Abstract

We demonstrate a modified version of laser-induced fluorescence thermometry (LIFT) for mapping temperature gradients in the vicinity of small photothermal devices. Our approach is based on temperature sensitive fluorescent membranes fabricated with rhodamine B and polydimethylsiloxane (PDMS). Relevant membrane features for LIFT, such as temperature sensitivity, thermal quenching and photobleaching are presented for a range of  25 °C to 90 °C, and their performance is evaluated upon obtaining the temperature gradients produced in the proximity of optical fiber micro-heaters. Our results show that temperature measurements in regions as small as 750 µm × 650 µm, with a temperature resolution of 1 °C, can be readily obtained.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Rhodamine B as an optical thermometer in cells focally exposed to infrared laser light or nanosecond pulsed electric fields

David Moreau, Claire Lefort, Ryan Burke, Philippe Leveque, and Rodney P. O’Connor
Biomed. Opt. Express 6(10) 4105-4117 (2015)

Flow effects in the laser-induced thermal loading of optical traps and optofluidic devices

B. del Rosal, C. Sun, Y. Yan, M.D. Mackenzie, C. Lu, A. A. Bettiol, A.K. Kar, and D. Jaque
Opt. Express 22(20) 23938-23954 (2014)

Absorption measurements in optical coatings by lock-in thermography

Feng Liu and Laurent Gallais
Appl. Opt. 56(33) 9225-9232 (2017)

References

  • View by:
  • |
  • |
  • |

  1. E. Samiei, M. Tabrizian, and M. Hoorfar, “A review of digital microfluidics as portable platforms for lab-on a-chip applications,” Lab Chip 16(13), 2376–2396 (2016).
    [Crossref] [PubMed]
  2. M. M. Kim, A. Giry, M. Mastiani, G. O. Rodrigues, A. Reis, and P. Mandin, “Microscale thermometry: A review,” Microelectron. Eng. 148, 129–142 (2015).
    [Crossref]
  3. V. K. Natrajan and K. T. Christensen, “Fluorescent Thermometry,” in Encyclopedia of Microfluidics and Nanofluidics, D. Li, ed. (Springer, 2015).
  4. P. Löw, B. Kim, N. Takama, and C. Bergaud, “High-spatial-resolution surface-temperature mapping using fluorescent thermometry,” Small 4(7), 908–914 (2008).
    [Crossref] [PubMed]
  5. D. Ross, M. Gaitan, and L. E. Locascio, “Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye,” Anal. Chem. 73(17), 4117–4123 (2001).
    [Crossref] [PubMed]
  6. R. Fu, B. Xu, and D. Li, “Study of the temperature field in microchannels of a PDMS chip with embedded local heater using temperature-dependent fluorescent dye,” Int. J. Therm. Sci. 45(9), 841–847 (2006).
    [Crossref]
  7. V. K. Natrajan and K. T. Christensen, “Two-color laser-induced fluorescent thermometry for microfluidic systems,” Meas. Sci. Technol. 20(1), 015401 (2009).
    [Crossref] [PubMed]
  8. P. Chamarthy, S. V. Garimella, and S. T. Wereley, “Measurement of the temperature non-uniformity in a microchannel heat sink using microscale laser-induced fluorescence,” Int. J. Heat Mass Transfer 53(15-16), 3275–3283 (2010).
    [Crossref]
  9. J. Wu, T. Y. Kwok, X. Li, W. Cao, Y. Wang, J. Huang, Y. Hong, D. Zhang, and W. Wen, “Mapping three-dimensional temperature in microfluidic chip,” Sci. Rep. 3(1), 3321 (2013).
    [Crossref] [PubMed]
  10. W. Jung, Y. W. Kim, D. Yim, and J. Y. Yoo, “Microscale surface thermometry using SU8/Rhodamine-B thin layer,” Sensors Actuator A 171(2), 228–232 (2011).
    [Crossref]
  11. S. Ebert, K. Travis, B. Lincoln, and J. Guck, “Fluorescence ratio thermometry in a microfluidic dual-beam laser trap,” Opt. Express 15(23), 15493–15499 (2007).
    [Crossref] [PubMed]
  12. D. Moreau, C. Lefort, R. Burke, P. Leveque, and R. P. O’Connor, “Rhodamine B as an optical thermometer in cells focally exposed to infrared laser light or nanosecond pulsed electric fields,” Biomed. Opt. Express 6(10), 4105–4117 (2015).
    [Crossref] [PubMed]
  13. L. Gui and C. L. Ren, “Temperature measurement in microfluidic chips using photobleaching of a fluorescent thin film,” Appl. Phys. Lett. 92(2), 024102 (2008).
    [Crossref]
  14. G. Y. Zhuo, H. C. Su, H. Y. Wang, and M. C. Chan, “In situ high-resolution thermal microscopy on integrated circuits,” Opt. Express 25(18), 21548–21558 (2017).
    [Crossref] [PubMed]
  15. L. V. J. Behm, I. Schlenther, M. Petrausch, F. Jorde, N. Godino, F. Pfisterer, C. Duschl, and M. Kirschbaum, “A simple approach for the precise measurement of surface temperature distributions on the microscale under dry and liquid condition based on thin Rhodamine B films,” Sens. Actuators B Chem. 255, 2023–2031 (2018).
    [Crossref]
  16. M. P. Wolf, G. B. Salieb-Beugelaar, and P. Hunziker, “PDMS with designer functionalities-properties, modifications strategies, and applications,” Prog. Polym. Sci. 83, 97–134 (2018).
    [Crossref]
  17. R. Pimentel-Domínguez, P. Moreno-Álvarez, M. Hautefeuille, A. Chavarría, and J. Hernández-Cordero, “Photothermal lesions in soft tissue induced by optical fiber microheaters,” Biomed. Opt. Express 7(4), 1138–1148 (2016).
    [Crossref] [PubMed]
  18. R. Pimentel-Domínguez, A. M. Velázquez-Benítez, J. R. Vélez-Cordero, M. Hautefeuille, F. Sánchez-Arévalo, and J. Hernández-Cordero, “Photothermal effects and applications of polydimethylsiloxane membranes with carbon nanoparticles,” Polymers (Basel) 8(4), 84 (2016).
    [Crossref]
  19. G. Liu, Q. Sheng, D. Dam, J. Hua, W. Hou, and M. Han, “Self-gauged fiber-optic micro-heater with an operation temperature above 1000°C,” Opt. Lett. 42(7), 1412–1415 (2017).
    [Crossref] [PubMed]

