phys. Chem. B 102(29), 5566–5572 (1998).
    [Crossref]
  35. D. W. Hamby, D. A. Lucca, M. J. Klopfstein, and G. Cantwell, “Temperature dependent exciton photoluminescence of bulk ZnO,” J. Appl. Phys. 93(6), 3214–3217 (2003).
    [Crossref]
  36. A. Teke, Ü. Özgür, S. Doğan, X. Gu, H. Morkoç, B. Nemeth, J. Nause, and H. O. Everitt, “Excitonic fine structure and recombination dynamics in single-crystalline ZnO,” Phys. Rev. B 70(19), 195207 (2004).
    [Crossref]
  37. S. Mahamuni, K. Borgohain, B. S. Bendre, V. J. Leppert, and S. H. Risbud, “Spectroscopic and structural characterization of electrochemically grown ZnO quantum dots,” J. Appl. Phys. 85(5), 2861–2865 (1999).
    [Crossref]
  38. D. Denzler, M. Olschewski, and K. Sattler, “Luminescence studies of localized gap states in colloidal ZnS nanocrystals,” J. Appl. Phys. 84(5), 2841–2845 (1998).
    [Crossref]
  39. H. Haiping, W. Yuxia, and Z. Youming, “Photoluminescence property of ZnO–SiO2 composites synthesized by sol–gel method,” J. Phys. D Appl. Phys. 36(23), 2972–2975 (2003).
    [Crossref]
  40. D. H. Zhang, Z. Y. Xue, and Q. P. Wang, “The mechanisms of blue emission from ZnO films deposited on glass substrate by r.f. magnetron sputtering,” J. Phys. D Appl. Phys. 35(21), 2837–2840 (2002).
    [Crossref]

2017 (3)

E. Shkondin, O. Takayama, M. E. A. Panah, P. Liu, P. V. Larsen, M. D. Mar, F. Jensen, and A. V. Lavrinenko, “Large-scale high aspect ratio Al-doped ZnO nanopillars arrays as anisotropic metamaterials,” Opt. Mater. Express 7(5), 1606–1627 (2017).
[Crossref]

O. M. Ntwaeaborwa, S. J. Mofokeng, V. Kumar, and R. E. Kroon, “Structural, optical and photoluminescence properties of Eu3+ doped ZnO nanoparticles,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 182, 42–49 (2017).
[Crossref] [PubMed]

V. Mangalam and K. Pita, “Energy transfer efficiency from ZnO-nanocrystals to Eu3+ ions embedded in SiO2 film for emission at 614 nm,” Materials (Basel) 10(8), 930 (2017).
[Crossref] [PubMed]

2016 (2)

V. Mangalam, K. Pita, and C. Couteau, “Study of energy transfer mechanism from ZnO nanocrystals to Eu3+ ions,” Nanoscale Res. Lett. 11(1), 73 (2016).
[Crossref] [PubMed]

L. Luo, F. Y. Huang, G. S. Dong, Y. H. Wang, Z. F. Hu, and J. Chen, “White Light Emission and Luminescence Dynamics in Eu3+/Dy3+ Codoped ZnO Nanocrystals,” J. Nanosci. Nanotechnol. 16(1), 619–625 (2016).
[Crossref] [PubMed]

2015 (5)

R. Das, N. Khichar, and S. Chawla, “Dual mode luminescence in rare earth (Er3+/Ho3+) doped ZnO nanoparticles fabricated by inclusive co precipitation technique,” J. Mater. Sci. Mater. Electron. 26(9), 7174–7182 (2015).
[Crossref]

M. Najafi and H. Haratizadeh, “The effect of growth conditions and morphology on photoluminescence properties of Eu-doped ZnO nanostructures,” Solid State Sci. 41, 48–51 (2015).
[Crossref]

M. Najafi and H. Haratizadeh, “Investigation of intrinsic and extrinsic defects effective role on producing intense red emission in ZnO:Eu nanostructures,” Mater. Res. Bull. 65, 103–109 (2015).
[Crossref]

H. V. S. Pessoni, L. J. Q. Maia, and A. Franco., “Eu-doped ZnO nanoparticles prepared by the combustion reaction method: Structural, photoluminescence and dielectric characterization,” Mater. Sci. Semicond. Process. 30, 135–141 (2015).
[Crossref]

L. Singh, “Photoluminescence studies of ZnO, ZnO:Eu and ZnO:Eu nanoparticles covered with Y2O3 Matrix,” Mater. Sci. Appl. 6(04), 269–278 (2015).
[Crossref]

2014 (6)

L. Luo, F. Y. Huang, G. S. Dong, H. H. Fan, K. F. Li, K. W. Cheah, and J. Chen, “Strong luminescence and efficient energy transfer in Eu3+/Tb3+-codoped ZnO nanocrystals,” Opt. Mater. 37, 470–475 (2014).
[Crossref]

V. Kumar, S. Som, V. Kumar, V. Kumar, O. M. Ntwaeaborwa, E. Coetsee, and H. C. Swart, “Tunable and white emission from ZnO:Tb3+ nanophosphors for solid state lighting applications,” Chem. Eng. J. 255, 541–552 (2014).
[Crossref]

R. Zamiri, A. F. Lemos, A. Reblo, H. A. Ahangar, and J. M. F. Ferreira, “Effects of rare-earth (Er, La and Yb) doping on morphology and structure properties of ZnO nanostructures prepared by wet chemical method,” Ceram. Int. 40(1), 523–529 (2014).
[Crossref]

J. Huang, S. Liu, B. Gao, T. Jiang, Y. Zhao, S. Liu, L. Kuang, and X. Xu, “Synthesis and optical properties of Eu3+ doped ZnO nanoparticles used for white light emitting diodes,” J. Nanosci. Nanotechnol. 14(4), 3052–3055 (2014).
[Crossref] [PubMed]

Q. Shi, C. Wang, S. Li, Q. Wang, B. Zhang, W. Wang, J. Zhang, and H. Zhu, “Enhancing blue luminescence from Ce-doped ZnO nanophosphor by Li doping,” Nanoscale Res. Lett. 9(1), 480 (2014).
[Crossref] [PubMed]

V. Kumar, V. Kumar, S. Som, M. M. Duvenhage, O. M. Ntwaeaborwa, and H. C. Swart, “Effect of Eu doping on the photoluminescence properties of ZnO nanophosphors for red emission applications,” Appl. Surf. Sci. 308, 419–430 (2014).
[Crossref]

2013 (3)

K. Pita, P. Baudin, Q. V. Vu, R. Aad, C. Couteau, and G. Lérondel, “Annealing temperature and environment effects on ZnO nanocrystals embedded in SiO2: a photoluminescence and TEM study,” Nanoscale Res. Lett. 8(1), 517 (2013).
[Crossref] [PubMed]

H. Benhebal, M. Chaib, T. Salmon, J. Geens, A. Leonard, S. D. Lambert, M. Crine, and B. Heinrichs, “Photocatalytic degradation of phenol and benzoic acid using zinc oxide powders prepared by the sol–gel process,” Alexandria Engineering Journal 52(3), 517–523 (2013).
[Crossref]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

2012 (4)

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[Crossref] [PubMed]

F. Xiao, R. Chen, Y. Q. Shen, Z. L. Dong, H. H. Wang, Q. Y. Zhang, and H. D. Sun, “Efficient energy transfer and enhanced infrared emission in Er-doped ZnO-SiO2 composites,” J. Phys. Chem. C 116(24), 13458–13462 (2012).
[Crossref]

L. Luo, F. Y. Huang, G. J. Guo, P. A. Tanner, J. Chen, Y. T. Tao, J. Zhou, L. Y. Yuan, S. Y. Chen, Y. L. Chueh, H. H. Fan, K. F. Li, and K. W. Cheah, “Efficient doping and energy transfer from ZnO to Eu3+ ions in Eu3+- doped ZnO nanocrystals,” J. Nanosci. Nanotechnol. 12(3), 2417–2423 (2012).
[Crossref] [PubMed]

T. Lin, X. Zhang, Y. Wang, J. Xu, N. Wan, J. Liu, L. Xu, and K. Chen, “Luminescence enhancement due to energy transfer in ZnO nanoparticles and Eu3+ ions co-doped silica,” Thin Solid Films 520(17), 5815–5819 (2012).
[Crossref]

2011 (4)

A. Layek, S. De, R. Thorat, and A. Chowdhury, “Spectrally Resolved Photoluminescence Imaging of ZnO nanocrystals at single-particle levels,” J. Phys. Chem. Lett. 2(11), 1241–1247 (2011).
[Crossref] [PubMed]

S. Panigrahi, A. Bera, and D. Basak, “Ordered dispersion of ZnO quantum dots in SiO2 matrix and its strong emission properties,” J. Colloid Interface Sci. 353(1), 30–38 (2011).
[Crossref] [PubMed]

Y. Zhang, Y. Liu, X. Li, Q. J. Wang, and E. Xie, “Room temperature enhanced red emission from novel Eu3+ doped ZnO nanocrystals uniformly dispersed in nanofibers,” Nanotechnology 22(41), 415702 (2011).
[Crossref] [PubMed]

A. Ishizumi, S. Fujita, and H. Yanagi, “Influence of atmosphere on photoluminescence properties of Eu-doped ZnO nanocrystals,” Opt. Mater. 33(7), 1116–1119 (2011).
[Crossref]

2007 (1)

M. Vafaee and M. S. Ghamsari, “Preparation and characterization of ZnO nanoparticles by a novel sol–gel route,” Mater. Lett. 61(14-15), 3265–3268 (2007).
[Crossref]

2005 (1)

M. K. Chong, K. Pita, and C. H. Kam, “Photoluminescence of Y2O3:Eu3+ thin film phosphors by sol–gel deposition and rapid thermal annealing,” J. Phys. Chem. Solids 66(1), 213–217 (2005).
[Crossref]

2004 (1)

A. Teke, Ü. Özgür, S. Doğan, X. Gu, H. Morkoç, B. Nemeth, J. Nause, and H. O. Everitt, “Excitonic fine structure and recombination dynamics in single-crystalline ZnO,” Phys. Rev. B 70(19), 195207 (2004).
[Crossref]

2003 (3)

H. Haiping, W. Yuxia, and Z. Youming, “Photoluminescence property of ZnO–SiO2 composites synthesized by sol–gel method,” J. Phys. D Appl. Phys. 36(23), 2972–2975 (2003).
[Crossref]

