Abstract

We report a dramatic enhancement of random lasing assisted by Au nanocube-silica core-shell nanoparticles (Au NC@SiO2 NPs) with optimal size. To determine which size of Au NC@SiO2 NPs would have the optimal plasmon effect, we first investigated the lasing properties based on different sizes of bare Au nanocubes (Au NCs) with different localized surface plasmon resonance (LSPR) spectra; the edge lengths of the Au NCs ranged from 20 nm to 120 nm. The 80 nm Au NCs, whose LSPR spectrum had the largest overlap with the emission spectrum of the gain medium, exhibited the strongest scattering and electric field intensity to better enhance the lasing. Compared to the gain media with bare Au nanocubes or Au nanosphere@SiO2 nanoparticles, the gain medium with optimally sized Au nanocube @SiO2 NPs had the lowest lasing threshold, only 21.7% of that of the neat gain medium. This was attributed to the stronger scattering and electric field enhancement localized at the spiky tips of the Au NCs, and the fact that the SiO2 shell reduced the absorption loss of the dyes in close proximity to the Au NCs. Using the proper size of Au NC@SiO2 NPs provides an ideal way to achieve low-threshold plasmon random lasing by tuning the LSPR of metallic nanostructures.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced lasing assisted by the Ag-encapsulated Au plasmonic nanorods

Shuya Ning, Zhaoxin Wu, Hua Dong, Fang Yuan, Jun Xi, Lin Ma, Bo Jiao, and Xun Hou
Opt. Lett. 40(6) 990-993 (2015)

Plasmonic enhancement of random lasing from dye-doped polymer film by bristled Ag/TiO2 composite nanowires

Shuya Ning, Hua Dong, Naming Zhang, Juanning Zhao, and Lei Ding
Opt. Mater. Express 6(12) 3725-3732 (2016)

Tunable lasing on silver island films by coupling to the localized surface plasmon

Shuya Ning, Zhaoxin Wu, Hua Dong, Fang Yuan, Lin Ma, Bo Jiao, and Xun Hou
Opt. Mater. Express 5(3) 629-638 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
    [Crossref] [PubMed]
  2. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
    [Crossref] [PubMed]
  3. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [Crossref] [PubMed]
  4. H. Dong, Z. X. Wu, J. Xi, X. Xu, L. Zuo, T. Lei, X. Zhao, and X. Hou, “Pseudohalide-induced recrystallization engineering for CH3NH3PbI3 film and its application in highly efficient inverted planar heterojunction perovskite solar cells,” Adv. Funct. Mater. 28(2), 1704836 (2018).
    [Crossref]
  5. M. I. Stockman, “Spasers explained,” Nat. Photonics 2(6), 327–329 (2008).
    [Crossref]
  6. O. Popov, A. Zilbershtein, and D. Davidov, “Enhanced amplified emission induced by surface plasmons on gold nanoparticles in polymer film random lasers,” Adv. Technol. 18(9), 751–755 (2007).
    [Crossref]
  7. S. Y. Ning, Z. X. Wu, H. Dong, and F. H. Zhang, “Enhancement of lasing in organic gain media assisted by the metallic nanoparticles-metallic film plasmonic hybrid structure,” J. Mater. Chem. C 4(24), 5717–5724 (2016).
    [Crossref]
  8. G. D. Dice, S. Mujumdar, and A. Y. Elezzab, “Plasmonically enhanced diffusive and subdiffusive metal nanoparticles-dye random laser,” Appl. Phys. Lett. 86(13), 131105 (2005).
    [Crossref]
  9. X. Meng, K. Fujita, Y. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett. 92(20), 201112 (2008).
    [Crossref]
  10. X. Meng, K. Fujita, S. Murai, and K. Tanaka, “Coherent random lasers in weakly scattering polymer films containing silver nanoparticles,” Phys. Rev. A 79(5), 053817 (2009).
    [Crossref]
  11. T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random laser based on waveguided plasmonic gain channels,” Nano Lett. 11(10), 4295–4298 (2011).
    [Crossref] [PubMed]
  12. E. Heydari, R. Flehr, and J. Stumpe, “Influence of spacer layer on enhancement of nanoplasmon-assisted random lasing,” Appl. Phys. Lett. 102(13), 133110 (2013).
    [Crossref]
  13. W. Ismail, E. Goldys, and J. Dawes, “Plasmonic enhancement of Rhodamine dye random lasers,” Laser Phys. 25(8), 085001 (2015).
    [Crossref]
  14. O. Popov, A. Zilbershtein, and D. Davidov, “Random lasing from dye-gold nanoparticles in polymer films: Enhanced gain at the surface-plasmon-resonance wavelength,” Appl. Phys. Lett. 89(19), 191116 (2006).
    [Crossref]
  15. T. Zhai, J. Chen, L. Chen, J. Wang, L. Wang, D. Liu, S. Li, H. Liu, and X. Zhang, “A plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate,” Nanoscale 7(6), 2235–2240 (2015).
    [Crossref] [PubMed]
  16. X. Wu, T. Ming, X. Wang, P. Wang, J. Wang, and J. Chen, “High-photoluminescence-yield gold nanocubes: for cell imaging and photothermal therapy,” ACS Nano 4(1), 113–120 (2010).
    [Crossref] [PubMed]
  17. Y. Cui, C. Niu, N. Na, and J. Ouyang, “Core–shell gold nanocubes for point mutation detection based on plasmon-enhanced fluorescence,” J. Mater. Chem. B Mater. Biol. Med. 5(27), 5329–5335 (2017).
    [Crossref]
  18. R. Frank, A. Lubatsch, and J. Kroha, “Theory of strong localization effects of light in disordered loss or gain media,” Phys. Rev. B 73(24), 245107 (2006).
    [Crossref]
  19. X. Meng, K. Fujita, S. Murai, T. Matoba, and K. Tanaka, “Plasmonically controlled lasing resonance with metallic-dielectric core-shell nanoparticles,” Nano Lett. 11(3), 1374–1378 (2011).
    [Crossref] [PubMed]
  20. X. Meng, K. Fujita, Y. Moriguchi, Y. Zong, and K. Tanaka, “Metal-dielectric core-shell nanoparticles: advanced plasmonic architectures towards multiple control of random lasers,” Adv. Opt. Mater. 1(8), 573–580 (2013).
    [Crossref]
  21. P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  22. E. M. Perassi, C. Hrelescu, A. Wisnet, M. Döblinger, C. Scheu, F. Jäckel, E. A. Coronado, and J. Feldmann, “Quantitative understanding of the optical properties of a single, complex-shaped gold nanoparticle from experiment and theory,” ACS Nano 8(5), 4395–4402 (2014).
    [Crossref] [PubMed]
  23. C. Hrelescu, T. K. Sau, A. L. Rogach, F. Jäckel, G. Laurent, L. Douillard, and F. Charra, “Selective excitation of individual plasmonic hotspots at the tips of single gold nanostars,” Nano Lett. 11(2), 402–407 (2011).
    [Crossref] [PubMed]
  24. C. Hrelescu, T. K. Sau, A. L. Rogach, F. Jäckel, and J. Feldmann, “Single gold nanostars enhance Raman scattering,” Appl. Phys. Lett. 94(15), 153113 (2009).
    [Crossref]
  25. X. Shi, Y. Wang, Z. Wang, S. Wei, Y. Sun, D. Liu, and J. Shi, “Random lasing with a high quality factor over the whole visible range based on cascade energy transfer,” Adv. Optical Mater. 2(1), 88–93 (2014).
    [Crossref]
  26. J. Ziegler, M. Djiango, C. Vidal, C. Hrelescu, and T. A. Klar, “Gold nanostars for random lasing enhancement,” Opt. Express 23(12), 15152–15159 (2015).
    [Crossref] [PubMed]

