Abstract

Dispersion and anisotropy of thermal coefficients of the optical path (TCOP) and thermo-optic coefficients (TOCs) of Alexandrite laser crystal (Cr3+:BeAl2O4) are studied for the three principal light polarizations, E || a, E || b and E || c. Thermo-optic dispersion formulas are presented for the spectral range of 0.4-1.1 µm. All TOCs are positive and show a notable polarization-anisotropy, dna/dT = 5.9, dnb/dT = 6.9 and dnc/dT = 15.2 × 10−6 K−1 at 0.75 µm. Thermal lensing was characterized in a continuous-wave Alexandrite laser pumped at 0.532 µm and operating at 0.7509 µm (for E || b). The measured thermal lens was weak, positive and slightly astigmatic. The sensitivity factors of the thermal lens were found to be Mx = 1.74 and My = 2.38 [m−1/W].

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Thermo-optic characterization of Yb:CaGdAlO4 laser crystal

Pavel Loiko, Frederic Druon, Patrick Georges, Bruno Viana, and Konstantin Yumashev
Opt. Mater. Express 4(11) 2241-2249 (2014)

Dispersion and anisotropy of thermo-optic coefficients in tetragonal GdVO4 and YVO4 laser host crystals

Pavel A. Loiko, Konstantin V. Yumashev, Vladimir N. Matrosov, and Nikolai V. Kuleshov
Appl. Opt. 52(4) 698-705 (2013)

Thermo-optic dispersion formulas for YCOB and GdCOB laser host crystals

Pavel Loiko, Xavier Mateos, Yicheng Wang, Zhongben Pan, Konstantin Yumashev, Huaijin Zhang, Uwe Griebner, and Valentin Petrov
Opt. Mater. Express 5(5) 1089-1097 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, and E. W. O’Dell, “Tunable Alexandrite lasers,” IEEE J. Quantum Electron. 16(12), 1302–1315 (1980).
    [Crossref]
  2. J. Walling, F. H. Donald, H. Samelson, D. J. Harter, J. Pete, and R. C. Morris, “Tunable Alexandrite lasers: development and performance,” IEEE J. Quantum Electron. 21(10), 1568–1581 (1985).
    [Crossref]
  3. C. F. Cline, R. C. Morris, M. Dutoit, and P. J. Harget, “Physical properties of BeAl2O4 single crystals,” J. Mater. Sci. 14(4), 941–944 (1979).
    [Crossref]
  4. R. C. Powell, L. Xi, X. Gang, G. J. Quarles, and J. C. Walling, “Spectroscopic properties of alexandrite crystals,” Phys. Rev. B Condens. Matter 32(5), 2788–2797 (1985).
    [Crossref] [PubMed]
  5. E. V. Pestryakov, A. I. Alimpiev, and V. N. Matrosov, “Prospects for the development of femtosecond laser systems based on beryllium aluminate crystals doped with chromium and titanium ions,” Quantum Electron. 31(8), 689–696 (2001).
    [Crossref]
  6. S. Ghanbari and A. Major, “High power continuous-wave Alexandrite laser with green pump,” Laser Phys. 26(7), 075001 (2016).
    [Crossref]
  7. S. R. Scheps, B. M. Gately, J. F. Myers, J. S. Krasinski, and D. F. Heller, “Alexandrite laser pumped by semiconductor lasers,” Appl. Phys. Lett. 56(23), 2288–2290 (1990).
    [Crossref]
  8. E. Beyatli, I. Baali, B. Sumpf, G. Erbert, A. Leitenstorfer, A. Sennaroglu, and U. Demirbas, “Tapered diode-pumped continuous-wave alexandrite laser,” J. Opt. Soc. Am. B 30(12), 3184–3192 (2013).
    [Crossref]
  9. A. Teppitaksak, A. Minassian, G. M. Thomas, and M. J. Damzen, “High efficiency >26 W diode end-pumped Alexandrite laser,” Opt. Express 22(13), 16386–16392 (2014).
    [Crossref] [PubMed]
  10. P. Pichon, A. Barbet, J.-P. Blanchot, F. Druon, F. Balembois, and P. Georges, “LED-pumped alexandrite laser oscillator and amplifier,” Opt. Lett. 42(20), 4191–4194 (2017).
    [Crossref] [PubMed]
  11. S. Ghanbari, R. Akbari, and A. Major, “Femtosecond Kerr-lens mode-locked Alexandrite laser,” Opt. Express 24(13), 14836–14840 (2016).
    [Crossref] [PubMed]
  12. C. Cihan, A. Muti, I. Baylam, A. Kocabas, U. Demirbas, and A. Sennaroglu, “70 femtosecond Kerr-lens mode-locked multipass-cavity Alexandrite laser,” Opt. Lett. 43(6), 1315–1318 (2018).
    [Crossref] [PubMed]
  13. S. Ghanbari, K. A. Fedorova, A. B. Krysa, E. U. Rafailov, and A. Major, “Femtosecond Alexandrite laser passively mode-locked by an InP/InGaP quantum-dot saturable absorber,” Opt. Lett. 43(2), 232–234 (2018).
    [Crossref] [PubMed]
  14. H. Samelson, J. C. Walling, and D. F. Heller, “Unique applications of alexandrite lasers,” Proc. SPIE 0335, 85–94 (1983).
    [Crossref]
  15. D. A. Vinnik, P. A. Popov, S. A. Archugov, and G. G. Mikhailov, “Heat conductivity of chromium-doped alexandrite single crystals,” Dokl. Phys. 54(10), 449–450 (2009).
    [Crossref]
  16. P. Loiko and A. Major, “Dispersive properties of alexandrite and beryllium hexaaluminate crystals,” Opt. Mater. Express 6(7), 2177–2183 (2016).
    [Crossref]
  17. P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, G. E. Rachkovskaya, and A. A. Pavlyuk, A.A., “Thermo-optic dispersion formulas for monoclinic double tungstates KRe(WO4)2 where Re = Gd, Y, Lu, Yb,” Opt. Mater. 33(11), 1688–1694 (2011).
    [Crossref]
  18. W. Y. Ching, Y.-N. Xu, and B. K. Brickeen, “Comparative study of the electronic structure of two laser crystals: BeAl2O4 and LiYF4,” Phys. Rev. B 63(11), 115101 (2001).
    [Crossref]
  19. S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
    [Crossref]
  20. R. Akbari, K. A. Fedorova, E. U. Rafailov, and A. Major, “Diode-pumped ultrafast Yb:KGW laser with 56 fs pulses and multi-100 kW peak power based on SESAM and Kerr-lens mode locking,” Appl. Phys. B 123(4), 123 (2017).
    [Crossref]
  21. C. Cihan, C. Kocabas, U. Demirbas, and A. Sennaroglu, “Graphene mode-locked femtosecond Alexandrite laser,” Opt. Lett. 43(16), 3969–3972 (2018).
    [Crossref] [PubMed]

