Abstract

Amorphous Al2O3 is an attractive platform for integrated photonics, providing active and passive functionalities. We have developed an integration procedure to create active and passive regions at the same level on one wafer. This fabrication process reduces the number of fabrication steps compared to vertical integration of two materials. The main advantage is that all structures are defined within a single photolithography and etching step and are therefore automatically aligned. As a proof of principle, we demonstrated the luminescence of an active ring resonator with passive bus waveguide.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Vertically coupled microring resonators using one epitaxial growth step and single-side lithography

Óscar García López, Dries Van Thourhout, Daniel Lasaosa, Manuel López-Amo, Roel Baets, and Marko Galarza
Opt. Express 23(4) 5317-5326 (2015)

InAs/GaAs quantum dot infrared photodetector on a Si substrate by means of metal wafer bonding and epitaxial lift-off

HoSung Kim, Seung-Yeop Ahn, SangHyeon Kim, GeunHwan Ryu, Ji Hoon Kyhm, Kyung Woon Lee, Jung Ho Park, and Won Jun Choi
Opt. Express 25(15) 17562-17570 (2017)

Polysilicon photonic resonators for large-scale 3D integration of optical networks

Kyle Preston, Bradley Schmidt, and Michal Lipson
Opt. Express 15(25) 17283-17290 (2007)

References

  • View by:
  • |
  • |
  • |

  1. P. G. Kik and A. Polman, “Erbium-doped optical-waveguide amplifiers on silicon,” MRS Bull. 23(04), 48–54 (1998).
    [Crossref]
  2. P. Xing, G. F. R. Chen, X. Zhao, D. K. T. Ng, M. C. Tan, and D. T. H. Tan, “Silicon rich nitride ring resonators for rare - earth doped telecommunications-band amplifiers pumped at the O-band,” Sci. Rep. 7(1), 9101 (2017).
    [Crossref] [PubMed]
  3. L. Agazzi, K. Wörhoff, and M. Pollnau, “Energy-transfer-upconversion models, their applicability and breakdown in the presence of spectroscopically distinct ion classes: a case study in amorphous Al2O3 :Er3+,” J. Phys. Chem. C 117(13), 6759–6776 (2013).
    [Crossref]
  4. S. A. Vázquez-Córdova, M. Dijkstra, E. H. Bernhardi, F. Ay, K. Wörhoff, J. L. Herek, S. M. García-Blanco, and M. Pollnau, “Erbium-doped spiral amplifiers with 20 dB of net gain on silicon,” Opt. Express 22(21), 25993–26004 (2014).
    [Crossref] [PubMed]
  5. K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. P. Blauwendraat, and M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4-dB optical gain,” IEEE J. Quantum Electron. 45(5), 454–461 (2009).
    [Crossref]
  6. M. Demirtas, C. Odaci, N. K. Perkgoz, C. Sevik, and F. Ay, “Low loss atomic layer deposited Al2O3 waveguides for applications in on-chip optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–8 (2018).
    [Crossref]
  7. T. Ishizaka and Y. Kurokawa, “Optical properties of rare-earth ion (Gd3+, Ho3+, Pr3+, Sm3+, Dy3+ and Tm3+) -doped alumina films prepared by the sol–gel method,” J. Lumin. 92(1–2), 57–63 (2000).
    [Crossref]
  8. J. Yang, K. van Dalfsen, K. Wörhoff, F. Ay, and M. Pollnau, “High-gain Al2O3:Nd3+ channel waveguide amplifiers at 880 nm, 1060 nm, and 1330 nm,” Appl. Phys. B 101(1–2), 119–127 (2010).
    [Crossref]
  9. N. Purnawirman, N. Li, E. S. Magden, G. Singh, N. Singh, A. Baldycheva, E. S. Hosseini, J. Sun, M. Moresco, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “Ultra-narrow-linewidth Al2O3:Er3+ lasers with a wavelength-insensitive waveguide design on a wafer-scale silicon nitride platform,” Opt. Express 25(12), 13705–13713 (2017).
    [Crossref] [PubMed]
  10. J. D. B. Bradley, L. Agazzi, D. Geskus, F. Ay, K. Wörhoff, and M. Pollnau, “Gain bandwidth of 80 nm and 2 dB/cm peak gain in Al2O3:Er3+ optical amplifiers on silicon,” J. Opt. Soc. Am. B 27(2), 187 (2010).
    [Crossref]
  11. G. Singh, P. Purnawirman, J. D. B. Bradley, N. Li, E. S. Magden, M. Moresco, T. N. Adam, G. Leake, D. Coolbaugh, and M. R. Watts, “Resonant pumped erbium-doped waveguide lasers using distributed Bragg reflector cavities,” Opt. Lett. 41(6), 1189–1192 (2016).
    [Crossref] [PubMed]
  12. J. Rönn, L. Karvonen, C. Kauppinen, A. P. Perros, N. Peyghambarian, H. Lipsanen, A. Säynätjoki, and Z. Sun, “Atomic layer engineering of Er-ion distribution in highly doped Er:Al2O3 for photoluminescence enhancement,” ACS Photonics 3(11), 2040–2048 (2016).
    [Crossref]
  13. M. Belt and D. J. Blumenthal, “High temperature operation of an integrated erbium- doped DBR laser on an ultra-low-loss Si3N4 platform,” Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper Tu2C.7.
  14. L. Agazzi, J. D. B. Bradley, M. Dijkstra, F. Ay, G. Roelkens, R. Baets, K. Wörhoff, and M. Pollnau, “Monolithic integration of erbium-doped amplifiers with silicon-on-insulator waveguides,” Opt. Express 18(26), 27703–27711 (2010).
    [Crossref] [PubMed]
  15. J. Mu, M. Dijkstra, Y.-S. Yong, F. B. Segerink, K. Wörhoff, M. Hoekman, A. Leinse, and S. M. García-Blanco, “Low-loss, broadband and high fabrication tolerant vertically tapered optical couplers for monolithic integration of Si3N4 and polymer waveguides,” Opt. Lett. 42(19), 3812–3815 (2017).
    [Crossref] [PubMed]
  16. Z. Su, N. Li, H. C. Frankis, E. S. Magden, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “High-Q-factor Al2O3 micro-trench cavities integrated with silicon nitride waveguides on silicon,” Opt. Express 26(9), 11161–11170 (2018).
    [Crossref] [PubMed]
  17. J. P. Epping, M. Hoekman, R. Mateman, A. Leinse, R. G. Heideman, A. van Rees, P. J. M. van der Slot, C. J. Lee, and K.-J. Boller, “High confinement, high yield Si3N4 waveguides for nonlinear optical applications,” Opt. Express 23(2), 642–648 (2015).
    [Crossref] [PubMed]
  18. M. H. P. Pfeiffer, A. Kordts, V. Brasch, M. Zervas, M. Geiselmann, J. D. Jost, and T. J. Kippenberg, “Photonic Damascene process for integrated high-Q microresonator based nonlinear photonics,” Optica 3(1), 20 (2016).
    [Crossref]
  19. S. Yew, T. Liu, M. Lur, and W. Sun, “Dual damascene process,” U.S. patent US5801094A (September 1, 1998).
  20. S. Deleonibus and B. Guillaumot, “Damascene architecture electronic storage and method for making same,” U.S. patent US6955963B2 (2005).
  21. P. Loiko, N. Ismail, J. D. B. Bradley, M. Götelid, and M. Pollnau, “Refractive-index variation with rare-earth incorporation in amorphous Al2O3 thin films,” J. Non-Cryst. Solids 476, 95–99 (2017).
    [Crossref]
  22. Y. Fan, R. M. Oldenbeuving, C. G. Roeloffzen, M. Hoekman, D. Geskus, R. G. Heideman, and K.-J. Boller, “290 Hz Intrinsic Linewidth from an Integrated Optical Chip-based Widely Tunable InP-Si3N4 Hybrid Laser,” in Conference on Lasers and Electro-Optics (OSA, 2017), p. JTh5C.9.
    [Crossref]
  23. N. Li, D. Vermeulen, Z. Su, E. S. Magden, M. Xin, N. Singh, A. Ruocco, J. Notaros, C. V. Poulton, E. Timurdogan, C. Baiocco, and M. R. Watts, “Monolithically integrated erbium-doped tunable laser on a CMOS-compatible silicon photonics platform,” Opt. Express 26(13), 16200–16211 (2018).
    [Crossref] [PubMed]
  24. D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557(7703), 81–85 (2018).
    [Crossref] [PubMed]
  25. J. D. B. Bradley, F. Ay, K. Wörhoff, and M. Pollnau, “Fabrication of low-loss channel waveguides in Al2O3 and Y2O3 layers by inductively coupled plasma reactive ion etching,” Appl. Phys. B 89(2–3), 311–318 (2007).
    [Crossref]
  26. K. Wefers and C. Misra, Oxides and Hydroxides of Aluminum (1987), 19.
  27. E. Nakazawa and S. Shionoya, “Cooperative Luminescence in YbPO4,” Phys. Rev. Lett. 25(25), 1710–1712 (1970).
    [Crossref]

