Abstract

MoS2 flakes have attracted much attention due to their attractive properties. Optical reflectance techniques can prove to be very powerful techniques to study some of the thickness dependent physical properties, e.g. A and B excitonic peaks. Here, we measured reflection spectra of MoS2 flakes on SiO2/Si substrate in the broad wavelength range of 400-800 nm and studied the emission wavelength of A and B excitons as a function of the layer number. Moreover, we calculated the optimized SiO2 thickness to avoid the substrate-related interference effect influencing the investigation of exciton properties.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Study on the optical properties of ReS2 flakes by unpolarized and polarized optical contrast measurements

Xiao-li Li, Xiao-fen Qiao, Ya-fang Shi, Lin Liu, Teng-jiao Wang, Xiao-hui Zhao, and Bao-lai Liang
Opt. Mater. Express 8(5) 1107-1116 (2018)

Enhanced local photoluminescence of a multilayer MoS2 nanodot stacked on monolayer MoS2 flakes

Fei Chen, Lei Wang, Ting Wang, and Xiaohong Ji
Opt. Mater. Express 7(4) 1365-1373 (2017)

Interference effect based optimized matching between single-layer to five-layer graphene flakes and the SiO2 layer

Xiao-Li Li, Xiao-Fen Qiao, Long-long Wang, and Ya-Fang Shi
Opt. Mater. Express 7(12) 4233-4240 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
    [Crossref] [PubMed]
  2. G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, and L. Colombo, “Electronics based on two-dimensional materials,” Nat. Nanotechnol. 9(10), 768–779 (2014).
    [Crossref] [PubMed]
  3. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
    [Crossref] [PubMed]
  4. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-Layer MoS2 Transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
    [Crossref] [PubMed]
  5. K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically Thin MoS2: A New Direct-Gap Semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
    [Crossref] [PubMed]
  6. C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, “Anomalous Lattice Vibrations of Single- and Few-Layer MoS2,” ACS Nano 4(5), 2695–2700 (2010).
    [Crossref] [PubMed]
  7. X. Zhang, X. F. Qiao, W. Shi, J. B. Wu, D. S. Jiang, and P. H. Tan, “Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material,” Chem. Soc. Rev. 44(9), 2757–2785 (2015).
    [Crossref] [PubMed]
  8. X. Zhang, W. P. Han, J. B. Wu, S. Milana, Y. Lu, Q. Q. Li, A. C. Ferrari, and P. H. Tan, “Raman spectroscopy of shear and layer breathing modes in multilayer MoS2,” Phys. Rev. B 87(11), 115413 (2013).
    [Crossref]
  9. R. Frisenda, Y. Niu, P. Gant, A. J. Molina-Mendoza, R. Schmidt, R. Bratschitsch, J. X. Liu, L. Fu, D. Dumcenco, A. Kis, D. P. D. Lara, and A. Castellanos-Gomez, “Micro-reflectance and transmittance spectroscopy: a versatile and powerful tool to characterize 2D materials,” J. Phys. D Appl. Phys. 50(7), 074002 (2017).
    [Crossref]
  10. Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, “Graphene thickness determination using reflection and contrast spectroscopy,” Nano Lett. 7(9), 2758–2763 (2007).
    [Crossref] [PubMed]
  11. C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett. 7(9), 2711–2717 (2007).
    [Crossref] [PubMed]
  12. X. L. Li, X. F. Qiao, L. L. Wang, and Y. F. Shi, “Interference effect based optimized matching between single-layer to five-layer graphene flakes and the SiO2 layer,” Opt. Mater. Express 7(12), 4233–4240 (2017).
    [Crossref]
  13. X. L. Li, X. F. Qiao, L. L. Wang, Y. F. Shi, and W. F. Zhang, “Layer-number dependent reflection spectra of WS2 and WSe2 flakes on SiO2/Si substrate,” Proc. SPIE 10621, 2017 International Conference on Optical Instruments and Technology: Optoelectronic Measurement Technology and Systems, 106210J (12 January 2018)..
  14. X. L. Li, X. F. Qiao, Y. F. Shi, L. Liu, T. J. Wang, X. H. Zhao, and B. L. Liang, “Study on the optical properties of ReS2 flakes by unpolarized and polarized optical contrast measurements,” Opt. Mater. Express 8(5), 1107–1116 (2018).
    [Crossref]
  15. R. Coehoorn, C. Haas, J. Dijkstra, C. J. F. Flipse, A. Wold, and A. Wold, “Electronic structure of MoSe2, MoS2, and WSe2. I. Band-structure calculations and photoelectron spectroscopy,” Phys. Rev. B Condens. Matter 35(12), 6195–6202 (1987).
    [Crossref] [PubMed]
  16. R. Coehoorn, C. Haas, and R. A. de Groot, “Electronic structure of MoSe2, MoS2, and WSe2. II. The nature of the optical band gaps,” Phys. Rev. B Condens. Matter 35(12), 6203–6206 (1987).
    [Crossref] [PubMed]
  17. A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett. 10(4), 1271–1275 (2010).
    [Crossref] [PubMed]
  18. X. L. Li, W. P. Han, J. B. Wu, X. F. Qiao, J. Zhang, and P. H. Tan, “Layer-Number Dependent Optical Properties of 2D Materials and Their Application for Thickness Determination,” Adv. Funct. Mater. 27(19), 1604468 (2017).
    [Crossref]
  19. S. L. Li, H. Miyazaki, H. Song, H. Kuramochi, S. Nakaharai, and K. Tsukagoshi, “Quantitative Raman spectrum and reliable thickness identification for atomic layers on insulating substrates,” ACS Nano 6(8), 7381–7388 (2012).
    [Crossref] [PubMed]
  20. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).
  21. Y. L. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E. M. Shih, J. Hone, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B 90(20), 205422 (2014).
    [Crossref]