2018 (2)

L. V. J. Behm, I. Schlenther, M. Petrausch, F. Jorde, N. Godino, F. Pfisterer, C. Duschl, and M. Kirschbaum, “A simple approach for the precise measurement of surface temperature distributions on the microscale under dry and liquid condition based on thin Rhodamine B films,” Sens. Actuators B Chem. 255, 2023–2031 (2018).
[Crossref]

M. P. Wolf, G. B. Salieb-Beugelaar, and P. Hunziker, “PDMS with designer functionalities-properties, modifications strategies, and applications,” Prog. Polym. Sci. 83, 97–134 (2018).
[Crossref]

2017 (2)

2016 (3)

R. Pimentel-Domínguez, P. Moreno-Álvarez, M. Hautefeuille, A. Chavarría, and J. Hernández-Cordero, “Photothermal lesions in soft tissue induced by optical fiber microheaters,” Biomed. Opt. Express 7(4), 1138–1148 (2016).
[Crossref] [PubMed]

R. Pimentel-Domínguez, A. M. Velázquez-Benítez, J. R. Vélez-Cordero, M. Hautefeuille, F. Sánchez-Arévalo, and J. Hernández-Cordero, “Photothermal effects and applications of polydimethylsiloxane membranes with carbon nanoparticles,” Polymers (Basel) 8(4), 84 (2016).
[Crossref]

E. Samiei, M. Tabrizian, and M. Hoorfar, “A review of digital microfluidics as portable platforms for lab-on a-chip applications,” Lab Chip 16(13), 2376–2396 (2016).
[Crossref] [PubMed]

2015 (2)

2013 (1)

J. Wu, T. Y. Kwok, X. Li, W. Cao, Y. Wang, J. Huang, Y. Hong, D. Zhang, and W. Wen, “Mapping three-dimensional temperature in microfluidic chip,” Sci. Rep. 3(1), 3321 (2013).
[Crossref] [PubMed]

2011 (1)