2018 (4)

M. Demirtas, C. Odaci, N. K. Perkgoz, C. Sevik, and F. Ay, “Low loss atomic layer deposited Al2O3 waveguides for applications in on-chip optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–8 (2018).
[Crossref]

Z. Su, N. Li, H. C. Frankis, E. S. Magden, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “High-Q-factor Al2O3 micro-trench cavities integrated with silicon nitride waveguides on silicon,” Opt. Express 26(9), 11161–11170 (2018).
[Crossref] [PubMed]

N. Li, D. Vermeulen, Z. Su, E. S. Magden, M. Xin, N. Singh, A. Ruocco, J. Notaros, C. V. Poulton, E. Timurdogan, C. Baiocco, and M. R. Watts, “Monolithically integrated erbium-doped tunable laser on a CMOS-compatible silicon photonics platform,” Opt. Express 26(13), 16200–16211 (2018).
[Crossref] [PubMed]

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557(7703), 81–85 (2018).
[Crossref] [PubMed]

2017 (4)

2016 (3)

2015 (1)

2014 (1)

2013 (1)

L. Agazzi, K. Wörhoff, and M. Pollnau, “Energy-transfer-upconversion models, their applicability and breakdown in the presence of spectroscopically distinct ion classes: a case study in amorphous Al2O3 :Er3+,” J. Phys. Chem. C 117(13), 6759–6776 (2013).
[Crossref]

2010 (3)

2009 (1)

K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. P. Blauwendraat, and M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4-dB optical gain,” IEEE J. Quantum Electron. 45(5), 454–461 (2009).
[Crossref]

2007 (1)

J. D. B. Bradley, F. Ay, K. Wörhoff, and M. Pollnau, “Fabrication of low-loss channel waveguides in Al2O3 and Y2O3 layers by inductively coupled plasma reactive ion etching,” Appl. Phys. B 89(2–3), 311–318 (2007).
[Crossref]

2000 (1)

T. Ishizaka and Y. Kurokawa, “Optical properties of rare-earth ion (Gd3+, Ho3+, Pr3+, Sm3+, Dy3+ and Tm3+) -doped alumina films prepared by the sol–gel method,” J. Lumin. 92(1–2), 57–63 (2000).
[Crossref]

1998 (1)

P. G. Kik and A. Polman, “Erbium-doped optical-waveguide amplifiers on silicon,” MRS Bull. 23(04), 48–54 (1998).
[Crossref]

1970 (1)

E. Nakazawa and S. Shionoya, “Cooperative Luminescence in YbPO4,” Phys. Rev. Lett. 25(25), 1710–1712 (1970).
[Crossref]

Adam, T. N.