2018 (1)

H. Dong, Z. X. Wu, J. Xi, X. Xu, L. Zuo, T. Lei, X. Zhao, and X. Hou, “Pseudohalide-induced recrystallization engineering for CH3NH3PbI3 film and its application in highly efficient inverted planar heterojunction perovskite solar cells,” Adv. Funct. Mater. 28(2), 1704836 (2018).
[Crossref]

2017 (1)

Y. Cui, C. Niu, N. Na, and J. Ouyang, “Core–shell gold nanocubes for point mutation detection based on plasmon-enhanced fluorescence,” J. Mater. Chem. B Mater. Biol. Med. 5(27), 5329–5335 (2017).
[Crossref]

2016 (1)

S. Y. Ning, Z. X. Wu, H. Dong, and F. H. Zhang, “Enhancement of lasing in organic gain media assisted by the metallic nanoparticles-metallic film plasmonic hybrid structure,” J. Mater. Chem. C 4(24), 5717–5724 (2016).
[Crossref]

2015 (3)

T. Zhai, J. Chen, L. Chen, J. Wang, L. Wang, D. Liu, S. Li, H. Liu, and X. Zhang, “A plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate,” Nanoscale 7(6), 2235–2240 (2015).
[Crossref] [PubMed]

W. Ismail, E. Goldys, and J. Dawes, “Plasmonic enhancement of Rhodamine dye random lasers,” Laser Phys. 25(8), 085001 (2015).
[Crossref]

J. Ziegler, M. Djiango, C. Vidal, C. Hrelescu, and T. A. Klar, “Gold nanostars for random lasing enhancement,” Opt. Express 23(12), 15152–15159 (2015).
[Crossref] [PubMed]

2014 (2)

X. Shi, Y. Wang, Z. Wang, S. Wei, Y. Sun, D. Liu, and J. Shi, “Random lasing with a high quality factor over the whole visible range based on cascade energy transfer,” Adv. Optical Mater. 2(1), 88–93 (2014).
[Crossref]

E. M. Perassi, C. Hrelescu, A. Wisnet, M. Döblinger, C. Scheu, F. Jäckel, E. A. Coronado, and J. Feldmann, “Quantitative understanding of the optical properties of a single, complex-shaped gold nanoparticle from experiment and theory,” ACS Nano 8(5), 4395–4402 (2014).
[Crossref] [PubMed]

2013 (2)

E. Heydari, R. Flehr, and J. Stumpe, “Influence of spacer layer on enhancement of nanoplasmon-assisted random lasing,” Appl. Phys. Lett. 102(13), 133110 (2013).
[Crossref]

X. Meng, K. Fujita, Y. Moriguchi, Y. Zong, and K. Tanaka, “Metal-dielectric core-shell nanoparticles: advanced plasmonic architectures towards multiple control of random lasers,” Adv. Opt. Mater. 1(8), 573–580 (2013).
[Crossref]

2011 (3)

X. Meng, K. Fujita, S. Murai, T. Matoba, and K. Tanaka, “Plasmonically controlled lasing resonance with metallic-dielectric core-shell nanoparticles,” Nano Lett. 11(3), 1374–1378 (2011).
[Crossref] [PubMed]

C. Hrelescu, T. K. Sau, A. L. Rogach, F. Jäckel, G. Laurent, L. Douillard, and F. Charra, “Selective excitation of individual plasmonic hotspots at the tips of single gold nanostars,” Nano Lett. 11(2), 402–407 (2011).
[Crossref] [PubMed]

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random laser based on waveguided plasmonic gain channels,” Nano Lett. 11(10), 4295–4298 (2011).
[Crossref] [PubMed]

2010 (2)

X. Wu, T. Ming, X. Wang, P. Wang, J. Wang, and J. Chen, “High-photoluminescence-yield gold nanocubes: for cell imaging and photothermal therapy,” ACS Nano 4(1), 113–120 (2010).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

2009 (4)

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

X. Meng, K. Fujita, S. Murai, and K. Tanaka, “Coherent random lasers in weakly scattering polymer films containing silver nanoparticles,” Phys. Rev. A 79(5), 053817 (2009).
[Crossref]

C. Hrelescu, T. K. Sau, A. L. Rogach, F. Jäckel, and J. Feldmann, “Single gold nanostars enhance Raman scattering,” Appl. Phys. Lett. 94(15), 153113 (2009).
[Crossref]

2008 (2)

M. I. Stockman, “Spasers explained,” Nat. Photonics 2(6), 327–329 (2008).
[Crossref]

X. Meng, K. Fujita, Y. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett. 92(20), 201112 (2008).
[Crossref]

2007 (1)