J. Heitmann, M. Schmidt, M. Zacharias, V. Y. Timoshenko, M. G. Lisachenko, and P. K. Kashkarov, “Fabrication and photoluminescence properties of erbium doped size-controlled silicon nanocrystals,” Mater. Sci. Eng. B 105(1-3), 214–220 (2003).
[Crossref]

D. W. Hamby, D. A. Lucca, M. J. Klopfstein, and G. Cantwell, “Temperature dependent exciton photoluminescence of bulk ZnO,” J. Appl. Phys. 93(6), 3214–3217 (2003).
[Crossref]

2002 (1)

D. H. Zhang, Z. Y. Xue, and Q. P. Wang, “The mechanisms of blue emission from ZnO films deposited on glass substrate by r.f. magnetron sputtering,” J. Phys. D Appl. Phys. 35(21), 2837–2840 (2002).
[Crossref]

1999 (1)

S. Mahamuni, K. Borgohain, B. S. Bendre, V. J. Leppert, and S. H. Risbud, “Spectroscopic and structural characterization of electrochemically grown ZnO quantum dots,” J. Appl. Phys. 85(5), 2861–2865 (1999).
[Crossref]

1998 (2)

D. Denzler, M. Olschewski, and K. Sattler, “Luminescence studies of localized gap states in colloidal ZnS nanocrystals,” J. Appl. Phys. 84(5), 2841–2845 (1998).
[Crossref]

E. A. Meulenkamp, “Synthesis and growth of ZnO nanoparticles,” J. Phys. Chem. B 102(29), 5566–5572 (1998).
[Crossref]

1959 (1)

T. Forster, “10th Spiers Memorial Lecture. Transfer mechanisms of electronic excitation,” Discuss. Faraday Soc. 27(0), 7–17 (1959).
[Crossref]

Aad, R.

K. Pita, P. Baudin, Q. V. Vu, R. Aad, C. Couteau, and G. Lérondel, “Annealing temperature and environment effects on ZnO nanocrystals embedded in SiO2: a photoluminescence and TEM study,” Nanoscale Res. Lett. 8(1), 517 (2013).
[Crossref] [PubMed]

Ahangar, H. A.

R. Zamiri, A. F. Lemos, A. Reblo, H. A. Ahangar, and J. M. F. Ferreira, “Effects of rare-earth (Er, La and Yb) doping on morphology and structure properties of ZnO nanostructures prepared by wet chemical method,” Ceram. Int. 40(1), 523–529 (2014).
[Crossref]

Basak, D.

S. Panigrahi, A. Bera, and D. Basak, “Ordered dispersion of ZnO quantum dots in SiO2 matrix and its strong emission properties,” J. Colloid Interface Sci. 353(1), 30–38 (2011).
[Crossref] [PubMed]

Baudin, P.

K. Pita, P. Baudin, Q. V. Vu, R. Aad, C. Couteau, and G. Lérondel, “Annealing temperature and environment effects on ZnO nanocrystals embedded in SiO2: a photoluminescence and TEM study,” Nanoscale Res. Lett. 8(1), 517 (2013).
[Crossref] [PubMed]

Bendre, B. S.

S. Mahamuni, K. Borgohain, B. S. Bendre, V. J. Leppert, and S. H. Risbud, “Spectroscopic and structural characterization of electrochemically grown ZnO quantum dots,” J. Appl. Phys. 85(5), 2861–2865 (1999).
[Crossref]

Benhebal, H.

H. Benhebal, M. Chaib, T. Salmon, J. Geens, A. Leonard, S. D. Lambert, M. Crine, and B. Heinrichs, “Photocatalytic degradation of phenol and benzoic acid using zinc oxide powders prepared by the sol–gel process,” Alexandria Engineering Journal 52(3), 517–523 (2013).
[Crossref]

Bera, A.

S. Panigrahi, A. Bera, and D. Basak, “Ordered dispersion of ZnO quantum dots in SiO2 matrix and its strong emission properties,” J. Colloid Interface Sci. 353(1), 30–38 (2011).
[Crossref] [PubMed]

Boltasseva, A.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[Crossref] [PubMed]

Borgohain, K.

S. Mahamuni, K. Borgohain, B. S. Bendre, V. J. Leppert, and S. H. Risbud, “Spectroscopic and structural characterization of electrochemically grown ZnO quantum dots,” J. Appl. Phys. 85(5), 2861–2865 (1999).
[Crossref]

Cantwell, G.

D. W. Hamby, D. A. Lucca, M. J. Klopfstein, and G. Cantwell, “Temperature dependent exciton photoluminescence of bulk ZnO,” J. Appl. Phys. 93(6), 3214–3217 (2003).
[Crossref]

Chaib, M.

H. Benhebal, M. Chaib, T. Salmon, J. Geens, A. Leonard, S. D. Lambert, M. Crine, and B. Heinrichs, “Photocatalytic degradation of phenol and benzoic acid using zinc oxide powders prepared by the sol–gel process,” Alexandria Engineering Journal 52(3), 517–523 (2013).
[Crossref]

Chawla, S.

R. Das, N. Khichar, and S. Chawla, “Dual mode luminescence in rare earth (Er3+/Ho3+) doped ZnO nanoparticles fabricated by inclusive co precipitation technique,” J. Mater. Sci. Mater. Electron. 26(9), 7174–7182 (2015).
[Crossref]

Cheah, K. W.

L. Luo, F. Y. Huang, G. S. Dong, H. H. Fan, K. F. Li, K. W. Cheah, and J. Chen, “Strong luminescence and efficient energy transfer in Eu3+/Tb3+-codoped ZnO nanocrystals,” Opt. Mater. 37, 470–475 (2014).
[Crossref]

L. Luo, F. Y. Huang, G. J. Guo, P. A. Tanner, J. Chen, Y. T. Tao, J. Zhou, L. Y. Yuan, S. Y. Chen, Y. L. Chueh, H. H. Fan, K. F. Li, and K. W. Cheah, “Efficient doping and energy transfer from ZnO to Eu3+ ions in Eu3+- doped ZnO nanocrystals,” J. Nanosci. Nanotechnol. 12(3), 2417–2423 (2012).
[Crossref] [PubMed]

Chen, J.

L. Luo, F. Y. Huang, G. S. Dong, Y. H. Wang, Z. F. Hu, and J. Chen, “White Light Emission and Luminescence Dynamics in Eu3+/Dy3+ Codoped ZnO Nanocrystals,” J. Nanosci. Nanotechnol. 16(1), 619–625 (2016).
[Crossref] [PubMed]

L. Luo, F. Y. Huang, G. S. Dong, H. H. Fan, K. F. Li, K. W. Cheah, and J. Chen, “Strong luminescence and efficient energy transfer in Eu3+/Tb3+-codoped ZnO nanocrystals,” Opt. Mater. 37, 470–475 (2014).
[Crossref]

L. Luo, F. Y. Huang, G. J. Guo, P. A. Tanner, J. Chen, Y. T. Tao, J. Zhou, L. Y. Yuan, S. Y. Chen, Y. L. Chueh, H. H. Fan, K. F. Li, and K. W. Cheah, “Efficient doping and energy transfer from ZnO to Eu3+ ions in Eu3+- doped ZnO nanocrystals,” J. Nanosci. Nanotechnol. 12(3), 2417–2423 (2012).
[Crossref] [PubMed]

Chen, K.

T. Lin, X. Zhang, Y. Wang, J. Xu, N. Wan, J. Liu, L. Xu, and K. Chen, “Luminescence enhancement due to energy transfer in ZnO nanoparticles and Eu3+ ions co-doped silica,” Thin Solid Films 520(17), 5815–5819 (2012).
[Crossref]

Chen, R.

F. Xiao, R. Chen, Y. Q. Shen, Z. L. Dong, H. H. Wang, Q. Y. Zhang, and H. D. Sun, “Efficient energy transfer and enhanced infrared emission in Er-doped ZnO-SiO2 composites,” J. Phys. Chem. C 116(24), 13458–13462 (2012).
[Crossref]

Chen, S. Y.

L. Luo, F. Y. Huang, G. J. Guo, P. A. Tanner, J. Chen, Y. T. Tao, J. Zhou, L. Y. Yuan, S. Y. Chen, Y. L. Chueh, H. H. Fan, K. F. Li, and K. W. Cheah, “Efficient doping and energy transfer from ZnO to Eu3+ ions in Eu3+- doped ZnO nanocrystals,” J. Nanosci. Nanotechnol. 12(3), 2417–2423 (2012).
[Crossref] [PubMed]

Chong, M. K.

M. K. Chong, K. Pita, and C. H. Kam, “Photoluminescence of Y2O3:Eu3+ thin film phosphors by sol–gel deposition and rapid thermal annealing,” J. Phys. Chem. Solids 66(1), 213–217 (2005).
[Crossref]

Chowdhury, A.

A. Layek, S. De, R. Thorat, and A. Chowdhury, “Spectrally Resolved Photoluminescence Imaging of ZnO nanocrystals at single-particle levels,” J. Phys. Chem. Lett. 2(11), 1241–1247 (2011).
[Crossref] [PubMed]

Chueh, Y. L.

L. Luo, F. Y. Huang, G. J. Guo, P. A. Tanner, J. Chen, Y. T. Tao, J. Zhou, L. Y. Yuan, S. Y. Chen, Y. L. Chueh, H. H. Fan, K. F. Li, and K. W. Cheah, “Efficient doping and energy transfer from ZnO to Eu3+ ions in Eu3+- doped ZnO nanocrystals,” J. Nanosci. Nanotechnol. 12(3), 2417–2423 (2012).
[Crossref] [PubMed]

Coetsee, E.

V. Kumar, S. Som, V. Kumar, V. Kumar, O. M. Ntwaeaborwa, E. Coetsee, and H. C. Swart, “Tunable and white emission from ZnO:Tb3+ nanophosphors for solid state lighting applications,” Chem. Eng. J. 255, 541–552 (2014).
[Crossref]

Couteau, C.

V. Mangalam, K. Pita, and C. Couteau, “Study of energy transfer mechanism from ZnO nanocrystals to Eu3+ ions,” Nanoscale Res. Lett. 11(1), 73 (2016).
[Crossref] [PubMed]

K. Pita, P. Baudin, Q. V. Vu, R. Aad, C. Couteau, and G. Lérondel, “Annealing temperature and environment effects on ZnO nanocrystals embedded in SiO2: a photoluminescence and TEM study,” Nanoscale Res. Lett. 8(1), 517 (2013).
[Crossref] [PubMed]

Crine, M.

