Abstract

Generally, the effects of excitation power and dopant concentration on the optical temperature sensing behaviors of rare earth (RE) doped materials based on the fluorescence intensity ratio (FIR) technique are disregarded. In this paper, Er3+: BaGd2(MoO4)4 phosphors with different concentrations were fabricated by the high temperature solid-state reaction method. The results show that the variation of FIR (2H11/2/4S3/2) with excitation power is not only related to the laser-induced heating effect, but also the diverse power-dependences of 2H11/2 and 4S3/2 levels. Consequently, the temperature calibration curves change at different excitation power densities. When the calibration curve obtained at a low power density is applied to estimate the temperature of the object excited at a high power density, a large overestimate of the temperature rise induced by the optical heating effect can be caused. Besides, the temperature sensing sensitivity depends on the Er3+ doping concentration, which increases first with concentration to a maximum and then reduces. The maximal absolute sensitivity is ~110.5 × 10−4 K−1 in 5mol% Er3+: BaGd2(MoO4)4 phosphor, which is among the highest values of RE ions doped phosphors based on thermally coupled levels recorded before.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Enhancing sensing sensitivity in Gd2(MoO4)3: Yb3+/Er3+ upconversion phosphors by optimizing the calcination temperature

Weijiang Xu, Haoyue Hao, Dongyu Li, Xiaoyan Yan, Yinglin Song, Yuxiao Wang, and Xueru Zhang
Opt. Mater. Express 8(8) 2355-2365 (2018)

Upconversion luminescence of Ba3La(PO4)3:Yb3+-Er3+/Tm3+ phosphors for optimal temperature sensing

Jiafeng Cao, Jia Zhang, and Xiaowei Li
Appl. Opt. 57(6) 1345-1350 (2018)

Controlling optical temperature behaviors of Er3+ doped Sr2CaWO6 through doping and changing excitation powers

Yemin Wang, Yuanjian Liu, Jianping Shen, Xiangfu Wang, and Xiaohong Yan
Opt. Mater. Express 8(7) 1926-1939 (2018)

References

  • View by:
  • |
  • |
  • |

  1. M. Quintanilla and L. M. Liz-Marzán, “Guiding rules for selecting a nanothermometer,” Nano Today 19, 126–145 (2018).
    [Crossref]
  2. S. Balabhadra, M. L. Debasu, C. D. S. Brites, R. A. S. Ferreira, and L. D. Carlos, “Upconverting nanoparticles working as primary thermometers in different media,” J. Phys. Chem. C 121(25), 13962–13968 (2017).
    [Crossref]
  3. X. F. Wang, Q. Liu, Y. Y. Bu, C. S. Liu, T. Liu, and X. H. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).
    [Crossref]
  4. Y. Q. Zhang, S. Xu, X. P. Li, J. S. Zhang, J. S. Sun, H. P. Xia, R. N. Hua, and B. J. Chen, “Temperature sensing, excitation power dependent fluorescence branching ratios, and photothermal conversion in NaYF4:Er3+/Yb3+ @NaYF4:Tm3+/Yb3+core-shell particles,” Opt. Mater. Express 8(2), 368–384 (2018).
    [Crossref]
  5. Z. Huang, Z. Q. Nie, M. B. Xie, Y. X. Wang, and D. Y. Li, “Excellent optical thermometry based on upconversion emission in SrMoO4:Er3+ phosphor,” Opt. Mater. Express 7(7), 2404–2410 (2017).
    [Crossref]
  6. A. K. Soni and V. K. Rai, “Thermal and pump power effect in SrMoO4:Er3+-Yb3+ phosphor for thermometry and optical heating,” Chem. Phys. Lett. 667, 226–232 (2017).
    [Crossref]
  7. L. Marciniak, A. Bednarkiewicz, and W. Strek, “Tuning of the up-conversion emission and sensitivity of luminescent thermometer in LiLaP4O12:Tm,Yb nanocrystals via Eu3+ dopants,” J. Lumin. 184, 179–184 (2017).
    [Crossref]
  8. S. S. Zhou, S. Jiang, X. T. Wei, Y. H. Chen, C. K. Duan, and M. Yin, “Optical thermometry based on upconversion luminescence in Yb3+/Ho3+ co-doped NaLuF4,” J. Alloys Compd. 588, 654–657 (2014).
    [Crossref]
  9. L. Mukhopadhyay, V. K. Rai, R. Bokolia, and K. Sreenivas, “980 nm excited Er3+/Yb3+/Li+/Ba2+: NaZnPO4 upconverting phosphors in optical thermometry,” J. Lumin. 187, 368–377 (2017).
    [Crossref]
  10. P. Du, L. Luo, X. Huang, and J. S. Yu, “Ultrafast synthesis of bifunctional Er3+/Yb3+-codoped NaBiF4 upconverting nanoparticles for nanothermometer and optical heater,” J. Colloid Interface Sci. 514, 172–181 (2018).
    [Crossref] [PubMed]
  11. J. Cao, F. Hu, L. Chen, H. Guo, C. Duan, and M. Yin, “Wide-range thermometry based on green up-conversion luminescence of K3LuF6:Yb3+/Er3+ bulk oxyfluoride glass ceramics,” J. Am. Ceram. Soc. 100(5), 2108–2115 (2017).
    [Crossref]
  12. X. F. Wang, Q. Liu, P. Q. Cai, J. Wang, L. Qin, T. Y. Vu, and H. J. Seo, “Excitation powder dependent optical temperature behavior of Er3+ doped transparent Sr0.69La0.31F2.31 glass ceramics,” Opt. Express 24(16), 17792–17804 (2016).
    [Crossref] [PubMed]
  13. L. P. Li, L. J. Zheng, W. Xu, Z. Liang, Y. Zhou, Z. G. Zhang, and W. W. Cao, “Optical thermometry based on the red upconversion fluorescence of Er3+ in CaWO4:Yb3+/Er3+ polycrystalline powder,” Opt. Lett. 41(7), 1458–1461 (2016).
    [Crossref] [PubMed]
  14. Y. Tian, R. Hua, J. Yu, J. Sun, and B. Chen, “The effect of excitation power density on frequency upconversion in Yb3+/Er3+ codoped Gd6WO12 nanoparticles,” Mater. Chem. Phys. 133(2–3), 617–620 (2012).
    [Crossref]
  15. F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
    [Crossref] [PubMed]
  16. L. Marciniak, K. Waszniewska, A. Bednarkiewicz, D. Hreniak, and W. Strek, “Sensitivity of a nanocrystalline luminescent thermometer in high and low excitation density regimes,” J. Phys. Chem. C 120(16), 8877–8882 (2016).
    [Crossref]
  17. Y. L. Wei, C. H. Su, H. B. Zhang, J. Shao, and Z. L. Fu, “Thermal sensor and optical heater of upconversion phosphor: Yb3+/Er3+ codoped KY(MoO4)2,” Physica B 525, 149–153 (2017).
    [Crossref]
  18. R. Dey, A. Pandey, and V. K. Rai, “Er3+-Yb3+ and Eu3+-Er3+-Yb3+ codoped Y2O3 phosphors as optical heater,” Sens. Actuators B Chem. 190, 512–515 (2014).
    [Crossref]
  19. H. Y. Du, Y. J. Lan, Z. G. Xia, and J. Y. Sun, “Synthesis and upconversion luminescence properties of Yb3+/Er3+ codoped BaGd2(MoO4)4 powder,” Mater. Res. Bull. 44(8), 1660–1662 (2009).
    [Crossref]
  20. J. Y. Sun, Y. J. Lan, Z. G. Xia, and H. Y. Du, “Sol-gel synthesis and green upconversion luminescence in BaGd2(MoO4)4:Yb3+,Er3+ phosphors,” Opt. Mater. 33(3), 576–581 (2011).
    [Crossref]
  21. J. Y. Sun, W. Zhang, W. H. Zhang, and H. Y. Du, “Synthesis and two-color emission properties of BaGd2(MoO4)4:Eu3+,Er3+,Yb3+ phosphors,” Mater. Res. Bull. 47(3), 786–789 (2012).
    [Crossref]
  22. Y. N. Bao, X. S. Xu, J. L. Wu, K. C. Liu, Z. Y. Zhang, B. S. Cao, and B. Dong, “Thermal-induced local phase transfer on Ln3+-doped NaYF4 nanoparticles in electrospun ZnO nanofibers: enhanced upconversion luminescence for temperature sensing,” Ceram. Int. 42(10), 12525–12530 (2016).
    [Crossref]
  23. L. Xing, Y. Xu, R. Wang, and W. Xu, “Influence of temperature on upconversion multicolor luminescence in Ho3+/Yb3+/Tm3+-doped LiNbO3 single crystal,” Opt. Lett. 38(14), 2535–2537 (2013).
    [Crossref] [PubMed]
  24. J. F. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. U. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B 71(12), 125123 (2005).
    [Crossref]
  25. S. A. Wade, S. F. Collins, and G. W. Baxter, “The fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
    [Crossref]
  26. Z. H. Feng, L. Lin, Z. Z. Wang, and Z. Q. Zheng, “Low temperature sensing behavior of upconversion luminescence in Er3+/Yb3+ codoped PLZT transparent ceramic,” Opt. Commun. 399, 40–44 (2017).
    [Crossref]
  27. X. Zhu, W. Feng, J. Chang, Y. W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437 (2016).
    [Crossref] [PubMed]
  28. X. Wang, Y. Wang, Y. Bu, X. Yan, J. Wang, P. Cai, T. Vu, and H. J. Seo, “Influence of doping and excitation powers on optical thermometry in Yb3+-Er3+ doped CaWO4,” Sci. Rep. 7(1), 43383 (2017).
    [Crossref] [PubMed]
  29. S. F. León-Luis, U. R. Rodríguez-Mendoza, I. R. Martín, E. Lalla, and V. Lavín, “Effects of Er3+ concentration on thermal sensitivity in optical temperature fluorotellurite glass sensors,” Sens. Actuators B Chem. 176, 1167–1175 (2013).
    [Crossref]
  30. S. F. Leon-Luis, U. R. Rodríguez-Mendoza, P. Haro-Gonzalez, I. R. Martín, and V. Lavín, “Role of the host matrix on the thermal sensitivity of Er3+ luminescence in optical temperature sensors,” Sens. Actuators B Chem. 174, 176–186 (2012).
    [Crossref]
  31. W. Xu, Y. Cui, Y. W. Hu, L. J. Zheng, Z. G. Zhang, and W. W. Cao, “Optical temperature sensing in Er3+-Yb3+ codoped CaWO4 and the laser induced heating effect on the luminescence intensity saturation,” J. Alloys Compd. 726, 547–555 (2017).
    [Crossref]
  32. X. Ming, Q. Y. Meng, S. C. Lü, and W. J. Sun, “The hydrothermal synthesis and morphology-dependent optical temperature sensing properties of Er3+ doped NaGd(WO4)2 phosphor,” J. Lumin. 192, 196–202 (2017).
    [Crossref]
  33. W. A. Pisarski, J. Pisarska, R. Lisiecki, and W. Ryba-Romanowski, “Sensitive optical temperature sensor based on up-conversion luminescence spectra of Er3+ ions in PbO–Ga2O3–XO2 (X = Ge, Si) glasses,” Opt. Mater. 59, 87–90 (2016).
    [Crossref]
  34. M. D. Dramićanin, “Sensing temperature via downshifting emissions of lanthanide-doped metal oxides and salts. A review,” Methods Appl. Fluoresc. 4(4), 042001 (2016).
    [Crossref] [PubMed]
  35. B. Dong, D. P. Liu, X. J. Wang, T. Yang, S. M. Miao, and C. R. Li, “Optical thermometry through infrared excited green upconversion emissions in Er3+ -Yb3+ codoped Al2O3,” Appl. Phys. Lett. 90(18), 181117 (2007).
    [Crossref]
  36. S. F. León-Luis, U. R. Rodriguez-Mendoza, E. Lalla, and V. Lavin, “Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass,” Sens. Actuators B Chem. 158(1), 208–213 (2011).
    [Crossref]
  37. K. Zheng, W. Song, G. He, Z. Yuan, and W. Qin, “Five-photon UV upconversion emissions of Er3+ for temperature sensing,” Opt. Express 23(6), 7653–7658 (2015).
    [Crossref] [PubMed]
  38. P. Singh, P. K. Shahi, A. Rai, A. Bahadur, and S. B. Rai, “Effect of Li+ ion sensitization and optical temperature sensing in Gd2O3: Ho3+/Yb3+,” Opt. Mater. 58, 432–438 (2016).
    [Crossref]
  39. G. R. Chen, R. S. Lei, H. P. Wang, F. F. Huang, S. L. Zhao, and S. Q. Xu, “Temperature-dependent emission color and temperature sensing behavior in Tm3+/Yb3+:Y2O3 nanoparticles,” Opt. Mater. 77, 233–239 (2018).
    [Crossref]