Agazzi, L.

Ay, F.

M. Demirtas, C. Odaci, N. K. Perkgoz, C. Sevik, and F. Ay, “Low loss atomic layer deposited Al2O3 waveguides for applications in on-chip optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–8 (2018).
[Crossref]

S. A. Vázquez-Córdova, M. Dijkstra, E. H. Bernhardi, F. Ay, K. Wörhoff, J. L. Herek, S. M. García-Blanco, and M. Pollnau, “Erbium-doped spiral amplifiers with 20 dB of net gain on silicon,” Opt. Express 22(21), 25993–26004 (2014).
[Crossref] [PubMed]

L. Agazzi, J. D. B. Bradley, M. Dijkstra, F. Ay, G. Roelkens, R. Baets, K. Wörhoff, and M. Pollnau, “Monolithic integration of erbium-doped amplifiers with silicon-on-insulator waveguides,” Opt. Express 18(26), 27703–27711 (2010).
[Crossref] [PubMed]

J. D. B. Bradley, L. Agazzi, D. Geskus, F. Ay, K. Wörhoff, and M. Pollnau, “Gain bandwidth of 80 nm and 2 dB/cm peak gain in Al2O3:Er3+ optical amplifiers on silicon,” J. Opt. Soc. Am. B 27(2), 187 (2010).
[Crossref]

J. Yang, K. van Dalfsen, K. Wörhoff, F. Ay, and M. Pollnau, “High-gain Al2O3:Nd3+ channel waveguide amplifiers at 880 nm, 1060 nm, and 1330 nm,” Appl. Phys. B 101(1–2), 119–127 (2010).
[Crossref]

K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. P. Blauwendraat, and M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4-dB optical gain,” IEEE J. Quantum Electron. 45(5), 454–461 (2009).
[Crossref]

J. D. B. Bradley, F. Ay, K. Wörhoff, and M. Pollnau, “Fabrication of low-loss channel waveguides in Al2O3 and Y2O3 layers by inductively coupled plasma reactive ion etching,” Appl. Phys. B 89(2–3), 311–318 (2007).
[Crossref]

Baets, R.

Baiocco, C.

Baldycheva, A.

Bernhardi, E. H.

Blauwendraat, T. P.

K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. P. Blauwendraat, and M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4-dB optical gain,” IEEE J. Quantum Electron. 45(5), 454–461 (2009).
[Crossref]

Bluestone, A.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557(7703), 81–85 (2018).
[Crossref] [PubMed]

Boller, K.-J.

J. P. Epping, M. Hoekman, R. Mateman, A. Leinse, R. G. Heideman, A. van Rees, P. J. M. van der Slot, C. J. Lee, and K.-J. Boller, “High confinement, high yield Si3N4 waveguides for nonlinear optical applications,” Opt. Express 23(2), 642–648 (2015).
[Crossref] [PubMed]

Y. Fan, R. M. Oldenbeuving, C. G. Roeloffzen, M. Hoekman, D. Geskus, R. G. Heideman, and K.-J. Boller, “290 Hz Intrinsic Linewidth from an Integrated Optical Chip-based Widely Tunable InP-Si3N4 Hybrid Laser,” in Conference on Lasers and Electro-Optics (OSA, 2017), p. JTh5C.9.
[Crossref]

Bowers, J. E.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557(7703), 81–85 (2018).
[Crossref] [PubMed]

Bradley, J. D. B.

Z. Su, N. Li, H. C. Frankis, E. S. Magden, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “High-Q-factor Al2O3 micro-trench cavities integrated with silicon nitride waveguides on silicon,” Opt. Express 26(9), 11161–11170 (2018).
[Crossref] [PubMed]

N. Purnawirman, N. Li, E. S. Magden, G. Singh, N. Singh, A. Baldycheva, E. S. Hosseini, J. Sun, M. Moresco, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “Ultra-narrow-linewidth Al2O3:Er3+ lasers with a wavelength-insensitive waveguide design on a wafer-scale silicon nitride platform,” Opt. Express 25(12), 13705–13713 (2017).
[Crossref] [PubMed]

P. Loiko, N. Ismail, J. D. B. Bradley, M. Götelid, and M. Pollnau, “Refractive-index variation with rare-earth incorporation in amorphous Al2O3 thin films,” J. Non-Cryst. Solids 476, 95–99 (2017).
[Crossref]

G. Singh, P. Purnawirman, J. D. B. Bradley, N. Li, E. S. Magden, M. Moresco, T. N. Adam, G. Leake, D. Coolbaugh, and M. R. Watts, “Resonant pumped erbium-doped waveguide lasers using distributed Bragg reflector cavities,” Opt. Lett. 41(6), 1189–1192 (2016).
[Crossref] [PubMed]

L. Agazzi, J. D. B. Bradley, M. Dijkstra, F. Ay, G. Roelkens, R. Baets, K. Wörhoff, and M. Pollnau, “Monolithic integration of erbium-doped amplifiers with silicon-on-insulator waveguides,” Opt. Express 18(26), 27703–27711 (2010).
[Crossref] [PubMed]

J. D. B. Bradley, L. Agazzi, D. Geskus, F. Ay, K. Wörhoff, and M. Pollnau, “Gain bandwidth of 80 nm and 2 dB/cm peak gain in Al2O3:Er3+ optical amplifiers on silicon,” J. Opt. Soc. Am. B 27(2), 187 (2010).
[Crossref]

K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. P. Blauwendraat, and M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4-dB optical gain,” IEEE J. Quantum Electron. 45(5), 454–461 (2009).
[Crossref]

J. D. B. Bradley, F. Ay, K. Wörhoff, and M. Pollnau, “Fabrication of low-loss channel waveguides in Al2O3 and Y2O3 layers by inductively coupled plasma reactive ion etching,” Appl. Phys. B 89(2–3), 311–318 (2007).
[Crossref]

Brasch, V.