H. Benhebal, M. Chaib, T. Salmon, J. Geens, A. Leonard, S. D. Lambert, M. Crine, and B. Heinrichs, “Photocatalytic degradation of phenol and benzoic acid using zinc oxide powders prepared by the sol–gel process,” Alexandria Engineering Journal 52(3), 517–523 (2013).
[Crossref]

Das, R.

R. Das, N. Khichar, and S. Chawla, “Dual mode luminescence in rare earth (Er3+/Ho3+) doped ZnO nanoparticles fabricated by inclusive co precipitation technique,” J. Mater. Sci. Mater. Electron. 26(9), 7174–7182 (2015).
[Crossref]

De, S.

A. Layek, S. De, R. Thorat, and A. Chowdhury, “Spectrally Resolved Photoluminescence Imaging of ZnO nanocrystals at single-particle levels,” J. Phys. Chem. Lett. 2(11), 1241–1247 (2011).
[Crossref] [PubMed]

Denzler, D.

D. Denzler, M. Olschewski, and K. Sattler, “Luminescence studies of localized gap states in colloidal ZnS nanocrystals,” J. Appl. Phys. 84(5), 2841–2845 (1998).
[Crossref]

Dogan, S.

A. Teke, Ü. Özgür, S. Doğan, X. Gu, H. Morkoç, B. Nemeth, J. Nause, and H. O. Everitt, “Excitonic fine structure and recombination dynamics in single-crystalline ZnO,” Phys. Rev. B 70(19), 195207 (2004).
[Crossref]

Dong, G. S.

L. Luo, F. Y. Huang, G. S. Dong, Y. H. Wang, Z. F. Hu, and J. Chen, “White Light Emission and Luminescence Dynamics in Eu3+/Dy3+ Codoped ZnO Nanocrystals,” J. Nanosci. Nanotechnol. 16(1), 619–625 (2016).
[Crossref] [PubMed]

L. Luo, F. Y. Huang, G. S. Dong, H. H. Fan, K. F. Li, K. W. Cheah, and J. Chen, “Strong luminescence and efficient energy transfer in Eu3+/Tb3+-codoped ZnO nanocrystals,” Opt. Mater. 37, 470–475 (2014).
[Crossref]

Dong, Z. L.

F. Xiao, R. Chen, Y. Q. Shen, Z. L. Dong, H. H. Wang, Q. Y. Zhang, and H. D. Sun, “Efficient energy transfer and enhanced infrared emission in Er-doped ZnO-SiO2 composites,” J. Phys. Chem. C 116(24), 13458–13462 (2012).
[Crossref]

Duvenhage, M. M.

V. Kumar, V. Kumar, S. Som, M. M. Duvenhage, O. M. Ntwaeaborwa, and H. C. Swart, “Effect of Eu doping on the photoluminescence properties of ZnO nanophosphors for red emission applications,” Appl. Surf. Sci. 308, 419–430 (2014).
[Crossref]

Everitt, H. O.

A. Teke, Ü. Özgür, S. Doğan, X. Gu, H. Morkoç, B. Nemeth, J. Nause, and H. O. Everitt, “Excitonic fine structure and recombination dynamics in single-crystalline ZnO,” Phys. Rev. B 70(19), 195207 (2004).
[Crossref]

Fan, H. H.

L. Luo, F. Y. Huang, G. S. Dong, H. H. Fan, K. F. Li, K. W. Cheah, and J. Chen, “Strong luminescence and efficient energy transfer in Eu3+/Tb3+-codoped ZnO nanocrystals,” Opt. Mater. 37, 470–475 (2014).
[Crossref]

L. Luo, F. Y. Huang, G. J. Guo, P. A. Tanner, J. Chen, Y. T. Tao, J. Zhou, L. Y. Yuan, S. Y. Chen, Y. L. Chueh, H. H. Fan, K. F. Li, and K. W. Cheah, “Efficient doping and energy transfer from ZnO to Eu3+ ions in Eu3+- doped ZnO nanocrystals,” J. Nanosci. Nanotechnol. 12(3), 2417–2423 (2012).
[Crossref] [PubMed]

Ferreira, J. M. F.

R. Zamiri, A. F. Lemos, A. Reblo, H. A. Ahangar, and J. M. F. Ferreira, “Effects of rare-earth (Er, La and Yb) doping on morphology and structure properties of ZnO nanostructures prepared by wet chemical method,” Ceram. Int. 40(1), 523–529 (2014).
[Crossref]

Forster, T.

T. Forster, “10th Spiers Memorial Lecture. Transfer mechanisms of electronic excitation,” Discuss. Faraday Soc. 27(0), 7–17 (1959).
[Crossref]

Franco, A.

H. V. S. Pessoni, L. J. Q. Maia, and A. Franco., “Eu-doped ZnO nanoparticles prepared by the combustion reaction method: Structural, photoluminescence and dielectric characterization,” Mater. Sci. Semicond. Process. 30, 135–141 (2015).
[Crossref]

Fujita, S.

A. Ishizumi, S. Fujita, and H. Yanagi, “Influence of atmosphere on photoluminescence properties of Eu-doped ZnO nanocrystals,” Opt. Mater. 33(7), 1116–1119 (2011).
[Crossref]

Gao, B.

J. Huang, S. Liu, B. Gao, T. Jiang, Y. Zhao, S. Liu, L. Kuang, and X. Xu, “Synthesis and optical properties of Eu3+ doped ZnO nanoparticles used for white light emitting diodes,” J. Nanosci. Nanotechnol. 14(4), 3052–3055 (2014).
[Crossref] [PubMed]

Geens, J.

H. Benhebal, M. Chaib, T. Salmon, J. Geens, A. Leonard, S. D. Lambert, M. Crine, and B. Heinrichs, “Photocatalytic degradation of phenol and benzoic acid using zinc oxide powders prepared by the sol–gel process,” Alexandria Engineering Journal 52(3), 517–523 (2013).
[Crossref]

Ghamsari, M. S.

M. Vafaee and M. S. Ghamsari, “Preparation and characterization of ZnO nanoparticles by a novel sol–gel route,” Mater. Lett. 61(14-15), 3265–3268 (2007).
[Crossref]

Gu, X.

A. Teke, Ü. Özgür, S. Doğan, X. Gu, H. Morkoç, B. Nemeth, J. Nause, and H. O. Everitt, “Excitonic fine structure and recombination dynamics in single-crystalline ZnO,” Phys. Rev. B 70(19), 195207 (2004).
[Crossref]

Guo, G. J.

L. Luo, F. Y. Huang, G. J. Guo, P. A. Tanner, J. Chen, Y. T. Tao, J. Zhou, L. Y. Yuan, S. Y. Chen, Y. L. Chueh, H. H. Fan, K. F. Li, and K. W. Cheah, “Efficient doping and energy transfer from ZnO to Eu3+ ions in Eu3+- doped ZnO nanocrystals,” J. Nanosci. Nanotechnol. 12(3), 2417–2423 (2012).
[Crossref] [PubMed]

Haiping, H.

H. Haiping, W. Yuxia, and Z. Youming, “Photoluminescence property of ZnO–SiO2 composites synthesized by sol–gel method,” J. Phys. D Appl. Phys. 36(23), 2972–2975 (2003).
[Crossref]

Hamby, D. W.

D. W. Hamby, D. A. Lucca, M. J. Klopfstein, and G. Cantwell, “Temperature dependent exciton photoluminescence of bulk ZnO,” J. Appl. Phys. 93(6), 3214–3217 (2003).
[Crossref]

Haratizadeh, H.

M. Najafi and H. Haratizadeh, “Investigation of intrinsic and extrinsic defects effective role on producing intense red emission in ZnO:Eu nanostructures,” Mater. Res. Bull. 65, 103–109 (2015).
[Crossref]

M. Najafi and H. Haratizadeh, “The effect of growth conditions and morphology on photoluminescence properties of Eu-doped ZnO nanostructures,” Solid State Sci. 41, 48–51 (2015).
[Crossref]

Heinrichs, B.

H. Benhebal, M. Chaib, T. Salmon, J. Geens, A. Leonard, S. D. Lambert, M. Crine, and B. Heinrichs, “Photocatalytic degradation of phenol and benzoic acid using zinc oxide powders prepared by the sol–gel process,” Alexandria Engineering Journal 52(3), 517–523 (2013).
[Crossref]

Heitmann, J.

J. Heitmann, M. Schmidt, M. Zacharias, V. Y. Timoshenko, M. G. Lisachenko, and P. K. Kashkarov, “Fabrication and photoluminescence properties of erbium doped size-controlled silicon nanocrystals,” Mater. Sci. Eng. B 105(1-3), 214–220 (2003).
[Crossref]

Hu, Z. F.

L. Luo, F. Y. Huang, G. S. Dong, Y. H. Wang, Z. F. Hu, and J. Chen, “White Light Emission and Luminescence Dynamics in Eu3+/Dy3+ Codoped ZnO Nanocrystals,” J. Nanosci. Nanotechnol. 16(1), 619–625 (2016).
[Crossref] [PubMed]

Huang, F. Y.

L. Luo, F. Y. Huang, G. S. Dong, Y. H. Wang, Z. F. Hu, and J. Chen, “White Light Emission and Luminescence Dynamics in Eu3+/Dy3+ Codoped ZnO Nanocrystals,” J. Nanosci. Nanotechnol. 16(1), 619–625 (2016).
[Crossref] [PubMed]

L. Luo, F. Y. Huang, G. S. Dong, H. H. Fan, K. F. Li, K. W. Cheah, and J. Chen, “Strong luminescence and efficient energy transfer in Eu3+/Tb3+-codoped ZnO nanocrystals,” Opt. Mater. 37, 470–475 (2014).
[Crossref]

L. Luo, F. Y. Huang, G. J. Guo, P. A. Tanner, J. Chen, Y. T. Tao, J. Zhou, L. Y. Yuan, S. Y. Chen, Y. L. Chueh, H. H. Fan, K. F. Li, and K. W. Cheah, “Efficient doping and energy transfer from ZnO to Eu3+ ions in Eu3+- doped ZnO nanocrystals,” J. Nanosci. Nanotechnol. 12(3), 2417–2423 (2012).
[Crossref] [PubMed]

Huang, J.