W. Jung, Y. W. Kim, D. Yim, and J. Y. Yoo, “Microscale surface thermometry using SU8/Rhodamine-B thin layer,” Sensors Actuator A 171(2), 228–232 (2011).
[Crossref]

2010 (1)

P. Chamarthy, S. V. Garimella, and S. T. Wereley, “Measurement of the temperature non-uniformity in a microchannel heat sink using microscale laser-induced fluorescence,” Int. J. Heat Mass Transfer 53(15-16), 3275–3283 (2010).
[Crossref]

2009 (1)

V. K. Natrajan and K. T. Christensen, “Two-color laser-induced fluorescent thermometry for microfluidic systems,” Meas. Sci. Technol. 20(1), 015401 (2009).
[Crossref] [PubMed]

2008 (2)

P. Löw, B. Kim, N. Takama, and C. Bergaud, “High-spatial-resolution surface-temperature mapping using fluorescent thermometry,” Small 4(7), 908–914 (2008).
[Crossref] [PubMed]

L. Gui and C. L. Ren, “Temperature measurement in microfluidic chips using photobleaching of a fluorescent thin film,” Appl. Phys. Lett. 92(2), 024102 (2008).
[Crossref]

2007 (1)

2006 (1)

R. Fu, B. Xu, and D. Li, “Study of the temperature field in microchannels of a PDMS chip with embedded local heater using temperature-dependent fluorescent dye,” Int. J. Therm. Sci. 45(9), 841–847 (2006).
[Crossref]

2001 (1)

D. Ross, M. Gaitan, and L. E. Locascio, “Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye,” Anal. Chem. 73(17), 4117–4123 (2001).
[Crossref] [PubMed]

Behm, L. V. J.

L. V. J. Behm, I. Schlenther, M. Petrausch, F. Jorde, N. Godino, F. Pfisterer, C. Duschl, and M. Kirschbaum, “A simple approach for the precise measurement of surface temperature distributions on the microscale under dry and liquid condition based on thin Rhodamine B films,” Sens. Actuators B Chem. 255, 2023–2031 (2018).
[Crossref]

Bergaud, C.

P. Löw, B. Kim, N. Takama, and C. Bergaud, “High-spatial-resolution surface-temperature mapping using fluorescent thermometry,” Small 4(7), 908–914 (2008).
[Crossref] [PubMed]

Burke, R.

Cao, W.

J. Wu, T. Y. Kwok, X. Li, W. Cao, Y. Wang, J. Huang, Y. Hong, D. Zhang, and W. Wen, “Mapping three-dimensional temperature in microfluidic chip,” Sci. Rep. 3(1), 3321 (2013).
[Crossref] [PubMed]

Chamarthy, P.

P. Chamarthy, S. V. Garimella, and S. T. Wereley, “Measurement of the temperature non-uniformity in a microchannel heat sink using microscale laser-induced fluorescence,” Int. J. Heat Mass Transfer 53(15-16), 3275–3283 (2010).
[Crossref]

Chan, M. C.

Chavarría, A.

Christensen, K. T.

V. K. Natrajan and K. T. Christensen, “Two-color laser-induced fluorescent thermometry for microfluidic systems,” Meas. Sci. Technol. 20(1), 015401 (2009).
[Crossref] [PubMed]

Dam, D.

Duschl, C.

L. V. J. Behm, I. Schlenther, M. Petrausch, F. Jorde, N. Godino, F. Pfisterer, C. Duschl, and M. Kirschbaum, “A simple approach for the precise measurement of surface temperature distributions on the microscale under dry and liquid condition based on thin Rhodamine B films,” Sens. Actuators B Chem. 255, 2023–2031 (2018).
[Crossref]

Ebert, S.

Fu, R.

R. Fu, B. Xu, and D. Li, “Study of the temperature field in microchannels of a PDMS chip with embedded local heater using temperature-dependent fluorescent dye,” Int. J. Therm. Sci. 45(9), 841–847 (2006).
[Crossref]

Gaitan, M.

D. Ross, M. Gaitan, and L. E. Locascio, “Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye,” Anal. Chem. 73(17), 4117–4123 (2001).
[Crossref] [PubMed]

Garimella, S. V.