Briles, T. C.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557(7703), 81–85 (2018).
[Crossref] [PubMed]

Chang, L.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557(7703), 81–85 (2018).
[Crossref] [PubMed]

Chen, G. F. R.

P. Xing, G. F. R. Chen, X. Zhao, D. K. T. Ng, M. C. Tan, and D. T. H. Tan, “Silicon rich nitride ring resonators for rare - earth doped telecommunications-band amplifiers pumped at the O-band,” Sci. Rep. 7(1), 9101 (2017).
[Crossref] [PubMed]

Coolbaugh, D.

Demirtas, M.

M. Demirtas, C. Odaci, N. K. Perkgoz, C. Sevik, and F. Ay, “Low loss atomic layer deposited Al2O3 waveguides for applications in on-chip optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–8 (2018).
[Crossref]

Diddams, S. A.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557(7703), 81–85 (2018).
[Crossref] [PubMed]

Dijkstra, M.

Drake, T.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557(7703), 81–85 (2018).
[Crossref] [PubMed]

Epping, J. P.

Fan, Y.

Y. Fan, R. M. Oldenbeuving, C. G. Roeloffzen, M. Hoekman, D. Geskus, R. G. Heideman, and K.-J. Boller, “290 Hz Intrinsic Linewidth from an Integrated Optical Chip-based Widely Tunable InP-Si3N4 Hybrid Laser,” in Conference on Lasers and Electro-Optics (OSA, 2017), p. JTh5C.9.
[Crossref]

Frankis, H. C.

Fredrick, C.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557(7703), 81–85 (2018).
[Crossref] [PubMed]

García-Blanco, S. M.

Geiselmann, M.

Geskus, D.

J. D. B. Bradley, L. Agazzi, D. Geskus, F. Ay, K. Wörhoff, and M. Pollnau, “Gain bandwidth of 80 nm and 2 dB/cm peak gain in Al2O3:Er3+ optical amplifiers on silicon,” J. Opt. Soc. Am. B 27(2), 187 (2010).
[Crossref]

K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. P. Blauwendraat, and M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4-dB optical gain,” IEEE J. Quantum Electron. 45(5), 454–461 (2009).
[Crossref]

Y. Fan, R. M. Oldenbeuving, C. G. Roeloffzen, M. Hoekman, D. Geskus, R. G. Heideman, and K.-J. Boller, “290 Hz Intrinsic Linewidth from an Integrated Optical Chip-based Widely Tunable InP-Si3N4 Hybrid Laser,” in Conference on Lasers and Electro-Optics (OSA, 2017), p. JTh5C.9.
[Crossref]

Götelid, M.

P. Loiko, N. Ismail, J. D. B. Bradley, M. Götelid, and M. Pollnau, “Refractive-index variation with rare-earth incorporation in amorphous Al2O3 thin films,” J. Non-Cryst. Solids 476, 95–99 (2017).
[Crossref]

Heideman, R. G.

J. P. Epping, M. Hoekman, R. Mateman, A. Leinse, R. G. Heideman, A. van Rees, P. J. M. van der Slot, C. J. Lee, and K.-J. Boller, “High confinement, high yield Si3N4 waveguides for nonlinear optical applications,” Opt. Express 23(2), 642–648 (2015).
[Crossref] [PubMed]

Y. Fan, R. M. Oldenbeuving, C. G. Roeloffzen, M. Hoekman, D. Geskus, R. G. Heideman, and K.-J. Boller, “290 Hz Intrinsic Linewidth from an Integrated Optical Chip-based Widely Tunable InP-Si3N4 Hybrid Laser,” in Conference on Lasers and Electro-Optics (OSA, 2017), p. JTh5C.9.
[Crossref]

Herek, J. L.

Hoekman, M.

Hosseini, E. S.

Ilic, B. R.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557(7703), 81–85 (2018).
[Crossref] [PubMed]

Ishizaka, T.

T. Ishizaka and Y. Kurokawa, “Optical properties of rare-earth ion (Gd3+, Ho3+, Pr3+, Sm3+, Dy3+ and Tm3+) -doped alumina films prepared by the sol–gel method,” J. Lumin. 92(1–2), 57–63 (2000).
[Crossref]

Ismail, N.

P. Loiko, N. Ismail, J. D. B. Bradley, M. Götelid, and M. Pollnau, “Refractive-index variation with rare-earth incorporation in amorphous Al2O3 thin films,” J. Non-Cryst. Solids 476, 95–99 (2017).
[Crossref]

Jost, J. D.

Karvonen, L.

J. Rönn, L. Karvonen, C. Kauppinen, A. P. Perros, N. Peyghambarian, H. Lipsanen, A. Säynätjoki, and Z. Sun, “Atomic layer engineering of Er-ion distribution in highly doped Er:Al2O3 for photoluminescence enhancement,” ACS Photonics 3(11), 2040–2048 (2016).
[Crossref]

Kauppinen, C.

J. Rönn, L. Karvonen, C. Kauppinen, A. P. Perros, N. Peyghambarian, H. Lipsanen, A. Säynätjoki, and Z. Sun, “Atomic layer engineering of Er-ion distribution in highly doped Er:Al2O3 for photoluminescence enhancement,” ACS Photonics 3(11), 2040–2048 (2016).
[Crossref]

Kik, P. G.

P. G. Kik and A. Polman, “Erbium-doped optical-waveguide amplifiers on silicon,” MRS Bull. 23(04), 48–54 (1998).
[Crossref]

Kippenberg, T. J.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557(7703), 81–85 (2018).
[Crossref] [PubMed]

M. H. P. Pfeiffer, A. Kordts, V. Brasch, M. Zervas, M. Geiselmann, J. D. Jost, and T. J. Kippenberg, “Photonic Damascene process for integrated high-Q microresonator based nonlinear photonics,” Optica 3(1), 20 (2016).
[Crossref]

Komljenovic, T.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557(7703), 81–85 (2018).
[Crossref] [PubMed]

Kordts, A.