2018 (1)

2017 (3)

X. L. Li, X. F. Qiao, L. L. Wang, and Y. F. Shi, “Interference effect based optimized matching between single-layer to five-layer graphene flakes and the SiO2 layer,” Opt. Mater. Express 7(12), 4233–4240 (2017).
[Crossref]

X. L. Li, W. P. Han, J. B. Wu, X. F. Qiao, J. Zhang, and P. H. Tan, “Layer-Number Dependent Optical Properties of 2D Materials and Their Application for Thickness Determination,” Adv. Funct. Mater. 27(19), 1604468 (2017).
[Crossref]

R. Frisenda, Y. Niu, P. Gant, A. J. Molina-Mendoza, R. Schmidt, R. Bratschitsch, J. X. Liu, L. Fu, D. Dumcenco, A. Kis, D. P. D. Lara, and A. Castellanos-Gomez, “Micro-reflectance and transmittance spectroscopy: a versatile and powerful tool to characterize 2D materials,” J. Phys. D Appl. Phys. 50(7), 074002 (2017).
[Crossref]

2015 (1)

X. Zhang, X. F. Qiao, W. Shi, J. B. Wu, D. S. Jiang, and P. H. Tan, “Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material,” Chem. Soc. Rev. 44(9), 2757–2785 (2015).
[Crossref] [PubMed]

2014 (2)

G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, and L. Colombo, “Electronics based on two-dimensional materials,” Nat. Nanotechnol. 9(10), 768–779 (2014).
[Crossref] [PubMed]

Y. L. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E. M. Shih, J. Hone, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B 90(20), 205422 (2014).
[Crossref]

2013 (1)

X. Zhang, W. P. Han, J. B. Wu, S. Milana, Y. Lu, Q. Q. Li, A. C. Ferrari, and P. H. Tan, “Raman spectroscopy of shear and layer breathing modes in multilayer MoS2,” Phys. Rev. B 87(11), 115413 (2013).
[Crossref]

2012 (2)

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

S. L. Li, H. Miyazaki, H. Song, H. Kuramochi, S. Nakaharai, and K. Tsukagoshi, “Quantitative Raman spectrum and reliable thickness identification for atomic layers on insulating substrates,” ACS Nano 6(8), 7381–7388 (2012).
[Crossref] [PubMed]

2011 (1)

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-Layer MoS2 Transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref] [PubMed]

2010 (3)

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically Thin MoS2: A New Direct-Gap Semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, “Anomalous Lattice Vibrations of Single- and Few-Layer MoS2,” ACS Nano 4(5), 2695–2700 (2010).
[Crossref] [PubMed]

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett. 10(4), 1271–1275 (2010).
[Crossref] [PubMed]

2007 (3)

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, “Graphene thickness determination using reflection and contrast spectroscopy,” Nano Lett. 7(9), 2758–2763 (2007).
[Crossref] [PubMed]

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett. 7(9), 2711–2717 (2007).
[Crossref] [PubMed]

1987 (2)

R. Coehoorn, C. Haas, J. Dijkstra, C. J. F. Flipse, A. Wold, and A. Wold, “Electronic structure of MoSe2, MoS2, and WSe2. I. Band-structure calculations and photoelectron spectroscopy,” Phys. Rev. B Condens. Matter 35(12), 6195–6202 (1987).
[Crossref] [PubMed]

R. Coehoorn, C. Haas, and R. A. de Groot, “Electronic structure of MoSe2, MoS2, and WSe2. II. The nature of the optical band gaps,” Phys. Rev. B Condens. Matter 35(12), 6203–6206 (1987).
[Crossref] [PubMed]

Banerjee, S. K.

G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, and L. Colombo, “Electronics based on two-dimensional materials,” Nat. Nanotechnol. 9(10), 768–779 (2014).
[Crossref] [PubMed]

Bonaccorso, F.

G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, and L. Colombo, “Electronics based on two-dimensional materials,” Nat. Nanotechnol. 9(10), 768–779 (2014).
[Crossref] [PubMed]

Bratschitsch, R.

R. Frisenda, Y. Niu, P. Gant, A. J. Molina-Mendoza, R. Schmidt, R. Bratschitsch, J. X. Liu, L. Fu, D. Dumcenco, A. Kis, D. P. D. Lara, and A. Castellanos-Gomez, “Micro-reflectance and transmittance spectroscopy: a versatile and powerful tool to characterize 2D materials,” J. Phys. D Appl. Phys. 50(7), 074002 (2017).
[Crossref]

Brivio, J.