J. Huang, S. Liu, B. Gao, T. Jiang, Y. Zhao, S. Liu, L. Kuang, and X. Xu, “Synthesis and optical properties of Eu3+ doped ZnO nanoparticles used for white light emitting diodes,” J. Nanosci. Nanotechnol. 14(4), 3052–3055 (2014).
[Crossref] [PubMed]

Ishizumi, A.

A. Ishizumi, S. Fujita, and H. Yanagi, “Influence of atmosphere on photoluminescence properties of Eu-doped ZnO nanocrystals,” Opt. Mater. 33(7), 1116–1119 (2011).
[Crossref]

Jensen, F.

Jiang, T.

J. Huang, S. Liu, B. Gao, T. Jiang, Y. Zhao, S. Liu, L. Kuang, and X. Xu, “Synthesis and optical properties of Eu3+ doped ZnO nanoparticles used for white light emitting diodes,” J. Nanosci. Nanotechnol. 14(4), 3052–3055 (2014).
[Crossref] [PubMed]

Kam, C. H.

M. K. Chong, K. Pita, and C. H. Kam, “Photoluminescence of Y2O3:Eu3+ thin film phosphors by sol–gel deposition and rapid thermal annealing,” J. Phys. Chem. Solids 66(1), 213–217 (2005).
[Crossref]

Kashkarov, P. K.

J. Heitmann, M. Schmidt, M. Zacharias, V. Y. Timoshenko, M. G. Lisachenko, and P. K. Kashkarov, “Fabrication and photoluminescence properties of erbium doped size-controlled silicon nanocrystals,” Mater. Sci. Eng. B 105(1-3), 214–220 (2003).
[Crossref]

Khichar, N.

R. Das, N. Khichar, and S. Chawla, “Dual mode luminescence in rare earth (Er3+/Ho3+) doped ZnO nanoparticles fabricated by inclusive co precipitation technique,” J. Mater. Sci. Mater. Electron. 26(9), 7174–7182 (2015).
[Crossref]

Kildishev, A. V.

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[Crossref] [PubMed]

Klopfstein, M. J.

D. W. Hamby, D. A. Lucca, M. J. Klopfstein, and G. Cantwell, “Temperature dependent exciton photoluminescence of bulk ZnO,” J. Appl. Phys. 93(6), 3214–3217 (2003).
[Crossref]

Kroon, R. E.

O. M. Ntwaeaborwa, S. J. Mofokeng, V. Kumar, and R. E. Kroon, “Structural, optical and photoluminescence properties of Eu3+ doped ZnO nanoparticles,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 182, 42–49 (2017).
[Crossref] [PubMed]

Kuang, L.

J. Huang, S. Liu, B. Gao, T. Jiang, Y. Zhao, S. Liu, L. Kuang, and X. Xu, “Synthesis and optical properties of Eu3+ doped ZnO nanoparticles used for white light emitting diodes,” J. Nanosci. Nanotechnol. 14(4), 3052–3055 (2014).
[Crossref] [PubMed]

Kumar, V.

O. M. Ntwaeaborwa, S. J. Mofokeng, V. Kumar, and R. E. Kroon, “Structural, optical and photoluminescence properties of Eu3+ doped ZnO nanoparticles,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 182, 42–49 (2017).
[Crossref] [PubMed]

V. Kumar, V. Kumar, S. Som, M. M. Duvenhage, O. M. Ntwaeaborwa, and H. C. Swart, “Effect of Eu doping on the photoluminescence properties of ZnO nanophosphors for red emission applications,” Appl. Surf. Sci. 308, 419–430 (2014).
[Crossref]

V. Kumar, V. Kumar, S. Som, M. M. Duvenhage, O. M. Ntwaeaborwa, and H. C. Swart, “Effect of Eu doping on the photoluminescence properties of ZnO nanophosphors for red emission applications,” Appl. Surf. Sci. 308, 419–430 (2014).
[Crossref]

V. Kumar, S. Som, V. Kumar, V. Kumar, O. M. Ntwaeaborwa, E. Coetsee, and H. C. Swart, “Tunable and white emission from ZnO:Tb3+ nanophosphors for solid state lighting applications,” Chem. Eng. J. 255, 541–552 (2014).
[Crossref]

V. Kumar, S. Som, V. Kumar, V. Kumar, O. M. Ntwaeaborwa, E. Coetsee, and H. C. Swart, “Tunable and white emission from ZnO:Tb3+ nanophosphors for solid state lighting applications,” Chem. Eng. J. 255, 541–552 (2014).
[Crossref]

V. Kumar, S. Som, V. Kumar, V. Kumar, O. M. Ntwaeaborwa, E. Coetsee, and H. C. Swart, “Tunable and white emission from ZnO:Tb3+ nanophosphors for solid state lighting applications,” Chem. Eng. J. 255, 541–552 (2014).
[Crossref]

Lambert, S. D.

H. Benhebal, M. Chaib, T. Salmon, J. Geens, A. Leonard, S. D. Lambert, M. Crine, and B. Heinrichs, “Photocatalytic degradation of phenol and benzoic acid using zinc oxide powders prepared by the sol–gel process,” Alexandria Engineering Journal 52(3), 517–523 (2013).
[Crossref]

Larsen, P. V.

Lavrinenko, A. V.

Layek, A.

A. Layek, S. De, R. Thorat, and A. Chowdhury, “Spectrally Resolved Photoluminescence Imaging of ZnO nanocrystals at single-particle levels,” J. Phys. Chem. Lett. 2(11), 1241–1247 (2011).
[Crossref] [PubMed]

Lemos, A. F.

R. Zamiri, A. F. Lemos, A. Reblo, H. A. Ahangar, and J. M. F. Ferreira, “Effects of rare-earth (Er, La and Yb) doping on morphology and structure properties of ZnO nanostructures prepared by wet chemical method,” Ceram. Int. 40(1), 523–529 (2014).
[Crossref]

Leonard, A.

H. Benhebal, M. Chaib, T. Salmon, J. Geens, A. Leonard, S. D. Lambert, M. Crine, and B. Heinrichs, “Photocatalytic degradation of phenol and benzoic acid using zinc oxide powders prepared by the sol–gel process,” Alexandria Engineering Journal 52(3), 517–523 (2013).
[Crossref]

Leppert, V. J.

S. Mahamuni, K. Borgohain, B. S. Bendre, V. J. Leppert, and S. H. Risbud, “Spectroscopic and structural characterization of electrochemically grown ZnO quantum dots,” J. Appl. Phys. 85(5), 2861–2865 (1999).
[Crossref]

Lérondel, G.

K. Pita, P. Baudin, Q. V. Vu, R. Aad, C. Couteau, and G. Lérondel, “Annealing temperature and environment effects on ZnO nanocrystals embedded in SiO2: a photoluminescence and TEM study,” Nanoscale Res. Lett. 8(1), 517 (2013).
[Crossref] [PubMed]

Li, K. F.

L. Luo, F. Y. Huang, G. S. Dong, H. H. Fan, K. F. Li, K. W. Cheah, and J. Chen, “Strong luminescence and efficient energy transfer in Eu3+/Tb3+-codoped ZnO nanocrystals,” Opt. Mater. 37, 470–475 (2014).
[Crossref]

L. Luo, F. Y. Huang, G. J. Guo, P. A. Tanner, J. Chen, Y. T. Tao, J. Zhou, L. Y. Yuan, S. Y. Chen, Y. L. Chueh, H. H. Fan, K. F. Li, and K. W. Cheah, “Efficient doping and energy transfer from ZnO to Eu3+ ions in Eu3+- doped ZnO nanocrystals,” J. Nanosci. Nanotechnol. 12(3), 2417–2423 (2012).
[Crossref] [PubMed]

Li, S.

Q. Shi, C. Wang, S. Li, Q. Wang, B. Zhang, W. Wang, J. Zhang, and H. Zhu, “Enhancing blue luminescence from Ce-doped ZnO nanophosphor by Li doping,” Nanoscale Res. Lett. 9(1), 480 (2014).
[Crossref] [PubMed]

Li, X.

Y. Zhang, Y. Liu, X. Li, Q. J. Wang, and E. Xie, “Room temperature enhanced red emission from novel Eu3+ doped ZnO nanocrystals uniformly dispersed in nanofibers,” Nanotechnology 22(41), 415702 (2011).
[Crossref] [PubMed]

Lin, T.

T. Lin, X. Zhang, Y. Wang, J. Xu, N. Wan, J. Liu, L. Xu, and K. Chen, “Luminescence enhancement due to energy transfer in ZnO nanoparticles and Eu3+ ions co-doped silica,” Thin Solid Films 520(17), 5815–5819 (2012).
[Crossref]

Lisachenko, M. G.

J. Heitmann, M. Schmidt, M. Zacharias, V. Y. Timoshenko, M. G. Lisachenko, and P. K. Kashkarov, “Fabrication and photoluminescence properties of erbium doped size-controlled silicon nanocrystals,” Mater. Sci. Eng. B 105(1-3), 214–220 (2003).
[Crossref]

Liu, J.

T. Lin, X. Zhang, Y. Wang, J. Xu, N. Wan, J. Liu, L. Xu, and K. Chen, “Luminescence enhancement due to energy transfer in ZnO nanoparticles and Eu3+ ions co-doped silica,” Thin Solid Films 520(17), 5815–5819 (2012).
[Crossref]

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[Crossref] [PubMed]

Liu, P.

Liu, S.

J. Huang, S. Liu, B. Gao, T. Jiang, Y. Zhao, S. Liu, L. Kuang, and X. Xu, “Synthesis and optical properties of Eu3+ doped ZnO nanoparticles used for white light emitting diodes,” J. Nanosci. Nanotechnol. 14(4), 3052–3055 (2014).
[Crossref] [PubMed]

J. Huang, S. Liu, B. Gao, T. Jiang, Y. Zhao, S. Liu, L. Kuang, and X. Xu, “Synthesis and optical properties of Eu3+ doped ZnO nanoparticles used for white light emitting diodes,” J. Nanosci. Nanotechnol. 14(4), 3052–3055 (2014).
[Crossref] [PubMed]

Liu, Y.

