Abstract

Surface plasmon resonance (SPR) with two-dimensional (2D) materials has been proposed to enhance the sensitivity of biosensors. Here, we will apply SPR to greatly enhance and control the Goos-Hänchen (GH) shift. It is theoretically shown that the GH shifts can be significantly enhanced in the SPR structure coated with a graphene-MoS2 heterostructure. By changing the layer number of graphene or MoS2, the giant GH shifts can be obtained. Maximum GH shift (235.8λ) can be obtained when 2 layers of MoS2 and 3 layers of graphene are combined. Moreover, the GH shift can be positive or negative depending on the layer number of MoS2 and graphene. When the GH shift is used as the interrogation for the biosensor, it has a superior sensitivity. By comparing the sensitivity based on the SPR with only Au coating or Au-graphene coating, the sensitivity of the GH shift-interrogated biosensor can be enhanced by nearly 300 times, and hence paves the way for further applications in fundamental biological studies and environmental monitoring.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Design of an ultrasensitive SPR biosensor based on a graphene-MoS2 hybrid structure with a MgF2 prism

Yuncai Feng, Youwen Liu, and Jinghua Teng
Appl. Opt. 57(14) 3639-3644 (2018)

Goos–Hänchen shift for Gaussian beams impinging on monolayer-MoS2-coated surfaces

Akash Das and Manik Pradhan
J. Opt. Soc. Am. B 35(8) 1956-1962 (2018)

Giant negative Goos-Hänchen shifts for a photonic crystal with a negative effective index

Jinlong He, Jin Yi, and Sailing He
Opt. Express 14(7) 3024-3029 (2006)

References

  • View by:
  • |
  • |
  • |

  1. F. Goos and H. Hanchen, “Ein neuer und fundamentaler Versuchzur Totalreflexion,” Ann. Phys. 436(7-8), 333–346 (1947).
    [Crossref]
  2. F. Goos and H. Lindberghanchen, “Neumessung des Strahlversetzungseffektes bei Totalreflexion,” Ann. Phys. 440(3-5), 251–252 (1949).
    [Crossref]
  3. C. Y. Luo, X. Y. Dai, Y. J. Xiang, and S. Wen, “Enhanced and tunable Goos–Hänchen shift in a cavity containing colloidal ferrofluids,” IEEE Photonics J. 7(4), 6100310 (2015).
    [Crossref]
  4. L. Y. Jiang, Q. K. Wang, and Y. J. Xiang, “Electrically tunable Goos–Hänchen shift of light beam reflected from a graphene-on-dielectric surface,” IEEE Photonics J. 5(3), 6500108 (2013).
    [Crossref]
  5. Y. J. Xiang, X. Y. Dai, and S. C. Wen, “Negative and positive Goos-Hänchen shifts of a light beam transmitted from an indefinite medium slab,” Appl. Phys., A Mater. Sci. Process. 87(2), 285–290 (2007).
    [Crossref]
  6. C. Luo, J. Guo, Q. Wang, Y. Xiang, and S. Wen, “Electrically controlled Goos-Hänchen shift of a light beam reflected from the metal-insulator-semiconductor structure,” Opt. Express 21(9), 10430–10439 (2013).
    [Crossref] [PubMed]
  7. T. Tang, J. Qin, J. Xie, L. Deng, and L. Bi, “Magneto-optical Goos-Hänchen effect in a prism-waveguide coupling structure,” Opt. Express 22(22), 27042–27055 (2014).
    [Crossref] [PubMed]
  8. Z. Zheng, L. F. He, Y. H. Wan, J. S. Liu, “Goos-Hänchen one kind of method and system for measuring displacement sensor,” CN patent 103148787 B (2016).
  9. C. A. Valagiannopoulos, “On examining the influence of a thin dielectric strip posed across the diameter of a penetrable radiating cylinder,” Prog. Electromagn. Res. C 3, 203–214 (2008).
    [Crossref]
  10. C. Bonnet, D. Chauvat, O. Emile, F. Bretenaker, A. Le Floch, and L. Dutriaux, “Measurement of positive and negative Goos--Hänchen effects for metallic gratings near Wood anomalies,” Opt. Lett. 26(10), 666–668 (2001).
    [Crossref] [PubMed]
  11. H. Gilles, S. Girard, and J. Hamel, “Simple technique for measuring the Goos-Hänchen effect with polarization modulation and a position-sensitive detector,” Opt. Lett. 27(16), 1421–1423 (2002).
    [Crossref] [PubMed]
  12. J. Unterhinninghofen, U. Kuhl, J. Wiersig, H.-J. Stöckmann, and M. Hentschel, “Measurement of the Goos–Hänchen shift in a microwave cavity,” New J. Phys. 13(2), 023013 (2011).
    [Crossref]
  13. M. Merano, A. Aiello, M. P. van Exter, and J. P. Woerdman, “Observing angular deviations in the specular reflection of a light beam,” Nat. Photonics 20(12), 27 (2009).
  14. S. Hayashi, D. V. Nesterenko, and Z. Sekkat, “Fano resonance and plasmon-induced transparency in waveguide-coupled surface plasmon resonance sensors,” Appl. Phys. Express 8(2), 022201 (2015).
    [Crossref]
  15. Z. Salamon, H. A. Macleod, and G. Tollin, “Coupled plasmon-waveguide resonators: a new spectroscopic tool for probing proteolipid film structure and properties,” Biophys. J. 73(5), 2791–2797 (1997).
    [Crossref] [PubMed]
  16. X. Liu, Z. Cao, P. Zhu, Q. Shen, and X. Liu, “Large positive and negative lateral optical beam shift in prism-waveguide coupling system,” Phys. Rev. E 73(5), 056617 (2006).
    [Crossref] [PubMed]
  17. M. Merano, A. Aiello, G. W. ’t Hooft, M. P. van Exter, E. R. Eliel, and J. P. Woerdman, “Observation of Goos-Hänchen shifts in metallic reflection,” Opt. Express 15(24), 15928–15934 (2007).
    [Crossref] [PubMed]
  18. M. Merano, “Optical beam shifts in graphene and single-layer boron-nitride,” Opt. Lett. 41(24), 5780–5783 (2016).
    [Crossref] [PubMed]
  19. X. B. Yin, L. Hesselink, Z. W. Liu, N. Fang, and X. Zhang, “Large positive and negative lateral optical beam displacements due to surface plasmon resonance,” Appl. Phys. Lett. 85(3), 372–374 (2004).
    [Crossref]
  20. M. Mattheakis, C. A. Valagiannopoulos, and E. Kaxiras, “Epsilon-near-zero behavior from plasmonic Dirac point: Theory and realization using two-dimensional materials,” Phys. Rev. B 94(20), 201404 (2016).
    [Crossref]
  21. K. S. Thygesen, “Calculating excitons, plasmons, and quasiparticles in 2D materials and van der Waals heterostructures,” 2D Mater. 4(2), 022004 (2017).
    [Crossref]
  22. C. A. Valagiannopoulos, M. Mattheakis, S. N. Shirodkar, and E. Kaxiras, “Manipulating polarized light with a planar slab of black phosphorus,” J. Phys. Commun. 1(4), 045003 (2017).
    [Crossref]
  23. A. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
    [Crossref]
  24. Y. C. Fan, N. H. Shen, F. L. Zhang, Z. Y. Wei, H. Q. Li, Q. Zhao, Q. H. Fu, P. Zhang, T. Koschny, and C. M. Soukoulis, “Electrically tunable Goos–Hänchen effect with graphene in the terahertz regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
    [Crossref]
  25. Y. C. Fan, N. H. Shen, F. L. Zhang, Q. Zhao, Z. Y. Wei, P. Zhang, J. J. Dong, Q. H. Fu, H. Q. Li, and C. M. Soukoulis, “Photoexcited graphene metasurfaces: significantly enhanced and tunable magnetic resonances,” ACS Photonics 5(4), 1612–1618 (2018).
    [Crossref]
  26. Y. C. Fan, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable terahertz meta-surface with graphene cut-wires,” ACS Photonics 2(1), 151–156 (2015).
    [Crossref]
  27. Y. C. Fan, L. Q. Tu, F. L. Zhang, Q. H. Fu, Z. R. Zhang, Z. Y. Wei, and H. Q. Li, “Broadband terahertz absorption in graphene-embedded photonic crystals,” Plasmonics (published online 2017).
  28. Y. C. Fan, Z. Y. Wei, H. Q. Li, H. Chen, and C. M. Soukoulis, “Photonic band gap of a graphene-embedded quarter-wave stack,” Phys. Rev. B 88(24), 241403 (2013).
    [Crossref]
  29. T. Mueller, F. Xia, and P. Avouris, “Graphene photo detectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
    [Crossref]
  30. M. Freitag, T. Low, F. Xia, and P. Avouris, “Photoconductivity of biased graphene,” Nat. Photonics 7(1), 53–59 (2013).
    [Crossref]
  31. G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. Garcia de Arquer, F. Gatti, and F. H. L. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechnol. 7(6), 363–368 (2012).
    [Crossref] [PubMed]
  32. M. Kim, N. S. Safron, C. Huang, M. S. Arnold, and P. Gopalan, “Light-driven reversible modulation of doping in graphene,” Nano Lett. 12(1), 182–187 (2012).
    [Crossref] [PubMed]
  33. K. Roy, M. Padmanabhan, S. Goswami, T. P. Sai, G. Ramalingam, S. Raghavan, and A. Ghosh, “Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices,” Nat. Nanotechnol. 8(11), 826–830 (2013).
    [Crossref] [PubMed]
  34. F. Zangeneh- Nejad and R. Safian, “Significant enhancement in the efficiency of photoconductive antennas usinga hybrid graphene molybdenum disulphide structure,” J. Nanophotonics 10(3), 036005 (2016).
    [Crossref]
  35. P. T. K. Loan, W. Zhang, C. T. Lin, K. H. Wei, L. J. Li, and C. H. Chen, “Graphene/MoS2 heterostructures for ultrasensitive detection of DNA hybridisation,” Adv. Mater. 26(28), 4838–4844 (2014).
    [Crossref] [PubMed]
  36. L. Yu, Y. H. Lee, X. Ling, E. J. Santos, Y. C. Shin, Y. Lin, M. Dubey, E. Kaxiras, J. Kong, H. Wang, and T. Palacios, “Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics,” Nano Lett. 14(6), 3055–3063 (2014).
    [Crossref] [PubMed]
  37. Z. G. Nejad and S. Reza, “Hybrid graphene–molybdenum disulphide based ring resonator for label-free sensing,” Opt. Commun. 371, 9–14 (2016).
    [Crossref]
  38. D. Kufer, I. Nikitskiy, T. Lasanta, G. Navickaite, F. H. Koppens, and G. Konstantatos, “Hybrid 2D-0D MoS2 -PbS quantum dot photodetectors,” Adv. Mater. 27(1), 176–180 (2015).
    [Crossref] [PubMed]
  39. L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340(6138), 1311–1314 (2013).
    [Crossref] [PubMed]
  40. U. Schroter and D. Heitmann, “Grating couplers for surface plasmons excited on thin metal films in the Kretschmann-Raether configuration,” Phys. Rev. B 60(7), 4992–4999 (1999).
    [Crossref]
  41. X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
    [Crossref] [PubMed]
  42. S. W. Zeng, S. Y. Hu, J. Xia, T. Anderson, X. Q. Dinh, X. M. Meng, P. Coquet, and K. T. Yong, “Graphene-MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors,” Sensor Actuat. Biol. Chem. 207, 801–810 (2015).
  43. H. Raether, “Surface plasmons on smooth and rough surfaces and on gratings,” Springer Tr. in Mod. Phys. 111, 1–133 (1988).
  44. A. Castellanosgomez, N. Agrait, and G. Rubiobollinger, “Optical identification of atomically thin dichalcogenide crystals,” Appl. Phys. Lett. 96(21), 213116 (2010).
    [Crossref]
  45. M. Bruna and S. Borini, “Optical constants of graphene layers in the visible range,” Appl. Phys. Lett. 94(3), 031901 (2009).
    [Crossref]
  46. M. Daimon and A. Masumura, “Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region,” Appl. Opt. 46(18), 3811–3820 (2007).
    [Crossref] [PubMed]
  47. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
    [Crossref] [PubMed]
  48. L. Wu, H. S. Chu, W. S. Koh, and E. P. Li, “Highly sensitive graphene biosensors based on surface plasmon resonance,” Opt. Express 18(14), 14395–14400 (2010).
    [Crossref] [PubMed]
  49. C. H. Gan, “Analysis of surface plasmon excitation at terahertz frequencies with highly doped graphene sheets via attenuated total reflection,” Appl. Phys. Lett. 101(11), 111609 (2012).
    [Crossref]
  50. B. Gupta and A. K. Sharma, “Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study,” Sensor. Actuat. Biol. Chem. 107(1), 40–46 (2005).
  51. K. Artmann, “Berechnung der Seitenversetzung des totalreflektierten Strahles,” Ann. Phys. 2(1-2), 87–102 (1948).
    [Crossref]
  52. I. Pockrand, “Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings,” Surf. Sci. 72(3), 577–588 (1978).
    [Crossref]
  53. L. G. Wang, M. Ikram, and M. S. Zubairy, “Control of the Goos-Hänchen shift of a light beam via a coherent driving field,” Phys. Rev. A 77(2), 023811 (2008).
    [Crossref]