2018 (4)

M. Quintanilla and L. M. Liz-Marzán, “Guiding rules for selecting a nanothermometer,” Nano Today 19, 126–145 (2018).
[Crossref]

P. Du, L. Luo, X. Huang, and J. S. Yu, “Ultrafast synthesis of bifunctional Er3+/Yb3+-codoped NaBiF4 upconverting nanoparticles for nanothermometer and optical heater,” J. Colloid Interface Sci. 514, 172–181 (2018).
[Crossref] [PubMed]

G. R. Chen, R. S. Lei, H. P. Wang, F. F. Huang, S. L. Zhao, and S. Q. Xu, “Temperature-dependent emission color and temperature sensing behavior in Tm3+/Yb3+:Y2O3 nanoparticles,” Opt. Mater. 77, 233–239 (2018).
[Crossref]

Y. Q. Zhang, S. Xu, X. P. Li, J. S. Zhang, J. S. Sun, H. P. Xia, R. N. Hua, and B. J. Chen, “Temperature sensing, excitation power dependent fluorescence branching ratios, and photothermal conversion in NaYF4:Er3+/Yb3+ @NaYF4:Tm3+/Yb3+core-shell particles,” Opt. Mater. Express 8(2), 368–384 (2018).
[Crossref]

2017 (11)

Z. Huang, Z. Q. Nie, M. B. Xie, Y. X. Wang, and D. Y. Li, “Excellent optical thermometry based on upconversion emission in SrMoO4:Er3+ phosphor,” Opt. Mater. Express 7(7), 2404–2410 (2017).
[Crossref]

Z. H. Feng, L. Lin, Z. Z. Wang, and Z. Q. Zheng, “Low temperature sensing behavior of upconversion luminescence in Er3+/Yb3+ codoped PLZT transparent ceramic,” Opt. Commun. 399, 40–44 (2017).
[Crossref]

X. Wang, Y. Wang, Y. Bu, X. Yan, J. Wang, P. Cai, T. Vu, and H. J. Seo, “Influence of doping and excitation powers on optical thermometry in Yb3+-Er3+ doped CaWO4,” Sci. Rep. 7(1), 43383 (2017).
[Crossref] [PubMed]

W. Xu, Y. Cui, Y. W. Hu, L. J. Zheng, Z. G. Zhang, and W. W. Cao, “Optical temperature sensing in Er3+-Yb3+ codoped CaWO4 and the laser induced heating effect on the luminescence intensity saturation,” J. Alloys Compd. 726, 547–555 (2017).
[Crossref]

X. Ming, Q. Y. Meng, S. C. Lü, and W. J. Sun, “The hydrothermal synthesis and morphology-dependent optical temperature sensing properties of Er3+ doped NaGd(WO4)2 phosphor,” J. Lumin. 192, 196–202 (2017).
[Crossref]

J. Cao, F. Hu, L. Chen, H. Guo, C. Duan, and M. Yin, “Wide-range thermometry based on green up-conversion luminescence of K3LuF6:Yb3+/Er3+ bulk oxyfluoride glass ceramics,” J. Am. Ceram. Soc. 100(5), 2108–2115 (2017).
[Crossref]

S. Balabhadra, M. L. Debasu, C. D. S. Brites, R. A. S. Ferreira, and L. D. Carlos, “Upconverting nanoparticles working as primary thermometers in different media,” J. Phys. Chem. C 121(25), 13962–13968 (2017).
[Crossref]

A. K. Soni and V. K. Rai, “Thermal and pump power effect in SrMoO4:Er3+-Yb3+ phosphor for thermometry and optical heating,” Chem. Phys. Lett. 667, 226–232 (2017).
[Crossref]

L. Marciniak, A. Bednarkiewicz, and W. Strek, “Tuning of the up-conversion emission and sensitivity of luminescent thermometer in LiLaP4O12:Tm,Yb nanocrystals via Eu3+ dopants,” J. Lumin. 184, 179–184 (2017).
[Crossref]

L. Mukhopadhyay, V. K. Rai, R. Bokolia, and K. Sreenivas, “980 nm excited Er3+/Yb3+/Li+/Ba2+: NaZnPO4 upconverting phosphors in optical thermometry,” J. Lumin. 187, 368–377 (2017).
[Crossref]

Y. L. Wei, C. H. Su, H. B. Zhang, J. Shao, and Z. L. Fu, “Thermal sensor and optical heater of upconversion phosphor: Yb3+/Er3+ codoped KY(MoO4)2,” Physica B 525, 149–153 (2017).
[Crossref]

2016 (8)

L. Marciniak, K. Waszniewska, A. Bednarkiewicz, D. Hreniak, and W. Strek, “Sensitivity of a nanocrystalline luminescent thermometer in high and low excitation density regimes,” J. Phys. Chem. C 120(16), 8877–8882 (2016).
[Crossref]

Y. N. Bao, X. S. Xu, J. L. Wu, K. C. Liu, Z. Y. Zhang, B. S. Cao, and B. Dong, “Thermal-induced local phase transfer on Ln3+-doped NaYF4 nanoparticles in electrospun ZnO nanofibers: enhanced upconversion luminescence for temperature sensing,” Ceram. Int. 42(10), 12525–12530 (2016).
[Crossref]

W. A. Pisarski, J. Pisarska, R. Lisiecki, and W. Ryba-Romanowski, “Sensitive optical temperature sensor based on up-conversion luminescence spectra of Er3+ ions in PbO–Ga2O3–XO2 (X = Ge, Si) glasses,” Opt. Mater. 59, 87–90 (2016).
[Crossref]

M. D. Dramićanin, “Sensing temperature via downshifting emissions of lanthanide-doped metal oxides and salts. A review,” Methods Appl. Fluoresc. 4(4), 042001 (2016).
[Crossref] [PubMed]

X. Zhu, W. Feng, J. Chang, Y. W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437 (2016).
[Crossref] [PubMed]

L. P. Li, L. J. Zheng, W. Xu, Z. Liang, Y. Zhou, Z. G. Zhang, and W. W. Cao, “Optical thermometry based on the red upconversion fluorescence of Er3+ in CaWO4:Yb3+/Er3+ polycrystalline powder,” Opt. Lett. 41(7), 1458–1461 (2016).
[Crossref] [PubMed]

X. F. Wang, Q. Liu, P. Q. Cai, J. Wang, L. Qin, T. Y. Vu, and H. J. Seo, “Excitation powder dependent optical temperature behavior of Er3+ doped transparent Sr0.69La0.31F2.31 glass ceramics,” Opt. Express 24(16), 17792–17804 (2016).
[Crossref] [PubMed]

P. Singh, P. K. Shahi, A. Rai, A. Bahadur, and S. B. Rai, “Effect of Li+ ion sensitization and optical temperature sensing in Gd2O3: Ho3+/Yb3+,” Opt. Mater. 58, 432–438 (2016).
[Crossref]

2015 (2)

K. Zheng, W. Song, G. He, Z. Yuan, and W. Qin, “Five-photon UV upconversion emissions of Er3+ for temperature sensing,” Opt. Express 23(6), 7653–7658 (2015).
[Crossref] [PubMed]

X. F. Wang, Q. Liu, Y. Y. Bu, C. S. Liu, T. Liu, and X. H. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).
[Crossref]

2014 (2)