O. Popov, A. Zilbershtein, and D. Davidov, “Enhanced amplified emission induced by surface plasmons on gold nanoparticles in polymer film random lasers,” Adv. Technol. 18(9), 751–755 (2007).
[Crossref]

2006 (2)

O. Popov, A. Zilbershtein, and D. Davidov, “Random lasing from dye-gold nanoparticles in polymer films: Enhanced gain at the surface-plasmon-resonance wavelength,” Appl. Phys. Lett. 89(19), 191116 (2006).
[Crossref]

R. Frank, A. Lubatsch, and J. Kroha, “Theory of strong localization effects of light in disordered loss or gain media,” Phys. Rev. B 73(24), 245107 (2006).
[Crossref]

2005 (1)

G. D. Dice, S. Mujumdar, and A. Y. Elezzab, “Plasmonically enhanced diffusive and subdiffusive metal nanoparticles-dye random laser,” Appl. Phys. Lett. 86(13), 131105 (2005).
[Crossref]

1972 (1)

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Bakker, R.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Bartal, G.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Belgrave, A. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Charra, F.

C. Hrelescu, T. K. Sau, A. L. Rogach, F. Jäckel, G. Laurent, L. Douillard, and F. Charra, “Selective excitation of individual plasmonic hotspots at the tips of single gold nanostars,” Nano Lett. 11(2), 402–407 (2011).
[Crossref] [PubMed]

Chen, J.

T. Zhai, J. Chen, L. Chen, J. Wang, L. Wang, D. Liu, S. Li, H. Liu, and X. Zhang, “A plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate,” Nanoscale 7(6), 2235–2240 (2015).
[Crossref] [PubMed]

X. Wu, T. Ming, X. Wang, P. Wang, J. Wang, and J. Chen, “High-photoluminescence-yield gold nanocubes: for cell imaging and photothermal therapy,” ACS Nano 4(1), 113–120 (2010).
[Crossref] [PubMed]

Chen, L.

T. Zhai, J. Chen, L. Chen, J. Wang, L. Wang, D. Liu, S. Li, H. Liu, and X. Zhang, “A plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate,” Nanoscale 7(6), 2235–2240 (2015).
[Crossref] [PubMed]

Christy, R.

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Coronado, E. A.

E. M. Perassi, C. Hrelescu, A. Wisnet, M. Döblinger, C. Scheu, F. Jäckel, E. A. Coronado, and J. Feldmann, “Quantitative understanding of the optical properties of a single, complex-shaped gold nanoparticle from experiment and theory,” ACS Nano 8(5), 4395–4402 (2014).
[Crossref] [PubMed]

Cui, Y.

Y. Cui, C. Niu, N. Na, and J. Ouyang, “Core–shell gold nanocubes for point mutation detection based on plasmon-enhanced fluorescence,” J. Mater. Chem. B Mater. Biol. Med. 5(27), 5329–5335 (2017).
[Crossref]

Dai, L.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Davidov, D.

O. Popov, A. Zilbershtein, and D. Davidov, “Enhanced amplified emission induced by surface plasmons on gold nanoparticles in polymer film random lasers,” Adv. Technol. 18(9), 751–755 (2007).
[Crossref]

O. Popov, A. Zilbershtein, and D. Davidov, “Random lasing from dye-gold nanoparticles in polymer films: Enhanced gain at the surface-plasmon-resonance wavelength,” Appl. Phys. Lett. 89(19), 191116 (2006).
[Crossref]

Dawes, J.

W. Ismail, E. Goldys, and J. Dawes, “Plasmonic enhancement of Rhodamine dye random lasers,” Laser Phys. 25(8), 085001 (2015).
[Crossref]

Dice, G. D.

G. D. Dice, S. Mujumdar, and A. Y. Elezzab, “Plasmonically enhanced diffusive and subdiffusive metal nanoparticles-dye random laser,” Appl. Phys. Lett. 86(13), 131105 (2005).
[Crossref]

Djiango, M.

Döblinger, M.

E. M. Perassi, C. Hrelescu, A. Wisnet, M. Döblinger, C. Scheu, F. Jäckel, E. A. Coronado, and J. Feldmann, “Quantitative understanding of the optical properties of a single, complex-shaped gold nanoparticle from experiment and theory,” ACS Nano 8(5), 4395–4402 (2014).
[Crossref] [PubMed]

Dong, H.

H. Dong, Z. X. Wu, J. Xi, X. Xu, L. Zuo, T. Lei, X. Zhao, and X. Hou, “Pseudohalide-induced recrystallization engineering for CH3NH3PbI3 film and its application in highly efficient inverted planar heterojunction perovskite solar cells,” Adv. Funct. Mater. 28(2), 1704836 (2018).
[Crossref]

S. Y. Ning, Z. X. Wu, H. Dong, and F. H. Zhang, “Enhancement of lasing in organic gain media assisted by the metallic nanoparticles-metallic film plasmonic hybrid structure,” J. Mater. Chem. C 4(24), 5717–5724 (2016).
[Crossref]

Douillard, L.

C. Hrelescu, T. K. Sau, A. L. Rogach, F. Jäckel, G. Laurent, L. Douillard, and F. Charra, “Selective excitation of individual plasmonic hotspots at the tips of single gold nanostars,” Nano Lett. 11(2), 402–407 (2011).
[Crossref] [PubMed]

Elezzab, A. Y.

G. D. Dice, S. Mujumdar, and A. Y. Elezzab, “Plasmonically enhanced diffusive and subdiffusive metal nanoparticles-dye random laser,” Appl. Phys. Lett. 86(13), 131105 (2005).
[Crossref]

Feldmann, J.

E. M. Perassi, C. Hrelescu, A. Wisnet, M. Döblinger, C. Scheu, F. Jäckel, E. A. Coronado, and J. Feldmann, “Quantitative understanding of the optical properties of a single, complex-shaped gold nanoparticle from experiment and theory,” ACS Nano 8(5), 4395–4402 (2014).
[Crossref] [PubMed]

C. Hrelescu, T. K. Sau, A. L. Rogach, F. Jäckel, and J. Feldmann, “Single gold nanostars enhance Raman scattering,” Appl. Phys. Lett. 94(15), 153113 (2009).
[Crossref]

Feng, S.