Y. Zhang, Y. Liu, X. Li, Q. J. Wang, and E. Xie, “Room temperature enhanced red emission from novel Eu3+ doped ZnO nanocrystals uniformly dispersed in nanofibers,” Nanotechnology 22(41), 415702 (2011).
[Crossref] [PubMed]

Lucca, D. A.

D. W. Hamby, D. A. Lucca, M. J. Klopfstein, and G. Cantwell, “Temperature dependent exciton photoluminescence of bulk ZnO,” J. Appl. Phys. 93(6), 3214–3217 (2003).
[Crossref]

Luo, L.

L. Luo, F. Y. Huang, G. S. Dong, Y. H. Wang, Z. F. Hu, and J. Chen, “White Light Emission and Luminescence Dynamics in Eu3+/Dy3+ Codoped ZnO Nanocrystals,” J. Nanosci. Nanotechnol. 16(1), 619–625 (2016).
[Crossref] [PubMed]

L. Luo, F. Y. Huang, G. S. Dong, H. H. Fan, K. F. Li, K. W. Cheah, and J. Chen, “Strong luminescence and efficient energy transfer in Eu3+/Tb3+-codoped ZnO nanocrystals,” Opt. Mater. 37, 470–475 (2014).
[Crossref]

L. Luo, F. Y. Huang, G. J. Guo, P. A. Tanner, J. Chen, Y. T. Tao, J. Zhou, L. Y. Yuan, S. Y. Chen, Y. L. Chueh, H. H. Fan, K. F. Li, and K. W. Cheah, “Efficient doping and energy transfer from ZnO to Eu3+ ions in Eu3+- doped ZnO nanocrystals,” J. Nanosci. Nanotechnol. 12(3), 2417–2423 (2012).
[Crossref] [PubMed]

Mahamuni, S.

S. Mahamuni, K. Borgohain, B. S. Bendre, V. J. Leppert, and S. H. Risbud, “Spectroscopic and structural characterization of electrochemically grown ZnO quantum dots,” J. Appl. Phys. 85(5), 2861–2865 (1999).
[Crossref]

Maia, L. J. Q.

H. V. S. Pessoni, L. J. Q. Maia, and A. Franco., “Eu-doped ZnO nanoparticles prepared by the combustion reaction method: Structural, photoluminescence and dielectric characterization,” Mater. Sci. Semicond. Process. 30, 135–141 (2015).
[Crossref]

Mangalam, V.

V. Mangalam and K. Pita, “Energy transfer efficiency from ZnO-nanocrystals to Eu3+ ions embedded in SiO2 film for emission at 614 nm,” Materials (Basel) 10(8), 930 (2017).
[Crossref] [PubMed]

V. Mangalam, K. Pita, and C. Couteau, “Study of energy transfer mechanism from ZnO nanocrystals to Eu3+ ions,” Nanoscale Res. Lett. 11(1), 73 (2016).
[Crossref] [PubMed]

Mar, M. D.

Meulenkamp, E. A.

E. A. Meulenkamp, “Synthesis and growth of ZnO nanoparticles,” J. Phys. Chem. B 102(29), 5566–5572 (1998).
[Crossref]

Mofokeng, S. J.

O. M. Ntwaeaborwa, S. J. Mofokeng, V. Kumar, and R. E. Kroon, “Structural, optical and photoluminescence properties of Eu3+ doped ZnO nanoparticles,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 182, 42–49 (2017).
[Crossref] [PubMed]

Morkoç, H.

A. Teke, Ü. Özgür, S. Doğan, X. Gu, H. Morkoç, B. Nemeth, J. Nause, and H. O. Everitt, “Excitonic fine structure and recombination dynamics in single-crystalline ZnO,” Phys. Rev. B 70(19), 195207 (2004).
[Crossref]

Naik, G. V.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[Crossref] [PubMed]

Najafi, M.

M. Najafi and H. Haratizadeh, “Investigation of intrinsic and extrinsic defects effective role on producing intense red emission in ZnO:Eu nanostructures,” Mater. Res. Bull. 65, 103–109 (2015).
[Crossref]

M. Najafi and H. Haratizadeh, “The effect of growth conditions and morphology on photoluminescence properties of Eu-doped ZnO nanostructures,” Solid State Sci. 41, 48–51 (2015).
[Crossref]

Nause, J.

A. Teke, Ü. Özgür, S. Doğan, X. Gu, H. Morkoç, B. Nemeth, J. Nause, and H. O. Everitt, “Excitonic fine structure and recombination dynamics in single-crystalline ZnO,” Phys. Rev. B 70(19), 195207 (2004).
[Crossref]

Nemeth, B.

A. Teke, Ü. Özgür, S. Doğan, X. Gu, H. Morkoç, B. Nemeth, J. Nause, and H. O. Everitt, “Excitonic fine structure and recombination dynamics in single-crystalline ZnO,” Phys. Rev. B 70(19), 195207 (2004).
[Crossref]

Ntwaeaborwa, O. M.

O. M. Ntwaeaborwa, S. J. Mofokeng, V. Kumar, and R. E. Kroon, “Structural, optical and photoluminescence properties of Eu3+ doped ZnO nanoparticles,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 182, 42–49 (2017).
[Crossref] [PubMed]

V. Kumar, V. Kumar, S. Som, M. M. Duvenhage, O. M. Ntwaeaborwa, and H. C. Swart, “Effect of Eu doping on the photoluminescence properties of ZnO nanophosphors for red emission applications,” Appl. Surf. Sci. 308, 419–430 (2014).
[Crossref]

V. Kumar, S. Som, V. Kumar, V. Kumar, O. M. Ntwaeaborwa, E. Coetsee, and H. C. Swart, “Tunable and white emission from ZnO:Tb3+ nanophosphors for solid state lighting applications,” Chem. Eng. J. 255, 541–552 (2014).
[Crossref]

Olschewski, M.

D. Denzler, M. Olschewski, and K. Sattler, “Luminescence studies of localized gap states in colloidal ZnS nanocrystals,” J. Appl. Phys. 84(5), 2841–2845 (1998).
[Crossref]

Özgür, Ü.

A. Teke, Ü. Özgür, S. Doğan, X. Gu, H. Morkoç, B. Nemeth, J. Nause, and H. O. Everitt, “Excitonic fine structure and recombination dynamics in single-crystalline ZnO,” Phys. Rev. B 70(19), 195207 (2004).
[Crossref]

Panah, M. E. A.

Panigrahi, S.

S. Panigrahi, A. Bera, and D. Basak, “Ordered dispersion of ZnO quantum dots in SiO2 matrix and its strong emission properties,” J. Colloid Interface Sci. 353(1), 30–38 (2011).
[Crossref] [PubMed]

Pessoni, H. V. S.

H. V. S. Pessoni, L. J. Q. Maia, and A. Franco., “Eu-doped ZnO nanoparticles prepared by the combustion reaction method: Structural, photoluminescence and dielectric characterization,” Mater. Sci. Semicond. Process. 30, 135–141 (2015).
[Crossref]

Pita, K.

V. Mangalam and K. Pita, “Energy transfer efficiency from ZnO-nanocrystals to Eu3+ ions embedded in SiO2 film for emission at 614 nm,” Materials (Basel) 10(8), 930 (2017).
[Crossref] [PubMed]

V. Mangalam, K. Pita, and C. Couteau, “Study of energy transfer mechanism from ZnO nanocrystals to Eu3+ ions,” Nanoscale Res. Lett. 11(1), 73 (2016).
[Crossref] [PubMed]

K. Pita, P. Baudin, Q. V. Vu, R. Aad, C. Couteau, and G. Lérondel, “Annealing temperature and environment effects on ZnO nanocrystals embedded in SiO2: a photoluminescence and TEM study,” Nanoscale Res. Lett. 8(1), 517 (2013).
[Crossref] [PubMed]

M. K. Chong, K. Pita, and C. H. Kam, “Photoluminescence of Y2O3:Eu3+ thin film phosphors by sol–gel deposition and rapid thermal annealing,” J. Phys. Chem. Solids 66(1), 213–217 (2005).
[Crossref]

Reblo, A.

R. Zamiri, A. F. Lemos, A. Reblo, H. A. Ahangar, and J. M. F. Ferreira, “Effects of rare-earth (Er, La and Yb) doping on morphology and structure properties of ZnO nanostructures prepared by wet chemical method,” Ceram. Int. 40(1), 523–529 (2014).
[Crossref]

Risbud, S. H.

S. Mahamuni, K. Borgohain, B. S. Bendre, V. J. Leppert, and S. H. Risbud, “Spectroscopic and structural characterization of electrochemically grown ZnO quantum dots,” J. Appl. Phys. 85(5), 2861–2865 (1999).
[Crossref]

Salmon, T.

H. Benhebal, M. Chaib, T. Salmon, J. Geens, A. Leonard, S. D. Lambert, M. Crine, and B. Heinrichs, “Photocatalytic degradation of phenol and benzoic acid using zinc oxide powders prepared by the sol–gel process,” Alexandria Engineering Journal 52(3), 517–523 (2013).
[Crossref]

Sattler, K.

D. Denzler, M. Olschewski, and K. Sattler, “Luminescence studies of localized gap states in colloidal ZnS nanocrystals,” J. Appl. Phys. 84(5), 2841–2845 (1998).
[Crossref]

Schmidt, M.

J. Heitmann, M. Schmidt, M. Zacharias, V. Y. Timoshenko, M. G. Lisachenko, and P. K. Kashkarov, “Fabrication and photoluminescence properties of erbium doped size-controlled silicon nanocrystals,” Mater. Sci. Eng. B 105(1-3), 214–220 (2003).
[Crossref]

Shalaev, V. M.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[Crossref] [PubMed]

Shen, Y. Q.

F. Xiao, R. Chen, Y. Q. Shen, Z. L. Dong, H. H. Wang, Q. Y. Zhang, and H. D. Sun, “Efficient energy transfer and enhanced infrared emission in Er-doped ZnO-SiO2 composites,” J. Phys. Chem. C 116(24), 13458–13462 (2012).
[Crossref]

Shi, Q.

Q. Shi, C. Wang, S. Li, Q. Wang, B. Zhang, W. Wang, J. Zhang, and H. Zhu, “Enhancing blue luminescence from Ce-doped ZnO nanophosphor by Li doping,” Nanoscale Res. Lett. 9(1), 480 (2014).
[Crossref] [PubMed]

Shkondin, E.