Kurokawa, Y.

T. Ishizaka and Y. Kurokawa, “Optical properties of rare-earth ion (Gd3+, Ho3+, Pr3+, Sm3+, Dy3+ and Tm3+) -doped alumina films prepared by the sol–gel method,” J. Lumin. 92(1–2), 57–63 (2000).
[Crossref]

Leake, G.

Lee, C. J.

Lee, S. H.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557(7703), 81–85 (2018).
[Crossref] [PubMed]

Leinse, A.

Li, N.

Li, Q.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557(7703), 81–85 (2018).
[Crossref] [PubMed]

Lipsanen, H.

J. Rönn, L. Karvonen, C. Kauppinen, A. P. Perros, N. Peyghambarian, H. Lipsanen, A. Säynätjoki, and Z. Sun, “Atomic layer engineering of Er-ion distribution in highly doped Er:Al2O3 for photoluminescence enhancement,” ACS Photonics 3(11), 2040–2048 (2016).
[Crossref]

Loiko, P.

P. Loiko, N. Ismail, J. D. B. Bradley, M. Götelid, and M. Pollnau, “Refractive-index variation with rare-earth incorporation in amorphous Al2O3 thin films,” J. Non-Cryst. Solids 476, 95–99 (2017).
[Crossref]

Magden, E. S.

Mateman, R.

Misra, C.

K. Wefers and C. Misra, Oxides and Hydroxides of Aluminum (1987), 19.

Moresco, M.

Mu, J.

Nakazawa, E.

E. Nakazawa and S. Shionoya, “Cooperative Luminescence in YbPO4,” Phys. Rev. Lett. 25(25), 1710–1712 (1970).
[Crossref]

Newbury, N. R.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557(7703), 81–85 (2018).
[Crossref] [PubMed]

Ng, D. K. T.

P. Xing, G. F. R. Chen, X. Zhao, D. K. T. Ng, M. C. Tan, and D. T. H. Tan, “Silicon rich nitride ring resonators for rare - earth doped telecommunications-band amplifiers pumped at the O-band,” Sci. Rep. 7(1), 9101 (2017).
[Crossref] [PubMed]

Norberg, E.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557(7703), 81–85 (2018).
[Crossref] [PubMed]

Notaros, J.

Odaci, C.

M. Demirtas, C. Odaci, N. K. Perkgoz, C. Sevik, and F. Ay, “Low loss atomic layer deposited Al2O3 waveguides for applications in on-chip optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–8 (2018).
[Crossref]

Oh, D. Y.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557(7703), 81–85 (2018).
[Crossref] [PubMed]

Oldenbeuving, R. M.

Y. Fan, R. M. Oldenbeuving, C. G. Roeloffzen, M. Hoekman, D. Geskus, R. G. Heideman, and K.-J. Boller, “290 Hz Intrinsic Linewidth from an Integrated Optical Chip-based Widely Tunable InP-Si3N4 Hybrid Laser,” in Conference on Lasers and Electro-Optics (OSA, 2017), p. JTh5C.9.
[Crossref]

Papp, S. B.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557(7703), 81–85 (2018).
[Crossref] [PubMed]

Perkgoz, N. K.

M. Demirtas, C. Odaci, N. K. Perkgoz, C. Sevik, and F. Ay, “Low loss atomic layer deposited Al2O3 waveguides for applications in on-chip optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–8 (2018).
[Crossref]

Perros, A. P.

J. Rönn, L. Karvonen, C. Kauppinen, A. P. Perros, N. Peyghambarian, H. Lipsanen, A. Säynätjoki, and Z. Sun, “Atomic layer engineering of Er-ion distribution in highly doped Er:Al2O3 for photoluminescence enhancement,” ACS Photonics 3(11), 2040–2048 (2016).
[Crossref]

Peyghambarian, N.

J. Rönn, L. Karvonen, C. Kauppinen, A. P. Perros, N. Peyghambarian, H. Lipsanen, A. Säynätjoki, and Z. Sun, “Atomic layer engineering of Er-ion distribution in highly doped Er:Al2O3 for photoluminescence enhancement,” ACS Photonics 3(11), 2040–2048 (2016).
[Crossref]

Pfeiffer, M. H. P.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557(7703), 81–85 (2018).
[Crossref] [PubMed]

M. H. P. Pfeiffer, A. Kordts, V. Brasch, M. Zervas, M. Geiselmann, J. D. Jost, and T. J. Kippenberg, “Photonic Damascene process for integrated high-Q microresonator based nonlinear photonics,” Optica 3(1), 20 (2016).
[Crossref]

Pollnau, M.

P. Loiko, N. Ismail, J. D. B. Bradley, M. Götelid, and M. Pollnau, “Refractive-index variation with rare-earth incorporation in amorphous Al2O3 thin films,” J. Non-Cryst. Solids 476, 95–99 (2017).
[Crossref]

S. A. Vázquez-Córdova, M. Dijkstra, E. H. Bernhardi, F. Ay, K. Wörhoff, J. L. Herek, S. M. García-Blanco, and M. Pollnau, “Erbium-doped spiral amplifiers with 20 dB of net gain on silicon,” Opt. Express 22(21), 25993–26004 (2014).
[Crossref] [PubMed]

L. Agazzi, K. Wörhoff, and M. Pollnau, “Energy-transfer-upconversion models, their applicability and breakdown in the presence of spectroscopically distinct ion classes: a case study in amorphous Al2O3 :Er3+,” J. Phys. Chem. C 117(13), 6759–6776 (2013).
[Crossref]