P. Chamarthy, S. V. Garimella, and S. T. Wereley, “Measurement of the temperature non-uniformity in a microchannel heat sink using microscale laser-induced fluorescence,” Int. J. Heat Mass Transfer 53(15-16), 3275–3283 (2010).
[Crossref]

Giry, A.

M. M. Kim, A. Giry, M. Mastiani, G. O. Rodrigues, A. Reis, and P. Mandin, “Microscale thermometry: A review,” Microelectron. Eng. 148, 129–142 (2015).
[Crossref]

Godino, N.

L. V. J. Behm, I. Schlenther, M. Petrausch, F. Jorde, N. Godino, F. Pfisterer, C. Duschl, and M. Kirschbaum, “A simple approach for the precise measurement of surface temperature distributions on the microscale under dry and liquid condition based on thin Rhodamine B films,” Sens. Actuators B Chem. 255, 2023–2031 (2018).
[Crossref]

Guck, J.

Gui, L.

L. Gui and C. L. Ren, “Temperature measurement in microfluidic chips using photobleaching of a fluorescent thin film,” Appl. Phys. Lett. 92(2), 024102 (2008).
[Crossref]

Han, M.

Hautefeuille, M.

R. Pimentel-Domínguez, P. Moreno-Álvarez, M. Hautefeuille, A. Chavarría, and J. Hernández-Cordero, “Photothermal lesions in soft tissue induced by optical fiber microheaters,” Biomed. Opt. Express 7(4), 1138–1148 (2016).
[Crossref] [PubMed]

R. Pimentel-Domínguez, A. M. Velázquez-Benítez, J. R. Vélez-Cordero, M. Hautefeuille, F. Sánchez-Arévalo, and J. Hernández-Cordero, “Photothermal effects and applications of polydimethylsiloxane membranes with carbon nanoparticles,” Polymers (Basel) 8(4), 84 (2016).
[Crossref]

Hernández-Cordero, J.

R. Pimentel-Domínguez, A. M. Velázquez-Benítez, J. R. Vélez-Cordero, M. Hautefeuille, F. Sánchez-Arévalo, and J. Hernández-Cordero, “Photothermal effects and applications of polydimethylsiloxane membranes with carbon nanoparticles,” Polymers (Basel) 8(4), 84 (2016).
[Crossref]

R. Pimentel-Domínguez, P. Moreno-Álvarez, M. Hautefeuille, A. Chavarría, and J. Hernández-Cordero, “Photothermal lesions in soft tissue induced by optical fiber microheaters,” Biomed. Opt. Express 7(4), 1138–1148 (2016).
[Crossref] [PubMed]

Hong, Y.

J. Wu, T. Y. Kwok, X. Li, W. Cao, Y. Wang, J. Huang, Y. Hong, D. Zhang, and W. Wen, “Mapping three-dimensional temperature in microfluidic chip,” Sci. Rep. 3(1), 3321 (2013).
[Crossref] [PubMed]

Hoorfar, M.

E. Samiei, M. Tabrizian, and M. Hoorfar, “A review of digital microfluidics as portable platforms for lab-on a-chip applications,” Lab Chip 16(13), 2376–2396 (2016).
[Crossref] [PubMed]

Hou, W.

Hua, J.

Huang, J.

J. Wu, T. Y. Kwok, X. Li, W. Cao, Y. Wang, J. Huang, Y. Hong, D. Zhang, and W. Wen, “Mapping three-dimensional temperature in microfluidic chip,” Sci. Rep. 3(1), 3321 (2013).
[Crossref] [PubMed]

Hunziker, P.

M. P. Wolf, G. B. Salieb-Beugelaar, and P. Hunziker, “PDMS with designer functionalities-properties, modifications strategies, and applications,” Prog. Polym. Sci. 83, 97–134 (2018).
[Crossref]

Jorde, F.

L. V. J. Behm, I. Schlenther, M. Petrausch, F. Jorde, N. Godino, F. Pfisterer, C. Duschl, and M. Kirschbaum, “A simple approach for the precise measurement of surface temperature distributions on the microscale under dry and liquid condition based on thin Rhodamine B films,” Sens. Actuators B Chem. 255, 2023–2031 (2018).
[Crossref]

Jung, W.

W. Jung, Y. W. Kim, D. Yim, and J. Y. Yoo, “Microscale surface thermometry using SU8/Rhodamine-B thin layer,” Sensors Actuator A 171(2), 228–232 (2011).
[Crossref]

Kim, B.