Singh, L.

L. Singh, “Photoluminescence studies of ZnO, ZnO:Eu and ZnO:Eu nanoparticles covered with Y2O3 Matrix,” Mater. Sci. Appl. 6(04), 269–278 (2015).
[Crossref]

Som, S.

V. Kumar, V. Kumar, S. Som, M. M. Duvenhage, O. M. Ntwaeaborwa, and H. C. Swart, “Effect of Eu doping on the photoluminescence properties of ZnO nanophosphors for red emission applications,” Appl. Surf. Sci. 308, 419–430 (2014).
[Crossref]

V. Kumar, S. Som, V. Kumar, V. Kumar, O. M. Ntwaeaborwa, E. Coetsee, and H. C. Swart, “Tunable and white emission from ZnO:Tb3+ nanophosphors for solid state lighting applications,” Chem. Eng. J. 255, 541–552 (2014).
[Crossref]

Sun, H. D.

F. Xiao, R. Chen, Y. Q. Shen, Z. L. Dong, H. H. Wang, Q. Y. Zhang, and H. D. Sun, “Efficient energy transfer and enhanced infrared emission in Er-doped ZnO-SiO2 composites,” J. Phys. Chem. C 116(24), 13458–13462 (2012).
[Crossref]

Swart, H. C.

V. Kumar, S. Som, V. Kumar, V. Kumar, O. M. Ntwaeaborwa, E. Coetsee, and H. C. Swart, “Tunable and white emission from ZnO:Tb3+ nanophosphors for solid state lighting applications,” Chem. Eng. J. 255, 541–552 (2014).
[Crossref]

V. Kumar, V. Kumar, S. Som, M. M. Duvenhage, O. M. Ntwaeaborwa, and H. C. Swart, “Effect of Eu doping on the photoluminescence properties of ZnO nanophosphors for red emission applications,” Appl. Surf. Sci. 308, 419–430 (2014).
[Crossref]

Takayama, O.

Tanner, P. A.

L. Luo, F. Y. Huang, G. J. Guo, P. A. Tanner, J. Chen, Y. T. Tao, J. Zhou, L. Y. Yuan, S. Y. Chen, Y. L. Chueh, H. H. Fan, K. F. Li, and K. W. Cheah, “Efficient doping and energy transfer from ZnO to Eu3+ ions in Eu3+- doped ZnO nanocrystals,” J. Nanosci. Nanotechnol. 12(3), 2417–2423 (2012).
[Crossref] [PubMed]

Tao, Y. T.

L. Luo, F. Y. Huang, G. J. Guo, P. A. Tanner, J. Chen, Y. T. Tao, J. Zhou, L. Y. Yuan, S. Y. Chen, Y. L. Chueh, H. H. Fan, K. F. Li, and K. W. Cheah, “Efficient doping and energy transfer from ZnO to Eu3+ ions in Eu3+- doped ZnO nanocrystals,” J. Nanosci. Nanotechnol. 12(3), 2417–2423 (2012).
[Crossref] [PubMed]

Teke, A.

A. Teke, Ü. Özgür, S. Doğan, X. Gu, H. Morkoç, B. Nemeth, J. Nause, and H. O. Everitt, “Excitonic fine structure and recombination dynamics in single-crystalline ZnO,” Phys. Rev. B 70(19), 195207 (2004).
[Crossref]

Thorat, R.

A. Layek, S. De, R. Thorat, and A. Chowdhury, “Spectrally Resolved Photoluminescence Imaging of ZnO nanocrystals at single-particle levels,” J. Phys. Chem. Lett. 2(11), 1241–1247 (2011).
[Crossref] [PubMed]

Timoshenko, V. Y.

J. Heitmann, M. Schmidt, M. Zacharias, V. Y. Timoshenko, M. G. Lisachenko, and P. K. Kashkarov, “Fabrication and photoluminescence properties of erbium doped size-controlled silicon nanocrystals,” Mater. Sci. Eng. B 105(1-3), 214–220 (2003).
[Crossref]

Vafaee, M.

M. Vafaee and M. S. Ghamsari, “Preparation and characterization of ZnO nanoparticles by a novel sol–gel route,” Mater. Lett. 61(14-15), 3265–3268 (2007).
[Crossref]

Vu, Q. V.

K. Pita, P. Baudin, Q. V. Vu, R. Aad, C. Couteau, and G. Lérondel, “Annealing temperature and environment effects on ZnO nanocrystals embedded in SiO2: a photoluminescence and TEM study,” Nanoscale Res. Lett. 8(1), 517 (2013).
[Crossref] [PubMed]

Wan, N.

T. Lin, X. Zhang, Y. Wang, J. Xu, N. Wan, J. Liu, L. Xu, and K. Chen, “Luminescence enhancement due to energy transfer in ZnO nanoparticles and Eu3+ ions co-doped silica,” Thin Solid Films 520(17), 5815–5819 (2012).
[Crossref]

Wang, C.

Q. Shi, C. Wang, S. Li, Q. Wang, B. Zhang, W. Wang, J. Zhang, and H. Zhu, “Enhancing blue luminescence from Ce-doped ZnO nanophosphor by Li doping,” Nanoscale Res. Lett. 9(1), 480 (2014).
[Crossref] [PubMed]

Wang, H. H.

F. Xiao, R. Chen, Y. Q. Shen, Z. L. Dong, H. H. Wang, Q. Y. Zhang, and H. D. Sun, “Efficient energy transfer and enhanced infrared emission in Er-doped ZnO-SiO2 composites,” J. Phys. Chem. C 116(24), 13458–13462 (2012).
[Crossref]

Wang, Q.

Q. Shi, C. Wang, S. Li, Q. Wang, B. Zhang, W. Wang, J. Zhang, and H. Zhu, “Enhancing blue luminescence from Ce-doped ZnO nanophosphor by Li doping,” Nanoscale Res. Lett. 9(1), 480 (2014).
[Crossref] [PubMed]

Wang, Q. J.

Y. Zhang, Y. Liu, X. Li, Q. J. Wang, and E. Xie, “Room temperature enhanced red emission from novel Eu3+ doped ZnO nanocrystals uniformly dispersed in nanofibers,” Nanotechnology 22(41), 415702 (2011).
[Crossref] [PubMed]

Wang, Q. P.

D. H. Zhang, Z. Y. Xue, and Q. P. Wang, “The mechanisms of blue emission from ZnO films deposited on glass substrate by r.f. magnetron sputtering,” J. Phys. D Appl. Phys. 35(21), 2837–2840 (2002).
[Crossref]

Wang, W.

Q. Shi, C. Wang, S. Li, Q. Wang, B. Zhang, W. Wang, J. Zhang, and H. Zhu, “Enhancing blue luminescence from Ce-doped ZnO nanophosphor by Li doping,” Nanoscale Res. Lett. 9(1), 480 (2014).
[Crossref] [PubMed]

Wang, Y.

T. Lin, X. Zhang, Y. Wang, J. Xu, N. Wan, J. Liu, L. Xu, and K. Chen, “Luminescence enhancement due to energy transfer in ZnO nanoparticles and Eu3+ ions co-doped silica,” Thin Solid Films 520(17), 5815–5819 (2012).
[Crossref]

Wang, Y. H.

L. Luo, F. Y. Huang, G. S. Dong, Y. H. Wang, Z. F. Hu, and J. Chen, “White Light Emission and Luminescence Dynamics in Eu3+/Dy3+ Codoped ZnO Nanocrystals,” J. Nanosci. Nanotechnol. 16(1), 619–625 (2016).
[Crossref] [PubMed]

Xiao, F.

F. Xiao, R. Chen, Y. Q. Shen, Z. L. Dong, H. H. Wang, Q. Y. Zhang, and H. D. Sun, “Efficient energy transfer and enhanced infrared emission in Er-doped ZnO-SiO2 composites,” J. Phys. Chem. C 116(24), 13458–13462 (2012).
[Crossref]

Xie, E.

Y. Zhang, Y. Liu, X. Li, Q. J. Wang, and E. Xie, “Room temperature enhanced red emission from novel Eu3+ doped ZnO nanocrystals uniformly dispersed in nanofibers,” Nanotechnology 22(41), 415702 (2011).
[Crossref] [PubMed]

Xu, J.

T. Lin, X. Zhang, Y. Wang, J. Xu, N. Wan, J. Liu, L. Xu, and K. Chen, “Luminescence enhancement due to energy transfer in ZnO nanoparticles and Eu3+ ions co-doped silica,” Thin Solid Films 520(17), 5815–5819 (2012).
[Crossref]

Xu, L.

T. Lin, X. Zhang, Y. Wang, J. Xu, N. Wan, J. Liu, L. Xu, and K. Chen, “Luminescence enhancement due to energy transfer in ZnO nanoparticles and Eu3+ ions co-doped silica,” Thin Solid Films 520(17), 5815–5819 (2012).
[Crossref]

Xu, X.

J. Huang, S. Liu, B. Gao, T. Jiang, Y. Zhao, S. Liu, L. Kuang, and X. Xu, “Synthesis and optical properties of Eu3+ doped ZnO nanoparticles used for white light emitting diodes,” J. Nanosci. Nanotechnol. 14(4), 3052–3055 (2014).
[Crossref] [PubMed]

Xue, Z. Y.

D. H. Zhang, Z. Y. Xue, and Q. P. Wang, “The mechanisms of blue emission from ZnO films deposited on glass substrate by r.f. magnetron sputtering,” J. Phys. D Appl. Phys. 35(21), 2837–2840 (2002).
[Crossref]

Yanagi, H.

A. Ishizumi, S. Fujita, and H. Yanagi, “Influence of atmosphere on photoluminescence properties of Eu-doped ZnO nanocrystals,” Opt. Mater. 33(7), 1116–1119 (2011).
[Crossref]

Youming, Z.

H. Haiping, W. Yuxia, and Z. Youming, “Photoluminescence property of ZnO–SiO2 composites synthesized by sol–gel method,” J. Phys. D Appl. Phys. 36(23), 2972–2975 (2003).
[Crossref]

Yuan, L. Y.

L. Luo, F. Y. Huang, G. J. Guo, P. A. Tanner, J. Chen, Y. T. Tao, J. Zhou, L. Y. Yuan, S. Y. Chen, Y. L. Chueh, H. H. Fan, K. F. Li, and K. W. Cheah, “Efficient doping and energy transfer from ZnO to Eu3+ ions in Eu3+- doped ZnO nanocrystals,” J. Nanosci. Nanotechnol. 12(3), 2417–2423 (2012).
[Crossref] [PubMed]

Yuxia, W.