J. Yang, K. van Dalfsen, K. Wörhoff, F. Ay, and M. Pollnau, “High-gain Al2O3:Nd3+ channel waveguide amplifiers at 880 nm, 1060 nm, and 1330 nm,” Appl. Phys. B 101(1–2), 119–127 (2010).
[Crossref]

L. Agazzi, J. D. B. Bradley, M. Dijkstra, F. Ay, G. Roelkens, R. Baets, K. Wörhoff, and M. Pollnau, “Monolithic integration of erbium-doped amplifiers with silicon-on-insulator waveguides,” Opt. Express 18(26), 27703–27711 (2010).
[Crossref] [PubMed]

J. D. B. Bradley, L. Agazzi, D. Geskus, F. Ay, K. Wörhoff, and M. Pollnau, “Gain bandwidth of 80 nm and 2 dB/cm peak gain in Al2O3:Er3+ optical amplifiers on silicon,” J. Opt. Soc. Am. B 27(2), 187 (2010).
[Crossref]

K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. P. Blauwendraat, and M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4-dB optical gain,” IEEE J. Quantum Electron. 45(5), 454–461 (2009).
[Crossref]

J. D. B. Bradley, F. Ay, K. Wörhoff, and M. Pollnau, “Fabrication of low-loss channel waveguides in Al2O3 and Y2O3 layers by inductively coupled plasma reactive ion etching,” Appl. Phys. B 89(2–3), 311–318 (2007).
[Crossref]

Polman, A.

P. G. Kik and A. Polman, “Erbium-doped optical-waveguide amplifiers on silicon,” MRS Bull. 23(04), 48–54 (1998).
[Crossref]

Poulton, C. V.

Purnawirman, N.

Purnawirman, P.

Roelkens, G.

Roeloffzen, C. G.

Y. Fan, R. M. Oldenbeuving, C. G. Roeloffzen, M. Hoekman, D. Geskus, R. G. Heideman, and K.-J. Boller, “290 Hz Intrinsic Linewidth from an Integrated Optical Chip-based Widely Tunable InP-Si3N4 Hybrid Laser,” in Conference on Lasers and Electro-Optics (OSA, 2017), p. JTh5C.9.
[Crossref]

Rönn, J.

J. Rönn, L. Karvonen, C. Kauppinen, A. P. Perros, N. Peyghambarian, H. Lipsanen, A. Säynätjoki, and Z. Sun, “Atomic layer engineering of Er-ion distribution in highly doped Er:Al2O3 for photoluminescence enhancement,” ACS Photonics 3(11), 2040–2048 (2016).
[Crossref]

Ruocco, A.

Säynätjoki, A.

J. Rönn, L. Karvonen, C. Kauppinen, A. P. Perros, N. Peyghambarian, H. Lipsanen, A. Säynätjoki, and Z. Sun, “Atomic layer engineering of Er-ion distribution in highly doped Er:Al2O3 for photoluminescence enhancement,” ACS Photonics 3(11), 2040–2048 (2016).
[Crossref]

Segerink, F. B.

Sevik, C.

M. Demirtas, C. Odaci, N. K. Perkgoz, C. Sevik, and F. Ay, “Low loss atomic layer deposited Al2O3 waveguides for applications in on-chip optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–8 (2018).
[Crossref]

Shionoya, S.

E. Nakazawa and S. Shionoya, “Cooperative Luminescence in YbPO4,” Phys. Rev. Lett. 25(25), 1710–1712 (1970).
[Crossref]

Sinclair, L. C.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557(7703), 81–85 (2018).
[Crossref] [PubMed]

Singh, G.

Singh, N.

Spencer, D. T.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557(7703), 81–85 (2018).
[Crossref] [PubMed]

Srinivasan, K.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557(7703), 81–85 (2018).
[Crossref] [PubMed]

Stone, J.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557(7703), 81–85 (2018).
[Crossref] [PubMed]

Su, Z.

Suh, M.-G.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557(7703), 81–85 (2018).
[Crossref] [PubMed]

Sun, J.

Sun, Z.

J. Rönn, L. Karvonen, C. Kauppinen, A. P. Perros, N. Peyghambarian, H. Lipsanen, A. Säynätjoki, and Z. Sun, “Atomic layer engineering of Er-ion distribution in highly doped Er:Al2O3 for photoluminescence enhancement,” ACS Photonics 3(11), 2040–2048 (2016).
[Crossref]

Tan, D. T. H.

P. Xing, G. F. R. Chen, X. Zhao, D. K. T. Ng, M. C. Tan, and D. T. H. Tan, “Silicon rich nitride ring resonators for rare - earth doped telecommunications-band amplifiers pumped at the O-band,” Sci. Rep. 7(1), 9101 (2017).
[Crossref] [PubMed]

Tan, M. C.

P. Xing, G. F. R. Chen, X. Zhao, D. K. T. Ng, M. C. Tan, and D. T. H. Tan, “Silicon rich nitride ring resonators for rare - earth doped telecommunications-band amplifiers pumped at the O-band,” Sci. Rep. 7(1), 9101 (2017).
[Crossref] [PubMed]

Theogarajan, L.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557(7703), 81–85 (2018).
[Crossref] [PubMed]

Timurdogan, E.

Vahala, K.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557(7703), 81–85 (2018).
[Crossref] [PubMed]

van Dalfsen, K.

J. Yang, K. van Dalfsen, K. Wörhoff, F. Ay, and M. Pollnau, “High-gain Al2O3:Nd3+ channel waveguide amplifiers at 880 nm, 1060 nm, and 1330 nm,” Appl. Phys. B 101(1–2), 119–127 (2010).
[Crossref]

van der Slot, P. J. M.

van Rees, A.

Vázquez-Córdova, S. A.

Vermeulen, D.

Volet, N.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557(7703), 81–85 (2018).
[Crossref] [PubMed]

Watts, M. R.

Wefers, K.