2018 (1)

Y. C. Fan, N. H. Shen, F. L. Zhang, Q. Zhao, Z. Y. Wei, P. Zhang, J. J. Dong, Q. H. Fu, H. Q. Li, and C. M. Soukoulis, “Photoexcited graphene metasurfaces: significantly enhanced and tunable magnetic resonances,” ACS Photonics 5(4), 1612–1618 (2018).
[Crossref]

2017 (2)

K. S. Thygesen, “Calculating excitons, plasmons, and quasiparticles in 2D materials and van der Waals heterostructures,” 2D Mater. 4(2), 022004 (2017).
[Crossref]

C. A. Valagiannopoulos, M. Mattheakis, S. N. Shirodkar, and E. Kaxiras, “Manipulating polarized light with a planar slab of black phosphorus,” J. Phys. Commun. 1(4), 045003 (2017).
[Crossref]

2016 (5)

M. Mattheakis, C. A. Valagiannopoulos, and E. Kaxiras, “Epsilon-near-zero behavior from plasmonic Dirac point: Theory and realization using two-dimensional materials,” Phys. Rev. B 94(20), 201404 (2016).
[Crossref]

Y. C. Fan, N. H. Shen, F. L. Zhang, Z. Y. Wei, H. Q. Li, Q. Zhao, Q. H. Fu, P. Zhang, T. Koschny, and C. M. Soukoulis, “Electrically tunable Goos–Hänchen effect with graphene in the terahertz regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

F. Zangeneh- Nejad and R. Safian, “Significant enhancement in the efficiency of photoconductive antennas usinga hybrid graphene molybdenum disulphide structure,” J. Nanophotonics 10(3), 036005 (2016).
[Crossref]

Z. G. Nejad and S. Reza, “Hybrid graphene–molybdenum disulphide based ring resonator for label-free sensing,” Opt. Commun. 371, 9–14 (2016).
[Crossref]

M. Merano, “Optical beam shifts in graphene and single-layer boron-nitride,” Opt. Lett. 41(24), 5780–5783 (2016).
[Crossref] [PubMed]

2015 (5)

S. Hayashi, D. V. Nesterenko, and Z. Sekkat, “Fano resonance and plasmon-induced transparency in waveguide-coupled surface plasmon resonance sensors,” Appl. Phys. Express 8(2), 022201 (2015).
[Crossref]

C. Y. Luo, X. Y. Dai, Y. J. Xiang, and S. Wen, “Enhanced and tunable Goos–Hänchen shift in a cavity containing colloidal ferrofluids,” IEEE Photonics J. 7(4), 6100310 (2015).
[Crossref]

D. Kufer, I. Nikitskiy, T. Lasanta, G. Navickaite, F. H. Koppens, and G. Konstantatos, “Hybrid 2D-0D MoS2 -PbS quantum dot photodetectors,” Adv. Mater. 27(1), 176–180 (2015).
[Crossref] [PubMed]

Y. C. Fan, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable terahertz meta-surface with graphene cut-wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

S. W. Zeng, S. Y. Hu, J. Xia, T. Anderson, X. Q. Dinh, X. M. Meng, P. Coquet, and K. T. Yong, “Graphene-MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors,” Sensor Actuat. Biol. Chem. 207, 801–810 (2015).

2014 (3)

P. T. K. Loan, W. Zhang, C. T. Lin, K. H. Wei, L. J. Li, and C. H. Chen, “Graphene/MoS2 heterostructures for ultrasensitive detection of DNA hybridisation,” Adv. Mater. 26(28), 4838–4844 (2014).
[Crossref] [PubMed]

L. Yu, Y. H. Lee, X. Ling, E. J. Santos, Y. C. Shin, Y. Lin, M. Dubey, E. Kaxiras, J. Kong, H. Wang, and T. Palacios, “Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics,” Nano Lett. 14(6), 3055–3063 (2014).
[Crossref] [PubMed]

T. Tang, J. Qin, J. Xie, L. Deng, and L. Bi, “Magneto-optical Goos-Hänchen effect in a prism-waveguide coupling structure,” Opt. Express 22(22), 27042–27055 (2014).
[Crossref] [PubMed]

2013 (6)

C. Luo, J. Guo, Q. Wang, Y. Xiang, and S. Wen, “Electrically controlled Goos-Hänchen shift of a light beam reflected from the metal-insulator-semiconductor structure,” Opt. Express 21(9), 10430–10439 (2013).
[Crossref] [PubMed]

L. Y. Jiang, Q. K. Wang, and Y. J. Xiang, “Electrically tunable Goos–Hänchen shift of light beam reflected from a graphene-on-dielectric surface,” IEEE Photonics J. 5(3), 6500108 (2013).
[Crossref]

M. Freitag, T. Low, F. Xia, and P. Avouris, “Photoconductivity of biased graphene,” Nat. Photonics 7(1), 53–59 (2013).
[Crossref]

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340(6138), 1311–1314 (2013).
[Crossref] [PubMed]

Y. C. Fan, Z. Y. Wei, H. Q. Li, H. Chen, and C. M. Soukoulis, “Photonic band gap of a graphene-embedded quarter-wave stack,” Phys. Rev. B 88(24), 241403 (2013).
[Crossref]

K. Roy, M. Padmanabhan, S. Goswami, T. P. Sai, G. Ramalingam, S. Raghavan, and A. Ghosh, “Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices,” Nat. Nanotechnol. 8(11), 826–830 (2013).
[Crossref] [PubMed]

2012 (4)

C. H. Gan, “Analysis of surface plasmon excitation at terahertz frequencies with highly doped graphene sheets via attenuated total reflection,” Appl. Phys. Lett. 101(11), 111609 (2012).
[Crossref]

A. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. Garcia de Arquer, F. Gatti, and F. H. L. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechnol. 7(6), 363–368 (2012).
[Crossref] [PubMed]

M. Kim, N. S. Safron, C. Huang, M. S. Arnold, and P. Gopalan, “Light-driven reversible modulation of doping in graphene,” Nano Lett. 12(1), 182–187 (2012).
[Crossref] [PubMed]

2011 (2)

J. Unterhinninghofen, U. Kuhl, J. Wiersig, H.-J. Stöckmann, and M. Hentschel, “Measurement of the Goos–Hänchen shift in a microwave cavity,” New J. Phys. 13(2), 023013 (2011).
[Crossref]

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref] [PubMed]

2010 (3)

L. Wu, H. S. Chu, W. S. Koh, and E. P. Li, “Highly sensitive graphene biosensors based on surface plasmon resonance,” Opt. Express 18(14), 14395–14400 (2010).
[Crossref] [PubMed]

A. Castellanosgomez, N. Agrait, and G. Rubiobollinger, “Optical identification of atomically thin dichalcogenide crystals,” Appl. Phys. Lett. 96(21), 213116 (2010).
[Crossref]

T. Mueller, F. Xia, and P. Avouris, “Graphene photo detectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
[Crossref]

2009 (3)

M. Merano, A. Aiello, M. P. van Exter, and J. P. Woerdman, “Observing angular deviations in the specular reflection of a light beam,” Nat. Photonics 20(12), 27 (2009).