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random laser based on waveguided plasmonic gain channels,” Nano Lett. 11(10), 4295–4298 (2011).
[Crossref] [PubMed]

Flehr, R.

E. Heydari, R. Flehr, and J. Stumpe, “Influence of spacer layer on enhancement of nanoplasmon-assisted random lasing,” Appl. Phys. Lett. 102(13), 133110 (2013).
[Crossref]

Frank, R.

R. Frank, A. Lubatsch, and J. Kroha, “Theory of strong localization effects of light in disordered loss or gain media,” Phys. Rev. B 73(24), 245107 (2006).
[Crossref]

Fujita, K.

X. Meng, K. Fujita, Y. Moriguchi, Y. Zong, and K. Tanaka, “Metal-dielectric core-shell nanoparticles: advanced plasmonic architectures towards multiple control of random lasers,” Adv. Opt. Mater. 1(8), 573–580 (2013).
[Crossref]

X. Meng, K. Fujita, S. Murai, T. Matoba, and K. Tanaka, “Plasmonically controlled lasing resonance with metallic-dielectric core-shell nanoparticles,” Nano Lett. 11(3), 1374–1378 (2011).
[Crossref] [PubMed]

X. Meng, K. Fujita, S. Murai, and K. Tanaka, “Coherent random lasers in weakly scattering polymer films containing silver nanoparticles,” Phys. Rev. A 79(5), 053817 (2009).
[Crossref]

X. Meng, K. Fujita, Y. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett. 92(20), 201112 (2008).
[Crossref]

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Goldys, E.

W. Ismail, E. Goldys, and J. Dawes, “Plasmonic enhancement of Rhodamine dye random lasers,” Laser Phys. 25(8), 085001 (2015).
[Crossref]

Herz, E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Heydari, E.

E. Heydari, R. Flehr, and J. Stumpe, “Influence of spacer layer on enhancement of nanoplasmon-assisted random lasing,” Appl. Phys. Lett. 102(13), 133110 (2013).
[Crossref]

Hou, X.

H. Dong, Z. X. Wu, J. Xi, X. Xu, L. Zuo, T. Lei, X. Zhao, and X. Hou, “Pseudohalide-induced recrystallization engineering for CH3NH3PbI3 film and its application in highly efficient inverted planar heterojunction perovskite solar cells,” Adv. Funct. Mater. 28(2), 1704836 (2018).
[Crossref]

Hrelescu, C.

J. Ziegler, M. Djiango, C. Vidal, C. Hrelescu, and T. A. Klar, “Gold nanostars for random lasing enhancement,” Opt. Express 23(12), 15152–15159 (2015).
[Crossref] [PubMed]

E. M. Perassi, C. Hrelescu, A. Wisnet, M. Döblinger, C. Scheu, F. Jäckel, E. A. Coronado, and J. Feldmann, “Quantitative understanding of the optical properties of a single, complex-shaped gold nanoparticle from experiment and theory,” ACS Nano 8(5), 4395–4402 (2014).
[Crossref] [PubMed]

C. Hrelescu, T. K. Sau, A. L. Rogach, F. Jäckel, G. Laurent, L. Douillard, and F. Charra, “Selective excitation of individual plasmonic hotspots at the tips of single gold nanostars,” Nano Lett. 11(2), 402–407 (2011).
[Crossref] [PubMed]

C. Hrelescu, T. K. Sau, A. L. Rogach, F. Jäckel, and J. Feldmann, “Single gold nanostars enhance Raman scattering,” Appl. Phys. Lett. 94(15), 153113 (2009).
[Crossref]

Ismail, W.

W. Ismail, E. Goldys, and J. Dawes, “Plasmonic enhancement of Rhodamine dye random lasers,” Laser Phys. 25(8), 085001 (2015).
[Crossref]

Jäckel, F.

E. M. Perassi, C. Hrelescu, A. Wisnet, M. Döblinger, C. Scheu, F. Jäckel, E. A. Coronado, and J. Feldmann, “Quantitative understanding of the optical properties of a single, complex-shaped gold nanoparticle from experiment and theory,” ACS Nano 8(5), 4395–4402 (2014).
[Crossref] [PubMed]

C. Hrelescu, T. K. Sau, A. L. Rogach, F. Jäckel, G. Laurent, L. Douillard, and F. Charra, “Selective excitation of individual plasmonic hotspots at the tips of single gold nanostars,” Nano Lett. 11(2), 402–407 (2011).
[Crossref] [PubMed]

C. Hrelescu, T. K. Sau, A. L. Rogach, F. Jäckel, and J. Feldmann, “Single gold nanostars enhance Raman scattering,” Appl. Phys. Lett. 94(15), 153113 (2009).
[Crossref]

Johnson, P.

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Klar, T. A.

Kroha, J.

R. Frank, A. Lubatsch, and J. Kroha, “Theory of strong localization effects of light in disordered loss or gain media,” Phys. Rev. B 73(24), 245107 (2006).
[Crossref]

Laurent, G.

C. Hrelescu, T. K. Sau, A. L. Rogach, F. Jäckel, G. Laurent, L. Douillard, and F. Charra, “Selective excitation of individual plasmonic hotspots at the tips of single gold nanostars,” Nano Lett. 11(2), 402–407 (2011).
[Crossref] [PubMed]

Lei, T.

H. Dong, Z. X. Wu, J. Xi, X. Xu, L. Zuo, T. Lei, X. Zhao, and X. Hou, “Pseudohalide-induced recrystallization engineering for CH3NH3PbI3 film and its application in highly efficient inverted planar heterojunction perovskite solar cells,” Adv. Funct. Mater. 28(2), 1704836 (2018).
[Crossref]

Li, S.

T. Zhai, J. Chen, L. Chen, J. Wang, L. Wang, D. Liu, S. Li, H. Liu, and X. Zhang, “A plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate,” Nanoscale 7(6), 2235–2240 (2015).
[Crossref] [PubMed]

Liu, D.