K. Wefers and C. Misra, Oxides and Hydroxides of Aluminum (1987), 19.

Westly, D.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557(7703), 81–85 (2018).
[Crossref] [PubMed]

Wörhoff, K.

J. Mu, M. Dijkstra, Y.-S. Yong, F. B. Segerink, K. Wörhoff, M. Hoekman, A. Leinse, and S. M. García-Blanco, “Low-loss, broadband and high fabrication tolerant vertically tapered optical couplers for monolithic integration of Si3N4 and polymer waveguides,” Opt. Lett. 42(19), 3812–3815 (2017).
[Crossref] [PubMed]

S. A. Vázquez-Córdova, M. Dijkstra, E. H. Bernhardi, F. Ay, K. Wörhoff, J. L. Herek, S. M. García-Blanco, and M. Pollnau, “Erbium-doped spiral amplifiers with 20 dB of net gain on silicon,” Opt. Express 22(21), 25993–26004 (2014).
[Crossref] [PubMed]

L. Agazzi, K. Wörhoff, and M. Pollnau, “Energy-transfer-upconversion models, their applicability and breakdown in the presence of spectroscopically distinct ion classes: a case study in amorphous Al2O3 :Er3+,” J. Phys. Chem. C 117(13), 6759–6776 (2013).
[Crossref]

J. Yang, K. van Dalfsen, K. Wörhoff, F. Ay, and M. Pollnau, “High-gain Al2O3:Nd3+ channel waveguide amplifiers at 880 nm, 1060 nm, and 1330 nm,” Appl. Phys. B 101(1–2), 119–127 (2010).
[Crossref]

L. Agazzi, J. D. B. Bradley, M. Dijkstra, F. Ay, G. Roelkens, R. Baets, K. Wörhoff, and M. Pollnau, “Monolithic integration of erbium-doped amplifiers with silicon-on-insulator waveguides,” Opt. Express 18(26), 27703–27711 (2010).
[Crossref] [PubMed]

J. D. B. Bradley, L. Agazzi, D. Geskus, F. Ay, K. Wörhoff, and M. Pollnau, “Gain bandwidth of 80 nm and 2 dB/cm peak gain in Al2O3:Er3+ optical amplifiers on silicon,” J. Opt. Soc. Am. B 27(2), 187 (2010).
[Crossref]

K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. P. Blauwendraat, and M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4-dB optical gain,” IEEE J. Quantum Electron. 45(5), 454–461 (2009).
[Crossref]

J. D. B. Bradley, F. Ay, K. Wörhoff, and M. Pollnau, “Fabrication of low-loss channel waveguides in Al2O3 and Y2O3 layers by inductively coupled plasma reactive ion etching,” Appl. Phys. B 89(2–3), 311–318 (2007).
[Crossref]

Xin, M.

Xing, P.

P. Xing, G. F. R. Chen, X. Zhao, D. K. T. Ng, M. C. Tan, and D. T. H. Tan, “Silicon rich nitride ring resonators for rare - earth doped telecommunications-band amplifiers pumped at the O-band,” Sci. Rep. 7(1), 9101 (2017).
[Crossref] [PubMed]

Yang, J.

J. Yang, K. van Dalfsen, K. Wörhoff, F. Ay, and M. Pollnau, “High-gain Al2O3:Nd3+ channel waveguide amplifiers at 880 nm, 1060 nm, and 1330 nm,” Appl. Phys. B 101(1–2), 119–127 (2010).
[Crossref]

Yang, K. Y.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557(7703), 81–85 (2018).
[Crossref] [PubMed]

Yong, Y.-S.

Zervas, M.

Zhao, X.

P. Xing, G. F. R. Chen, X. Zhao, D. K. T. Ng, M. C. Tan, and D. T. H. Tan, “Silicon rich nitride ring resonators for rare - earth doped telecommunications-band amplifiers pumped at the O-band,” Sci. Rep. 7(1), 9101 (2017).
[Crossref] [PubMed]

ACS Photonics (1)

J. Rönn, L. Karvonen, C. Kauppinen, A. P. Perros, N. Peyghambarian, H. Lipsanen, A. Säynätjoki, and Z. Sun, “Atomic layer engineering of Er-ion distribution in highly doped Er:Al2O3 for photoluminescence enhancement,” ACS Photonics 3(11), 2040–2048 (2016).
[Crossref]

Appl. Phys. B (2)

J. Yang, K. van Dalfsen, K. Wörhoff, F. Ay, and M. Pollnau, “High-gain Al2O3:Nd3+ channel waveguide amplifiers at 880 nm, 1060 nm, and 1330 nm,” Appl. Phys. B 101(1–2), 119–127 (2010).
[Crossref]

J. D. B. Bradley, F. Ay, K. Wörhoff, and M. Pollnau, “Fabrication of low-loss channel waveguides in Al2O3 and Y2O3 layers by inductively coupled plasma reactive ion etching,” Appl. Phys. B 89(2–3), 311–318 (2007).
[Crossref]

IEEE J. Quantum Electron. (1)

K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. P. Blauwendraat, and M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4-dB optical gain,” IEEE J. Quantum Electron. 45(5), 454–461 (2009).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Demirtas, C. Odaci, N. K. Perkgoz, C. Sevik, and F. Ay, “Low loss atomic layer deposited Al2O3 waveguides for applications in on-chip optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–8 (2018).
[Crossref]

J. Lumin. (1)

T. Ishizaka and Y. Kurokawa, “Optical properties of rare-earth ion (Gd3+, Ho3+, Pr3+, Sm3+, Dy3+ and Tm3+) -doped alumina films prepared by the sol–gel method,” J. Lumin. 92(1–2), 57–63 (2000).
[Crossref]

J. Non-Cryst. Solids (1)

P. Loiko, N. Ismail, J. D. B. Bradley, M. Götelid, and M. Pollnau, “Refractive-index variation with rare-earth incorporation in amorphous Al2O3 thin films,” J. Non-Cryst. Solids 476, 95–99 (2017).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (1)