M. Bruna and S. Borini, “Optical constants of graphene layers in the visible range,” Appl. Phys. Lett. 94(3), 031901 (2009).
[Crossref]

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

2008 (2)

L. G. Wang, M. Ikram, and M. S. Zubairy, “Control of the Goos-Hänchen shift of a light beam via a coherent driving field,” Phys. Rev. A 77(2), 023811 (2008).
[Crossref]

C. A. Valagiannopoulos, “On examining the influence of a thin dielectric strip posed across the diameter of a penetrable radiating cylinder,” Prog. Electromagn. Res. C 3, 203–214 (2008).
[Crossref]

2007 (3)

2006 (1)

X. Liu, Z. Cao, P. Zhu, Q. Shen, and X. Liu, “Large positive and negative lateral optical beam shift in prism-waveguide coupling system,” Phys. Rev. E 73(5), 056617 (2006).
[Crossref] [PubMed]

2005 (1)

B. Gupta and A. K. Sharma, “Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study,” Sensor. Actuat. Biol. Chem. 107(1), 40–46 (2005).

2004 (1)

X. B. Yin, L. Hesselink, Z. W. Liu, N. Fang, and X. Zhang, “Large positive and negative lateral optical beam displacements due to surface plasmon resonance,” Appl. Phys. Lett. 85(3), 372–374 (2004).
[Crossref]

2002 (1)

2001 (1)

1999 (1)

U. Schroter and D. Heitmann, “Grating couplers for surface plasmons excited on thin metal films in the Kretschmann-Raether configuration,” Phys. Rev. B 60(7), 4992–4999 (1999).
[Crossref]

1997 (1)

Z. Salamon, H. A. Macleod, and G. Tollin, “Coupled plasmon-waveguide resonators: a new spectroscopic tool for probing proteolipid film structure and properties,” Biophys. J. 73(5), 2791–2797 (1997).
[Crossref] [PubMed]

1988 (1)

H. Raether, “Surface plasmons on smooth and rough surfaces and on gratings,” Springer Tr. in Mod. Phys. 111, 1–133 (1988).

1978 (1)

I. Pockrand, “Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings,” Surf. Sci. 72(3), 577–588 (1978).
[Crossref]

1949 (1)

F. Goos and H. Lindberghanchen, “Neumessung des Strahlversetzungseffektes bei Totalreflexion,” Ann. Phys. 440(3-5), 251–252 (1949).
[Crossref]

1948 (1)

K. Artmann, “Berechnung der Seitenversetzung des totalreflektierten Strahles,” Ann. Phys. 2(1-2), 87–102 (1948).
[Crossref]

1947 (1)

F. Goos and H. Hanchen, “Ein neuer und fundamentaler Versuchzur Totalreflexion,” Ann. Phys. 436(7-8), 333–346 (1947).
[Crossref]

’t Hooft, G. W.

Agrait, N.

A. Castellanosgomez, N. Agrait, and G. Rubiobollinger, “Optical identification of atomically thin dichalcogenide crystals,” Appl. Phys. Lett. 96(21), 213116 (2010).
[Crossref]

Aiello, A.

M. Merano, A. Aiello, M. P. van Exter, and J. P. Woerdman, “Observing angular deviations in the specular reflection of a light beam,” Nat. Photonics 20(12), 27 (2009).

M. Merano, A. Aiello, G. W. ’t Hooft, M. P. van Exter, E. R. Eliel, and J. P. Woerdman, “Observation of Goos-Hänchen shifts in metallic reflection,” Opt. Express 15(24), 15928–15934 (2007).
[Crossref] [PubMed]

Anderson, T.

S. W. Zeng, S. Y. Hu, J. Xia, T. Anderson, X. Q. Dinh, X. M. Meng, P. Coquet, and K. T. Yong, “Graphene-MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors,” Sensor Actuat. Biol. Chem. 207, 801–810 (2015).

Arnold, M. S.

M. Kim, N. S. Safron, C. Huang, M. S. Arnold, and P. Gopalan, “Light-driven reversible modulation of doping in graphene,” Nano Lett. 12(1), 182–187 (2012).
[Crossref] [PubMed]

Artmann, K.

K. Artmann, “Berechnung der Seitenversetzung des totalreflektierten Strahles,” Ann. Phys. 2(1-2), 87–102 (1948).
[Crossref]

Avouris, P.

M. Freitag, T. Low, F. Xia, and P. Avouris, “Photoconductivity of biased graphene,” Nat. Photonics 7(1), 53–59 (2013).
[Crossref]

T. Mueller, F. Xia, and P. Avouris, “Graphene photo detectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
[Crossref]

Badioli, M.

G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. Garcia de Arquer, F. Gatti, and F. H. L. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechnol. 7(6), 363–368 (2012).
[Crossref] [PubMed]

Belle, B. D.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340(6138), 1311–1314 (2013).
[Crossref] [PubMed]

Bernechea, M.

G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. Garcia de Arquer, F. Gatti, and F. H. L. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechnol. 7(6), 363–368 (2012).
[Crossref] [PubMed]

Bi, L.

Bonnet, C.

Borini, S.

M. Bruna and S. Borini, “Optical constants of graphene layers in the visible range,” Appl. Phys. Lett. 94(3), 031901 (2009).
[Crossref]

Borysiak, M.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Bretenaker, F.

Britnell, L.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340(6138), 1311–1314 (2013).
[Crossref] [PubMed]

Brivio, J.

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref] [PubMed]

Bruna, M.

M. Bruna and S. Borini, “Optical constants of graphene layers in the visible range,” Appl. Phys. Lett. 94(3), 031901 (2009).
[Crossref]

Cai, W.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Cao, Z.

X. Liu, Z. Cao, P. Zhu, Q. Shen, and X. Liu, “Large positive and negative lateral optical beam shift in prism-waveguide coupling system,” Phys. Rev. E 73(5), 056617 (2006).
[Crossref] [PubMed]

Casiraghi, C.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340(6138), 1311–1314 (2013).
[Crossref] [PubMed]

Castellanosgomez, A.

A. Castellanosgomez, N. Agrait, and G. Rubiobollinger, “Optical identification of atomically thin dichalcogenide crystals,” Appl. Phys. Lett. 96(21), 213116 (2010).
[Crossref]

Castro Neto, A. H.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340(6138), 1311–1314 (2013).
[Crossref] [PubMed]

Chauvat, D.

Chen, C. H.

P. T. K. Loan, W. Zhang, C. T. Lin, K. H. Wei, L. J. Li, and C. H. Chen, “Graphene/MoS2 heterostructures for ultrasensitive detection of DNA hybridisation,” Adv. Mater. 26(28), 4838–4844 (2014).
[Crossref] [PubMed]

Chen, D.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Chen, H.

Y. C. Fan, Z. Y. Wei, H. Q. Li, H. Chen, and C. M. Soukoulis, “Photonic band gap of a graphene-embedded quarter-wave stack,” Phys. Rev. B 88(24), 241403 (2013).
[Crossref]

Chu, H. S.

Colombo, L.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Coquet, P.

S. W. Zeng, S. Y. Hu, J. Xia, T. Anderson, X. Q. Dinh, X. M. Meng, P. Coquet, and K. T. Yong, “Graphene-MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors,” Sensor Actuat. Biol. Chem. 207, 801–810 (2015).

Dai, X. Y.

C. Y. Luo, X. Y. Dai, Y. J. Xiang, and S. Wen, “Enhanced and tunable Goos–Hänchen shift in a cavity containing colloidal ferrofluids,” IEEE Photonics J. 7(4), 6100310 (2015).
[Crossref]

Y. J. Xiang, X. Y. Dai, and S. C. Wen, “Negative and positive Goos-Hänchen shifts of a light beam transmitted from an indefinite medium slab,” Appl. Phys., A Mater. Sci. Process. 87(2), 285–290 (2007).
[Crossref]

Daimon, M.

Deng, L.

Dinh, X. Q.

S. W. Zeng, S. Y. Hu, J. Xia, T. Anderson, X. Q. Dinh, X. M. Meng, P. Coquet, and K. T. Yong, “Graphene-MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors,” Sensor Actuat. Biol. Chem. 207, 801–810 (2015).

Dong, J. J.

Y. C. Fan, N. H. Shen, F. L. Zhang, Q. Zhao, Z. Y. Wei, P. Zhang, J. J. Dong, Q. H. Fu, H. Q. Li, and C. M. Soukoulis, “Photoexcited graphene metasurfaces: significantly enhanced and tunable magnetic resonances,” ACS Photonics 5(4), 1612–1618 (2018).
[Crossref]

Dubey, M.

L. Yu, Y. H. Lee, X. Ling, E. J. Santos, Y. C. Shin, Y. Lin, M. Dubey, E. Kaxiras, J. Kong, H. Wang, and T. Palacios, “Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics,” Nano Lett. 14(6), 3055–3063 (2014).
[Crossref] [PubMed]

Dutriaux, L.

Eckmann, A.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340(6138), 1311–1314 (2013).
[Crossref] [PubMed]

Eliel, E. R.

Emile, O.

Fan, Y. C.

Y. C. Fan, N. H. Shen, F. L. Zhang, Q. Zhao, Z. Y. Wei, P. Zhang, J. J. Dong, Q. H. Fu, H. Q. Li, and C. M. Soukoulis, “Photoexcited graphene metasurfaces: significantly enhanced and tunable magnetic resonances,” ACS Photonics 5(4), 1612–1618 (2018).
[Crossref]

Y. C. Fan, N. H. Shen, F. L. Zhang, Z. Y. Wei, H. Q. Li, Q. Zhao, Q. H. Fu, P. Zhang, T. Koschny, and C. M. Soukoulis, “Electrically tunable Goos–Hänchen effect with graphene in the terahertz regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

Y. C. Fan, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable terahertz meta-surface with graphene cut-wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

Y. C. Fan, Z. Y. Wei, H. Q. Li, H. Chen, and C. M. Soukoulis, “Photonic band gap of a graphene-embedded quarter-wave stack,” Phys. Rev. B 88(24), 241403 (2013).
[Crossref]

Fang, N.