T. Zhai, J. Chen, L. Chen, J. Wang, L. Wang, D. Liu, S. Li, H. Liu, and X. Zhang, “A plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate,” Nanoscale 7(6), 2235–2240 (2015).
[Crossref] [PubMed]

X. Shi, Y. Wang, Z. Wang, S. Wei, Y. Sun, D. Liu, and J. Shi, “Random lasing with a high quality factor over the whole visible range based on cascade energy transfer,” Adv. Optical Mater. 2(1), 88–93 (2014).
[Crossref]

Liu, H.

T. Zhai, J. Chen, L. Chen, J. Wang, L. Wang, D. Liu, S. Li, H. Liu, and X. Zhang, “A plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate,” Nanoscale 7(6), 2235–2240 (2015).
[Crossref] [PubMed]

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random laser based on waveguided plasmonic gain channels,” Nano Lett. 11(10), 4295–4298 (2011).
[Crossref] [PubMed]

Lubatsch, A.

R. Frank, A. Lubatsch, and J. Kroha, “Theory of strong localization effects of light in disordered loss or gain media,” Phys. Rev. B 73(24), 245107 (2006).
[Crossref]

Ma, R. M.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Matoba, T.

X. Meng, K. Fujita, S. Murai, T. Matoba, and K. Tanaka, “Plasmonically controlled lasing resonance with metallic-dielectric core-shell nanoparticles,” Nano Lett. 11(3), 1374–1378 (2011).
[Crossref] [PubMed]

Meng, X.

X. Meng, K. Fujita, Y. Moriguchi, Y. Zong, and K. Tanaka, “Metal-dielectric core-shell nanoparticles: advanced plasmonic architectures towards multiple control of random lasers,” Adv. Opt. Mater. 1(8), 573–580 (2013).
[Crossref]

X. Meng, K. Fujita, S. Murai, T. Matoba, and K. Tanaka, “Plasmonically controlled lasing resonance with metallic-dielectric core-shell nanoparticles,” Nano Lett. 11(3), 1374–1378 (2011).
[Crossref] [PubMed]

X. Meng, K. Fujita, S. Murai, and K. Tanaka, “Coherent random lasers in weakly scattering polymer films containing silver nanoparticles,” Phys. Rev. A 79(5), 053817 (2009).
[Crossref]

X. Meng, K. Fujita, Y. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett. 92(20), 201112 (2008).
[Crossref]

Ming, T.

X. Wu, T. Ming, X. Wang, P. Wang, J. Wang, and J. Chen, “High-photoluminescence-yield gold nanocubes: for cell imaging and photothermal therapy,” ACS Nano 4(1), 113–120 (2010).
[Crossref] [PubMed]

Moriguchi, Y.

X. Meng, K. Fujita, Y. Moriguchi, Y. Zong, and K. Tanaka, “Metal-dielectric core-shell nanoparticles: advanced plasmonic architectures towards multiple control of random lasers,” Adv. Opt. Mater. 1(8), 573–580 (2013).
[Crossref]

Mujumdar, S.

G. D. Dice, S. Mujumdar, and A. Y. Elezzab, “Plasmonically enhanced diffusive and subdiffusive metal nanoparticles-dye random laser,” Appl. Phys. Lett. 86(13), 131105 (2005).
[Crossref]

Murai, S.

X. Meng, K. Fujita, S. Murai, T. Matoba, and K. Tanaka, “Plasmonically controlled lasing resonance with metallic-dielectric core-shell nanoparticles,” Nano Lett. 11(3), 1374–1378 (2011).
[Crossref] [PubMed]

X. Meng, K. Fujita, S. Murai, and K. Tanaka, “Coherent random lasers in weakly scattering polymer films containing silver nanoparticles,” Phys. Rev. A 79(5), 053817 (2009).
[Crossref]

X. Meng, K. Fujita, Y. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett. 92(20), 201112 (2008).
[Crossref]

Na, N.

Y. Cui, C. Niu, N. Na, and J. Ouyang, “Core–shell gold nanocubes for point mutation detection based on plasmon-enhanced fluorescence,” J. Mater. Chem. B Mater. Biol. Med. 5(27), 5329–5335 (2017).
[Crossref]

Narimanov, E. E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Ning, S. Y.

S. Y. Ning, Z. X. Wu, H. Dong, and F. H. Zhang, “Enhancement of lasing in organic gain media assisted by the metallic nanoparticles-metallic film plasmonic hybrid structure,” J. Mater. Chem. C 4(24), 5717–5724 (2016).
[Crossref]

Niu, C.

Y. Cui, C. Niu, N. Na, and J. Ouyang, “Core–shell gold nanocubes for point mutation detection based on plasmon-enhanced fluorescence,” J. Mater. Chem. B Mater. Biol. Med. 5(27), 5329–5335 (2017).
[Crossref]

Noginov, M. A.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Oulton, R. F.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Ouyang, J.

Y. Cui, C. Niu, N. Na, and J. Ouyang, “Core–shell gold nanocubes for point mutation detection based on plasmon-enhanced fluorescence,” J. Mater. Chem. B Mater. Biol. Med. 5(27), 5329–5335 (2017).
[Crossref]

Pang, Z.

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random laser based on waveguided plasmonic gain channels,” Nano Lett. 11(10), 4295–4298 (2011).
[Crossref] [PubMed]

Perassi, E. M.

E. M. Perassi, C. Hrelescu, A. Wisnet, M. Döblinger, C. Scheu, F. Jäckel, E. A. Coronado, and J. Feldmann, “Quantitative understanding of the optical properties of a single, complex-shaped gold nanoparticle from experiment and theory,” ACS Nano 8(5), 4395–4402 (2014).
[Crossref] [PubMed]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Popov, O.

O. Popov, A. Zilbershtein, and D. Davidov, “Enhanced amplified emission induced by surface plasmons on gold nanoparticles in polymer film random lasers,” Adv. Technol. 18(9), 751–755 (2007).
[Crossref]

O. Popov, A. Zilbershtein, and D. Davidov, “Random lasing from dye-gold nanoparticles in polymer films: Enhanced gain at the surface-plasmon-resonance wavelength,” Appl. Phys. Lett. 89(19), 191116 (2006).
[Crossref]

Rogach, A. L.