S. S. Zhou, S. Jiang, X. T. Wei, Y. H. Chen, C. K. Duan, and M. Yin, “Optical thermometry based on upconversion luminescence in Yb3+/Ho3+ co-doped NaLuF4,” J. Alloys Compd. 588, 654–657 (2014).
[Crossref]

R. Dey, A. Pandey, and V. K. Rai, “Er3+-Yb3+ and Eu3+-Er3+-Yb3+ codoped Y2O3 phosphors as optical heater,” Sens. Actuators B Chem. 190, 512–515 (2014).
[Crossref]

2013 (2)

L. Xing, Y. Xu, R. Wang, and W. Xu, “Influence of temperature on upconversion multicolor luminescence in Ho3+/Yb3+/Tm3+-doped LiNbO3 single crystal,” Opt. Lett. 38(14), 2535–2537 (2013).
[Crossref] [PubMed]

S. F. León-Luis, U. R. Rodríguez-Mendoza, I. R. Martín, E. Lalla, and V. Lavín, “Effects of Er3+ concentration on thermal sensitivity in optical temperature fluorotellurite glass sensors,” Sens. Actuators B Chem. 176, 1167–1175 (2013).
[Crossref]

2012 (3)

S. F. Leon-Luis, U. R. Rodríguez-Mendoza, P. Haro-Gonzalez, I. R. Martín, and V. Lavín, “Role of the host matrix on the thermal sensitivity of Er3+ luminescence in optical temperature sensors,” Sens. Actuators B Chem. 174, 176–186 (2012).
[Crossref]

J. Y. Sun, W. Zhang, W. H. Zhang, and H. Y. Du, “Synthesis and two-color emission properties of BaGd2(MoO4)4:Eu3+,Er3+,Yb3+ phosphors,” Mater. Res. Bull. 47(3), 786–789 (2012).
[Crossref]

Y. Tian, R. Hua, J. Yu, J. Sun, and B. Chen, “The effect of excitation power density on frequency upconversion in Yb3+/Er3+ codoped Gd6WO12 nanoparticles,” Mater. Chem. Phys. 133(2–3), 617–620 (2012).
[Crossref]

2011 (2)

J. Y. Sun, Y. J. Lan, Z. G. Xia, and H. Y. Du, “Sol-gel synthesis and green upconversion luminescence in BaGd2(MoO4)4:Yb3+,Er3+ phosphors,” Opt. Mater. 33(3), 576–581 (2011).
[Crossref]

S. F. León-Luis, U. R. Rodriguez-Mendoza, E. Lalla, and V. Lavin, “Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass,” Sens. Actuators B Chem. 158(1), 208–213 (2011).
[Crossref]

2009 (1)

H. Y. Du, Y. J. Lan, Z. G. Xia, and J. Y. Sun, “Synthesis and upconversion luminescence properties of Yb3+/Er3+ codoped BaGd2(MoO4)4 powder,” Mater. Res. Bull. 44(8), 1660–1662 (2009).
[Crossref]

2007 (1)

B. Dong, D. P. Liu, X. J. Wang, T. Yang, S. M. Miao, and C. R. Li, “Optical thermometry through infrared excited green upconversion emissions in Er3+ -Yb3+ codoped Al2O3,” Appl. Phys. Lett. 90(18), 181117 (2007).
[Crossref]

2005 (1)

J. F. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. U. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B 71(12), 125123 (2005).
[Crossref]

2004 (1)

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
[Crossref] [PubMed]

2003 (1)

S. A. Wade, S. F. Collins, and G. W. Baxter, “The fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[Crossref]

Aebischer, A.

J. F. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. U. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B 71(12), 125123 (2005).
[Crossref]

Auzel, F.

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
[Crossref] [PubMed]

Bahadur, A.

P. Singh, P. K. Shahi, A. Rai, A. Bahadur, and S. B. Rai, “Effect of Li+ ion sensitization and optical temperature sensing in Gd2O3: Ho3+/Yb3+,” Opt. Mater. 58, 432–438 (2016).
[Crossref]

Balabhadra, S.

S. Balabhadra, M. L. Debasu, C. D. S. Brites, R. A. S. Ferreira, and L. D. Carlos, “Upconverting nanoparticles working as primary thermometers in different media,” J. Phys. Chem. C 121(25), 13962–13968 (2017).
[Crossref]

Bao, Y. N.

Y. N. Bao, X. S. Xu, J. L. Wu, K. C. Liu, Z. Y. Zhang, B. S. Cao, and B. Dong, “Thermal-induced local phase transfer on Ln3+-doped NaYF4 nanoparticles in electrospun ZnO nanofibers: enhanced upconversion luminescence for temperature sensing,” Ceram. Int. 42(10), 12525–12530 (2016).
[Crossref]

Baxter, G. W.

S. A. Wade, S. F. Collins, and G. W. Baxter, “The fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[Crossref]

Bednarkiewicz, A.

L. Marciniak, A. Bednarkiewicz, and W. Strek, “Tuning of the up-conversion emission and sensitivity of luminescent thermometer in LiLaP4O12:Tm,Yb nanocrystals via Eu3+ dopants,” J. Lumin. 184, 179–184 (2017).
[Crossref]

L. Marciniak, K. Waszniewska, A. Bednarkiewicz, D. Hreniak, and W. Strek, “Sensitivity of a nanocrystalline luminescent thermometer in high and low excitation density regimes,” J. Phys. Chem. C 120(16), 8877–8882 (2016).
[Crossref]

Bokolia, R.

L. Mukhopadhyay, V. K. Rai, R. Bokolia, and K. Sreenivas, “980 nm excited Er3+/Yb3+/Li+/Ba2+: NaZnPO4 upconverting phosphors in optical thermometry,” J. Lumin. 187, 368–377 (2017).
[Crossref]

Brites, C. D. S.

S. Balabhadra, M. L. Debasu, C. D. S. Brites, R. A. S. Ferreira, and L. D. Carlos, “Upconverting nanoparticles working as primary thermometers in different media,” J. Phys. Chem. C 121(25), 13962–13968 (2017).
[Crossref]

Bu, Y.

X. Wang, Y. Wang, Y. Bu, X. Yan, J. Wang, P. Cai, T. Vu, and H. J. Seo, “Influence of doping and excitation powers on optical thermometry in Yb3+-Er3+ doped CaWO4,” Sci. Rep. 7(1), 43383 (2017).
[Crossref] [PubMed]

Bu, Y. Y.

X. F. Wang, Q. Liu, Y. Y. Bu, C. S. Liu, T. Liu, and X. H. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).
[Crossref]

Cai, P.

X. Wang, Y. Wang, Y. Bu, X. Yan, J. Wang, P. Cai, T. Vu, and H. J. Seo, “Influence of doping and excitation powers on optical thermometry in Yb3+-Er3+ doped CaWO4,” Sci. Rep. 7(1), 43383 (2017).
[Crossref] [PubMed]

Cai, P. Q.

Cao, B. S.

Y. N. Bao, X. S. Xu, J. L. Wu, K. C. Liu, Z. Y. Zhang, B. S. Cao, and B. Dong, “Thermal-induced local phase transfer on Ln3+-doped NaYF4 nanoparticles in electrospun ZnO nanofibers: enhanced upconversion luminescence for temperature sensing,” Ceram. Int. 42(10), 12525–12530 (2016).
[Crossref]

Cao, J.

J. Cao, F. Hu, L. Chen, H. Guo, C. Duan, and M. Yin, “Wide-range thermometry based on green up-conversion luminescence of K3LuF6:Yb3+/Er3+ bulk oxyfluoride glass ceramics,” J. Am. Ceram. Soc. 100(5), 2108–2115 (2017).
[Crossref]

Cao, W. W.

W. Xu, Y. Cui, Y. W. Hu, L. J. Zheng, Z. G. Zhang, and W. W. Cao, “Optical temperature sensing in Er3+-Yb3+ codoped CaWO4 and the laser induced heating effect on the luminescence intensity saturation,” J. Alloys Compd. 726, 547–555 (2017).
[Crossref]

L. P. Li, L. J. Zheng, W. Xu, Z. Liang, Y. Zhou, Z. G. Zhang, and W. W. Cao, “Optical thermometry based on the red upconversion fluorescence of Er3+ in CaWO4:Yb3+/Er3+ polycrystalline powder,” Opt. Lett. 41(7), 1458–1461 (2016).
[Crossref] [PubMed]

Carlos, L. D.

S. Balabhadra, M. L. Debasu, C. D. S. Brites, R. A. S. Ferreira, and L. D. Carlos, “Upconverting nanoparticles working as primary thermometers in different media,” J. Phys. Chem. C 121(25), 13962–13968 (2017).
[Crossref]

Chang, J.

X. Zhu, W. Feng, J. Chang, Y. W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437 (2016).
[Crossref] [PubMed]

Chen, B.

Y. Tian, R. Hua, J. Yu, J. Sun, and B. Chen, “The effect of excitation power density on frequency upconversion in Yb3+/Er3+ codoped Gd6WO12 nanoparticles,” Mater. Chem. Phys. 133(2–3), 617–620 (2012).
[Crossref]

Chen, B. J.

Chen, G. R.

G. R. Chen, R. S. Lei, H. P. Wang, F. F. Huang, S. L. Zhao, and S. Q. Xu, “Temperature-dependent emission color and temperature sensing behavior in Tm3+/Yb3+:Y2O3 nanoparticles,” Opt. Mater. 77, 233–239 (2018).
[Crossref]

Chen, L.

J. Cao, F. Hu, L. Chen, H. Guo, C. Duan, and M. Yin, “Wide-range thermometry based on green up-conversion luminescence of K3LuF6:Yb3+/Er3+ bulk oxyfluoride glass ceramics,” J. Am. Ceram. Soc. 100(5), 2108–2115 (2017).
[Crossref]

Chen, M.

X. Zhu, W. Feng, J. Chang, Y. W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437 (2016).
[Crossref] [PubMed]

Chen, Y. H.

S. S. Zhou, S. Jiang, X. T. Wei, Y. H. Chen, C. K. Duan, and M. Yin, “Optical thermometry based on upconversion luminescence in Yb3+/Ho3+ co-doped NaLuF4,” J. Alloys Compd. 588, 654–657 (2014).
[Crossref]

Collins, S. F.