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-Layer MoS2 Transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref] [PubMed]

Brus, L. E.

C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, “Anomalous Lattice Vibrations of Single- and Few-Layer MoS2,” ACS Nano 4(5), 2695–2700 (2010).
[Crossref] [PubMed]

Casiraghi, C.

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett. 7(9), 2711–2717 (2007).
[Crossref] [PubMed]

Castellanos-Gomez, A.

R. Frisenda, Y. Niu, P. Gant, A. J. Molina-Mendoza, R. Schmidt, R. Bratschitsch, J. X. Liu, L. Fu, D. Dumcenco, A. Kis, D. P. D. Lara, and A. Castellanos-Gomez, “Micro-reflectance and transmittance spectroscopy: a versatile and powerful tool to characterize 2D materials,” J. Phys. D Appl. Phys. 50(7), 074002 (2017).
[Crossref]

Chenet, D. A.

Y. L. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E. M. Shih, J. Hone, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B 90(20), 205422 (2014).
[Crossref]

Chernikov, A.

Y. L. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E. M. Shih, J. Hone, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B 90(20), 205422 (2014).
[Crossref]

Chim, C. Y.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett. 10(4), 1271–1275 (2010).
[Crossref] [PubMed]

Coehoorn, R.

R. Coehoorn, C. Haas, J. Dijkstra, C. J. F. Flipse, A. Wold, and A. Wold, “Electronic structure of MoSe2, MoS2, and WSe2. I. Band-structure calculations and photoelectron spectroscopy,” Phys. Rev. B Condens. Matter 35(12), 6195–6202 (1987).
[Crossref] [PubMed]

R. Coehoorn, C. Haas, and R. A. de Groot, “Electronic structure of MoSe2, MoS2, and WSe2. II. The nature of the optical band gaps,” Phys. Rev. B Condens. Matter 35(12), 6203–6206 (1987).
[Crossref] [PubMed]

Coleman, J. N.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

Colombo, L.

G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, and L. Colombo, “Electronics based on two-dimensional materials,” Nat. Nanotechnol. 9(10), 768–779 (2014).
[Crossref] [PubMed]

de Groot, R. A.

R. Coehoorn, C. Haas, and R. A. de Groot, “Electronic structure of MoSe2, MoS2, and WSe2. II. The nature of the optical band gaps,” Phys. Rev. B Condens. Matter 35(12), 6203–6206 (1987).
[Crossref] [PubMed]

Dijkstra, J.

R. Coehoorn, C. Haas, J. Dijkstra, C. J. F. Flipse, A. Wold, and A. Wold, “Electronic structure of MoSe2, MoS2, and WSe2. I. Band-structure calculations and photoelectron spectroscopy,” Phys. Rev. B Condens. Matter 35(12), 6195–6202 (1987).
[Crossref] [PubMed]

Dumcenco, D.

R. Frisenda, Y. Niu, P. Gant, A. J. Molina-Mendoza, R. Schmidt, R. Bratschitsch, J. X. Liu, L. Fu, D. Dumcenco, A. Kis, D. P. D. Lara, and A. Castellanos-Gomez, “Micro-reflectance and transmittance spectroscopy: a versatile and powerful tool to characterize 2D materials,” J. Phys. D Appl. Phys. 50(7), 074002 (2017).
[Crossref]

Fan, H. M.

Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, “Graphene thickness determination using reflection and contrast spectroscopy,” Nano Lett. 7(9), 2758–2763 (2007).
[Crossref] [PubMed]

Feng, Y. P.

Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, “Graphene thickness determination using reflection and contrast spectroscopy,” Nano Lett. 7(9), 2758–2763 (2007).
[Crossref] [PubMed]

Ferrari, A. C.

X. Zhang, W. P. Han, J. B. Wu, S. Milana, Y. Lu, Q. Q. Li, A. C. Ferrari, and P. H. Tan, “Raman spectroscopy of shear and layer breathing modes in multilayer MoS2,” Phys. Rev. B 87(11), 115413 (2013).
[Crossref]

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett. 7(9), 2711–2717 (2007).
[Crossref] [PubMed]

Fiori, G.

G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, and L. Colombo, “Electronics based on two-dimensional materials,” Nat. Nanotechnol. 9(10), 768–779 (2014).
[Crossref] [PubMed]

Flipse, C. J. F.

R. Coehoorn, C. Haas, J. Dijkstra, C. J. F. Flipse, A. Wold, and A. Wold, “Electronic structure of MoSe2, MoS2, and WSe2. I. Band-structure calculations and photoelectron spectroscopy,” Phys. Rev. B Condens. Matter 35(12), 6195–6202 (1987).
[Crossref] [PubMed]

Frisenda, R.

R. Frisenda, Y. Niu, P. Gant, A. J. Molina-Mendoza, R. Schmidt, R. Bratschitsch, J. X. Liu, L. Fu, D. Dumcenco, A. Kis, D. P. D. Lara, and A. Castellanos-Gomez, “Micro-reflectance and transmittance spectroscopy: a versatile and powerful tool to characterize 2D materials,” J. Phys. D Appl. Phys. 50(7), 074002 (2017).
[Crossref]

Fu, L.