P. Löw, B. Kim, N. Takama, and C. Bergaud, “High-spatial-resolution surface-temperature mapping using fluorescent thermometry,” Small 4(7), 908–914 (2008).
[Crossref] [PubMed]

Kim, M. M.

M. M. Kim, A. Giry, M. Mastiani, G. O. Rodrigues, A. Reis, and P. Mandin, “Microscale thermometry: A review,” Microelectron. Eng. 148, 129–142 (2015).
[Crossref]

Kim, Y. W.

W. Jung, Y. W. Kim, D. Yim, and J. Y. Yoo, “Microscale surface thermometry using SU8/Rhodamine-B thin layer,” Sensors Actuator A 171(2), 228–232 (2011).
[Crossref]

Kirschbaum, M.

L. V. J. Behm, I. Schlenther, M. Petrausch, F. Jorde, N. Godino, F. Pfisterer, C. Duschl, and M. Kirschbaum, “A simple approach for the precise measurement of surface temperature distributions on the microscale under dry and liquid condition based on thin Rhodamine B films,” Sens. Actuators B Chem. 255, 2023–2031 (2018).
[Crossref]

Kwok, T. Y.

J. Wu, T. Y. Kwok, X. Li, W. Cao, Y. Wang, J. Huang, Y. Hong, D. Zhang, and W. Wen, “Mapping three-dimensional temperature in microfluidic chip,” Sci. Rep. 3(1), 3321 (2013).
[Crossref] [PubMed]

Lefort, C.

Leveque, P.

Li, D.

R. Fu, B. Xu, and D. Li, “Study of the temperature field in microchannels of a PDMS chip with embedded local heater using temperature-dependent fluorescent dye,” Int. J. Therm. Sci. 45(9), 841–847 (2006).
[Crossref]

Li, X.

J. Wu, T. Y. Kwok, X. Li, W. Cao, Y. Wang, J. Huang, Y. Hong, D. Zhang, and W. Wen, “Mapping three-dimensional temperature in microfluidic chip,” Sci. Rep. 3(1), 3321 (2013).
[Crossref] [PubMed]

Lincoln, B.

Liu, G.

Locascio, L. E.

D. Ross, M. Gaitan, and L. E. Locascio, “Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye,” Anal. Chem. 73(17), 4117–4123 (2001).
[Crossref] [PubMed]

Löw, P.

P. Löw, B. Kim, N. Takama, and C. Bergaud, “High-spatial-resolution surface-temperature mapping using fluorescent thermometry,” Small 4(7), 908–914 (2008).
[Crossref] [PubMed]

Mandin, P.

M. M. Kim, A. Giry, M. Mastiani, G. O. Rodrigues, A. Reis, and P. Mandin, “Microscale thermometry: A review,” Microelectron. Eng. 148, 129–142 (2015).
[Crossref]

Mastiani, M.

M. M. Kim, A. Giry, M. Mastiani, G. O. Rodrigues, A. Reis, and P. Mandin, “Microscale thermometry: A review,” Microelectron. Eng. 148, 129–142 (2015).
[Crossref]

Moreau, D.

Moreno-Álvarez, P.

Natrajan, V. K.

V. K. Natrajan and K. T. Christensen, “Two-color laser-induced fluorescent thermometry for microfluidic systems,” Meas. Sci. Technol. 20(1), 015401 (2009).
[Crossref] [PubMed]

O’Connor, R. P.

Petrausch, M.

L. V. J. Behm, I. Schlenther, M. Petrausch, F. Jorde, N. Godino, F. Pfisterer, C. Duschl, and M. Kirschbaum, “A simple approach for the precise measurement of surface temperature distributions on the microscale under dry and liquid condition based on thin Rhodamine B films,” Sens. Actuators B Chem. 255, 2023–2031 (2018).
[Crossref]

Pfisterer, F.

L. V. J. Behm, I. Schlenther, M. Petrausch, F. Jorde, N. Godino, F. Pfisterer, C. Duschl, and M. Kirschbaum, “A simple approach for the precise measurement of surface temperature distributions on the microscale under dry and liquid condition based on thin Rhodamine B films,” Sens. Actuators B Chem. 255, 2023–2031 (2018).
[Crossref]

Pimentel-Domínguez, R.