X. B. Yin, L. Hesselink, Z. W. Liu, N. Fang, and X. Zhang, “Large positive and negative lateral optical beam displacements due to surface plasmon resonance,” Appl. Phys. Lett. 85(3), 372–374 (2004).
[Crossref]

Freitag, M.

M. Freitag, T. Low, F. Xia, and P. Avouris, “Photoconductivity of biased graphene,” Nat. Photonics 7(1), 53–59 (2013).
[Crossref]

Fu, Q. H.

Y. C. Fan, N. H. Shen, F. L. Zhang, Q. Zhao, Z. Y. Wei, P. Zhang, J. J. Dong, Q. H. Fu, H. Q. Li, and C. M. Soukoulis, “Photoexcited graphene metasurfaces: significantly enhanced and tunable magnetic resonances,” ACS Photonics 5(4), 1612–1618 (2018).
[Crossref]

Y. C. Fan, N. H. Shen, F. L. Zhang, Z. Y. Wei, H. Q. Li, Q. Zhao, Q. H. Fu, P. Zhang, T. Koschny, and C. M. Soukoulis, “Electrically tunable Goos–Hänchen effect with graphene in the terahertz regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

Gan, C. H.

C. H. Gan, “Analysis of surface plasmon excitation at terahertz frequencies with highly doped graphene sheets via attenuated total reflection,” Appl. Phys. Lett. 101(11), 111609 (2012).
[Crossref]

Garcia de Arquer, F. P.

G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. Garcia de Arquer, F. Gatti, and F. H. L. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechnol. 7(6), 363–368 (2012).
[Crossref] [PubMed]

Gatti, F.

G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. Garcia de Arquer, F. Gatti, and F. H. L. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechnol. 7(6), 363–368 (2012).
[Crossref] [PubMed]

Gaudreau, L.

G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. Garcia de Arquer, F. Gatti, and F. H. L. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechnol. 7(6), 363–368 (2012).
[Crossref] [PubMed]

Geim, A. K.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340(6138), 1311–1314 (2013).
[Crossref] [PubMed]

Georgiou, T.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340(6138), 1311–1314 (2013).
[Crossref] [PubMed]

Ghosh, A.

K. Roy, M. Padmanabhan, S. Goswami, T. P. Sai, G. Ramalingam, S. Raghavan, and A. Ghosh, “Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices,” Nat. Nanotechnol. 8(11), 826–830 (2013).
[Crossref] [PubMed]

Giacometti, V.

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref] [PubMed]

Gilles, H.

Girard, S.

Goos, F.

F. Goos and H. Lindberghanchen, “Neumessung des Strahlversetzungseffektes bei Totalreflexion,” Ann. Phys. 440(3-5), 251–252 (1949).
[Crossref]

F. Goos and H. Hanchen, “Ein neuer und fundamentaler Versuchzur Totalreflexion,” Ann. Phys. 436(7-8), 333–346 (1947).
[Crossref]

Gopalan, P.

M. Kim, N. S. Safron, C. Huang, M. S. Arnold, and P. Gopalan, “Light-driven reversible modulation of doping in graphene,” Nano Lett. 12(1), 182–187 (2012).
[Crossref] [PubMed]

Gorbachev, R. V.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340(6138), 1311–1314 (2013).
[Crossref] [PubMed]

Goswami, S.

K. Roy, M. Padmanabhan, S. Goswami, T. P. Sai, G. Ramalingam, S. Raghavan, and A. Ghosh, “Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices,” Nat. Nanotechnol. 8(11), 826–830 (2013).
[Crossref] [PubMed]

Grigorenko, A.

A. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Grigorenko, A. N.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340(6138), 1311–1314 (2013).
[Crossref] [PubMed]

Guo, J.

Gupta, B.

B. Gupta and A. K. Sharma, “Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study,” Sensor. Actuat. Biol. Chem. 107(1), 40–46 (2005).

Hamel, J.

Han, B.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Hanchen, H.

F. Goos and H. Hanchen, “Ein neuer und fundamentaler Versuchzur Totalreflexion,” Ann. Phys. 436(7-8), 333–346 (1947).
[Crossref]

Hayashi, S.

S. Hayashi, D. V. Nesterenko, and Z. Sekkat, “Fano resonance and plasmon-induced transparency in waveguide-coupled surface plasmon resonance sensors,” Appl. Phys. Express 8(2), 022201 (2015).
[Crossref]

Heitmann, D.

U. Schroter and D. Heitmann, “Grating couplers for surface plasmons excited on thin metal films in the Kretschmann-Raether configuration,” Phys. Rev. B 60(7), 4992–4999 (1999).
[Crossref]

Hentschel, M.

J. Unterhinninghofen, U. Kuhl, J. Wiersig, H.-J. Stöckmann, and M. Hentschel, “Measurement of the Goos–Hänchen shift in a microwave cavity,” New J. Phys. 13(2), 023013 (2011).
[Crossref]

Hesselink, L.

X. B. Yin, L. Hesselink, Z. W. Liu, N. Fang, and X. Zhang, “Large positive and negative lateral optical beam displacements due to surface plasmon resonance,” Appl. Phys. Lett. 85(3), 372–374 (2004).
[Crossref]

Hu, S. Y.

S. W. Zeng, S. Y. Hu, J. Xia, T. Anderson, X. Q. Dinh, X. M. Meng, P. Coquet, and K. T. Yong, “Graphene-MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors,” Sensor Actuat. Biol. Chem. 207, 801–810 (2015).

Huang, C.

M. Kim, N. S. Safron, C. Huang, M. S. Arnold, and P. Gopalan, “Light-driven reversible modulation of doping in graphene,” Nano Lett. 12(1), 182–187 (2012).
[Crossref] [PubMed]

Ikram, M.

L. G. Wang, M. Ikram, and M. S. Zubairy, “Control of the Goos-Hänchen shift of a light beam via a coherent driving field,” Phys. Rev. A 77(2), 023811 (2008).
[Crossref]

Jalil, R.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340(6138), 1311–1314 (2013).
[Crossref] [PubMed]

Jiang, L. Y.

L. Y. Jiang, Q. K. Wang, and Y. J. Xiang, “Electrically tunable Goos–Hänchen shift of light beam reflected from a graphene-on-dielectric surface,” IEEE Photonics J. 5(3), 6500108 (2013).
[Crossref]

Kaxiras, E.

C. A. Valagiannopoulos, M. Mattheakis, S. N. Shirodkar, and E. Kaxiras, “Manipulating polarized light with a planar slab of black phosphorus,” J. Phys. Commun. 1(4), 045003 (2017).
[Crossref]

M. Mattheakis, C. A. Valagiannopoulos, and E. Kaxiras, “Epsilon-near-zero behavior from plasmonic Dirac point: Theory and realization using two-dimensional materials,” Phys. Rev. B 94(20), 201404 (2016).
[Crossref]

L. Yu, Y. H. Lee, X. Ling, E. J. Santos, Y. C. Shin, Y. Lin, M. Dubey, E. Kaxiras, J. Kong, H. Wang, and T. Palacios, “Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics,” Nano Lett. 14(6), 3055–3063 (2014).
[Crossref] [PubMed]

Kim, M.

M. Kim, N. S. Safron, C. Huang, M. S. Arnold, and P. Gopalan, “Light-driven reversible modulation of doping in graphene,” Nano Lett. 12(1), 182–187 (2012).
[Crossref] [PubMed]

Kim, Y. J.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340(6138), 1311–1314 (2013).
[Crossref] [PubMed]

Kis, A.

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref] [PubMed]

Koh, W. S.

Kong, J.

L. Yu, Y. H. Lee, X. Ling, E. J. Santos, Y. C. Shin, Y. Lin, M. Dubey, E. Kaxiras, J. Kong, H. Wang, and T. Palacios, “Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics,” Nano Lett. 14(6), 3055–3063 (2014).
[Crossref] [PubMed]

Konstantatos, G.

D. Kufer, I. Nikitskiy, T. Lasanta, G. Navickaite, F. H. Koppens, and G. Konstantatos, “Hybrid 2D-0D MoS2 -PbS quantum dot photodetectors,” Adv. Mater. 27(1), 176–180 (2015).
[Crossref] [PubMed]

G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. Garcia de Arquer, F. Gatti, and F. H. L. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechnol. 7(6), 363–368 (2012).
[Crossref] [PubMed]

Koppens, F. H.

D. Kufer, I. Nikitskiy, T. Lasanta, G. Navickaite, F. H. Koppens, and G. Konstantatos, “Hybrid 2D-0D MoS2 -PbS quantum dot photodetectors,” Adv. Mater. 27(1), 176–180 (2015).
[Crossref] [PubMed]

Koppens, F. H. L.

G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. Garcia de Arquer, F. Gatti, and F. H. L. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechnol. 7(6), 363–368 (2012).
[Crossref] [PubMed]

Koschny, T.

Y. C. Fan, N. H. Shen, F. L. Zhang, Z. Y. Wei, H. Q. Li, Q. Zhao, Q. H. Fu, P. Zhang, T. Koschny, and C. M. Soukoulis, “Electrically tunable Goos–Hänchen effect with graphene in the terahertz regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

Y. C. Fan, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable terahertz meta-surface with graphene cut-wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

Kufer, D.

D. Kufer, I. Nikitskiy, T. Lasanta, G. Navickaite, F. H. Koppens, and G. Konstantatos, “Hybrid 2D-0D MoS2 -PbS quantum dot photodetectors,” Adv. Mater. 27(1), 176–180 (2015).
[Crossref] [PubMed]

Kuhl, U.

J. Unterhinninghofen, U. Kuhl, J. Wiersig, H.-J. Stöckmann, and M. Hentschel, “Measurement of the Goos–Hänchen shift in a microwave cavity,” New J. Phys. 13(2), 023013 (2011).
[Crossref]

Lasanta, T.

D. Kufer, I. Nikitskiy, T. Lasanta, G. Navickaite, F. H. Koppens, and G. Konstantatos, “Hybrid 2D-0D MoS2 -PbS quantum dot photodetectors,” Adv. Mater. 27(1), 176–180 (2015).
[Crossref] [PubMed]

Le Floch, A.

Lee, Y. H.