S. A. Wade, S. F. Collins, and G. W. Baxter, “The fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[Crossref]

Cui, Y.

W. Xu, Y. Cui, Y. W. Hu, L. J. Zheng, Z. G. Zhang, and W. W. Cao, “Optical temperature sensing in Er3+-Yb3+ codoped CaWO4 and the laser induced heating effect on the luminescence intensity saturation,” J. Alloys Compd. 726, 547–555 (2017).
[Crossref]

Debasu, M. L.

S. Balabhadra, M. L. Debasu, C. D. S. Brites, R. A. S. Ferreira, and L. D. Carlos, “Upconverting nanoparticles working as primary thermometers in different media,” J. Phys. Chem. C 121(25), 13962–13968 (2017).
[Crossref]

Dey, R.

R. Dey, A. Pandey, and V. K. Rai, “Er3+-Yb3+ and Eu3+-Er3+-Yb3+ codoped Y2O3 phosphors as optical heater,” Sens. Actuators B Chem. 190, 512–515 (2014).
[Crossref]

Dong, B.

Y. N. Bao, X. S. Xu, J. L. Wu, K. C. Liu, Z. Y. Zhang, B. S. Cao, and B. Dong, “Thermal-induced local phase transfer on Ln3+-doped NaYF4 nanoparticles in electrospun ZnO nanofibers: enhanced upconversion luminescence for temperature sensing,” Ceram. Int. 42(10), 12525–12530 (2016).
[Crossref]

B. Dong, D. P. Liu, X. J. Wang, T. Yang, S. M. Miao, and C. R. Li, “Optical thermometry through infrared excited green upconversion emissions in Er3+ -Yb3+ codoped Al2O3,” Appl. Phys. Lett. 90(18), 181117 (2007).
[Crossref]

Dramicanin, M. D.

M. D. Dramićanin, “Sensing temperature via downshifting emissions of lanthanide-doped metal oxides and salts. A review,” Methods Appl. Fluoresc. 4(4), 042001 (2016).
[Crossref] [PubMed]

Du, H. Y.

J. Y. Sun, W. Zhang, W. H. Zhang, and H. Y. Du, “Synthesis and two-color emission properties of BaGd2(MoO4)4:Eu3+,Er3+,Yb3+ phosphors,” Mater. Res. Bull. 47(3), 786–789 (2012).
[Crossref]

J. Y. Sun, Y. J. Lan, Z. G. Xia, and H. Y. Du, “Sol-gel synthesis and green upconversion luminescence in BaGd2(MoO4)4:Yb3+,Er3+ phosphors,” Opt. Mater. 33(3), 576–581 (2011).
[Crossref]

H. Y. Du, Y. J. Lan, Z. G. Xia, and J. Y. Sun, “Synthesis and upconversion luminescence properties of Yb3+/Er3+ codoped BaGd2(MoO4)4 powder,” Mater. Res. Bull. 44(8), 1660–1662 (2009).
[Crossref]

Du, P.

P. Du, L. Luo, X. Huang, and J. S. Yu, “Ultrafast synthesis of bifunctional Er3+/Yb3+-codoped NaBiF4 upconverting nanoparticles for nanothermometer and optical heater,” J. Colloid Interface Sci. 514, 172–181 (2018).
[Crossref] [PubMed]

Duan, C.

J. Cao, F. Hu, L. Chen, H. Guo, C. Duan, and M. Yin, “Wide-range thermometry based on green up-conversion luminescence of K3LuF6:Yb3+/Er3+ bulk oxyfluoride glass ceramics,” J. Am. Ceram. Soc. 100(5), 2108–2115 (2017).
[Crossref]

Duan, C. K.

S. S. Zhou, S. Jiang, X. T. Wei, Y. H. Chen, C. K. Duan, and M. Yin, “Optical thermometry based on upconversion luminescence in Yb3+/Ho3+ co-doped NaLuF4,” J. Alloys Compd. 588, 654–657 (2014).
[Crossref]

Feng, W.

X. Zhu, W. Feng, J. Chang, Y. W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437 (2016).
[Crossref] [PubMed]

Feng, Z. H.

Z. H. Feng, L. Lin, Z. Z. Wang, and Z. Q. Zheng, “Low temperature sensing behavior of upconversion luminescence in Er3+/Yb3+ codoped PLZT transparent ceramic,” Opt. Commun. 399, 40–44 (2017).
[Crossref]

Ferreira, R. A. S.

S. Balabhadra, M. L. Debasu, C. D. S. Brites, R. A. S. Ferreira, and L. D. Carlos, “Upconverting nanoparticles working as primary thermometers in different media,” J. Phys. Chem. C 121(25), 13962–13968 (2017).
[Crossref]

Fu, Z. L.

Y. L. Wei, C. H. Su, H. B. Zhang, J. Shao, and Z. L. Fu, “Thermal sensor and optical heater of upconversion phosphor: Yb3+/Er3+ codoped KY(MoO4)2,” Physica B 525, 149–153 (2017).
[Crossref]

García-Revilla, S.

J. F. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. U. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B 71(12), 125123 (2005).
[Crossref]

Gerner, P.

J. F. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. U. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B 71(12), 125123 (2005).
[Crossref]

Güdel, H. U.

J. F. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. U. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B 71(12), 125123 (2005).
[Crossref]

Guo, H.

J. Cao, F. Hu, L. Chen, H. Guo, C. Duan, and M. Yin, “Wide-range thermometry based on green up-conversion luminescence of K3LuF6:Yb3+/Er3+ bulk oxyfluoride glass ceramics,” J. Am. Ceram. Soc. 100(5), 2108–2115 (2017).
[Crossref]

Haro-Gonzalez, P.

S. F. Leon-Luis, U. R. Rodríguez-Mendoza, P. Haro-Gonzalez, I. R. Martín, and V. Lavín, “Role of the host matrix on the thermal sensitivity of Er3+ luminescence in optical temperature sensors,” Sens. Actuators B Chem. 174, 176–186 (2012).
[Crossref]

He, G.

Hreniak, D.

L. Marciniak, K. Waszniewska, A. Bednarkiewicz, D. Hreniak, and W. Strek, “Sensitivity of a nanocrystalline luminescent thermometer in high and low excitation density regimes,” J. Phys. Chem. C 120(16), 8877–8882 (2016).
[Crossref]

Hu, F.

J. Cao, F. Hu, L. Chen, H. Guo, C. Duan, and M. Yin, “Wide-range thermometry based on green up-conversion luminescence of K3LuF6:Yb3+/Er3+ bulk oxyfluoride glass ceramics,” J. Am. Ceram. Soc. 100(5), 2108–2115 (2017).
[Crossref]

Hu, Y. W.

W. Xu, Y. Cui, Y. W. Hu, L. J. Zheng, Z. G. Zhang, and W. W. Cao, “Optical temperature sensing in Er3+-Yb3+ codoped CaWO4 and the laser induced heating effect on the luminescence intensity saturation,” J. Alloys Compd. 726, 547–555 (2017).
[Crossref]

Hua, R.

Y. Tian, R. Hua, J. Yu, J. Sun, and B. Chen, “The effect of excitation power density on frequency upconversion in Yb3+/Er3+ codoped Gd6WO12 nanoparticles,” Mater. Chem. Phys. 133(2–3), 617–620 (2012).
[Crossref]

Hua, R. N.

Huang, F. F.

G. R. Chen, R. S. Lei, H. P. Wang, F. F. Huang, S. L. Zhao, and S. Q. Xu, “Temperature-dependent emission color and temperature sensing behavior in Tm3+/Yb3+:Y2O3 nanoparticles,” Opt. Mater. 77, 233–239 (2018).
[Crossref]

Huang, X.

P. Du, L. Luo, X. Huang, and J. S. Yu, “Ultrafast synthesis of bifunctional Er3+/Yb3+-codoped NaBiF4 upconverting nanoparticles for nanothermometer and optical heater,” J. Colloid Interface Sci. 514, 172–181 (2018).
[Crossref] [PubMed]

Huang, Z.

Jiang, S.

S. S. Zhou, S. Jiang, X. T. Wei, Y. H. Chen, C. K. Duan, and M. Yin, “Optical thermometry based on upconversion luminescence in Yb3+/Ho3+ co-doped NaLuF4,” J. Alloys Compd. 588, 654–657 (2014).
[Crossref]

Lalla, E.

S. F. León-Luis, U. R. Rodríguez-Mendoza, I. R. Martín, E. Lalla, and V. Lavín, “Effects of Er3+ concentration on thermal sensitivity in optical temperature fluorotellurite glass sensors,” Sens. Actuators B Chem. 176, 1167–1175 (2013).
[Crossref]

S. F. León-Luis, U. R. Rodriguez-Mendoza, E. Lalla, and V. Lavin, “Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass,” Sens. Actuators B Chem. 158(1), 208–213 (2011).
[Crossref]

Lan, Y. J.

J. Y. Sun, Y. J. Lan, Z. G. Xia, and H. Y. Du, “Sol-gel synthesis and green upconversion luminescence in BaGd2(MoO4)4:Yb3+,Er3+ phosphors,” Opt. Mater. 33(3), 576–581 (2011).
[Crossref]

H. Y. Du, Y. J. Lan, Z. G. Xia, and J. Y. Sun, “Synthesis and upconversion luminescence properties of Yb3+/Er3+ codoped BaGd2(MoO4)4 powder,” Mater. Res. Bull. 44(8), 1660–1662 (2009).
[Crossref]

Lavin, V.

S. F. León-Luis, U. R. Rodriguez-Mendoza, E. Lalla, and V. Lavin, “Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass,” Sens. Actuators B Chem. 158(1), 208–213 (2011).
[Crossref]

Lavín, V.