R. Frisenda, Y. Niu, P. Gant, A. J. Molina-Mendoza, R. Schmidt, R. Bratschitsch, J. X. Liu, L. Fu, D. Dumcenco, A. Kis, D. P. D. Lara, and A. Castellanos-Gomez, “Micro-reflectance and transmittance spectroscopy: a versatile and powerful tool to characterize 2D materials,” J. Phys. D Appl. Phys. 50(7), 074002 (2017).
[Crossref]

Galli, G.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett. 10(4), 1271–1275 (2010).
[Crossref] [PubMed]

Gant, P.

R. Frisenda, Y. Niu, P. Gant, A. J. Molina-Mendoza, R. Schmidt, R. Bratschitsch, J. X. Liu, L. Fu, D. Dumcenco, A. Kis, D. P. D. Lara, and A. Castellanos-Gomez, “Micro-reflectance and transmittance spectroscopy: a versatile and powerful tool to characterize 2D materials,” J. Phys. D Appl. Phys. 50(7), 074002 (2017).
[Crossref]

Geim, A. K.

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

Giacometti, V.

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-Layer MoS2 Transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref] [PubMed]

Gokus, T.

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett. 7(9), 2711–2717 (2007).
[Crossref] [PubMed]

Haas, C.

R. Coehoorn, C. Haas, and R. A. de Groot, “Electronic structure of MoSe2, MoS2, and WSe2. II. The nature of the optical band gaps,” Phys. Rev. B Condens. Matter 35(12), 6203–6206 (1987).
[Crossref] [PubMed]

R. Coehoorn, C. Haas, J. Dijkstra, C. J. F. Flipse, A. Wold, and A. Wold, “Electronic structure of MoSe2, MoS2, and WSe2. I. Band-structure calculations and photoelectron spectroscopy,” Phys. Rev. B Condens. Matter 35(12), 6195–6202 (1987).
[Crossref] [PubMed]

Han, W. P.

X. L. Li, W. P. Han, J. B. Wu, X. F. Qiao, J. Zhang, and P. H. Tan, “Layer-Number Dependent Optical Properties of 2D Materials and Their Application for Thickness Determination,” Adv. Funct. Mater. 27(19), 1604468 (2017).
[Crossref]

X. Zhang, W. P. Han, J. B. Wu, S. Milana, Y. Lu, Q. Q. Li, A. C. Ferrari, and P. H. Tan, “Raman spectroscopy of shear and layer breathing modes in multilayer MoS2,” Phys. Rev. B 87(11), 115413 (2013).
[Crossref]

Hartschuh, A.

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett. 7(9), 2711–2717 (2007).
[Crossref] [PubMed]

Harutyunyan, H.

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett. 7(9), 2711–2717 (2007).
[Crossref] [PubMed]

Heinz, T. F.

Y. L. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E. M. Shih, J. Hone, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B 90(20), 205422 (2014).
[Crossref]

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically Thin MoS2: A New Direct-Gap Semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, “Anomalous Lattice Vibrations of Single- and Few-Layer MoS2,” ACS Nano 4(5), 2695–2700 (2010).
[Crossref] [PubMed]

Hill, H. M.

Y. L. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E. M. Shih, J. Hone, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B 90(20), 205422 (2014).
[Crossref]

Hone, J.

Y. L. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E. M. Shih, J. Hone, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B 90(20), 205422 (2014).
[Crossref]

C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, “Anomalous Lattice Vibrations of Single- and Few-Layer MoS2,” ACS Nano 4(5), 2695–2700 (2010).
[Crossref] [PubMed]

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically Thin MoS2: A New Direct-Gap Semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

Iannaccone, G.

G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, and L. Colombo, “Electronics based on two-dimensional materials,” Nat. Nanotechnol. 9(10), 768–779 (2014).
[Crossref] [PubMed]

Jiang, D. S.

X. Zhang, X. F. Qiao, W. Shi, J. B. Wu, D. S. Jiang, and P. H. Tan, “Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material,” Chem. Soc. Rev. 44(9), 2757–2785 (2015).
[Crossref] [PubMed]

Kalantar-Zadeh, K.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

Kasim, J.

Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, “Graphene thickness determination using reflection and contrast spectroscopy,” Nano Lett. 7(9), 2758–2763 (2007).
[Crossref] [PubMed]

Kim, J.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett. 10(4), 1271–1275 (2010).
[Crossref] [PubMed]

Kis, A.

R. Frisenda, Y. Niu, P. Gant, A. J. Molina-Mendoza, R. Schmidt, R. Bratschitsch, J. X. Liu, L. Fu, D. Dumcenco, A. Kis, D. P. D. Lara, and A. Castellanos-Gomez, “Micro-reflectance and transmittance spectroscopy: a versatile and powerful tool to characterize 2D materials,” J. Phys. D Appl. Phys. 50(7), 074002 (2017).
[Crossref]

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-Layer MoS2 Transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref] [PubMed]

Kuramochi, H.

S. L. Li, H. Miyazaki, H. Song, H. Kuramochi, S. Nakaharai, and K. Tsukagoshi, “Quantitative Raman spectrum and reliable thickness identification for atomic layers on insulating substrates,” ACS Nano 6(8), 7381–7388 (2012).
[Crossref] [PubMed]

Lara, D. P. D.