L. Yu, Y. H. Lee, X. Ling, E. J. Santos, Y. C. Shin, Y. Lin, M. Dubey, E. Kaxiras, J. Kong, H. Wang, and T. Palacios, “Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics,” Nano Lett. 14(6), 3055–3063 (2014).
[Crossref] [PubMed]

Li, E. P.

Li, H. Q.

Y. C. Fan, N. H. Shen, F. L. Zhang, Q. Zhao, Z. Y. Wei, P. Zhang, J. J. Dong, Q. H. Fu, H. Q. Li, and C. M. Soukoulis, “Photoexcited graphene metasurfaces: significantly enhanced and tunable magnetic resonances,” ACS Photonics 5(4), 1612–1618 (2018).
[Crossref]

Y. C. Fan, N. H. Shen, F. L. Zhang, Z. Y. Wei, H. Q. Li, Q. Zhao, Q. H. Fu, P. Zhang, T. Koschny, and C. M. Soukoulis, “Electrically tunable Goos–Hänchen effect with graphene in the terahertz regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

Y. C. Fan, Z. Y. Wei, H. Q. Li, H. Chen, and C. M. Soukoulis, “Photonic band gap of a graphene-embedded quarter-wave stack,” Phys. Rev. B 88(24), 241403 (2013).
[Crossref]

Li, L. J.

P. T. K. Loan, W. Zhang, C. T. Lin, K. H. Wei, L. J. Li, and C. H. Chen, “Graphene/MoS2 heterostructures for ultrasensitive detection of DNA hybridisation,” Adv. Mater. 26(28), 4838–4844 (2014).
[Crossref] [PubMed]

Li, X.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Lin, C. T.

P. T. K. Loan, W. Zhang, C. T. Lin, K. H. Wei, L. J. Li, and C. H. Chen, “Graphene/MoS2 heterostructures for ultrasensitive detection of DNA hybridisation,” Adv. Mater. 26(28), 4838–4844 (2014).
[Crossref] [PubMed]

Lin, Y.

L. Yu, Y. H. Lee, X. Ling, E. J. Santos, Y. C. Shin, Y. Lin, M. Dubey, E. Kaxiras, J. Kong, H. Wang, and T. Palacios, “Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics,” Nano Lett. 14(6), 3055–3063 (2014).
[Crossref] [PubMed]

Lindberghanchen, H.

F. Goos and H. Lindberghanchen, “Neumessung des Strahlversetzungseffektes bei Totalreflexion,” Ann. Phys. 440(3-5), 251–252 (1949).
[Crossref]

Ling, X.

L. Yu, Y. H. Lee, X. Ling, E. J. Santos, Y. C. Shin, Y. Lin, M. Dubey, E. Kaxiras, J. Kong, H. Wang, and T. Palacios, “Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics,” Nano Lett. 14(6), 3055–3063 (2014).
[Crossref] [PubMed]

Liu, X.

X. Liu, Z. Cao, P. Zhu, Q. Shen, and X. Liu, “Large positive and negative lateral optical beam shift in prism-waveguide coupling system,” Phys. Rev. E 73(5), 056617 (2006).
[Crossref] [PubMed]

X. Liu, Z. Cao, P. Zhu, Q. Shen, and X. Liu, “Large positive and negative lateral optical beam shift in prism-waveguide coupling system,” Phys. Rev. E 73(5), 056617 (2006).
[Crossref] [PubMed]

Liu, Z. W.

X. B. Yin, L. Hesselink, Z. W. Liu, N. Fang, and X. Zhang, “Large positive and negative lateral optical beam displacements due to surface plasmon resonance,” Appl. Phys. Lett. 85(3), 372–374 (2004).
[Crossref]

Loan, P. T. K.

P. T. K. Loan, W. Zhang, C. T. Lin, K. H. Wei, L. J. Li, and C. H. Chen, “Graphene/MoS2 heterostructures for ultrasensitive detection of DNA hybridisation,” Adv. Mater. 26(28), 4838–4844 (2014).
[Crossref] [PubMed]

Low, T.

M. Freitag, T. Low, F. Xia, and P. Avouris, “Photoconductivity of biased graphene,” Nat. Photonics 7(1), 53–59 (2013).
[Crossref]

Luo, C.

Luo, C. Y.

C. Y. Luo, X. Y. Dai, Y. J. Xiang, and S. Wen, “Enhanced and tunable Goos–Hänchen shift in a cavity containing colloidal ferrofluids,” IEEE Photonics J. 7(4), 6100310 (2015).
[Crossref]

Macleod, H. A.

Z. Salamon, H. A. Macleod, and G. Tollin, “Coupled plasmon-waveguide resonators: a new spectroscopic tool for probing proteolipid film structure and properties,” Biophys. J. 73(5), 2791–2797 (1997).
[Crossref] [PubMed]

Masumura, A.

Mattheakis, M.

C. A. Valagiannopoulos, M. Mattheakis, S. N. Shirodkar, and E. Kaxiras, “Manipulating polarized light with a planar slab of black phosphorus,” J. Phys. Commun. 1(4), 045003 (2017).
[Crossref]

M. Mattheakis, C. A. Valagiannopoulos, and E. Kaxiras, “Epsilon-near-zero behavior from plasmonic Dirac point: Theory and realization using two-dimensional materials,” Phys. Rev. B 94(20), 201404 (2016).
[Crossref]

Meng, X. M.

S. W. Zeng, S. Y. Hu, J. Xia, T. Anderson, X. Q. Dinh, X. M. Meng, P. Coquet, and K. T. Yong, “Graphene-MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors,” Sensor Actuat. Biol. Chem. 207, 801–810 (2015).

Merano, M.

Mishchenko, A.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340(6138), 1311–1314 (2013).
[Crossref] [PubMed]

Morozov, S. V.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340(6138), 1311–1314 (2013).
[Crossref] [PubMed]

Mueller, T.

T. Mueller, F. Xia, and P. Avouris, “Graphene photo detectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
[Crossref]

Navickaite, G.

D. Kufer, I. Nikitskiy, T. Lasanta, G. Navickaite, F. H. Koppens, and G. Konstantatos, “Hybrid 2D-0D MoS2 -PbS quantum dot photodetectors,” Adv. Mater. 27(1), 176–180 (2015).
[Crossref] [PubMed]

Nejad, Z. G.

Z. G. Nejad and S. Reza, “Hybrid graphene–molybdenum disulphide based ring resonator for label-free sensing,” Opt. Commun. 371, 9–14 (2016).
[Crossref]

Nesterenko, D. V.

S. Hayashi, D. V. Nesterenko, and Z. Sekkat, “Fano resonance and plasmon-induced transparency in waveguide-coupled surface plasmon resonance sensors,” Appl. Phys. Express 8(2), 022201 (2015).
[Crossref]

Nikitskiy, I.

D. Kufer, I. Nikitskiy, T. Lasanta, G. Navickaite, F. H. Koppens, and G. Konstantatos, “Hybrid 2D-0D MoS2 -PbS quantum dot photodetectors,” Adv. Mater. 27(1), 176–180 (2015).
[Crossref] [PubMed]

Novoselov, K. S.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340(6138), 1311–1314 (2013).
[Crossref] [PubMed]

A. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Osmond, J.

G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. Garcia de Arquer, F. Gatti, and F. H. L. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechnol. 7(6), 363–368 (2012).
[Crossref] [PubMed]

Padmanabhan, M.

K. Roy, M. Padmanabhan, S. Goswami, T. P. Sai, G. Ramalingam, S. Raghavan, and A. Ghosh, “Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices,” Nat. Nanotechnol. 8(11), 826–830 (2013).
[Crossref] [PubMed]

Palacios, T.

L. Yu, Y. H. Lee, X. Ling, E. J. Santos, Y. C. Shin, Y. Lin, M. Dubey, E. Kaxiras, J. Kong, H. Wang, and T. Palacios, “Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics,” Nano Lett. 14(6), 3055–3063 (2014).
[Crossref] [PubMed]

Piner, R. D.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Pockrand, I.

I. Pockrand, “Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings,” Surf. Sci. 72(3), 577–588 (1978).
[Crossref]

Polini, M.

A. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Qin, J.

Radenovic, A.

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref] [PubMed]

Radisavljevic, B.

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref] [PubMed]

Raether, H.

H. Raether, “Surface plasmons on smooth and rough surfaces and on gratings,” Springer Tr. in Mod. Phys. 111, 1–133 (1988).

Raghavan, S.

K. Roy, M. Padmanabhan, S. Goswami, T. P. Sai, G. Ramalingam, S. Raghavan, and A. Ghosh, “Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices,” Nat. Nanotechnol. 8(11), 826–830 (2013).
[Crossref] [PubMed]

Ramalingam, G.

K. Roy, M. Padmanabhan, S. Goswami, T. P. Sai, G. Ramalingam, S. Raghavan, and A. Ghosh, “Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices,” Nat. Nanotechnol. 8(11), 826–830 (2013).
[Crossref] [PubMed]

Reza, S.

Z. G. Nejad and S. Reza, “Hybrid graphene–molybdenum disulphide based ring resonator for label-free sensing,” Opt. Commun. 371, 9–14 (2016).
[Crossref]

Ribeiro, R. M.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340(6138), 1311–1314 (2013).
[Crossref] [PubMed]

Roy, K.

K. Roy, M. Padmanabhan, S. Goswami, T. P. Sai, G. Ramalingam, S. Raghavan, and A. Ghosh, “Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices,” Nat. Nanotechnol. 8(11), 826–830 (2013).
[Crossref] [PubMed]

Rubiobollinger, G.

A. Castellanosgomez, N. Agrait, and G. Rubiobollinger, “Optical identification of atomically thin dichalcogenide crystals,” Appl. Phys. Lett. 96(21), 213116 (2010).
[Crossref]

Ruoff, R. S.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Safian, R.

F. Zangeneh- Nejad and R. Safian, “Significant enhancement in the efficiency of photoconductive antennas usinga hybrid graphene molybdenum disulphide structure,” J. Nanophotonics 10(3), 036005 (2016).
[Crossref]

Safron, N. S.

M. Kim, N. S. Safron, C. Huang, M. S. Arnold, and P. Gopalan, “Light-driven reversible modulation of doping in graphene,” Nano Lett. 12(1), 182–187 (2012).
[Crossref] [PubMed]

Sai, T. P.