S. F. León-Luis, U. R. Rodríguez-Mendoza, I. R. Martín, E. Lalla, and V. Lavín, “Effects of Er3+ concentration on thermal sensitivity in optical temperature fluorotellurite glass sensors,” Sens. Actuators B Chem. 176, 1167–1175 (2013).
[Crossref]

S. F. Leon-Luis, U. R. Rodríguez-Mendoza, P. Haro-Gonzalez, I. R. Martín, and V. Lavín, “Role of the host matrix on the thermal sensitivity of Er3+ luminescence in optical temperature sensors,” Sens. Actuators B Chem. 174, 176–186 (2012).
[Crossref]

Lei, R. S.

G. R. Chen, R. S. Lei, H. P. Wang, F. F. Huang, S. L. Zhao, and S. Q. Xu, “Temperature-dependent emission color and temperature sensing behavior in Tm3+/Yb3+:Y2O3 nanoparticles,” Opt. Mater. 77, 233–239 (2018).
[Crossref]

Leon-Luis, S. F.

S. F. Leon-Luis, U. R. Rodríguez-Mendoza, P. Haro-Gonzalez, I. R. Martín, and V. Lavín, “Role of the host matrix on the thermal sensitivity of Er3+ luminescence in optical temperature sensors,” Sens. Actuators B Chem. 174, 176–186 (2012).
[Crossref]

León-Luis, S. F.

S. F. León-Luis, U. R. Rodríguez-Mendoza, I. R. Martín, E. Lalla, and V. Lavín, “Effects of Er3+ concentration on thermal sensitivity in optical temperature fluorotellurite glass sensors,” Sens. Actuators B Chem. 176, 1167–1175 (2013).
[Crossref]

S. F. León-Luis, U. R. Rodriguez-Mendoza, E. Lalla, and V. Lavin, “Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass,” Sens. Actuators B Chem. 158(1), 208–213 (2011).
[Crossref]

Li, C. R.

B. Dong, D. P. Liu, X. J. Wang, T. Yang, S. M. Miao, and C. R. Li, “Optical thermometry through infrared excited green upconversion emissions in Er3+ -Yb3+ codoped Al2O3,” Appl. Phys. Lett. 90(18), 181117 (2007).
[Crossref]

Li, D. Y.

Li, F.

X. Zhu, W. Feng, J. Chang, Y. W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437 (2016).
[Crossref] [PubMed]

Li, J.

X. Zhu, W. Feng, J. Chang, Y. W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437 (2016).
[Crossref] [PubMed]

Li, L. P.

Li, X. P.

Liang, Z.

Lin, L.

Z. H. Feng, L. Lin, Z. Z. Wang, and Z. Q. Zheng, “Low temperature sensing behavior of upconversion luminescence in Er3+/Yb3+ codoped PLZT transparent ceramic,” Opt. Commun. 399, 40–44 (2017).
[Crossref]

Lisiecki, R.

W. A. Pisarski, J. Pisarska, R. Lisiecki, and W. Ryba-Romanowski, “Sensitive optical temperature sensor based on up-conversion luminescence spectra of Er3+ ions in PbO–Ga2O3–XO2 (X = Ge, Si) glasses,” Opt. Mater. 59, 87–90 (2016).
[Crossref]

Liu, C. S.

X. F. Wang, Q. Liu, Y. Y. Bu, C. S. Liu, T. Liu, and X. H. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).
[Crossref]

Liu, D. P.

B. Dong, D. P. Liu, X. J. Wang, T. Yang, S. M. Miao, and C. R. Li, “Optical thermometry through infrared excited green upconversion emissions in Er3+ -Yb3+ codoped Al2O3,” Appl. Phys. Lett. 90(18), 181117 (2007).
[Crossref]

Liu, K. C.

Y. N. Bao, X. S. Xu, J. L. Wu, K. C. Liu, Z. Y. Zhang, B. S. Cao, and B. Dong, “Thermal-induced local phase transfer on Ln3+-doped NaYF4 nanoparticles in electrospun ZnO nanofibers: enhanced upconversion luminescence for temperature sensing,” Ceram. Int. 42(10), 12525–12530 (2016).
[Crossref]

Liu, Q.

Liu, T.

X. F. Wang, Q. Liu, Y. Y. Bu, C. S. Liu, T. Liu, and X. H. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).
[Crossref]

Liz-Marzán, L. M.

M. Quintanilla and L. M. Liz-Marzán, “Guiding rules for selecting a nanothermometer,” Nano Today 19, 126–145 (2018).
[Crossref]

Lü, S. C.

X. Ming, Q. Y. Meng, S. C. Lü, and W. J. Sun, “The hydrothermal synthesis and morphology-dependent optical temperature sensing properties of Er3+ doped NaGd(WO4)2 phosphor,” J. Lumin. 192, 196–202 (2017).
[Crossref]

Luo, L.

P. Du, L. Luo, X. Huang, and J. S. Yu, “Ultrafast synthesis of bifunctional Er3+/Yb3+-codoped NaBiF4 upconverting nanoparticles for nanothermometer and optical heater,” J. Colloid Interface Sci. 514, 172–181 (2018).
[Crossref] [PubMed]

Marciniak, L.

L. Marciniak, A. Bednarkiewicz, and W. Strek, “Tuning of the up-conversion emission and sensitivity of luminescent thermometer in LiLaP4O12:Tm,Yb nanocrystals via Eu3+ dopants,” J. Lumin. 184, 179–184 (2017).
[Crossref]

L. Marciniak, K. Waszniewska, A. Bednarkiewicz, D. Hreniak, and W. Strek, “Sensitivity of a nanocrystalline luminescent thermometer in high and low excitation density regimes,” J. Phys. Chem. C 120(16), 8877–8882 (2016).
[Crossref]

Martín, I. R.

S. F. León-Luis, U. R. Rodríguez-Mendoza, I. R. Martín, E. Lalla, and V. Lavín, “Effects of Er3+ concentration on thermal sensitivity in optical temperature fluorotellurite glass sensors,” Sens. Actuators B Chem. 176, 1167–1175 (2013).
[Crossref]

S. F. Leon-Luis, U. R. Rodríguez-Mendoza, P. Haro-Gonzalez, I. R. Martín, and V. Lavín, “Role of the host matrix on the thermal sensitivity of Er3+ luminescence in optical temperature sensors,” Sens. Actuators B Chem. 174, 176–186 (2012).
[Crossref]

Meng, Q. Y.

X. Ming, Q. Y. Meng, S. C. Lü, and W. J. Sun, “The hydrothermal synthesis and morphology-dependent optical temperature sensing properties of Er3+ doped NaGd(WO4)2 phosphor,” J. Lumin. 192, 196–202 (2017).
[Crossref]

Miao, S. M.

B. Dong, D. P. Liu, X. J. Wang, T. Yang, S. M. Miao, and C. R. Li, “Optical thermometry through infrared excited green upconversion emissions in Er3+ -Yb3+ codoped Al2O3,” Appl. Phys. Lett. 90(18), 181117 (2007).
[Crossref]

Ming, X.

X. Ming, Q. Y. Meng, S. C. Lü, and W. J. Sun, “The hydrothermal synthesis and morphology-dependent optical temperature sensing properties of Er3+ doped NaGd(WO4)2 phosphor,” J. Lumin. 192, 196–202 (2017).
[Crossref]

Mukhopadhyay, L.

L. Mukhopadhyay, V. K. Rai, R. Bokolia, and K. Sreenivas, “980 nm excited Er3+/Yb3+/Li+/Ba2+: NaZnPO4 upconverting phosphors in optical thermometry,” J. Lumin. 187, 368–377 (2017).
[Crossref]

Nie, Z. Q.

Pandey, A.

R. Dey, A. Pandey, and V. K. Rai, “Er3+-Yb3+ and Eu3+-Er3+-Yb3+ codoped Y2O3 phosphors as optical heater,” Sens. Actuators B Chem. 190, 512–515 (2014).
[Crossref]

Pisarska, J.

W. A. Pisarski, J. Pisarska, R. Lisiecki, and W. Ryba-Romanowski, “Sensitive optical temperature sensor based on up-conversion luminescence spectra of Er3+ ions in PbO–Ga2O3–XO2 (X = Ge, Si) glasses,” Opt. Mater. 59, 87–90 (2016).
[Crossref]

Pisarski, W. A.

W. A. Pisarski, J. Pisarska, R. Lisiecki, and W. Ryba-Romanowski, “Sensitive optical temperature sensor based on up-conversion luminescence spectra of Er3+ ions in PbO–Ga2O3–XO2 (X = Ge, Si) glasses,” Opt. Mater. 59, 87–90 (2016).
[Crossref]

Qin, L.

Qin, W.

Quintanilla, M.

M. Quintanilla and L. M. Liz-Marzán, “Guiding rules for selecting a nanothermometer,” Nano Today 19, 126–145 (2018).
[Crossref]

Rai, A.

P. Singh, P. K. Shahi, A. Rai, A. Bahadur, and S. B. Rai, “Effect of Li+ ion sensitization and optical temperature sensing in Gd2O3: Ho3+/Yb3+,” Opt. Mater. 58, 432–438 (2016).
[Crossref]

Rai, S. B.

P. Singh, P. K. Shahi, A. Rai, A. Bahadur, and S. B. Rai, “Effect of Li+ ion sensitization and optical temperature sensing in Gd2O3: Ho3+/Yb3+,” Opt. Mater. 58, 432–438 (2016).
[Crossref]

Rai, V. K.

L. Mukhopadhyay, V. K. Rai, R. Bokolia, and K. Sreenivas, “980 nm excited Er3+/Yb3+/Li+/Ba2+: NaZnPO4 upconverting phosphors in optical thermometry,” J. Lumin. 187, 368–377 (2017).
[Crossref]

A. K. Soni and V. K. Rai, “Thermal and pump power effect in SrMoO4:Er3+-Yb3+ phosphor for thermometry and optical heating,” Chem. Phys. Lett. 667, 226–232 (2017).
[Crossref]

R. Dey, A. Pandey, and V. K. Rai, “Er3+-Yb3+ and Eu3+-Er3+-Yb3+ codoped Y2O3 phosphors as optical heater,” Sens. Actuators B Chem. 190, 512–515 (2014).
[Crossref]

Rodriguez-Mendoza, U. R.