H. Haiping, W. Yuxia, and Z. Youming, “Photoluminescence property of ZnO–SiO2 composites synthesized by sol–gel method,” J. Phys. D Appl. Phys. 36(23), 2972–2975 (2003).
[Crossref]

Zacharias, M.

J. Heitmann, M. Schmidt, M. Zacharias, V. Y. Timoshenko, M. G. Lisachenko, and P. K. Kashkarov, “Fabrication and photoluminescence properties of erbium doped size-controlled silicon nanocrystals,” Mater. Sci. Eng. B 105(1-3), 214–220 (2003).
[Crossref]

Zamiri, R.

R. Zamiri, A. F. Lemos, A. Reblo, H. A. Ahangar, and J. M. F. Ferreira, “Effects of rare-earth (Er, La and Yb) doping on morphology and structure properties of ZnO nanostructures prepared by wet chemical method,” Ceram. Int. 40(1), 523–529 (2014).
[Crossref]

Zhang, B.

Q. Shi, C. Wang, S. Li, Q. Wang, B. Zhang, W. Wang, J. Zhang, and H. Zhu, “Enhancing blue luminescence from Ce-doped ZnO nanophosphor by Li doping,” Nanoscale Res. Lett. 9(1), 480 (2014).
[Crossref] [PubMed]

Zhang, D. H.

D. H. Zhang, Z. Y. Xue, and Q. P. Wang, “The mechanisms of blue emission from ZnO films deposited on glass substrate by r.f. magnetron sputtering,” J. Phys. D Appl. Phys. 35(21), 2837–2840 (2002).
[Crossref]

Zhang, J.

Q. Shi, C. Wang, S. Li, Q. Wang, B. Zhang, W. Wang, J. Zhang, and H. Zhu, “Enhancing blue luminescence from Ce-doped ZnO nanophosphor by Li doping,” Nanoscale Res. Lett. 9(1), 480 (2014).
[Crossref] [PubMed]

Zhang, Q. Y.

F. Xiao, R. Chen, Y. Q. Shen, Z. L. Dong, H. H. Wang, Q. Y. Zhang, and H. D. Sun, “Efficient energy transfer and enhanced infrared emission in Er-doped ZnO-SiO2 composites,” J. Phys. Chem. C 116(24), 13458–13462 (2012).
[Crossref]

Zhang, X.

T. Lin, X. Zhang, Y. Wang, J. Xu, N. Wan, J. Liu, L. Xu, and K. Chen, “Luminescence enhancement due to energy transfer in ZnO nanoparticles and Eu3+ ions co-doped silica,” Thin Solid Films 520(17), 5815–5819 (2012).
[Crossref]

Zhang, Y.

Y. Zhang, Y. Liu, X. Li, Q. J. Wang, and E. Xie, “Room temperature enhanced red emission from novel Eu3+ doped ZnO nanocrystals uniformly dispersed in nanofibers,” Nanotechnology 22(41), 415702 (2011).
[Crossref] [PubMed]

Zhao, Y.

J. Huang, S. Liu, B. Gao, T. Jiang, Y. Zhao, S. Liu, L. Kuang, and X. Xu, “Synthesis and optical properties of Eu3+ doped ZnO nanoparticles used for white light emitting diodes,” J. Nanosci. Nanotechnol. 14(4), 3052–3055 (2014).
[Crossref] [PubMed]

Zhou, J.

L. Luo, F. Y. Huang, G. J. Guo, P. A. Tanner, J. Chen, Y. T. Tao, J. Zhou, L. Y. Yuan, S. Y. Chen, Y. L. Chueh, H. H. Fan, K. F. Li, and K. W. Cheah, “Efficient doping and energy transfer from ZnO to Eu3+ ions in Eu3+- doped ZnO nanocrystals,” J. Nanosci. Nanotechnol. 12(3), 2417–2423 (2012).
[Crossref] [PubMed]

Zhu, H.

Q. Shi, C. Wang, S. Li, Q. Wang, B. Zhang, W. Wang, J. Zhang, and H. Zhu, “Enhancing blue luminescence from Ce-doped ZnO nanophosphor by Li doping,” Nanoscale Res. Lett. 9(1), 480 (2014).
[Crossref] [PubMed]

Adv. Mater. (1)

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

Alexandria Engineering Journal (1)

H. Benhebal, M. Chaib, T. Salmon, J. Geens, A. Leonard, S. D. Lambert, M. Crine, and B. Heinrichs, “Photocatalytic degradation of phenol and benzoic acid using zinc oxide powders prepared by the sol–gel process,” Alexandria Engineering Journal 52(3), 517–523 (2013).
[Crossref]

Appl. Surf. Sci. (1)

V. Kumar, V. Kumar, S. Som, M. M. Duvenhage, O. M. Ntwaeaborwa, and H. C. Swart, “Effect of Eu doping on the photoluminescence properties of ZnO nanophosphors for red emission applications,” Appl. Surf. Sci. 308, 419–430 (2014).
[Crossref]

Ceram. Int. (1)

R. Zamiri, A. F. Lemos, A. Reblo, H. A. Ahangar, and J. M. F. Ferreira, “Effects of rare-earth (Er, La and Yb) doping on morphology and structure properties of ZnO nanostructures prepared by wet chemical method,” Ceram. Int. 40(1), 523–529 (2014).
[Crossref]

Chem. Eng. J. (1)

V. Kumar, S. Som, V. Kumar, V. Kumar, O. M. Ntwaeaborwa, E. Coetsee, and H. C. Swart, “Tunable and white emission from ZnO:Tb3+ nanophosphors for solid state lighting applications,” Chem. Eng. J. 255, 541–552 (2014).
[Crossref]

Discuss. Faraday Soc. (1)

T. Forster, “10th Spiers Memorial Lecture. Transfer mechanisms of electronic excitation,” Discuss. Faraday Soc. 27(0), 7–17 (1959).
[Crossref]

J. Appl. Phys. (3)

S. Mahamuni, K. Borgohain, B. S. Bendre, V. J. Leppert, and S. H. Risbud, “Spectroscopic and structural characterization of electrochemically grown ZnO quantum dots,” J. Appl. Phys. 85(5), 2861–2865 (1999).
[Crossref]

D. Denzler, M. Olschewski, and K. Sattler, “Luminescence studies of localized gap states in colloidal ZnS nanocrystals,” J. Appl. Phys. 84(5), 2841–2845 (1998).
[Crossref]

D. W. Hamby, D. A. Lucca, M. J. Klopfstein, and G. Cantwell, “Temperature dependent exciton photoluminescence of bulk ZnO,” J. Appl. Phys. 93(6), 3214–3217 (2003).
[Crossref]

J. Colloid Interface Sci. (1)

S. Panigrahi, A. Bera, and D. Basak, “Ordered dispersion of ZnO quantum dots in SiO2 matrix and its strong emission properties,” J. Colloid Interface Sci. 353(1), 30–38 (2011).
[Crossref] [PubMed]

J. Mater. Sci. Mater. Electron. (1)

R. Das, N. Khichar, and S. Chawla, “Dual mode luminescence in rare earth (Er3+/Ho3+) doped ZnO nanoparticles fabricated by inclusive co precipitation technique,” J. Mater. Sci. Mater. Electron. 26(9), 7174–7182 (2015).
[Crossref]

J. Nanosci. Nanotechnol. (3)

L. Luo, F. Y. Huang, G. S. Dong, Y. H. Wang, Z. F. Hu, and J. Chen, “White Light Emission and Luminescence Dynamics in Eu3+/Dy3+ Codoped ZnO Nanocrystals,” J. Nanosci. Nanotechnol. 16(1), 619–625 (2016).
[Crossref] [PubMed]

J. Huang, S. Liu, B. Gao, T. Jiang, Y. Zhao, S. Liu, L. Kuang, and X. Xu, “Synthesis and optical properties of Eu3+ doped ZnO nanoparticles used for white light emitting diodes,” J. Nanosci. Nanotechnol. 14(4), 3052–3055 (2014).
[Crossref] [PubMed]

L. Luo, F. Y. Huang, G. J. Guo, P. A. Tanner, J. Chen, Y. T. Tao, J. Zhou, L. Y. Yuan, S. Y. Chen, Y. L. Chueh, H. H. Fan, K. F. Li, and K. W. Cheah, “Efficient doping and energy transfer from ZnO to Eu3+ ions in Eu3+- doped ZnO nanocrystals,” J. Nanosci. Nanotechnol. 12(3), 2417–2423 (2012).
[Crossref] [PubMed]

J. Phys. Chem. B (1)

E. A. Meulenkamp, “Synthesis and growth of ZnO nanoparticles,” J. Phys. Chem. B 102(29), 5566–5572 (1998).
[Crossref]

J. Phys. Chem. C (1)

F. Xiao, R. Chen, Y. Q. Shen, Z. L. Dong, H. H. Wang, Q. Y. Zhang, and H. D. Sun, “Efficient energy transfer and enhanced infrared emission in Er-doped ZnO-SiO2 composites,” J. Phys. Chem. C 116(24), 13458–13462 (2012).
[Crossref]

J. Phys. Chem. Lett. (1)

A. Layek, S. De, R. Thorat, and A. Chowdhury, “Spectrally Resolved Photoluminescence Imaging of ZnO nanocrystals at single-particle levels,” J. Phys. Chem. Lett. 2(11), 1241–1247 (2011).
[Crossref] [PubMed]

J. Phys. Chem. Solids (1)

M. K. Chong, K. Pita, and C. H. Kam, “Photoluminescence of Y2O3:Eu3+ thin film phosphors by sol–gel deposition and rapid thermal annealing,” J. Phys. Chem. Solids 66(1), 213–217 (2005).
[Crossref]

J. Phys. D Appl. Phys. (2)

H. Haiping, W. Yuxia, and Z. Youming, “Photoluminescence property of ZnO–SiO2 composites synthesized by sol–gel method,” J. Phys. D Appl. Phys. 36(23), 2972–2975 (2003).
[Crossref]

D. H. Zhang, Z. Y. Xue, and Q. P. Wang, “The mechanisms of blue emission from ZnO films deposited on glass substrate by r.f. magnetron sputtering,” J. Phys. D Appl. Phys. 35(21), 2837–2840 (2002).
[Crossref]