C. Hrelescu, T. K. Sau, A. L. Rogach, F. Jäckel, G. Laurent, L. Douillard, and F. Charra, “Selective excitation of individual plasmonic hotspots at the tips of single gold nanostars,” Nano Lett. 11(2), 402–407 (2011).
[Crossref] [PubMed]

C. Hrelescu, T. K. Sau, A. L. Rogach, F. Jäckel, and J. Feldmann, “Single gold nanostars enhance Raman scattering,” Appl. Phys. Lett. 94(15), 153113 (2009).
[Crossref]

Sau, T. K.

C. Hrelescu, T. K. Sau, A. L. Rogach, F. Jäckel, G. Laurent, L. Douillard, and F. Charra, “Selective excitation of individual plasmonic hotspots at the tips of single gold nanostars,” Nano Lett. 11(2), 402–407 (2011).
[Crossref] [PubMed]

C. Hrelescu, T. K. Sau, A. L. Rogach, F. Jäckel, and J. Feldmann, “Single gold nanostars enhance Raman scattering,” Appl. Phys. Lett. 94(15), 153113 (2009).
[Crossref]

Scheu, C.

E. M. Perassi, C. Hrelescu, A. Wisnet, M. Döblinger, C. Scheu, F. Jäckel, E. A. Coronado, and J. Feldmann, “Quantitative understanding of the optical properties of a single, complex-shaped gold nanoparticle from experiment and theory,” ACS Nano 8(5), 4395–4402 (2014).
[Crossref] [PubMed]

Shalaev, V. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Shi, J.

X. Shi, Y. Wang, Z. Wang, S. Wei, Y. Sun, D. Liu, and J. Shi, “Random lasing with a high quality factor over the whole visible range based on cascade energy transfer,” Adv. Optical Mater. 2(1), 88–93 (2014).
[Crossref]

Shi, X.

X. Shi, Y. Wang, Z. Wang, S. Wei, Y. Sun, D. Liu, and J. Shi, “Random lasing with a high quality factor over the whole visible range based on cascade energy transfer,” Adv. Optical Mater. 2(1), 88–93 (2014).
[Crossref]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Stockman, M. I.

M. I. Stockman, “Spasers explained,” Nat. Photonics 2(6), 327–329 (2008).
[Crossref]

Stout, S.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Stumpe, J.

E. Heydari, R. Flehr, and J. Stumpe, “Influence of spacer layer on enhancement of nanoplasmon-assisted random lasing,” Appl. Phys. Lett. 102(13), 133110 (2013).
[Crossref]

Su, X.

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random laser based on waveguided plasmonic gain channels,” Nano Lett. 11(10), 4295–4298 (2011).
[Crossref] [PubMed]

Sun, Y.

X. Shi, Y. Wang, Z. Wang, S. Wei, Y. Sun, D. Liu, and J. Shi, “Random lasing with a high quality factor over the whole visible range based on cascade energy transfer,” Adv. Optical Mater. 2(1), 88–93 (2014).
[Crossref]

Suteewong, T.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Tanaka, K.

X. Meng, K. Fujita, Y. Moriguchi, Y. Zong, and K. Tanaka, “Metal-dielectric core-shell nanoparticles: advanced plasmonic architectures towards multiple control of random lasers,” Adv. Opt. Mater. 1(8), 573–580 (2013).
[Crossref]

X. Meng, K. Fujita, S. Murai, T. Matoba, and K. Tanaka, “Plasmonically controlled lasing resonance with metallic-dielectric core-shell nanoparticles,” Nano Lett. 11(3), 1374–1378 (2011).
[Crossref] [PubMed]

X. Meng, K. Fujita, S. Murai, and K. Tanaka, “Coherent random lasers in weakly scattering polymer films containing silver nanoparticles,” Phys. Rev. A 79(5), 053817 (2009).
[Crossref]

X. Meng, K. Fujita, Y. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett. 92(20), 201112 (2008).
[Crossref]

Vidal, C.

Wang, J.

T. Zhai, J. Chen, L. Chen, J. Wang, L. Wang, D. Liu, S. Li, H. Liu, and X. Zhang, “A plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate,” Nanoscale 7(6), 2235–2240 (2015).
[Crossref] [PubMed]

X. Wu, T. Ming, X. Wang, P. Wang, J. Wang, and J. Chen, “High-photoluminescence-yield gold nanocubes: for cell imaging and photothermal therapy,” ACS Nano 4(1), 113–120 (2010).
[Crossref] [PubMed]

Wang, L.

T. Zhai, J. Chen, L. Chen, J. Wang, L. Wang, D. Liu, S. Li, H. Liu, and X. Zhang, “A plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate,” Nanoscale 7(6), 2235–2240 (2015).
[Crossref] [PubMed]

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random laser based on waveguided plasmonic gain channels,” Nano Lett. 11(10), 4295–4298 (2011).
[Crossref] [PubMed]

Wang, P.

X. Wu, T. Ming, X. Wang, P. Wang, J. Wang, and J. Chen, “High-photoluminescence-yield gold nanocubes: for cell imaging and photothermal therapy,” ACS Nano 4(1), 113–120 (2010).
[Crossref] [PubMed]

Wang, X.

X. Wu, T. Ming, X. Wang, P. Wang, J. Wang, and J. Chen, “High-photoluminescence-yield gold nanocubes: for cell imaging and photothermal therapy,” ACS Nano 4(1), 113–120 (2010).
[Crossref] [PubMed]

Wang, Y.

X. Shi, Y. Wang, Z. Wang, S. Wei, Y. Sun, D. Liu, and J. Shi, “Random lasing with a high quality factor over the whole visible range based on cascade energy transfer,” Adv. Optical Mater. 2(1), 88–93 (2014).
[Crossref]

Wang, Z.

X. Shi, Y. Wang, Z. Wang, S. Wei, Y. Sun, D. Liu, and J. Shi, “Random lasing with a high quality factor over the whole visible range based on cascade energy transfer,” Adv. Optical Mater. 2(1), 88–93 (2014).
[Crossref]

Wei, S.

X. Shi, Y. Wang, Z. Wang, S. Wei, Y. Sun, D. Liu, and J. Shi, “Random lasing with a high quality factor over the whole visible range based on cascade energy transfer,” Adv. Optical Mater. 2(1), 88–93 (2014).
[Crossref]

Wiesner, U.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Wisnet, A.