S. F. León-Luis, U. R. Rodriguez-Mendoza, E. Lalla, and V. Lavin, “Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass,” Sens. Actuators B Chem. 158(1), 208–213 (2011).
[Crossref]

Rodríguez-Mendoza, U. R.

S. F. León-Luis, U. R. Rodríguez-Mendoza, I. R. Martín, E. Lalla, and V. Lavín, “Effects of Er3+ concentration on thermal sensitivity in optical temperature fluorotellurite glass sensors,” Sens. Actuators B Chem. 176, 1167–1175 (2013).
[Crossref]

S. F. Leon-Luis, U. R. Rodríguez-Mendoza, P. Haro-Gonzalez, I. R. Martín, and V. Lavín, “Role of the host matrix on the thermal sensitivity of Er3+ luminescence in optical temperature sensors,” Sens. Actuators B Chem. 174, 176–186 (2012).
[Crossref]

Ryba-Romanowski, W.

W. A. Pisarski, J. Pisarska, R. Lisiecki, and W. Ryba-Romanowski, “Sensitive optical temperature sensor based on up-conversion luminescence spectra of Er3+ ions in PbO–Ga2O3–XO2 (X = Ge, Si) glasses,” Opt. Mater. 59, 87–90 (2016).
[Crossref]

Seo, H. J.

X. Wang, Y. Wang, Y. Bu, X. Yan, J. Wang, P. Cai, T. Vu, and H. J. Seo, “Influence of doping and excitation powers on optical thermometry in Yb3+-Er3+ doped CaWO4,” Sci. Rep. 7(1), 43383 (2017).
[Crossref] [PubMed]

X. F. Wang, Q. Liu, P. Q. Cai, J. Wang, L. Qin, T. Y. Vu, and H. J. Seo, “Excitation powder dependent optical temperature behavior of Er3+ doped transparent Sr0.69La0.31F2.31 glass ceramics,” Opt. Express 24(16), 17792–17804 (2016).
[Crossref] [PubMed]

Shahi, P. K.

P. Singh, P. K. Shahi, A. Rai, A. Bahadur, and S. B. Rai, “Effect of Li+ ion sensitization and optical temperature sensing in Gd2O3: Ho3+/Yb3+,” Opt. Mater. 58, 432–438 (2016).
[Crossref]

Shao, J.

Y. L. Wei, C. H. Su, H. B. Zhang, J. Shao, and Z. L. Fu, “Thermal sensor and optical heater of upconversion phosphor: Yb3+/Er3+ codoped KY(MoO4)2,” Physica B 525, 149–153 (2017).
[Crossref]

Singh, P.

P. Singh, P. K. Shahi, A. Rai, A. Bahadur, and S. B. Rai, “Effect of Li+ ion sensitization and optical temperature sensing in Gd2O3: Ho3+/Yb3+,” Opt. Mater. 58, 432–438 (2016).
[Crossref]

Song, W.

Soni, A. K.

A. K. Soni and V. K. Rai, “Thermal and pump power effect in SrMoO4:Er3+-Yb3+ phosphor for thermometry and optical heating,” Chem. Phys. Lett. 667, 226–232 (2017).
[Crossref]

Sreenivas, K.

L. Mukhopadhyay, V. K. Rai, R. Bokolia, and K. Sreenivas, “980 nm excited Er3+/Yb3+/Li+/Ba2+: NaZnPO4 upconverting phosphors in optical thermometry,” J. Lumin. 187, 368–377 (2017).
[Crossref]

Strek, W.

L. Marciniak, A. Bednarkiewicz, and W. Strek, “Tuning of the up-conversion emission and sensitivity of luminescent thermometer in LiLaP4O12:Tm,Yb nanocrystals via Eu3+ dopants,” J. Lumin. 184, 179–184 (2017).
[Crossref]

L. Marciniak, K. Waszniewska, A. Bednarkiewicz, D. Hreniak, and W. Strek, “Sensitivity of a nanocrystalline luminescent thermometer in high and low excitation density regimes,” J. Phys. Chem. C 120(16), 8877–8882 (2016).
[Crossref]

Su, C. H.

Y. L. Wei, C. H. Su, H. B. Zhang, J. Shao, and Z. L. Fu, “Thermal sensor and optical heater of upconversion phosphor: Yb3+/Er3+ codoped KY(MoO4)2,” Physica B 525, 149–153 (2017).
[Crossref]

Sun, J.

Y. Tian, R. Hua, J. Yu, J. Sun, and B. Chen, “The effect of excitation power density on frequency upconversion in Yb3+/Er3+ codoped Gd6WO12 nanoparticles,” Mater. Chem. Phys. 133(2–3), 617–620 (2012).
[Crossref]

Sun, J. S.

Sun, J. Y.

J. Y. Sun, W. Zhang, W. H. Zhang, and H. Y. Du, “Synthesis and two-color emission properties of BaGd2(MoO4)4:Eu3+,Er3+,Yb3+ phosphors,” Mater. Res. Bull. 47(3), 786–789 (2012).
[Crossref]

J. Y. Sun, Y. J. Lan, Z. G. Xia, and H. Y. Du, “Sol-gel synthesis and green upconversion luminescence in BaGd2(MoO4)4:Yb3+,Er3+ phosphors,” Opt. Mater. 33(3), 576–581 (2011).
[Crossref]

H. Y. Du, Y. J. Lan, Z. G. Xia, and J. Y. Sun, “Synthesis and upconversion luminescence properties of Yb3+/Er3+ codoped BaGd2(MoO4)4 powder,” Mater. Res. Bull. 44(8), 1660–1662 (2009).
[Crossref]

Sun, W. J.

X. Ming, Q. Y. Meng, S. C. Lü, and W. J. Sun, “The hydrothermal synthesis and morphology-dependent optical temperature sensing properties of Er3+ doped NaGd(WO4)2 phosphor,” J. Lumin. 192, 196–202 (2017).
[Crossref]

Sun, Y.

X. Zhu, W. Feng, J. Chang, Y. W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437 (2016).
[Crossref] [PubMed]

Suyver, J. F.

J. F. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. U. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B 71(12), 125123 (2005).
[Crossref]

Tan, Y. W.

X. Zhu, W. Feng, J. Chang, Y. W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437 (2016).
[Crossref] [PubMed]

Tian, Y.

Y. Tian, R. Hua, J. Yu, J. Sun, and B. Chen, “The effect of excitation power density on frequency upconversion in Yb3+/Er3+ codoped Gd6WO12 nanoparticles,” Mater. Chem. Phys. 133(2–3), 617–620 (2012).
[Crossref]

Vu, T.

X. Wang, Y. Wang, Y. Bu, X. Yan, J. Wang, P. Cai, T. Vu, and H. J. Seo, “Influence of doping and excitation powers on optical thermometry in Yb3+-Er3+ doped CaWO4,” Sci. Rep. 7(1), 43383 (2017).
[Crossref] [PubMed]

Vu, T. Y.

Wade, S. A.

S. A. Wade, S. F. Collins, and G. W. Baxter, “The fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[Crossref]

Wang, H. P.

G. R. Chen, R. S. Lei, H. P. Wang, F. F. Huang, S. L. Zhao, and S. Q. Xu, “Temperature-dependent emission color and temperature sensing behavior in Tm3+/Yb3+:Y2O3 nanoparticles,” Opt. Mater. 77, 233–239 (2018).
[Crossref]

Wang, J.

X. Wang, Y. Wang, Y. Bu, X. Yan, J. Wang, P. Cai, T. Vu, and H. J. Seo, “Influence of doping and excitation powers on optical thermometry in Yb3+-Er3+ doped CaWO4,” Sci. Rep. 7(1), 43383 (2017).
[Crossref] [PubMed]

X. F. Wang, Q. Liu, P. Q. Cai, J. Wang, L. Qin, T. Y. Vu, and H. J. Seo, “Excitation powder dependent optical temperature behavior of Er3+ doped transparent Sr0.69La0.31F2.31 glass ceramics,” Opt. Express 24(16), 17792–17804 (2016).
[Crossref] [PubMed]

Wang, R.

Wang, X.

X. Wang, Y. Wang, Y. Bu, X. Yan, J. Wang, P. Cai, T. Vu, and H. J. Seo, “Influence of doping and excitation powers on optical thermometry in Yb3+-Er3+ doped CaWO4,” Sci. Rep. 7(1), 43383 (2017).
[Crossref] [PubMed]

Wang, X. F.

Wang, X. J.

B. Dong, D. P. Liu, X. J. Wang, T. Yang, S. M. Miao, and C. R. Li, “Optical thermometry through infrared excited green upconversion emissions in Er3+ -Yb3+ codoped Al2O3,” Appl. Phys. Lett. 90(18), 181117 (2007).
[Crossref]

Wang, Y.

X. Wang, Y. Wang, Y. Bu, X. Yan, J. Wang, P. Cai, T. Vu, and H. J. Seo, “Influence of doping and excitation powers on optical thermometry in Yb3+-Er3+ doped CaWO4,” Sci. Rep. 7(1), 43383 (2017).
[Crossref] [PubMed]

Wang, Y. X.

Wang, Z. Z.

Z. H. Feng, L. Lin, Z. Z. Wang, and Z. Q. Zheng, “Low temperature sensing behavior of upconversion luminescence in Er3+/Yb3+ codoped PLZT transparent ceramic,” Opt. Commun. 399, 40–44 (2017).
[Crossref]

Waszniewska, K.

L. Marciniak, K. Waszniewska, A. Bednarkiewicz, D. Hreniak, and W. Strek, “Sensitivity of a nanocrystalline luminescent thermometer in high and low excitation density regimes,” J. Phys. Chem. C 120(16), 8877–8882 (2016).
[Crossref]

Wei, X. T.

S. S. Zhou, S. Jiang, X. T. Wei, Y. H. Chen, C. K. Duan, and M. Yin, “Optical thermometry based on upconversion luminescence in Yb3+/Ho3+ co-doped NaLuF4,” J. Alloys Compd. 588, 654–657 (2014).
[Crossref]

Wei, Y. L.