R. Pimentel-Domínguez, A. M. Velázquez-Benítez, J. R. Vélez-Cordero, M. Hautefeuille, F. Sánchez-Arévalo, and J. Hernández-Cordero, “Photothermal effects and applications of polydimethylsiloxane membranes with carbon nanoparticles,” Polymers (Basel) 8(4), 84 (2016).
[Crossref]

R. Pimentel-Domínguez, P. Moreno-Álvarez, M. Hautefeuille, A. Chavarría, and J. Hernández-Cordero, “Photothermal lesions in soft tissue induced by optical fiber microheaters,” Biomed. Opt. Express 7(4), 1138–1148 (2016).
[Crossref] [PubMed]

Reis, A.

M. M. Kim, A. Giry, M. Mastiani, G. O. Rodrigues, A. Reis, and P. Mandin, “Microscale thermometry: A review,” Microelectron. Eng. 148, 129–142 (2015).
[Crossref]

Ren, C. L.

L. Gui and C. L. Ren, “Temperature measurement in microfluidic chips using photobleaching of a fluorescent thin film,” Appl. Phys. Lett. 92(2), 024102 (2008).
[Crossref]

Rodrigues, G. O.

M. M. Kim, A. Giry, M. Mastiani, G. O. Rodrigues, A. Reis, and P. Mandin, “Microscale thermometry: A review,” Microelectron. Eng. 148, 129–142 (2015).
[Crossref]

Ross, D.

D. Ross, M. Gaitan, and L. E. Locascio, “Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye,” Anal. Chem. 73(17), 4117–4123 (2001).
[Crossref] [PubMed]

Salieb-Beugelaar, G. B.

M. P. Wolf, G. B. Salieb-Beugelaar, and P. Hunziker, “PDMS with designer functionalities-properties, modifications strategies, and applications,” Prog. Polym. Sci. 83, 97–134 (2018).
[Crossref]

Samiei, E.

E. Samiei, M. Tabrizian, and M. Hoorfar, “A review of digital microfluidics as portable platforms for lab-on a-chip applications,” Lab Chip 16(13), 2376–2396 (2016).
[Crossref] [PubMed]

Sánchez-Arévalo, F.

R. Pimentel-Domínguez, A. M. Velázquez-Benítez, J. R. Vélez-Cordero, M. Hautefeuille, F. Sánchez-Arévalo, and J. Hernández-Cordero, “Photothermal effects and applications of polydimethylsiloxane membranes with carbon nanoparticles,” Polymers (Basel) 8(4), 84 (2016).
[Crossref]

Schlenther, I.

L. V. J. Behm, I. Schlenther, M. Petrausch, F. Jorde, N. Godino, F. Pfisterer, C. Duschl, and M. Kirschbaum, “A simple approach for the precise measurement of surface temperature distributions on the microscale under dry and liquid condition based on thin Rhodamine B films,” Sens. Actuators B Chem. 255, 2023–2031 (2018).
[Crossref]

Sheng, Q.

Su, H. C.

Tabrizian, M.

E. Samiei, M. Tabrizian, and M. Hoorfar, “A review of digital microfluidics as portable platforms for lab-on a-chip applications,” Lab Chip 16(13), 2376–2396 (2016).
[Crossref] [PubMed]

Takama, N.

P. Löw, B. Kim, N. Takama, and C. Bergaud, “High-spatial-resolution surface-temperature mapping using fluorescent thermometry,” Small 4(7), 908–914 (2008).
[Crossref] [PubMed]

Travis, K.

Velázquez-Benítez, A. M.

R. Pimentel-Domínguez, A. M. Velázquez-Benítez, J. R. Vélez-Cordero, M. Hautefeuille, F. Sánchez-Arévalo, and J. Hernández-Cordero, “Photothermal effects and applications of polydimethylsiloxane membranes with carbon nanoparticles,” Polymers (Basel) 8(4), 84 (2016).
[Crossref]

Vélez-Cordero, J. R.

R. Pimentel-Domínguez, A. M. Velázquez-Benítez, J. R. Vélez-Cordero, M. Hautefeuille, F. Sánchez-Arévalo, and J. Hernández-Cordero, “Photothermal effects and applications of polydimethylsiloxane membranes with carbon nanoparticles,” Polymers (Basel) 8(4), 84 (2016).
[Crossref]

Wang, H. Y.