K. Roy, M. Padmanabhan, S. Goswami, T. P. Sai, G. Ramalingam, S. Raghavan, and A. Ghosh, “Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices,” Nat. Nanotechnol. 8(11), 826–830 (2013).
[Crossref] [PubMed]

Salamon, Z.

Z. Salamon, H. A. Macleod, and G. Tollin, “Coupled plasmon-waveguide resonators: a new spectroscopic tool for probing proteolipid film structure and properties,” Biophys. J. 73(5), 2791–2797 (1997).
[Crossref] [PubMed]

Santos, E. J.

L. Yu, Y. H. Lee, X. Ling, E. J. Santos, Y. C. Shin, Y. Lin, M. Dubey, E. Kaxiras, J. Kong, H. Wang, and T. Palacios, “Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics,” Nano Lett. 14(6), 3055–3063 (2014).
[Crossref] [PubMed]

Schroter, U.

U. Schroter and D. Heitmann, “Grating couplers for surface plasmons excited on thin metal films in the Kretschmann-Raether configuration,” Phys. Rev. B 60(7), 4992–4999 (1999).
[Crossref]

Sekkat, Z.

S. Hayashi, D. V. Nesterenko, and Z. Sekkat, “Fano resonance and plasmon-induced transparency in waveguide-coupled surface plasmon resonance sensors,” Appl. Phys. Express 8(2), 022201 (2015).
[Crossref]

Sharma, A. K.

B. Gupta and A. K. Sharma, “Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study,” Sensor. Actuat. Biol. Chem. 107(1), 40–46 (2005).

Shen, N. H.

Y. C. Fan, N. H. Shen, F. L. Zhang, Q. Zhao, Z. Y. Wei, P. Zhang, J. J. Dong, Q. H. Fu, H. Q. Li, and C. M. Soukoulis, “Photoexcited graphene metasurfaces: significantly enhanced and tunable magnetic resonances,” ACS Photonics 5(4), 1612–1618 (2018).
[Crossref]

Y. C. Fan, N. H. Shen, F. L. Zhang, Z. Y. Wei, H. Q. Li, Q. Zhao, Q. H. Fu, P. Zhang, T. Koschny, and C. M. Soukoulis, “Electrically tunable Goos–Hänchen effect with graphene in the terahertz regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

Y. C. Fan, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable terahertz meta-surface with graphene cut-wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

Shen, Q.

X. Liu, Z. Cao, P. Zhu, Q. Shen, and X. Liu, “Large positive and negative lateral optical beam shift in prism-waveguide coupling system,” Phys. Rev. E 73(5), 056617 (2006).
[Crossref] [PubMed]

Shin, Y. C.

L. Yu, Y. H. Lee, X. Ling, E. J. Santos, Y. C. Shin, Y. Lin, M. Dubey, E. Kaxiras, J. Kong, H. Wang, and T. Palacios, “Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics,” Nano Lett. 14(6), 3055–3063 (2014).
[Crossref] [PubMed]

Shirodkar, S. N.

C. A. Valagiannopoulos, M. Mattheakis, S. N. Shirodkar, and E. Kaxiras, “Manipulating polarized light with a planar slab of black phosphorus,” J. Phys. Commun. 1(4), 045003 (2017).
[Crossref]

Soukoulis, C. M.

Y. C. Fan, N. H. Shen, F. L. Zhang, Q. Zhao, Z. Y. Wei, P. Zhang, J. J. Dong, Q. H. Fu, H. Q. Li, and C. M. Soukoulis, “Photoexcited graphene metasurfaces: significantly enhanced and tunable magnetic resonances,” ACS Photonics 5(4), 1612–1618 (2018).
[Crossref]

Y. C. Fan, N. H. Shen, F. L. Zhang, Z. Y. Wei, H. Q. Li, Q. Zhao, Q. H. Fu, P. Zhang, T. Koschny, and C. M. Soukoulis, “Electrically tunable Goos–Hänchen effect with graphene in the terahertz regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

Y. C. Fan, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable terahertz meta-surface with graphene cut-wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

Y. C. Fan, Z. Y. Wei, H. Q. Li, H. Chen, and C. M. Soukoulis, “Photonic band gap of a graphene-embedded quarter-wave stack,” Phys. Rev. B 88(24), 241403 (2013).
[Crossref]

Stöckmann, H.-J.

J. Unterhinninghofen, U. Kuhl, J. Wiersig, H.-J. Stöckmann, and M. Hentschel, “Measurement of the Goos–Hänchen shift in a microwave cavity,” New J. Phys. 13(2), 023013 (2011).
[Crossref]

Tang, T.

Thygesen, K. S.

K. S. Thygesen, “Calculating excitons, plasmons, and quasiparticles in 2D materials and van der Waals heterostructures,” 2D Mater. 4(2), 022004 (2017).
[Crossref]

Tollin, G.

Z. Salamon, H. A. Macleod, and G. Tollin, “Coupled plasmon-waveguide resonators: a new spectroscopic tool for probing proteolipid film structure and properties,” Biophys. J. 73(5), 2791–2797 (1997).
[Crossref] [PubMed]

Unterhinninghofen, J.

J. Unterhinninghofen, U. Kuhl, J. Wiersig, H.-J. Stöckmann, and M. Hentschel, “Measurement of the Goos–Hänchen shift in a microwave cavity,” New J. Phys. 13(2), 023013 (2011).
[Crossref]

Valagiannopoulos, C. A.

C. A. Valagiannopoulos, M. Mattheakis, S. N. Shirodkar, and E. Kaxiras, “Manipulating polarized light with a planar slab of black phosphorus,” J. Phys. Commun. 1(4), 045003 (2017).
[Crossref]

M. Mattheakis, C. A. Valagiannopoulos, and E. Kaxiras, “Epsilon-near-zero behavior from plasmonic Dirac point: Theory and realization using two-dimensional materials,” Phys. Rev. B 94(20), 201404 (2016).
[Crossref]

C. A. Valagiannopoulos, “On examining the influence of a thin dielectric strip posed across the diameter of a penetrable radiating cylinder,” Prog. Electromagn. Res. C 3, 203–214 (2008).
[Crossref]

van Exter, M. P.

M. Merano, A. Aiello, M. P. van Exter, and J. P. Woerdman, “Observing angular deviations in the specular reflection of a light beam,” Nat. Photonics 20(12), 27 (2009).

M. Merano, A. Aiello, G. W. ’t Hooft, M. P. van Exter, E. R. Eliel, and J. P. Woerdman, “Observation of Goos-Hänchen shifts in metallic reflection,” Opt. Express 15(24), 15928–15934 (2007).
[Crossref] [PubMed]

Wang, H.

L. Yu, Y. H. Lee, X. Ling, E. J. Santos, Y. C. Shin, Y. Lin, M. Dubey, E. Kaxiras, J. Kong, H. Wang, and T. Palacios, “Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics,” Nano Lett. 14(6), 3055–3063 (2014).
[Crossref] [PubMed]

Wang, L. G.

L. G. Wang, M. Ikram, and M. S. Zubairy, “Control of the Goos-Hänchen shift of a light beam via a coherent driving field,” Phys. Rev. A 77(2), 023811 (2008).
[Crossref]

Wang, Q.

Wang, Q. K.

L. Y. Jiang, Q. K. Wang, and Y. J. Xiang, “Electrically tunable Goos–Hänchen shift of light beam reflected from a graphene-on-dielectric surface,” IEEE Photonics J. 5(3), 6500108 (2013).
[Crossref]

Wei, K. H.

P. T. K. Loan, W. Zhang, C. T. Lin, K. H. Wei, L. J. Li, and C. H. Chen, “Graphene/MoS2 heterostructures for ultrasensitive detection of DNA hybridisation,” Adv. Mater. 26(28), 4838–4844 (2014).
[Crossref] [PubMed]

Wei, Z. Y.

Y. C. Fan, N. H. Shen, F. L. Zhang, Q. Zhao, Z. Y. Wei, P. Zhang, J. J. Dong, Q. H. Fu, H. Q. Li, and C. M. Soukoulis, “Photoexcited graphene metasurfaces: significantly enhanced and tunable magnetic resonances,” ACS Photonics 5(4), 1612–1618 (2018).
[Crossref]

Y. C. Fan, N. H. Shen, F. L. Zhang, Z. Y. Wei, H. Q. Li, Q. Zhao, Q. H. Fu, P. Zhang, T. Koschny, and C. M. Soukoulis, “Electrically tunable Goos–Hänchen effect with graphene in the terahertz regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

Y. C. Fan, Z. Y. Wei, H. Q. Li, H. Chen, and C. M. Soukoulis, “Photonic band gap of a graphene-embedded quarter-wave stack,” Phys. Rev. B 88(24), 241403 (2013).
[Crossref]

Wen, S.

C. Y. Luo, X. Y. Dai, Y. J. Xiang, and S. Wen, “Enhanced and tunable Goos–Hänchen shift in a cavity containing colloidal ferrofluids,” IEEE Photonics J. 7(4), 6100310 (2015).
[Crossref]

C. Luo, J. Guo, Q. Wang, Y. Xiang, and S. Wen, “Electrically controlled Goos-Hänchen shift of a light beam reflected from the metal-insulator-semiconductor structure,” Opt. Express 21(9), 10430–10439 (2013).
[Crossref] [PubMed]

Wen, S. C.

Y. J. Xiang, X. Y. Dai, and S. C. Wen, “Negative and positive Goos-Hänchen shifts of a light beam transmitted from an indefinite medium slab,” Appl. Phys., A Mater. Sci. Process. 87(2), 285–290 (2007).
[Crossref]

Wiersig, J.

J. Unterhinninghofen, U. Kuhl, J. Wiersig, H.-J. Stöckmann, and M. Hentschel, “Measurement of the Goos–Hänchen shift in a microwave cavity,” New J. Phys. 13(2), 023013 (2011).
[Crossref]

Woerdman, J. P.

M. Merano, A. Aiello, M. P. van Exter, and J. P. Woerdman, “Observing angular deviations in the specular reflection of a light beam,” Nat. Photonics 20(12), 27 (2009).