R. Frisenda, Y. Niu, P. Gant, A. J. Molina-Mendoza, R. Schmidt, R. Bratschitsch, J. X. Liu, L. Fu, D. Dumcenco, A. Kis, D. P. D. Lara, and A. Castellanos-Gomez, “Micro-reflectance and transmittance spectroscopy: a versatile and powerful tool to characterize 2D materials,” J. Phys. D Appl. Phys. 50(7), 074002 (2017).
[Crossref]

Lee, C.

C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, “Anomalous Lattice Vibrations of Single- and Few-Layer MoS2,” ACS Nano 4(5), 2695–2700 (2010).
[Crossref] [PubMed]

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically Thin MoS2: A New Direct-Gap Semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

Li, Q. Q.

X. Zhang, W. P. Han, J. B. Wu, S. Milana, Y. Lu, Q. Q. Li, A. C. Ferrari, and P. H. Tan, “Raman spectroscopy of shear and layer breathing modes in multilayer MoS2,” Phys. Rev. B 87(11), 115413 (2013).
[Crossref]

Li, S. L.

S. L. Li, H. Miyazaki, H. Song, H. Kuramochi, S. Nakaharai, and K. Tsukagoshi, “Quantitative Raman spectrum and reliable thickness identification for atomic layers on insulating substrates,” ACS Nano 6(8), 7381–7388 (2012).
[Crossref] [PubMed]

Li, T.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett. 10(4), 1271–1275 (2010).
[Crossref] [PubMed]

Li, X. L.

Li, Y. L.

Y. L. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E. M. Shih, J. Hone, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B 90(20), 205422 (2014).
[Crossref]

Liang, B. L.

Lidorikis, E.

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett. 7(9), 2711–2717 (2007).
[Crossref] [PubMed]

Liu, J. X.

R. Frisenda, Y. Niu, P. Gant, A. J. Molina-Mendoza, R. Schmidt, R. Bratschitsch, J. X. Liu, L. Fu, D. Dumcenco, A. Kis, D. P. D. Lara, and A. Castellanos-Gomez, “Micro-reflectance and transmittance spectroscopy: a versatile and powerful tool to characterize 2D materials,” J. Phys. D Appl. Phys. 50(7), 074002 (2017).
[Crossref]

Liu, L.

Lu, Y.

X. Zhang, W. P. Han, J. B. Wu, S. Milana, Y. Lu, Q. Q. Li, A. C. Ferrari, and P. H. Tan, “Raman spectroscopy of shear and layer breathing modes in multilayer MoS2,” Phys. Rev. B 87(11), 115413 (2013).
[Crossref]

Mak, K. F.

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically Thin MoS2: A New Direct-Gap Semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

Milana, S.

X. Zhang, W. P. Han, J. B. Wu, S. Milana, Y. Lu, Q. Q. Li, A. C. Ferrari, and P. H. Tan, “Raman spectroscopy of shear and layer breathing modes in multilayer MoS2,” Phys. Rev. B 87(11), 115413 (2013).
[Crossref]

Miyazaki, H.

S. L. Li, H. Miyazaki, H. Song, H. Kuramochi, S. Nakaharai, and K. Tsukagoshi, “Quantitative Raman spectrum and reliable thickness identification for atomic layers on insulating substrates,” ACS Nano 6(8), 7381–7388 (2012).
[Crossref] [PubMed]

Molina-Mendoza, A. J.

R. Frisenda, Y. Niu, P. Gant, A. J. Molina-Mendoza, R. Schmidt, R. Bratschitsch, J. X. Liu, L. Fu, D. Dumcenco, A. Kis, D. P. D. Lara, and A. Castellanos-Gomez, “Micro-reflectance and transmittance spectroscopy: a versatile and powerful tool to characterize 2D materials,” J. Phys. D Appl. Phys. 50(7), 074002 (2017).
[Crossref]

Nakaharai, S.

S. L. Li, H. Miyazaki, H. Song, H. Kuramochi, S. Nakaharai, and K. Tsukagoshi, “Quantitative Raman spectrum and reliable thickness identification for atomic layers on insulating substrates,” ACS Nano 6(8), 7381–7388 (2012).
[Crossref] [PubMed]

Neumaier, D.

G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, and L. Colombo, “Electronics based on two-dimensional materials,” Nat. Nanotechnol. 9(10), 768–779 (2014).
[Crossref] [PubMed]

Ni, Z. H.

Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, “Graphene thickness determination using reflection and contrast spectroscopy,” Nano Lett. 7(9), 2758–2763 (2007).
[Crossref] [PubMed]

Niu, Y.

R. Frisenda, Y. Niu, P. Gant, A. J. Molina-Mendoza, R. Schmidt, R. Bratschitsch, J. X. Liu, L. Fu, D. Dumcenco, A. Kis, D. P. D. Lara, and A. Castellanos-Gomez, “Micro-reflectance and transmittance spectroscopy: a versatile and powerful tool to characterize 2D materials,” J. Phys. D Appl. Phys. 50(7), 074002 (2017).
[Crossref]

Novoselov, K. S.