Wang, Y.

J. Wu, T. Y. Kwok, X. Li, W. Cao, Y. Wang, J. Huang, Y. Hong, D. Zhang, and W. Wen, “Mapping three-dimensional temperature in microfluidic chip,” Sci. Rep. 3(1), 3321 (2013).
[Crossref] [PubMed]

Wen, W.

J. Wu, T. Y. Kwok, X. Li, W. Cao, Y. Wang, J. Huang, Y. Hong, D. Zhang, and W. Wen, “Mapping three-dimensional temperature in microfluidic chip,” Sci. Rep. 3(1), 3321 (2013).
[Crossref] [PubMed]

Wereley, S. T.

P. Chamarthy, S. V. Garimella, and S. T. Wereley, “Measurement of the temperature non-uniformity in a microchannel heat sink using microscale laser-induced fluorescence,” Int. J. Heat Mass Transfer 53(15-16), 3275–3283 (2010).
[Crossref]

Wolf, M. P.

M. P. Wolf, G. B. Salieb-Beugelaar, and P. Hunziker, “PDMS with designer functionalities-properties, modifications strategies, and applications,” Prog. Polym. Sci. 83, 97–134 (2018).
[Crossref]

Wu, J.

J. Wu, T. Y. Kwok, X. Li, W. Cao, Y. Wang, J. Huang, Y. Hong, D. Zhang, and W. Wen, “Mapping three-dimensional temperature in microfluidic chip,” Sci. Rep. 3(1), 3321 (2013).
[Crossref] [PubMed]

Xu, B.

R. Fu, B. Xu, and D. Li, “Study of the temperature field in microchannels of a PDMS chip with embedded local heater using temperature-dependent fluorescent dye,” Int. J. Therm. Sci. 45(9), 841–847 (2006).
[Crossref]

Yim, D.

W. Jung, Y. W. Kim, D. Yim, and J. Y. Yoo, “Microscale surface thermometry using SU8/Rhodamine-B thin layer,” Sensors Actuator A 171(2), 228–232 (2011).
[Crossref]

Yoo, J. Y.

W. Jung, Y. W. Kim, D. Yim, and J. Y. Yoo, “Microscale surface thermometry using SU8/Rhodamine-B thin layer,” Sensors Actuator A 171(2), 228–232 (2011).
[Crossref]

Zhang, D.

J. Wu, T. Y. Kwok, X. Li, W. Cao, Y. Wang, J. Huang, Y. Hong, D. Zhang, and W. Wen, “Mapping three-dimensional temperature in microfluidic chip,” Sci. Rep. 3(1), 3321 (2013).
[Crossref] [PubMed]

Zhuo, G. Y.

Anal. Chem. (1)

D. Ross, M. Gaitan, and L. E. Locascio, “Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye,” Anal. Chem. 73(17), 4117–4123 (2001).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

L. Gui and C. L. Ren, “Temperature measurement in microfluidic chips using photobleaching of a fluorescent thin film,” Appl. Phys. Lett. 92(2), 024102 (2008).
[Crossref]

Biomed. Opt. Express (2)

Int. J. Heat Mass Transfer (1)

P. Chamarthy, S. V. Garimella, and S. T. Wereley, “Measurement of the temperature non-uniformity in a microchannel heat sink using microscale laser-induced fluorescence,” Int. J. Heat Mass Transfer 53(15-16), 3275–3283 (2010).
[Crossref]

Int. J. Therm. Sci. (1)

R. Fu, B. Xu, and D. Li, “Study of the temperature field in microchannels of a PDMS chip with embedded local heater using temperature-dependent fluorescent dye,” Int. J. Therm. Sci. 45(9), 841–847 (2006).
[Crossref]

Lab Chip (1)

E. Samiei, M. Tabrizian, and M. Hoorfar, “A review of digital microfluidics as portable platforms for lab-on a-chip applications,” Lab Chip 16(13), 2376–2396 (2016).
[Crossref] [PubMed]

Meas. Sci. Technol. (1)

V. K. Natrajan and K. T. Christensen, “Two-color laser-induced fluorescent thermometry for microfluidic systems,” Meas. Sci. Technol. 20(1), 015401 (2009).
[Crossref] [PubMed]