Y. L. Wei, C. H. Su, H. B. Zhang, J. Shao, and Z. L. Fu, “Thermal sensor and optical heater of upconversion phosphor: Yb3+/Er3+ codoped KY(MoO4)2,” Physica B 525, 149–153 (2017).
[Crossref]

Wu, J. L.

Y. N. Bao, X. S. Xu, J. L. Wu, K. C. Liu, Z. Y. Zhang, B. S. Cao, and B. Dong, “Thermal-induced local phase transfer on Ln3+-doped NaYF4 nanoparticles in electrospun ZnO nanofibers: enhanced upconversion luminescence for temperature sensing,” Ceram. Int. 42(10), 12525–12530 (2016).
[Crossref]

Xia, H. P.

Xia, Z. G.

J. Y. Sun, Y. J. Lan, Z. G. Xia, and H. Y. Du, “Sol-gel synthesis and green upconversion luminescence in BaGd2(MoO4)4:Yb3+,Er3+ phosphors,” Opt. Mater. 33(3), 576–581 (2011).
[Crossref]

H. Y. Du, Y. J. Lan, Z. G. Xia, and J. Y. Sun, “Synthesis and upconversion luminescence properties of Yb3+/Er3+ codoped BaGd2(MoO4)4 powder,” Mater. Res. Bull. 44(8), 1660–1662 (2009).
[Crossref]

Xie, M. B.

Xing, L.

Xu, S.

Xu, S. Q.

G. R. Chen, R. S. Lei, H. P. Wang, F. F. Huang, S. L. Zhao, and S. Q. Xu, “Temperature-dependent emission color and temperature sensing behavior in Tm3+/Yb3+:Y2O3 nanoparticles,” Opt. Mater. 77, 233–239 (2018).
[Crossref]

Xu, W.

Xu, X. S.

Y. N. Bao, X. S. Xu, J. L. Wu, K. C. Liu, Z. Y. Zhang, B. S. Cao, and B. Dong, “Thermal-induced local phase transfer on Ln3+-doped NaYF4 nanoparticles in electrospun ZnO nanofibers: enhanced upconversion luminescence for temperature sensing,” Ceram. Int. 42(10), 12525–12530 (2016).
[Crossref]

Xu, Y.

Yan, X.

X. Wang, Y. Wang, Y. Bu, X. Yan, J. Wang, P. Cai, T. Vu, and H. J. Seo, “Influence of doping and excitation powers on optical thermometry in Yb3+-Er3+ doped CaWO4,” Sci. Rep. 7(1), 43383 (2017).
[Crossref] [PubMed]

Yan, X. H.

X. F. Wang, Q. Liu, Y. Y. Bu, C. S. Liu, T. Liu, and X. H. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).
[Crossref]

Yang, T.

B. Dong, D. P. Liu, X. J. Wang, T. Yang, S. M. Miao, and C. R. Li, “Optical thermometry through infrared excited green upconversion emissions in Er3+ -Yb3+ codoped Al2O3,” Appl. Phys. Lett. 90(18), 181117 (2007).
[Crossref]

Yin, M.

J. Cao, F. Hu, L. Chen, H. Guo, C. Duan, and M. Yin, “Wide-range thermometry based on green up-conversion luminescence of K3LuF6:Yb3+/Er3+ bulk oxyfluoride glass ceramics,” J. Am. Ceram. Soc. 100(5), 2108–2115 (2017).
[Crossref]

S. S. Zhou, S. Jiang, X. T. Wei, Y. H. Chen, C. K. Duan, and M. Yin, “Optical thermometry based on upconversion luminescence in Yb3+/Ho3+ co-doped NaLuF4,” J. Alloys Compd. 588, 654–657 (2014).
[Crossref]

Yu, J.

Y. Tian, R. Hua, J. Yu, J. Sun, and B. Chen, “The effect of excitation power density on frequency upconversion in Yb3+/Er3+ codoped Gd6WO12 nanoparticles,” Mater. Chem. Phys. 133(2–3), 617–620 (2012).
[Crossref]

Yu, J. S.

P. Du, L. Luo, X. Huang, and J. S. Yu, “Ultrafast synthesis of bifunctional Er3+/Yb3+-codoped NaBiF4 upconverting nanoparticles for nanothermometer and optical heater,” J. Colloid Interface Sci. 514, 172–181 (2018).
[Crossref] [PubMed]

Yuan, Z.

Zhang, H. B.

Y. L. Wei, C. H. Su, H. B. Zhang, J. Shao, and Z. L. Fu, “Thermal sensor and optical heater of upconversion phosphor: Yb3+/Er3+ codoped KY(MoO4)2,” Physica B 525, 149–153 (2017).
[Crossref]

Zhang, J. S.

Zhang, W.

J. Y. Sun, W. Zhang, W. H. Zhang, and H. Y. Du, “Synthesis and two-color emission properties of BaGd2(MoO4)4:Eu3+,Er3+,Yb3+ phosphors,” Mater. Res. Bull. 47(3), 786–789 (2012).
[Crossref]

Zhang, W. H.

J. Y. Sun, W. Zhang, W. H. Zhang, and H. Y. Du, “Synthesis and two-color emission properties of BaGd2(MoO4)4:Eu3+,Er3+,Yb3+ phosphors,” Mater. Res. Bull. 47(3), 786–789 (2012).
[Crossref]

Zhang, Y. Q.

Zhang, Z. G.

W. Xu, Y. Cui, Y. W. Hu, L. J. Zheng, Z. G. Zhang, and W. W. Cao, “Optical temperature sensing in Er3+-Yb3+ codoped CaWO4 and the laser induced heating effect on the luminescence intensity saturation,” J. Alloys Compd. 726, 547–555 (2017).
[Crossref]

L. P. Li, L. J. Zheng, W. Xu, Z. Liang, Y. Zhou, Z. G. Zhang, and W. W. Cao, “Optical thermometry based on the red upconversion fluorescence of Er3+ in CaWO4:Yb3+/Er3+ polycrystalline powder,” Opt. Lett. 41(7), 1458–1461 (2016).
[Crossref] [PubMed]

Zhang, Z. Y.

Y. N. Bao, X. S. Xu, J. L. Wu, K. C. Liu, Z. Y. Zhang, B. S. Cao, and B. Dong, “Thermal-induced local phase transfer on Ln3+-doped NaYF4 nanoparticles in electrospun ZnO nanofibers: enhanced upconversion luminescence for temperature sensing,” Ceram. Int. 42(10), 12525–12530 (2016).
[Crossref]

Zhao, S. L.

G. R. Chen, R. S. Lei, H. P. Wang, F. F. Huang, S. L. Zhao, and S. Q. Xu, “Temperature-dependent emission color and temperature sensing behavior in Tm3+/Yb3+:Y2O3 nanoparticles,” Opt. Mater. 77, 233–239 (2018).
[Crossref]

Zheng, K.

Zheng, L. J.

W. Xu, Y. Cui, Y. W. Hu, L. J. Zheng, Z. G. Zhang, and W. W. Cao, “Optical temperature sensing in Er3+-Yb3+ codoped CaWO4 and the laser induced heating effect on the luminescence intensity saturation,” J. Alloys Compd. 726, 547–555 (2017).
[Crossref]

L. P. Li, L. J. Zheng, W. Xu, Z. Liang, Y. Zhou, Z. G. Zhang, and W. W. Cao, “Optical thermometry based on the red upconversion fluorescence of Er3+ in CaWO4:Yb3+/Er3+ polycrystalline powder,” Opt. Lett. 41(7), 1458–1461 (2016).
[Crossref] [PubMed]

Zheng, Z. Q.

Z. H. Feng, L. Lin, Z. Z. Wang, and Z. Q. Zheng, “Low temperature sensing behavior of upconversion luminescence in Er3+/Yb3+ codoped PLZT transparent ceramic,” Opt. Commun. 399, 40–44 (2017).
[Crossref]

Zhou, S. S.

S. S. Zhou, S. Jiang, X. T. Wei, Y. H. Chen, C. K. Duan, and M. Yin, “Optical thermometry based on upconversion luminescence in Yb3+/Ho3+ co-doped NaLuF4,” J. Alloys Compd. 588, 654–657 (2014).
[Crossref]

Zhou, Y.

Zhu, X.

X. Zhu, W. Feng, J. Chang, Y. W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437 (2016).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

B. Dong, D. P. Liu, X. J. Wang, T. Yang, S. M. Miao, and C. R. Li, “Optical thermometry through infrared excited green upconversion emissions in Er3+ -Yb3+ codoped Al2O3,” Appl. Phys. Lett. 90(18), 181117 (2007).
[Crossref]

Ceram. Int. (1)

Y. N. Bao, X. S. Xu, J. L. Wu, K. C. Liu, Z. Y. Zhang, B. S. Cao, and B. Dong, “Thermal-induced local phase transfer on Ln3+-doped NaYF4 nanoparticles in electrospun ZnO nanofibers: enhanced upconversion luminescence for temperature sensing,” Ceram. Int. 42(10), 12525–12530 (2016).
[Crossref]

Chem. Phys. Lett. (1)

A. K. Soni and V. K. Rai, “Thermal and pump power effect in SrMoO4:Er3+-Yb3+ phosphor for thermometry and optical heating,” Chem. Phys. Lett. 667, 226–232 (2017).
[Crossref]

Chem. Rev. (1)

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
[Crossref] [PubMed]

J. Alloys Compd. (2)

S. S. Zhou, S. Jiang, X. T. Wei, Y. H. Chen, C. K. Duan, and M. Yin, “Optical thermometry based on upconversion luminescence in Yb3+/Ho3+ co-doped NaLuF4,” J. Alloys Compd. 588, 654–657 (2014).
[Crossref]

W. Xu, Y. Cui, Y. W. Hu, L. J. Zheng, Z. G. Zhang, and W. W. Cao, “Optical temperature sensing in Er3+-Yb3+ codoped CaWO4 and the laser induced heating effect on the luminescence intensity saturation,” J. Alloys Compd. 726, 547–555 (2017).
[Crossref]

J. Am. Ceram. Soc. (1)

J. Cao, F. Hu, L. Chen, H. Guo, C. Duan, and M. Yin, “Wide-range thermometry based on green up-conversion luminescence of K3LuF6:Yb3+/Er3+ bulk oxyfluoride glass ceramics,” J. Am. Ceram. Soc. 100(5), 2108–2115 (2017).
[Crossref]