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett. 7(9), 2711–2717 (2007).
[Crossref] [PubMed]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

Palacios, T.

G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, and L. Colombo, “Electronics based on two-dimensional materials,” Nat. Nanotechnol. 9(10), 768–779 (2014).
[Crossref] [PubMed]

Qian, H.

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett. 7(9), 2711–2717 (2007).
[Crossref] [PubMed]

Qiao, X. F.

X. L. Li, X. F. Qiao, Y. F. Shi, L. Liu, T. J. Wang, X. H. Zhao, and B. L. Liang, “Study on the optical properties of ReS2 flakes by unpolarized and polarized optical contrast measurements,” Opt. Mater. Express 8(5), 1107–1116 (2018).
[Crossref]

X. L. Li, X. F. Qiao, L. L. Wang, and Y. F. Shi, “Interference effect based optimized matching between single-layer to five-layer graphene flakes and the SiO2 layer,” Opt. Mater. Express 7(12), 4233–4240 (2017).
[Crossref]

X. L. Li, W. P. Han, J. B. Wu, X. F. Qiao, J. Zhang, and P. H. Tan, “Layer-Number Dependent Optical Properties of 2D Materials and Their Application for Thickness Determination,” Adv. Funct. Mater. 27(19), 1604468 (2017).
[Crossref]

X. Zhang, X. F. Qiao, W. Shi, J. B. Wu, D. S. Jiang, and P. H. Tan, “Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material,” Chem. Soc. Rev. 44(9), 2757–2785 (2015).
[Crossref] [PubMed]

Radenovic, A.

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-Layer MoS2 Transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref] [PubMed]

Radisavljevic, B.

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-Layer MoS2 Transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref] [PubMed]

Rigosi, A.

Y. L. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E. M. Shih, J. Hone, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B 90(20), 205422 (2014).
[Crossref]

Ryu, S.

C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, “Anomalous Lattice Vibrations of Single- and Few-Layer MoS2,” ACS Nano 4(5), 2695–2700 (2010).
[Crossref] [PubMed]

Schmidt, R.

R. Frisenda, Y. Niu, P. Gant, A. J. Molina-Mendoza, R. Schmidt, R. Bratschitsch, J. X. Liu, L. Fu, D. Dumcenco, A. Kis, D. P. D. Lara, and A. Castellanos-Gomez, “Micro-reflectance and transmittance spectroscopy: a versatile and powerful tool to characterize 2D materials,” J. Phys. D Appl. Phys. 50(7), 074002 (2017).
[Crossref]

Seabaugh, A.

G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, and L. Colombo, “Electronics based on two-dimensional materials,” Nat. Nanotechnol. 9(10), 768–779 (2014).
[Crossref] [PubMed]

Shan, J.

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically Thin MoS2: A New Direct-Gap Semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

Shen, Z. X.

Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, “Graphene thickness determination using reflection and contrast spectroscopy,” Nano Lett. 7(9), 2758–2763 (2007).
[Crossref] [PubMed]

Shi, W.

X. Zhang, X. F. Qiao, W. Shi, J. B. Wu, D. S. Jiang, and P. H. Tan, “Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material,” Chem. Soc. Rev. 44(9), 2757–2785 (2015).
[Crossref] [PubMed]

Shi, Y. F.

Shih, E. M.

Y. L. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E. M. Shih, J. Hone, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B 90(20), 205422 (2014).
[Crossref]

Song, H.

S. L. Li, H. Miyazaki, H. Song, H. Kuramochi, S. Nakaharai, and K. Tsukagoshi, “Quantitative Raman spectrum and reliable thickness identification for atomic layers on insulating substrates,” ACS Nano 6(8), 7381–7388 (2012).
[Crossref] [PubMed]

Splendiani, A.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett. 10(4), 1271–1275 (2010).
[Crossref] [PubMed]

Strano, M. S.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

Sun, L.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett. 10(4), 1271–1275 (2010).
[Crossref] [PubMed]

Tan, P. H.

X. L. Li, W. P. Han, J. B. Wu, X. F. Qiao, J. Zhang, and P. H. Tan, “Layer-Number Dependent Optical Properties of 2D Materials and Their Application for Thickness Determination,” Adv. Funct. Mater. 27(19), 1604468 (2017).
[Crossref]

X. Zhang, X. F. Qiao, W. Shi, J. B. Wu, D. S. Jiang, and P. H. Tan, “Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material,” Chem. Soc. Rev. 44(9), 2757–2785 (2015).
[Crossref] [PubMed]

X. Zhang, W. P. Han, J. B. Wu, S. Milana, Y. Lu, Q. Q. Li, A. C. Ferrari, and P. H. Tan, “Raman spectroscopy of shear and layer breathing modes in multilayer MoS2,” Phys. Rev. B 87(11), 115413 (2013).
[Crossref]

Tsukagoshi, K.

S. L. Li, H. Miyazaki, H. Song, H. Kuramochi, S. Nakaharai, and K. Tsukagoshi, “Quantitative Raman spectrum and reliable thickness identification for atomic layers on insulating substrates,” ACS Nano 6(8), 7381–7388 (2012).
[Crossref] [PubMed]

van der Zande, A. M.