E. M. Perassi, C. Hrelescu, A. Wisnet, M. Döblinger, C. Scheu, F. Jäckel, E. A. Coronado, and J. Feldmann, “Quantitative understanding of the optical properties of a single, complex-shaped gold nanoparticle from experiment and theory,” ACS Nano 8(5), 4395–4402 (2014).
[Crossref] [PubMed]

Wu, X.

X. Wu, T. Ming, X. Wang, P. Wang, J. Wang, and J. Chen, “High-photoluminescence-yield gold nanocubes: for cell imaging and photothermal therapy,” ACS Nano 4(1), 113–120 (2010).
[Crossref] [PubMed]

Wu, Z. X.

H. Dong, Z. X. Wu, J. Xi, X. Xu, L. Zuo, T. Lei, X. Zhao, and X. Hou, “Pseudohalide-induced recrystallization engineering for CH3NH3PbI3 film and its application in highly efficient inverted planar heterojunction perovskite solar cells,” Adv. Funct. Mater. 28(2), 1704836 (2018).
[Crossref]

S. Y. Ning, Z. X. Wu, H. Dong, and F. H. Zhang, “Enhancement of lasing in organic gain media assisted by the metallic nanoparticles-metallic film plasmonic hybrid structure,” J. Mater. Chem. C 4(24), 5717–5724 (2016).
[Crossref]

Xi, J.

H. Dong, Z. X. Wu, J. Xi, X. Xu, L. Zuo, T. Lei, X. Zhao, and X. Hou, “Pseudohalide-induced recrystallization engineering for CH3NH3PbI3 film and its application in highly efficient inverted planar heterojunction perovskite solar cells,” Adv. Funct. Mater. 28(2), 1704836 (2018).
[Crossref]

Xu, X.

H. Dong, Z. X. Wu, J. Xi, X. Xu, L. Zuo, T. Lei, X. Zhao, and X. Hou, “Pseudohalide-induced recrystallization engineering for CH3NH3PbI3 film and its application in highly efficient inverted planar heterojunction perovskite solar cells,” Adv. Funct. Mater. 28(2), 1704836 (2018).
[Crossref]

Zentgraf, T.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Zhai, T.

T. Zhai, J. Chen, L. Chen, J. Wang, L. Wang, D. Liu, S. Li, H. Liu, and X. Zhang, “A plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate,” Nanoscale 7(6), 2235–2240 (2015).
[Crossref] [PubMed]

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random laser based on waveguided plasmonic gain channels,” Nano Lett. 11(10), 4295–4298 (2011).
[Crossref] [PubMed]

Zhang, F. H.

S. Y. Ning, Z. X. Wu, H. Dong, and F. H. Zhang, “Enhancement of lasing in organic gain media assisted by the metallic nanoparticles-metallic film plasmonic hybrid structure,” J. Mater. Chem. C 4(24), 5717–5724 (2016).
[Crossref]

Zhang, X.

T. Zhai, J. Chen, L. Chen, J. Wang, L. Wang, D. Liu, S. Li, H. Liu, and X. Zhang, “A plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate,” Nanoscale 7(6), 2235–2240 (2015).
[Crossref] [PubMed]

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random laser based on waveguided plasmonic gain channels,” Nano Lett. 11(10), 4295–4298 (2011).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Zhao, X.

H. Dong, Z. X. Wu, J. Xi, X. Xu, L. Zuo, T. Lei, X. Zhao, and X. Hou, “Pseudohalide-induced recrystallization engineering for CH3NH3PbI3 film and its application in highly efficient inverted planar heterojunction perovskite solar cells,” Adv. Funct. Mater. 28(2), 1704836 (2018).
[Crossref]

Zhu, G.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Ziegler, J.

Zilbershtein, A.

O. Popov, A. Zilbershtein, and D. Davidov, “Enhanced amplified emission induced by surface plasmons on gold nanoparticles in polymer film random lasers,” Adv. Technol. 18(9), 751–755 (2007).
[Crossref]

O. Popov, A. Zilbershtein, and D. Davidov, “Random lasing from dye-gold nanoparticles in polymer films: Enhanced gain at the surface-plasmon-resonance wavelength,” Appl. Phys. Lett. 89(19), 191116 (2006).
[Crossref]

Zong, Y.

X. Meng, K. Fujita, Y. Moriguchi, Y. Zong, and K. Tanaka, “Metal-dielectric core-shell nanoparticles: advanced plasmonic architectures towards multiple control of random lasers,” Adv. Opt. Mater. 1(8), 573–580 (2013).
[Crossref]

X. Meng, K. Fujita, Y. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett. 92(20), 201112 (2008).
[Crossref]

Zuo, L.

H. Dong, Z. X. Wu, J. Xi, X. Xu, L. Zuo, T. Lei, X. Zhao, and X. Hou, “Pseudohalide-induced recrystallization engineering for CH3NH3PbI3 film and its application in highly efficient inverted planar heterojunction perovskite solar cells,” Adv. Funct. Mater. 28(2), 1704836 (2018).
[Crossref]

ACS Nano (2)

X. Wu, T. Ming, X. Wang, P. Wang, J. Wang, and J. Chen, “High-photoluminescence-yield gold nanocubes: for cell imaging and photothermal therapy,” ACS Nano 4(1), 113–120 (2010).
[Crossref] [PubMed]

E. M. Perassi, C. Hrelescu, A. Wisnet, M. Döblinger, C. Scheu, F. Jäckel, E. A. Coronado, and J. Feldmann, “Quantitative understanding of the optical properties of a single, complex-shaped gold nanoparticle from experiment and theory,” ACS Nano 8(5), 4395–4402 (2014).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

H. Dong, Z. X. Wu, J. Xi, X. Xu, L. Zuo, T. Lei, X. Zhao, and X. Hou, “Pseudohalide-induced recrystallization engineering for CH3NH3PbI3 film and its application in highly efficient inverted planar heterojunction perovskite solar cells,” Adv. Funct. Mater. 28(2), 1704836 (2018).
[Crossref]

Adv. Opt. Mater. (1)