J. Appl. Phys. (1)

S. A. Wade, S. F. Collins, and G. W. Baxter, “The fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[Crossref]

J. Colloid Interface Sci. (1)

P. Du, L. Luo, X. Huang, and J. S. Yu, “Ultrafast synthesis of bifunctional Er3+/Yb3+-codoped NaBiF4 upconverting nanoparticles for nanothermometer and optical heater,” J. Colloid Interface Sci. 514, 172–181 (2018).
[Crossref] [PubMed]

J. Lumin. (3)

L. Mukhopadhyay, V. K. Rai, R. Bokolia, and K. Sreenivas, “980 nm excited Er3+/Yb3+/Li+/Ba2+: NaZnPO4 upconverting phosphors in optical thermometry,” J. Lumin. 187, 368–377 (2017).
[Crossref]

L. Marciniak, A. Bednarkiewicz, and W. Strek, “Tuning of the up-conversion emission and sensitivity of luminescent thermometer in LiLaP4O12:Tm,Yb nanocrystals via Eu3+ dopants,” J. Lumin. 184, 179–184 (2017).
[Crossref]

X. Ming, Q. Y. Meng, S. C. Lü, and W. J. Sun, “The hydrothermal synthesis and morphology-dependent optical temperature sensing properties of Er3+ doped NaGd(WO4)2 phosphor,” J. Lumin. 192, 196–202 (2017).
[Crossref]

J. Phys. Chem. C (2)

S. Balabhadra, M. L. Debasu, C. D. S. Brites, R. A. S. Ferreira, and L. D. Carlos, “Upconverting nanoparticles working as primary thermometers in different media,” J. Phys. Chem. C 121(25), 13962–13968 (2017).
[Crossref]

L. Marciniak, K. Waszniewska, A. Bednarkiewicz, D. Hreniak, and W. Strek, “Sensitivity of a nanocrystalline luminescent thermometer in high and low excitation density regimes,” J. Phys. Chem. C 120(16), 8877–8882 (2016).
[Crossref]

Mater. Chem. Phys. (1)

Y. Tian, R. Hua, J. Yu, J. Sun, and B. Chen, “The effect of excitation power density on frequency upconversion in Yb3+/Er3+ codoped Gd6WO12 nanoparticles,” Mater. Chem. Phys. 133(2–3), 617–620 (2012).
[Crossref]

Mater. Res. Bull. (2)

J. Y. Sun, W. Zhang, W. H. Zhang, and H. Y. Du, “Synthesis and two-color emission properties of BaGd2(MoO4)4:Eu3+,Er3+,Yb3+ phosphors,” Mater. Res. Bull. 47(3), 786–789 (2012).
[Crossref]

H. Y. Du, Y. J. Lan, Z. G. Xia, and J. Y. Sun, “Synthesis and upconversion luminescence properties of Yb3+/Er3+ codoped BaGd2(MoO4)4 powder,” Mater. Res. Bull. 44(8), 1660–1662 (2009).
[Crossref]

Methods Appl. Fluoresc. (1)

M. D. Dramićanin, “Sensing temperature via downshifting emissions of lanthanide-doped metal oxides and salts. A review,” Methods Appl. Fluoresc. 4(4), 042001 (2016).
[Crossref] [PubMed]

Nano Today (1)

M. Quintanilla and L. M. Liz-Marzán, “Guiding rules for selecting a nanothermometer,” Nano Today 19, 126–145 (2018).
[Crossref]

Nat. Commun. (1)

X. Zhu, W. Feng, J. Chang, Y. W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437 (2016).
[Crossref] [PubMed]

Opt. Commun. (1)

Z. H. Feng, L. Lin, Z. Z. Wang, and Z. Q. Zheng, “Low temperature sensing behavior of upconversion luminescence in Er3+/Yb3+ codoped PLZT transparent ceramic,” Opt. Commun. 399, 40–44 (2017).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Opt. Mater. (4)

J. Y. Sun, Y. J. Lan, Z. G. Xia, and H. Y. Du, “Sol-gel synthesis and green upconversion luminescence in BaGd2(MoO4)4:Yb3+,Er3+ phosphors,” Opt. Mater. 33(3), 576–581 (2011).
[Crossref]

W. A. Pisarski, J. Pisarska, R. Lisiecki, and W. Ryba-Romanowski, “Sensitive optical temperature sensor based on up-conversion luminescence spectra of Er3+ ions in PbO–Ga2O3–XO2 (X = Ge, Si) glasses,” Opt. Mater. 59, 87–90 (2016).
[Crossref]

P. Singh, P. K. Shahi, A. Rai, A. Bahadur, and S. B. Rai, “Effect of Li+ ion sensitization and optical temperature sensing in Gd2O3: Ho3+/Yb3+,” Opt. Mater. 58, 432–438 (2016).
[Crossref]

G. R. Chen, R. S. Lei, H. P. Wang, F. F. Huang, S. L. Zhao, and S. Q. Xu, “Temperature-dependent emission color and temperature sensing behavior in Tm3+/Yb3+:Y2O3 nanoparticles,” Opt. Mater. 77, 233–239 (2018).
[Crossref]

Opt. Mater. Express (2)

Phys. Rev. B (1)

J. F. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. U. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B 71(12), 125123 (2005).
[Crossref]

Physica B (1)

Y. L. Wei, C. H. Su, H. B. Zhang, J. Shao, and Z. L. Fu, “Thermal sensor and optical heater of upconversion phosphor: Yb3+/Er3+ codoped KY(MoO4)2,” Physica B 525, 149–153 (2017).
[Crossref]

RSC Advances (1)

X. F. Wang, Q. Liu, Y. Y. Bu, C. S. Liu, T. Liu, and X. H. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).
[Crossref]

Sci. Rep. (1)

X. Wang, Y. Wang, Y. Bu, X. Yan, J. Wang, P. Cai, T. Vu, and H. J. Seo, “Influence of doping and excitation powers on optical thermometry in Yb3+-Er3+ doped CaWO4,” Sci. Rep. 7(1), 43383 (2017).
[Crossref] [PubMed]

Sens. Actuators B Chem. (4)

S. F. León-Luis, U. R. Rodríguez-Mendoza, I. R. Martín, E. Lalla, and V. Lavín, “Effects of Er3+ concentration on thermal sensitivity in optical temperature fluorotellurite glass sensors,” Sens. Actuators B Chem. 176, 1167–1175 (2013).
[Crossref]

S. F. Leon-Luis, U. R. Rodríguez-Mendoza, P. Haro-Gonzalez, I. R. Martín, and V. Lavín, “Role of the host matrix on the thermal sensitivity of Er3+ luminescence in optical temperature sensors,” Sens. Actuators B Chem. 174, 176–186 (2012).
[Crossref]

S. F. León-Luis, U. R. Rodriguez-Mendoza, E. Lalla, and V. Lavin, “Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass,” Sens. Actuators B Chem. 158(1), 208–213 (2011).
[Crossref]

R. Dey, A. Pandey, and V. K. Rai, “Er3+-Yb3+ and Eu3+-Er3+-Yb3+ codoped Y2O3 phosphors as optical heater,” Sens. Actuators B Chem. 190, 512–515 (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) XRD patterns of the x mol%Er3+ doped BaGd2(MoO4)4 phosphors with JCPDS File No. 36-0192 as a reference. (b) The enlarged XRD patterns for the samples.
Fig. 2
Fig. 2 SEM images of 1%Er3+: BaGd2(MoO4)4 (a) and 9%Er3+: BaGd2(MoO4)4 (b) phosphors, respectively.
Fig. 3
Fig. 3 UC emission spectra of Er3+: BaGd2(MoO4)4 phosphors on increasing Er3+ concentration under 980nm excitation. Inset shows the green and red emission intensities as a function of Er3+ ion concentration.
Fig. 4
Fig. 4 Simplified energy level diagram of Er3+ ions in BaGd2(MoO4)4 along with the main UC processes under 980nm excitation.
Fig. 5
Fig. 5 Ln-ln plots of the UC emission intensities versus excitation powers of 980nm laser diode for 7%Er3+: BaGd2(MoO4)4 powders at 293K (a) and 573K(b).
Fig. 6
Fig. 6 (a) The temperature-dependent UC spectra of 7%Er3+: BaGd2(MoO4)4 in the temperature range of 293 to 573K, where the intensity was normalized at 556nm. (b) The plots of FIRs versus the absolute temperatures and the fitting curves by Eq. (2). (c) Monolog natural logarithm plots of FIRs as a function of the inverse temperature at two different excitation densities.
Fig. 7
Fig. 7 Experimental temperature measured from the thermocouple versus calculated temperature using Eq. (3). For better observation, the dashed line as guide is drawn, which corresponds to y = x. (a) The calibration curve obtained at 16.7mW/mm2 was used to calculate the temperature of the sample excited at 116.7mW/mm2; (b) The temperatures were calculated with the calibration curves and FIR values obtained upon the same excitation conditions.
Fig. 8
Fig. 8 (a) The plots of FIRs versus absolute temperatures and the fitting curves by Eq. (2) for the Er3+ ions doped BaGd2(MoO4)4 phosphors with different concentrations. (b) Monolog plots of FIRs as a function of inverse absolute temperature.
Fig. 9
Fig. 9 (a) Dependence of Sa values on absolute temperature for Er3+: BaGd2(MoO4)4 phosphors with different concentration. (b) The variation of the maximal Sa values with respect to Er3+ doping concentration. (c) Temperature-induced switching of FIRs measured for 5%Er3+:BaGd2(MoO4)4 powders at 16.7mW/mm2 (alternating between 293 and 573K)

Tables (1)

Tables Icon

Table 1 Optical sensing sensitivities of different RE3+ ions doped materials based on TCLs.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I vis P NIR n
FIR=Bexp( ΔE k T )+C
T= ΔE/k lnBln(FIRC)
S a = dFIR dT
ΔT=Δ(FIR)| dT dFIR |= Δ(FIR) S a