Y. L. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E. M. Shih, J. Hone, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B 90(20), 205422 (2014).
[Crossref]

Wang, F.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett. 10(4), 1271–1275 (2010).
[Crossref] [PubMed]

Wang, H. M.

Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, “Graphene thickness determination using reflection and contrast spectroscopy,” Nano Lett. 7(9), 2758–2763 (2007).
[Crossref] [PubMed]

Wang, L. L.

Wang, Q. H.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

Wang, T. J.

Wold, A.

R. Coehoorn, C. Haas, J. Dijkstra, C. J. F. Flipse, A. Wold, and A. Wold, “Electronic structure of MoSe2, MoS2, and WSe2. I. Band-structure calculations and photoelectron spectroscopy,” Phys. Rev. B Condens. Matter 35(12), 6195–6202 (1987).
[Crossref] [PubMed]

R. Coehoorn, C. Haas, J. Dijkstra, C. J. F. Flipse, A. Wold, and A. Wold, “Electronic structure of MoSe2, MoS2, and WSe2. I. Band-structure calculations and photoelectron spectroscopy,” Phys. Rev. B Condens. Matter 35(12), 6195–6202 (1987).
[Crossref] [PubMed]

Wu, J. B.

X. L. Li, W. P. Han, J. B. Wu, X. F. Qiao, J. Zhang, and P. H. Tan, “Layer-Number Dependent Optical Properties of 2D Materials and Their Application for Thickness Determination,” Adv. Funct. Mater. 27(19), 1604468 (2017).
[Crossref]

X. Zhang, X. F. Qiao, W. Shi, J. B. Wu, D. S. Jiang, and P. H. Tan, “Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material,” Chem. Soc. Rev. 44(9), 2757–2785 (2015).
[Crossref] [PubMed]

X. Zhang, W. P. Han, J. B. Wu, S. Milana, Y. Lu, Q. Q. Li, A. C. Ferrari, and P. H. Tan, “Raman spectroscopy of shear and layer breathing modes in multilayer MoS2,” Phys. Rev. B 87(11), 115413 (2013).
[Crossref]

Wu, Y. H.

Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, “Graphene thickness determination using reflection and contrast spectroscopy,” Nano Lett. 7(9), 2758–2763 (2007).
[Crossref] [PubMed]

Yan, H.

C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, “Anomalous Lattice Vibrations of Single- and Few-Layer MoS2,” ACS Nano 4(5), 2695–2700 (2010).
[Crossref] [PubMed]

Yu, T.

Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, “Graphene thickness determination using reflection and contrast spectroscopy,” Nano Lett. 7(9), 2758–2763 (2007).
[Crossref] [PubMed]

Zhang, J.

X. L. Li, W. P. Han, J. B. Wu, X. F. Qiao, J. Zhang, and P. H. Tan, “Layer-Number Dependent Optical Properties of 2D Materials and Their Application for Thickness Determination,” Adv. Funct. Mater. 27(19), 1604468 (2017).
[Crossref]

Zhang, X.

X. Zhang, X. F. Qiao, W. Shi, J. B. Wu, D. S. Jiang, and P. H. Tan, “Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material,” Chem. Soc. Rev. 44(9), 2757–2785 (2015).
[Crossref] [PubMed]

Y. L. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E. M. Shih, J. Hone, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B 90(20), 205422 (2014).
[Crossref]

X. Zhang, W. P. Han, J. B. Wu, S. Milana, Y. Lu, Q. Q. Li, A. C. Ferrari, and P. H. Tan, “Raman spectroscopy of shear and layer breathing modes in multilayer MoS2,” Phys. Rev. B 87(11), 115413 (2013).
[Crossref]

Zhang, Y.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett. 10(4), 1271–1275 (2010).
[Crossref] [PubMed]

Zhao, X. H.

ACS Nano (2)

C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, “Anomalous Lattice Vibrations of Single- and Few-Layer MoS2,” ACS Nano 4(5), 2695–2700 (2010).
[Crossref] [PubMed]

S. L. Li, H. Miyazaki, H. Song, H. Kuramochi, S. Nakaharai, and K. Tsukagoshi, “Quantitative Raman spectrum and reliable thickness identification for atomic layers on insulating substrates,” ACS Nano 6(8), 7381–7388 (2012).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

X. L. Li, W. P. Han, J. B. Wu, X. F. Qiao, J. Zhang, and P. H. Tan, “Layer-Number Dependent Optical Properties of 2D Materials and Their Application for Thickness Determination,” Adv. Funct. Mater. 27(19), 1604468 (2017).
[Crossref]

Chem. Soc. Rev. (1)

X. Zhang, X. F. Qiao, W. Shi, J. B. Wu, D. S. Jiang, and P. H. Tan, “Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material,” Chem. Soc. Rev. 44(9), 2757–2785 (2015).
[Crossref] [PubMed]

J. Phys. D Appl. Phys. (1)

R. Frisenda, Y. Niu, P. Gant, A. J. Molina-Mendoza, R. Schmidt, R. Bratschitsch, J. X. Liu, L. Fu, D. Dumcenco, A. Kis, D. P. D. Lara, and A. Castellanos-Gomez, “Micro-reflectance and transmittance spectroscopy: a versatile and powerful tool to characterize 2D materials,” J. Phys. D Appl. Phys. 50(7), 074002 (2017).
[Crossref]