Mater. Lett. (1)

M. Vafaee and M. S. Ghamsari, “Preparation and characterization of ZnO nanoparticles by a novel sol–gel route,” Mater. Lett. 61(14-15), 3265–3268 (2007).
[Crossref]

Mater. Res. Bull. (1)

M. Najafi and H. Haratizadeh, “Investigation of intrinsic and extrinsic defects effective role on producing intense red emission in ZnO:Eu nanostructures,” Mater. Res. Bull. 65, 103–109 (2015).
[Crossref]

Mater. Sci. Appl. (1)

L. Singh, “Photoluminescence studies of ZnO, ZnO:Eu and ZnO:Eu nanoparticles covered with Y2O3 Matrix,” Mater. Sci. Appl. 6(04), 269–278 (2015).
[Crossref]

Mater. Sci. Eng. B (1)

J. Heitmann, M. Schmidt, M. Zacharias, V. Y. Timoshenko, M. G. Lisachenko, and P. K. Kashkarov, “Fabrication and photoluminescence properties of erbium doped size-controlled silicon nanocrystals,” Mater. Sci. Eng. B 105(1-3), 214–220 (2003).
[Crossref]

Mater. Sci. Semicond. Process. (1)

H. V. S. Pessoni, L. J. Q. Maia, and A. Franco., “Eu-doped ZnO nanoparticles prepared by the combustion reaction method: Structural, photoluminescence and dielectric characterization,” Mater. Sci. Semicond. Process. 30, 135–141 (2015).
[Crossref]

Materials (Basel) (1)

V. Mangalam and K. Pita, “Energy transfer efficiency from ZnO-nanocrystals to Eu3+ ions embedded in SiO2 film for emission at 614 nm,” Materials (Basel) 10(8), 930 (2017).
[Crossref] [PubMed]

Nanoscale Res. Lett. (3)

K. Pita, P. Baudin, Q. V. Vu, R. Aad, C. Couteau, and G. Lérondel, “Annealing temperature and environment effects on ZnO nanocrystals embedded in SiO2: a photoluminescence and TEM study,” Nanoscale Res. Lett. 8(1), 517 (2013).
[Crossref] [PubMed]

V. Mangalam, K. Pita, and C. Couteau, “Study of energy transfer mechanism from ZnO nanocrystals to Eu3+ ions,” Nanoscale Res. Lett. 11(1), 73 (2016).
[Crossref] [PubMed]

Q. Shi, C. Wang, S. Li, Q. Wang, B. Zhang, W. Wang, J. Zhang, and H. Zhu, “Enhancing blue luminescence from Ce-doped ZnO nanophosphor by Li doping,” Nanoscale Res. Lett. 9(1), 480 (2014).
[Crossref] [PubMed]

Nanotechnology (1)

Y. Zhang, Y. Liu, X. Li, Q. J. Wang, and E. Xie, “Room temperature enhanced red emission from novel Eu3+ doped ZnO nanocrystals uniformly dispersed in nanofibers,” Nanotechnology 22(41), 415702 (2011).
[Crossref] [PubMed]

Opt. Mater. (2)

L. Luo, F. Y. Huang, G. S. Dong, H. H. Fan, K. F. Li, K. W. Cheah, and J. Chen, “Strong luminescence and efficient energy transfer in Eu3+/Tb3+-codoped ZnO nanocrystals,” Opt. Mater. 37, 470–475 (2014).
[Crossref]

A. Ishizumi, S. Fujita, and H. Yanagi, “Influence of atmosphere on photoluminescence properties of Eu-doped ZnO nanocrystals,” Opt. Mater. 33(7), 1116–1119 (2011).
[Crossref]

Opt. Mater. Express (1)

Phys. Rev. B (1)

A. Teke, Ü. Özgür, S. Doğan, X. Gu, H. Morkoç, B. Nemeth, J. Nause, and H. O. Everitt, “Excitonic fine structure and recombination dynamics in single-crystalline ZnO,” Phys. Rev. B 70(19), 195207 (2004).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[Crossref] [PubMed]

Solid State Sci. (1)

M. Najafi and H. Haratizadeh, “The effect of growth conditions and morphology on photoluminescence properties of Eu-doped ZnO nanostructures,” Solid State Sci. 41, 48–51 (2015).
[Crossref]

Spectrochim. Acta A Mol. Biomol. Spectrosc. (1)

O. M. Ntwaeaborwa, S. J. Mofokeng, V. Kumar, and R. E. Kroon, “Structural, optical and photoluminescence properties of Eu3+ doped ZnO nanoparticles,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 182, 42–49 (2017).
[Crossref] [PubMed]

Thin Solid Films (1)

T. Lin, X. Zhang, Y. Wang, J. Xu, N. Wan, J. Liu, L. Xu, and K. Chen, “Luminescence enhancement due to energy transfer in ZnO nanoparticles and Eu3+ ions co-doped silica,” Thin Solid Films 520(17), 5815–5819 (2012).
[Crossref]

Other (2)

V. Mangalam and K. Pita, “Energy transfer from ZnO nanocrystals to Terbium3+ ions: A spectral overlap study,” in 2016 IEEE Photonics Conference (IPC) (IEEE, 2016), 190–191.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic diagram of the two types of samples from this study. a) A type Sample which is a single layer of SiO2 matrix co-doped with ZnO-nc and Eu3+ ions b) B type Sample which is a three-layer thin film sample in which the ZnO-nc and Eu3+ ions are doped in separate layers of SiO2 with a buffer layer of plane SiO2 between them.
Fig. 2
Fig. 2 Schematic diagram of ZnO-nc uniformly distributed in SiO2 matrix.
Fig. 3
Fig. 3 Schematic diagram of Eu3+ ions uniformly distributed in SiO2 matrix.
Fig. 4
Fig. 4 614 nm PL emission intensity from the four different Ax samples along with the interaction distance between ZnO-nc and Eu3+ ions in these samples.
Fig. 5
Fig. 5 614 nm PL emission intensity from the four different Ax samples along with the interaction distance between two Eu3+ ions in these samples.
Fig. 6
Fig. 6 PL emission spectra of five different Bd samples with a spacer distance of 0, 2, 4, 6 and 8 nm.
Fig. 7
Fig. 7 614 nm PL emission intensity from the five different Bd samples along with the interaction distance between ZnO-nc and Eu3+ ions and the interaction distance between two Eu3+ ions in these samples. The graph also shows the 614 nm PL emission intensity from the A0.04 and A0.12 samples for comparison.

Tables (1)

Tables Icon

Table 1 A summary showing the names of the four different Ax samples and the five different Bd samples.

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

V ZnOnc A = 4 3 π r ZnOnc 3  c m 3
V ZnO A = N ZnOnc A × 4 3 π r ZnOnc 3  c m 3
V Si O 2 A =1 V ZnO A =1( N ZnOnc A × 4 3 π r ZnOnc 3 ) c m 3
m ZnO A = V ZnO A × ρ ZnO = N ZnOnc A × 4 3 π r ZnOnc 3 × ρ ZnO  g
m Si O 2 A = V Si O 2 A × ρ Si O 2 = ρ Si O 2 [ 1( N ZnOnc A × 4 3 π r ZnOnc 3 ) ] g
N ZnO A = m ZnO A M ZnO = N ZnOnc A × 4 3 π r ZnOnc 3 × ρ ZnO M ZnO  mol
N Si O 2 A = m Si O 2 A M Si O 2 = ρ Si O 2 [ 1( N ZnOnc A × 4 3 π r ZnOnc 3 ) ] M Si O 2  mol
R Zn:Si A = N ZnO A N Si O 2 A = N ZnOnc A × 4 3 π r ZnOnc 3 × ρ ZnO M ZnO / ρ Si O 2 [ 1( N ZnOnc A × 4 3 π r ZnOnc 3 ) ] M Si O 2
N ZnOnc A = R Zn:Si A × M ZnO × ρ Si O 2 4 3 π r ZnOnc 3 ( ρ ZnO × M Si O 2 + R Zn:Si A × M ZnO × ρ Si O 2 )
=   4 3 π r ZnOnc 3 ( ρ ZnO × M Si O 2 + R Zn:Si A × M ZnO × ρ Si O 2 ) R Zn:Si A × M ZnO × ρ Si O 2   c m 3
d ZnOnc A =  4 3 π r ZnOnc 3 ( ρ ZnO × M Si O 2 + R Zn:Si A × M ZnO × ρ Si O 2 ) R Zn:Si A × M ZnO × ρ Si O 2 3  cm
R E u 3+ :Si A = N E u 3+ A N Si O 2 A = N E u 3+ A × M Si O 2 ρ Si O 2 [ 1( N ZnOnc A × 4 3 π r ZnOnc 3 ) ]
N E u 3+ A = ( ρ Si O 2 × R E u 3+ :Si A )[ 1( N ZnOnc A × 4 3 π r ZnOnc 3 ) ] M Si O 2  mol
= M Si O 2 R E u 3+ :Si A × ρ Si O 2 × N A  c m 3
d E u 3+ A = M Si O 2 R E u 3+ :Si A × ρ Si O 2 × N A 3 cm
d E u 3+ /ZnOnc A = r ZnOnc + 1 2 d E u 3+ A  cm
d ZnOnc B = 4 3 π r ZnOnc 3 ( ρ ZnO × M Si O 2 + R Zn:Si B × M ZnO × ρ Si O 2 ) R Zn:Si B × M ZnO × ρ Si O 2 3
m Si O 2 B = V Si O 2 B × ρ Si O 2 =1× ρ Si O 2  g
N Si O 2 B = m Si O 2 B M Si O 2 = 1× ρ Si O 2 M Si O 2
R E u 3+ :Si B = N E u 3+ B N Si O 2 B = N E u 3+ B 1× ρ Si O 2 M Si O 2
N E u 3+ B = R E u 3+ :Si B × ρ Si O 2 M Si O 2  mol
= M Si O 2 R E u 3+ :Si B × ρ Si O 2 × N A  c m 3
d E u 3+ B = M Si O 2 R E u 3+ :Si B × ρ Si O 2 × N A 3 cm
d E u 3+ /ZnOnc B = 1 2 d E u 3+ B + d Si O 2 B + 1 2 d ZnOnc B

Metrics