M. Merano, A. Aiello, G. W. ’t Hooft, M. P. van Exter, E. R. Eliel, and J. P. Woerdman, “Observation of Goos-Hänchen shifts in metallic reflection,” Opt. Express 15(24), 15928–15934 (2007).
[Crossref] [PubMed]

Wu, L.

Xia, F.

M. Freitag, T. Low, F. Xia, and P. Avouris, “Photoconductivity of biased graphene,” Nat. Photonics 7(1), 53–59 (2013).
[Crossref]

T. Mueller, F. Xia, and P. Avouris, “Graphene photo detectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
[Crossref]

Xia, J.

S. W. Zeng, S. Y. Hu, J. Xia, T. Anderson, X. Q. Dinh, X. M. Meng, P. Coquet, and K. T. Yong, “Graphene-MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors,” Sensor Actuat. Biol. Chem. 207, 801–810 (2015).

Xiang, Y.

Xiang, Y. J.

C. Y. Luo, X. Y. Dai, Y. J. Xiang, and S. Wen, “Enhanced and tunable Goos–Hänchen shift in a cavity containing colloidal ferrofluids,” IEEE Photonics J. 7(4), 6100310 (2015).
[Crossref]

L. Y. Jiang, Q. K. Wang, and Y. J. Xiang, “Electrically tunable Goos–Hänchen shift of light beam reflected from a graphene-on-dielectric surface,” IEEE Photonics J. 5(3), 6500108 (2013).
[Crossref]

Y. J. Xiang, X. Y. Dai, and S. C. Wen, “Negative and positive Goos-Hänchen shifts of a light beam transmitted from an indefinite medium slab,” Appl. Phys., A Mater. Sci. Process. 87(2), 285–290 (2007).
[Crossref]

Xie, J.

Yin, X. B.

X. B. Yin, L. Hesselink, Z. W. Liu, N. Fang, and X. Zhang, “Large positive and negative lateral optical beam displacements due to surface plasmon resonance,” Appl. Phys. Lett. 85(3), 372–374 (2004).
[Crossref]

Yong, K. T.

S. W. Zeng, S. Y. Hu, J. Xia, T. Anderson, X. Q. Dinh, X. M. Meng, P. Coquet, and K. T. Yong, “Graphene-MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors,” Sensor Actuat. Biol. Chem. 207, 801–810 (2015).

Yu, L.

L. Yu, Y. H. Lee, X. Ling, E. J. Santos, Y. C. Shin, Y. Lin, M. Dubey, E. Kaxiras, J. Kong, H. Wang, and T. Palacios, “Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics,” Nano Lett. 14(6), 3055–3063 (2014).
[Crossref] [PubMed]

Zangeneh- Nejad, F.

F. Zangeneh- Nejad and R. Safian, “Significant enhancement in the efficiency of photoconductive antennas usinga hybrid graphene molybdenum disulphide structure,” J. Nanophotonics 10(3), 036005 (2016).
[Crossref]

Zeng, S. W.

S. W. Zeng, S. Y. Hu, J. Xia, T. Anderson, X. Q. Dinh, X. M. Meng, P. Coquet, and K. T. Yong, “Graphene-MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors,” Sensor Actuat. Biol. Chem. 207, 801–810 (2015).

Zhang, F. L.

Y. C. Fan, N. H. Shen, F. L. Zhang, Q. Zhao, Z. Y. Wei, P. Zhang, J. J. Dong, Q. H. Fu, H. Q. Li, and C. M. Soukoulis, “Photoexcited graphene metasurfaces: significantly enhanced and tunable magnetic resonances,” ACS Photonics 5(4), 1612–1618 (2018).
[Crossref]

Y. C. Fan, N. H. Shen, F. L. Zhang, Z. Y. Wei, H. Q. Li, Q. Zhao, Q. H. Fu, P. Zhang, T. Koschny, and C. M. Soukoulis, “Electrically tunable Goos–Hänchen effect with graphene in the terahertz regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

Zhang, P.

Y. C. Fan, N. H. Shen, F. L. Zhang, Q. Zhao, Z. Y. Wei, P. Zhang, J. J. Dong, Q. H. Fu, H. Q. Li, and C. M. Soukoulis, “Photoexcited graphene metasurfaces: significantly enhanced and tunable magnetic resonances,” ACS Photonics 5(4), 1612–1618 (2018).
[Crossref]

Y. C. Fan, N. H. Shen, F. L. Zhang, Z. Y. Wei, H. Q. Li, Q. Zhao, Q. H. Fu, P. Zhang, T. Koschny, and C. M. Soukoulis, “Electrically tunable Goos–Hänchen effect with graphene in the terahertz regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

Zhang, W.

P. T. K. Loan, W. Zhang, C. T. Lin, K. H. Wei, L. J. Li, and C. H. Chen, “Graphene/MoS2 heterostructures for ultrasensitive detection of DNA hybridisation,” Adv. Mater. 26(28), 4838–4844 (2014).
[Crossref] [PubMed]

Zhang, X.

X. B. Yin, L. Hesselink, Z. W. Liu, N. Fang, and X. Zhang, “Large positive and negative lateral optical beam displacements due to surface plasmon resonance,” Appl. Phys. Lett. 85(3), 372–374 (2004).
[Crossref]

Zhao, Q.

Y. C. Fan, N. H. Shen, F. L. Zhang, Q. Zhao, Z. Y. Wei, P. Zhang, J. J. Dong, Q. H. Fu, H. Q. Li, and C. M. Soukoulis, “Photoexcited graphene metasurfaces: significantly enhanced and tunable magnetic resonances,” ACS Photonics 5(4), 1612–1618 (2018).
[Crossref]

Y. C. Fan, N. H. Shen, F. L. Zhang, Z. Y. Wei, H. Q. Li, Q. Zhao, Q. H. Fu, P. Zhang, T. Koschny, and C. M. Soukoulis, “Electrically tunable Goos–Hänchen effect with graphene in the terahertz regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

Zhu, P.

X. Liu, Z. Cao, P. Zhu, Q. Shen, and X. Liu, “Large positive and negative lateral optical beam shift in prism-waveguide coupling system,” Phys. Rev. E 73(5), 056617 (2006).
[Crossref] [PubMed]

Zhu, Y.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Zubairy, M. S.

L. G. Wang, M. Ikram, and M. S. Zubairy, “Control of the Goos-Hänchen shift of a light beam via a coherent driving field,” Phys. Rev. A 77(2), 023811 (2008).
[Crossref]

2D Mater. (1)

K. S. Thygesen, “Calculating excitons, plasmons, and quasiparticles in 2D materials and van der Waals heterostructures,” 2D Mater. 4(2), 022004 (2017).
[Crossref]

ACS Photonics (2)

Y. C. Fan, N. H. Shen, F. L. Zhang, Q. Zhao, Z. Y. Wei, P. Zhang, J. J. Dong, Q. H. Fu, H. Q. Li, and C. M. Soukoulis, “Photoexcited graphene metasurfaces: significantly enhanced and tunable magnetic resonances,” ACS Photonics 5(4), 1612–1618 (2018).
[Crossref]

Y. C. Fan, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable terahertz meta-surface with graphene cut-wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

Adv. Mater. (2)

P. T. K. Loan, W. Zhang, C. T. Lin, K. H. Wei, L. J. Li, and C. H. Chen, “Graphene/MoS2 heterostructures for ultrasensitive detection of DNA hybridisation,” Adv. Mater. 26(28), 4838–4844 (2014).
[Crossref] [PubMed]

D. Kufer, I. Nikitskiy, T. Lasanta, G. Navickaite, F. H. Koppens, and G. Konstantatos, “Hybrid 2D-0D MoS2 -PbS quantum dot photodetectors,” Adv. Mater. 27(1), 176–180 (2015).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

Y. C. Fan, N. H. Shen, F. L. Zhang, Z. Y. Wei, H. Q. Li, Q. Zhao, Q. H. Fu, P. Zhang, T. Koschny, and C. M. Soukoulis, “Electrically tunable Goos–Hänchen effect with graphene in the terahertz regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

Ann. Phys. (3)

F. Goos and H. Hanchen, “Ein neuer und fundamentaler Versuchzur Totalreflexion,” Ann. Phys. 436(7-8), 333–346 (1947).
[Crossref]

F. Goos and H. Lindberghanchen, “Neumessung des Strahlversetzungseffektes bei Totalreflexion,” Ann. Phys. 440(3-5), 251–252 (1949).
[Crossref]

K. Artmann, “Berechnung der Seitenversetzung des totalreflektierten Strahles,” Ann. Phys. 2(1-2), 87–102 (1948).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Express (1)

S. Hayashi, D. V. Nesterenko, and Z. Sekkat, “Fano resonance and plasmon-induced transparency in waveguide-coupled surface plasmon resonance sensors,” Appl. Phys. Express 8(2), 022201 (2015).
[Crossref]

Appl. Phys. Lett. (4)

C. H. Gan, “Analysis of surface plasmon excitation at terahertz frequencies with highly doped graphene sheets via attenuated total reflection,” Appl. Phys. Lett. 101(11), 111609 (2012).
[Crossref]

A. Castellanosgomez, N. Agrait, and G. Rubiobollinger, “Optical identification of atomically thin dichalcogenide crystals,” Appl. Phys. Lett. 96(21), 213116 (2010).
[Crossref]

M. Bruna and S. Borini, “Optical constants of graphene layers in the visible range,” Appl. Phys. Lett. 94(3), 031901 (2009).
[Crossref]

X. B. Yin, L. Hesselink, Z. W. Liu, N. Fang, and X. Zhang, “Large positive and negative lateral optical beam displacements due to surface plasmon resonance,” Appl. Phys. Lett. 85(3), 372–374 (2004).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

Y. J. Xiang, X. Y. Dai, and S. C. Wen, “Negative and positive Goos-Hänchen shifts of a light beam transmitted from an indefinite medium slab,” Appl. Phys., A Mater. Sci. Process. 87(2), 285–290 (2007).
[Crossref]

Biophys. J. (1)

Z. Salamon, H. A. Macleod, and G. Tollin, “Coupled plasmon-waveguide resonators: a new spectroscopic tool for probing proteolipid film structure and properties,” Biophys. J. 73(5), 2791–2797 (1997).
[Crossref] [PubMed]