Nano Lett. (3)

Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, “Graphene thickness determination using reflection and contrast spectroscopy,” Nano Lett. 7(9), 2758–2763 (2007).
[Crossref] [PubMed]

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett. 7(9), 2711–2717 (2007).
[Crossref] [PubMed]

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett. 10(4), 1271–1275 (2010).
[Crossref] [PubMed]

Nat. Mater. (1)

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

Nat. Nanotechnol. (3)

G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, and L. Colombo, “Electronics based on two-dimensional materials,” Nat. Nanotechnol. 9(10), 768–779 (2014).
[Crossref] [PubMed]

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-Layer MoS2 Transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref] [PubMed]

Opt. Mater. Express (2)

Phys. Rev. B (2)

X. Zhang, W. P. Han, J. B. Wu, S. Milana, Y. Lu, Q. Q. Li, A. C. Ferrari, and P. H. Tan, “Raman spectroscopy of shear and layer breathing modes in multilayer MoS2,” Phys. Rev. B 87(11), 115413 (2013).
[Crossref]

Y. L. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E. M. Shih, J. Hone, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B 90(20), 205422 (2014).
[Crossref]

Phys. Rev. B Condens. Matter (2)

R. Coehoorn, C. Haas, J. Dijkstra, C. J. F. Flipse, A. Wold, and A. Wold, “Electronic structure of MoSe2, MoS2, and WSe2. I. Band-structure calculations and photoelectron spectroscopy,” Phys. Rev. B Condens. Matter 35(12), 6195–6202 (1987).
[Crossref] [PubMed]

R. Coehoorn, C. Haas, and R. A. de Groot, “Electronic structure of MoSe2, MoS2, and WSe2. II. The nature of the optical band gaps,” Phys. Rev. B Condens. Matter 35(12), 6203–6206 (1987).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically Thin MoS2: A New Direct-Gap Semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

Other (2)

X. L. Li, X. F. Qiao, L. L. Wang, Y. F. Shi, and W. F. Zhang, “Layer-number dependent reflection spectra of WS2 and WSe2 flakes on SiO2/Si substrate,” Proc. SPIE 10621, 2017 International Conference on Optical Instruments and Technology: Optoelectronic Measurement Technology and Systems, 106210J (12 January 2018)..

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) The reflectivity curves of 1L-5L, 9L and 10L MoS2 on SiO2/Si substrate with 100nm SiO2 thickness and of bare substrate in the range of 400-800nm. (b) The reflectivity curves in the range of 550-700nm. The curves are offset for clarity. (c) The position of A and B excitons from 1L-5L, 9L and 10L MoS2 are summarized by red and blue circles respectively.
Fig. 2
Fig. 2 (a) The reflectivity curves of 1L-3L MoS2 on SiO2/Si substrate with 89nm SiO2 thickness in the range of 550-700nm. The curves are offset for clarity. (b) The position of A and B excitons from 1L-3L MoS2 are summarized in the case of 89nm and 100nm SiO2 thickness.
Fig. 3
Fig. 3 (a) The reflectivity curves of 1L and 3L MoS2 on SiO2/Si substrate with 302nm SiO2 thickness in the range of 550-700nm. (b) The calculated reflectivity curves of 3L MoS2 on SiO2/Si substrate with 89nm, 100nm and 302nm SiO2 thickness. The curves were offset for clarity.
Fig. 4
Fig. 4 The color contour plots of the reflectivity of (a) bare substrate and (b) 1L, (c) 3L, (d) 10L MoS2 on SiO2/Si substrate, respectively, as function of both SiO2 thickness of 0-500nm and reflection wavelength of 500-750nm.
Fig. 5
Fig. 5 The optical images of 1L-5L, 9L, 10L MoS2 flakes on SiO2/Si substrate with 100nm SiO2 thickness.
Fig. 6
Fig. 6 Raman spectra of 1L-5L, 9L, 10L MoS2 flakes with the frequency (a) below 60 cm−1 and (b) between 370 cm−1 and 420 cm−1. The position of (c) S and LB modes and (d) E12g and A1g modes were summarized with the increasing N.
Fig. 7
Fig. 7 The optical images of 1L-3L MoS2 flakes on SiO2/Si substrate with 89nm SiO2 thickness, and 1L and 3L MoS2 flakes on SiO2/Si substrate with 302nm SiO2 thickness.
Fig. 8
Fig. 8 Schematic diagrams of (a) multiple reflection and optical interference and (b) the electric field component transfer process in the Air/NL-MoS2/SiO2/Si structure.
Fig. 9
Fig. 9 (a) The experimental and (b) the calculated reflectivity values of the bare 100nm SiO2/Si substrate (with N = 0, denoted as black curve) and 1L-5L, 9L, 10L MoS2 flakes on 100nm SiO2/Si substrate (denoted as colorized curves).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

A ij = 1 t ij ( 1 r ij r ij 1 ), B( z j )=( e i δ j 0 0 e i δ j ).
( E Air + E Air )= A 01 B( d 1 ) A 12 B( d 2 ) A 23 ( E Si + 0 ).

Metrics