L. Agazzi, K. Wörhoff, and M. Pollnau, “Energy-transfer-upconversion models, their applicability and breakdown in the presence of spectroscopically distinct ion classes: a case study in amorphous Al2O3 :Er3+,” J. Phys. Chem. C 117(13), 6759–6776 (2013).
[Crossref]

MRS Bull. (1)

P. G. Kik and A. Polman, “Erbium-doped optical-waveguide amplifiers on silicon,” MRS Bull. 23(04), 48–54 (1998).
[Crossref]

Nature (1)

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557(7703), 81–85 (2018).
[Crossref] [PubMed]

Opt. Express (6)

N. Li, D. Vermeulen, Z. Su, E. S. Magden, M. Xin, N. Singh, A. Ruocco, J. Notaros, C. V. Poulton, E. Timurdogan, C. Baiocco, and M. R. Watts, “Monolithically integrated erbium-doped tunable laser on a CMOS-compatible silicon photonics platform,” Opt. Express 26(13), 16200–16211 (2018).
[Crossref] [PubMed]

L. Agazzi, J. D. B. Bradley, M. Dijkstra, F. Ay, G. Roelkens, R. Baets, K. Wörhoff, and M. Pollnau, “Monolithic integration of erbium-doped amplifiers with silicon-on-insulator waveguides,” Opt. Express 18(26), 27703–27711 (2010).
[Crossref] [PubMed]

S. A. Vázquez-Córdova, M. Dijkstra, E. H. Bernhardi, F. Ay, K. Wörhoff, J. L. Herek, S. M. García-Blanco, and M. Pollnau, “Erbium-doped spiral amplifiers with 20 dB of net gain on silicon,” Opt. Express 22(21), 25993–26004 (2014).
[Crossref] [PubMed]

N. Purnawirman, N. Li, E. S. Magden, G. Singh, N. Singh, A. Baldycheva, E. S. Hosseini, J. Sun, M. Moresco, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “Ultra-narrow-linewidth Al2O3:Er3+ lasers with a wavelength-insensitive waveguide design on a wafer-scale silicon nitride platform,” Opt. Express 25(12), 13705–13713 (2017).
[Crossref] [PubMed]

Z. Su, N. Li, H. C. Frankis, E. S. Magden, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “High-Q-factor Al2O3 micro-trench cavities integrated with silicon nitride waveguides on silicon,” Opt. Express 26(9), 11161–11170 (2018).
[Crossref] [PubMed]

J. P. Epping, M. Hoekman, R. Mateman, A. Leinse, R. G. Heideman, A. van Rees, P. J. M. van der Slot, C. J. Lee, and K.-J. Boller, “High confinement, high yield Si3N4 waveguides for nonlinear optical applications,” Opt. Express 23(2), 642–648 (2015).
[Crossref] [PubMed]

Opt. Lett. (2)

Optica (1)

Phys. Rev. Lett. (1)

E. Nakazawa and S. Shionoya, “Cooperative Luminescence in YbPO4,” Phys. Rev. Lett. 25(25), 1710–1712 (1970).
[Crossref]

Sci. Rep. (1)

P. Xing, G. F. R. Chen, X. Zhao, D. K. T. Ng, M. C. Tan, and D. T. H. Tan, “Silicon rich nitride ring resonators for rare - earth doped telecommunications-band amplifiers pumped at the O-band,” Sci. Rep. 7(1), 9101 (2017).
[Crossref] [PubMed]

Other (5)

S. Yew, T. Liu, M. Lur, and W. Sun, “Dual damascene process,” U.S. patent US5801094A (September 1, 1998).

S. Deleonibus and B. Guillaumot, “Damascene architecture electronic storage and method for making same,” U.S. patent US6955963B2 (2005).

M. Belt and D. J. Blumenthal, “High temperature operation of an integrated erbium- doped DBR laser on an ultra-low-loss Si3N4 platform,” Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper Tu2C.7.

Y. Fan, R. M. Oldenbeuving, C. G. Roeloffzen, M. Hoekman, D. Geskus, R. G. Heideman, and K.-J. Boller, “290 Hz Intrinsic Linewidth from an Integrated Optical Chip-based Widely Tunable InP-Si3N4 Hybrid Laser,” in Conference on Lasers and Electro-Optics (OSA, 2017), p. JTh5C.9.
[Crossref]

K. Wefers and C. Misra, Oxides and Hydroxides of Aluminum (1987), 19.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic representation of the fabrication process of active-passive Al2O3 devices, showing consecutively the deposition of Yb3+:Al2O3 through a shadow mask (target thickness of 400 nm), the deposition of the undoped Al2O3 layer (target thickness of 600 nm), planarization using CMP and waveguide fabrication by etching.
Fig. 2
Fig. 2 (a) Representation of the chip layout with waveguides and ring resonators (blue) and active regions (green). (b) Profile scan along the width of a deposited Yb3+:Al2O3 region, the dashed vertical lines represent the sidewall of the shadow mask. (c) Schematic representation of the deposition of Yb3+:Al2O3 (pink arrows) with a shadow mask (black) on SiO2 (yellow). Continuous and dashed pink arrows represent the direction of the plasma during deposition.
Fig. 3
Fig. 3 Schematic representation of the layer thicknesses of active, passive and bump (a) after deposition; (b) layer thicknesses after CMP. The height and width of a bump and the thickness of the undoped layer were measured in a central position of the wafer with respectively a profilometer (Veeco Dektak 150) and ellipsometer (Woollam M-2000UI).
Fig. 4
Fig. 4 Photograph of (a) Chip containing rings with a radius of 100 and 150 µm showing the luminescence of the ytterbium doped active region in the center ring. (b) Same photograph without background light. Luminescent stray light can be observed on the top of the ring.

Metrics