IEEE Photonics J. (2)

C. Y. Luo, X. Y. Dai, Y. J. Xiang, and S. Wen, “Enhanced and tunable Goos–Hänchen shift in a cavity containing colloidal ferrofluids,” IEEE Photonics J. 7(4), 6100310 (2015).
[Crossref]

L. Y. Jiang, Q. K. Wang, and Y. J. Xiang, “Electrically tunable Goos–Hänchen shift of light beam reflected from a graphene-on-dielectric surface,” IEEE Photonics J. 5(3), 6500108 (2013).
[Crossref]

J. Nanophotonics (1)

F. Zangeneh- Nejad and R. Safian, “Significant enhancement in the efficiency of photoconductive antennas usinga hybrid graphene molybdenum disulphide structure,” J. Nanophotonics 10(3), 036005 (2016).
[Crossref]

J. Phys. Commun. (1)

C. A. Valagiannopoulos, M. Mattheakis, S. N. Shirodkar, and E. Kaxiras, “Manipulating polarized light with a planar slab of black phosphorus,” J. Phys. Commun. 1(4), 045003 (2017).
[Crossref]

Nano Lett. (3)

L. Yu, Y. H. Lee, X. Ling, E. J. Santos, Y. C. Shin, Y. Lin, M. Dubey, E. Kaxiras, J. Kong, H. Wang, and T. Palacios, “Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics,” Nano Lett. 14(6), 3055–3063 (2014).
[Crossref] [PubMed]

M. Kim, N. S. Safron, C. Huang, M. S. Arnold, and P. Gopalan, “Light-driven reversible modulation of doping in graphene,” Nano Lett. 12(1), 182–187 (2012).
[Crossref] [PubMed]

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Nat. Nanotechnol. (3)

K. Roy, M. Padmanabhan, S. Goswami, T. P. Sai, G. Ramalingam, S. Raghavan, and A. Ghosh, “Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices,” Nat. Nanotechnol. 8(11), 826–830 (2013).
[Crossref] [PubMed]

G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. Garcia de Arquer, F. Gatti, and F. H. L. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechnol. 7(6), 363–368 (2012).
[Crossref] [PubMed]

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref] [PubMed]

Nat. Photonics (4)

T. Mueller, F. Xia, and P. Avouris, “Graphene photo detectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
[Crossref]

M. Freitag, T. Low, F. Xia, and P. Avouris, “Photoconductivity of biased graphene,” Nat. Photonics 7(1), 53–59 (2013).
[Crossref]

A. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

M. Merano, A. Aiello, M. P. van Exter, and J. P. Woerdman, “Observing angular deviations in the specular reflection of a light beam,” Nat. Photonics 20(12), 27 (2009).

New J. Phys. (1)

J. Unterhinninghofen, U. Kuhl, J. Wiersig, H.-J. Stöckmann, and M. Hentschel, “Measurement of the Goos–Hänchen shift in a microwave cavity,” New J. Phys. 13(2), 023013 (2011).
[Crossref]

Opt. Commun. (1)

Z. G. Nejad and S. Reza, “Hybrid graphene–molybdenum disulphide based ring resonator for label-free sensing,” Opt. Commun. 371, 9–14 (2016).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Phys. Rev. A (1)

L. G. Wang, M. Ikram, and M. S. Zubairy, “Control of the Goos-Hänchen shift of a light beam via a coherent driving field,” Phys. Rev. A 77(2), 023811 (2008).
[Crossref]

Phys. Rev. B (3)

M. Mattheakis, C. A. Valagiannopoulos, and E. Kaxiras, “Epsilon-near-zero behavior from plasmonic Dirac point: Theory and realization using two-dimensional materials,” Phys. Rev. B 94(20), 201404 (2016).
[Crossref]

Y. C. Fan, Z. Y. Wei, H. Q. Li, H. Chen, and C. M. Soukoulis, “Photonic band gap of a graphene-embedded quarter-wave stack,” Phys. Rev. B 88(24), 241403 (2013).
[Crossref]

U. Schroter and D. Heitmann, “Grating couplers for surface plasmons excited on thin metal films in the Kretschmann-Raether configuration,” Phys. Rev. B 60(7), 4992–4999 (1999).
[Crossref]

Phys. Rev. E (1)

X. Liu, Z. Cao, P. Zhu, Q. Shen, and X. Liu, “Large positive and negative lateral optical beam shift in prism-waveguide coupling system,” Phys. Rev. E 73(5), 056617 (2006).
[Crossref] [PubMed]

Prog. Electromagn. Res. C (1)

C. A. Valagiannopoulos, “On examining the influence of a thin dielectric strip posed across the diameter of a penetrable radiating cylinder,” Prog. Electromagn. Res. C 3, 203–214 (2008).
[Crossref]

Science (1)

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340(6138), 1311–1314 (2013).
[Crossref] [PubMed]

Sensor Actuat. Biol. Chem. (1)

S. W. Zeng, S. Y. Hu, J. Xia, T. Anderson, X. Q. Dinh, X. M. Meng, P. Coquet, and K. T. Yong, “Graphene-MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors,” Sensor Actuat. Biol. Chem. 207, 801–810 (2015).

Sensor. Actuat. Biol. Chem. (1)

B. Gupta and A. K. Sharma, “Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study,” Sensor. Actuat. Biol. Chem. 107(1), 40–46 (2005).

Springer Tr. in Mod. Phys. (1)

H. Raether, “Surface plasmons on smooth and rough surfaces and on gratings,” Springer Tr. in Mod. Phys. 111, 1–133 (1988).

Surf. Sci. (1)

I. Pockrand, “Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings,” Surf. Sci. 72(3), 577–588 (1978).
[Crossref]

Other (2)

Z. Zheng, L. F. He, Y. H. Wan, J. S. Liu, “Goos-Hänchen one kind of method and system for measuring displacement sensor,” CN patent 103148787 B (2016).

Y. C. Fan, L. Q. Tu, F. L. Zhang, Q. H. Fu, Z. R. Zhang, Z. Y. Wei, and H. Q. Li, “Broadband terahertz absorption in graphene-embedded photonic crystals,” Plasmonics (published online 2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Modified Kretschmann-Raether configuration with MoS2-graphene hybrid structure for surface plasmon excitation. A beam is incident on the structure with incident angle θ, giving rise to a reflected wave with the GH shift.
Fig. 2
Fig. 2 Variation of (a) reflectivity, phase and (b) GH shift with respect to angle of incidence for only 45 nm Au thin film at wavelength 632.8 nm.
Fig. 3
Fig. 3 Variation of (a) reflectivity, (b) phase and (c) GH shift with respect to angle of incidence for different number of graphene layers at wavelength 632.8 nm. The thickness of the gold layer is 45 nm.
Fig. 4
Fig. 4 Variation of (a) reflectivity, (b) phase and (c) GH shift with respect to angle of incidence for different number of MoS2 layers at wavelength 632.8 nm. The thickness of the gold layer is 45 nm.
Fig. 5
Fig. 5 Variation of (a) reflectivity, (b) phase and (c) GH shift with respect to angle of incidence for different number of MoS2layers at wavelength 632.8 nm. The number of graphene is 1 layer and the thickness of the gold layer is 45nm.
Fig. 6
Fig. 6 Variation of (a) reflectivity, (b) phase and (c) GH shift with respect to angle of incidence for different number of graphene layers at wavelength 632.8 nm. MoS2 is 1 layer and the thickness of the gold layer is 45 nm.
Fig. 7
Fig. 7 Numerical simulates the GH shift of the Gaussian beam when (a) graphene and MoS2 are both 0 layers, (b) 3-layer graphene and 0-layer MoS2. The half-width of the incident beam is 25λ. The angle of incidence is 53.6° and 54.2°, respectively.
Fig. 8
Fig. 8 Variation of GH shift with respect to the incident angle when changing the refractive index of the sensing medium in (a) only Au thin film, (b) l layer graphene coated with Au thin film (c) 1 layer graphene and 1 layer MoS2 coated with Au film, (d) 3-layer graphene and 2-layer MoS2 coated with Au film. The thickness of Au film is 45 nm.
Fig. 9
Fig. 9 Numerical simulations of the reflected beam from the MoS2-graphene heterostructure under different refractive index of sensing layer. The blue curve refers to the incident beam, the red curve and the green curve denote the reflected light corresponding to different refractive index. Other parameters are the same as in Fig. 8(d) in the manuscript.
Fig. 10
Fig. 10 Variation of peak sensitivity with respect to the thickness of Au layer for the proposed system, when the MoS2 is 2 layers and the graphene is 3 layers.

Tables (1)

Tables Icon

Table 1 Value of optimal GH shift (S/λ) with different number of graphene and MoS2 layers.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

n 1 = ( 1.73759695 λ 2 λ 2 0.013188707 + 0.313747346 λ 2 λ 2 0.0623068142 + 1.89878101 λ 2 λ 2 155.23629 +1) 1 2 ,
n 2 = ( 1.03961212 λ 2 λ 2 0.00600069867 + 0.231792344 λ 2 λ 2 0.0200179144 + 1.01046945 λ 2 λ 2 103.560653 +1) 1 2 ,
n 3 = (1 λ 2 λ c λ p 2 ( λ c +iλ) ) 1 2 ,
n 5 =3+i C 1 3 λ,
M= K=2 N1 M K =[ M 11 M 12 M 21 M 22 ],
M K =[ cos β k (isin β k )/ q k i q k sin β k cos β k ],
q k = ( u k ε k ) 1/2 cos θ k = ( ε k n 1 2 sin θ 1 ) 1/2 ε k ,
β k = 2π λ n k cos θ k ( z k z k1 )= 2π d k λ ( ε k n 1 2 sin 2 θ 1 ) 1/2 ,
r p = ( M 11 + M 12 q N ) q 1 ( M 21 + M 22 q N ) ( M 11 + M 12 q N ) q 1 +( M 21 + M 22 q N ) ,
ϕ p =arg( r p ), R p = | r p | 2 ,
S= 1 k 0 d ϕ p d θ 1 ,
Δ y = + | r | 2 A 2 ϕ r k y d k y + | r | 2 A 2 d k y .