Microelectron. Eng. (1)

M. M. Kim, A. Giry, M. Mastiani, G. O. Rodrigues, A. Reis, and P. Mandin, “Microscale thermometry: A review,” Microelectron. Eng. 148, 129–142 (2015).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Polymers (Basel) (1)

R. Pimentel-Domínguez, A. M. Velázquez-Benítez, J. R. Vélez-Cordero, M. Hautefeuille, F. Sánchez-Arévalo, and J. Hernández-Cordero, “Photothermal effects and applications of polydimethylsiloxane membranes with carbon nanoparticles,” Polymers (Basel) 8(4), 84 (2016).
[Crossref]

Prog. Polym. Sci. (1)

M. P. Wolf, G. B. Salieb-Beugelaar, and P. Hunziker, “PDMS with designer functionalities-properties, modifications strategies, and applications,” Prog. Polym. Sci. 83, 97–134 (2018).
[Crossref]

Sci. Rep. (1)

J. Wu, T. Y. Kwok, X. Li, W. Cao, Y. Wang, J. Huang, Y. Hong, D. Zhang, and W. Wen, “Mapping three-dimensional temperature in microfluidic chip,” Sci. Rep. 3(1), 3321 (2013).
[Crossref] [PubMed]

Sens. Actuators B Chem. (1)

L. V. J. Behm, I. Schlenther, M. Petrausch, F. Jorde, N. Godino, F. Pfisterer, C. Duschl, and M. Kirschbaum, “A simple approach for the precise measurement of surface temperature distributions on the microscale under dry and liquid condition based on thin Rhodamine B films,” Sens. Actuators B Chem. 255, 2023–2031 (2018).
[Crossref]

Sensors Actuator A (1)

W. Jung, Y. W. Kim, D. Yim, and J. Y. Yoo, “Microscale surface thermometry using SU8/Rhodamine-B thin layer,” Sensors Actuator A 171(2), 228–232 (2011).
[Crossref]

Small (1)

P. Löw, B. Kim, N. Takama, and C. Bergaud, “High-spatial-resolution surface-temperature mapping using fluorescent thermometry,” Small 4(7), 908–914 (2008).
[Crossref] [PubMed]

Other (1)

V. K. Natrajan and K. T. Christensen, “Fluorescent Thermometry,” in Encyclopedia of Microfluidics and Nanofluidics, D. Li, ed. (Springer, 2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Setup for laser-induced fluorescence imaging: a photodetector (PD) was used for monitoring the stability of the laser; synchronization, temperature control, image acquisition and processing were done via a personal computer. PID: proportional-integral-derivative controller; TEC: Thermoelectric cooler; RH: ceramic heater; TH: thermistor; BS: beam splitter. The laser beam is expanded by a lens (not shown) to increase the illumination area.
Fig. 2
Fig. 2 PDMS-RhB membranes: (a) optical microscope image of the membranes; (b) typical emission spectrum and fluorescence emission (inset); (c) photobleaching effect in the membranes after 1 hour of laser exposure; (d) thermal bleaching after 1 hour for different temperatures.
Fig. 3
Fig. 3 (a) Calibration curve (normalized intensity vs. temperature) for the PDMS-RhB membrane. The insets show fluorescence images captured within the analyzed region (1.35 x 1.35 mm) for different temperatures. (b) Comparison of the temperature obtained with LIFT analysis and the temperature measured with the thermistor.
Fig. 4
Fig. 4 Characterization of optical fiber micro-heater (OFMHs): (a) experimental setup to obtain the temperature maps in the vicinity of an OFMH with a RhB membrane and LIFT; (b) graphic depiction of the process used for obtaining the temperature maps; (c) fluorescence images from the membranes for different temperatures before processing (the location of the OFMH tip is illustrated at the bottom part of the images); (d) temperature maps obtained for laser diode powers of: (1) 48.2 mW, (2) 108 mW, (3) 167 mW and (4) 253 mW; (e) average temperature as a function of optical power evaluated for the region delimited by the red rectangle shown in 4(d). The scale bar is 200 µm.
Fig. 5
Fig. 5 Temperature maps for different optical powers obtained with a pristine optical fiber (top) and with an OFMH (bottom). The scale bar is 200 µm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I N = I/P I 0 / P 0 .

Metrics