X. Meng, K. Fujita, Y. Moriguchi, Y. Zong, and K. Tanaka, “Metal-dielectric core-shell nanoparticles: advanced plasmonic architectures towards multiple control of random lasers,” Adv. Opt. Mater. 1(8), 573–580 (2013).
[Crossref]

Adv. Optical Mater. (1)

X. Shi, Y. Wang, Z. Wang, S. Wei, Y. Sun, D. Liu, and J. Shi, “Random lasing with a high quality factor over the whole visible range based on cascade energy transfer,” Adv. Optical Mater. 2(1), 88–93 (2014).
[Crossref]

Adv. Technol. (1)

O. Popov, A. Zilbershtein, and D. Davidov, “Enhanced amplified emission induced by surface plasmons on gold nanoparticles in polymer film random lasers,” Adv. Technol. 18(9), 751–755 (2007).
[Crossref]

Appl. Phys. Lett. (5)

G. D. Dice, S. Mujumdar, and A. Y. Elezzab, “Plasmonically enhanced diffusive and subdiffusive metal nanoparticles-dye random laser,” Appl. Phys. Lett. 86(13), 131105 (2005).
[Crossref]

X. Meng, K. Fujita, Y. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett. 92(20), 201112 (2008).
[Crossref]

O. Popov, A. Zilbershtein, and D. Davidov, “Random lasing from dye-gold nanoparticles in polymer films: Enhanced gain at the surface-plasmon-resonance wavelength,” Appl. Phys. Lett. 89(19), 191116 (2006).
[Crossref]

E. Heydari, R. Flehr, and J. Stumpe, “Influence of spacer layer on enhancement of nanoplasmon-assisted random lasing,” Appl. Phys. Lett. 102(13), 133110 (2013).
[Crossref]

C. Hrelescu, T. K. Sau, A. L. Rogach, F. Jäckel, and J. Feldmann, “Single gold nanostars enhance Raman scattering,” Appl. Phys. Lett. 94(15), 153113 (2009).
[Crossref]

J. Mater. Chem. B Mater. Biol. Med. (1)

Y. Cui, C. Niu, N. Na, and J. Ouyang, “Core–shell gold nanocubes for point mutation detection based on plasmon-enhanced fluorescence,” J. Mater. Chem. B Mater. Biol. Med. 5(27), 5329–5335 (2017).
[Crossref]

J. Mater. Chem. C (1)

S. Y. Ning, Z. X. Wu, H. Dong, and F. H. Zhang, “Enhancement of lasing in organic gain media assisted by the metallic nanoparticles-metallic film plasmonic hybrid structure,” J. Mater. Chem. C 4(24), 5717–5724 (2016).
[Crossref]

Laser Phys. (1)

W. Ismail, E. Goldys, and J. Dawes, “Plasmonic enhancement of Rhodamine dye random lasers,” Laser Phys. 25(8), 085001 (2015).
[Crossref]

Nano Lett. (3)

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random laser based on waveguided plasmonic gain channels,” Nano Lett. 11(10), 4295–4298 (2011).
[Crossref] [PubMed]

X. Meng, K. Fujita, S. Murai, T. Matoba, and K. Tanaka, “Plasmonically controlled lasing resonance with metallic-dielectric core-shell nanoparticles,” Nano Lett. 11(3), 1374–1378 (2011).
[Crossref] [PubMed]

C. Hrelescu, T. K. Sau, A. L. Rogach, F. Jäckel, G. Laurent, L. Douillard, and F. Charra, “Selective excitation of individual plasmonic hotspots at the tips of single gold nanostars,” Nano Lett. 11(2), 402–407 (2011).
[Crossref] [PubMed]

Nanoscale (1)

T. Zhai, J. Chen, L. Chen, J. Wang, L. Wang, D. Liu, S. Li, H. Liu, and X. Zhang, “A plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate,” Nanoscale 7(6), 2235–2240 (2015).
[Crossref] [PubMed]

Nat. Mater. (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Nat. Photonics (1)

M. I. Stockman, “Spasers explained,” Nat. Photonics 2(6), 327–329 (2008).
[Crossref]

Nature (2)

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Opt. Express (1)

Phys. Rev. A (1)

X. Meng, K. Fujita, S. Murai, and K. Tanaka, “Coherent random lasers in weakly scattering polymer films containing silver nanoparticles,” Phys. Rev. A 79(5), 053817 (2009).
[Crossref]

Phys. Rev. B (2)

R. Frank, A. Lubatsch, and J. Kroha, “Theory of strong localization effects of light in disordered loss or gain media,” Phys. Rev. B 73(24), 245107 (2006).
[Crossref]

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 The TEM images of Au NCs with different sizes. The average edge lengths of the Au NCs are (a) 20 nm, (b) 60 nm, (c) 80 nm, (d) 100 nm, and (e) 120 nm.
Fig. 2
Fig. 2 The structure of a device whose gain medium had been doped with Au NCs.
Fig. 3
Fig. 3 The (a) experimental and (b) calculated LSPR spectra of 20, 60, 80, 100, and 120 nm Au NCs; the absorption and emission spectra of R6G are included in (a).
Fig. 4
Fig. 4 Emission spectra of the devices with (a) no metallic NPs, (b) 20 nm Au NCs, and (c) 80 nm Au NCs; the corresponding lasing intensities and FWHMs of the emission spectra are shown in the insets of (a) to (c). (d) Dependences of the emission intensity on the pump energy for different devices, the inset shows the lasing thresholds of different devices.
Fig. 5
Fig. 5 Emission spectra of the devices with (a) Au nanocube@SiO2 NPs, (c) Au nanosphere@SiO2 NPs; (b) and (d) the lasing intensities and FWHMs of the emission spectra corresponding to (a) and (c). The insets in (a) and (c) show the TEM images of Au nanocube@SiO2 NP and Au nanosphere@SiO2 NP.
Fig. 6
Fig. 6 (a) The normalized scattering cross section of different sizes of Au NCs at λ = 570 nm, (b) the scattering mean free paths at λ = 570 nm, as a function of the size of Au NC.
Fig. 7
Fig. 7 Electric field distributions of (a) 20 nm, (b) 60 nm, (c) 80 nm, (d) 100 nm, (e) 120 nm Au nanocube; and (f) an 80 nm Au nanosphere at the incident wavelength of 570 nm.

Metrics