2018 (3)

2017 (2)

R. Akbari, K. A. Fedorova, E. U. Rafailov, and A. Major, “Diode-pumped ultrafast Yb:KGW laser with 56 fs pulses and multi-100 kW peak power based on SESAM and Kerr-lens mode locking,” Appl. Phys. B 123(4), 123 (2017).
[Crossref]

P. Pichon, A. Barbet, J.-P. Blanchot, F. Druon, F. Balembois, and P. Georges, “LED-pumped alexandrite laser oscillator and amplifier,” Opt. Lett. 42(20), 4191–4194 (2017).
[Crossref] [PubMed]

2016 (3)

2014 (1)

2013 (1)

2011 (1)

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, G. E. Rachkovskaya, and A. A. Pavlyuk, A.A., “Thermo-optic dispersion formulas for monoclinic double tungstates KRe(WO4)2 where Re = Gd, Y, Lu, Yb,” Opt. Mater. 33(11), 1688–1694 (2011).
[Crossref]

2009 (1)

D. A. Vinnik, P. A. Popov, S. A. Archugov, and G. G. Mikhailov, “Heat conductivity of chromium-doped alexandrite single crystals,” Dokl. Phys. 54(10), 449–450 (2009).
[Crossref]

2006 (1)

S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[Crossref]

2001 (2)

W. Y. Ching, Y.-N. Xu, and B. K. Brickeen, “Comparative study of the electronic structure of two laser crystals: BeAl2O4 and LiYF4,” Phys. Rev. B 63(11), 115101 (2001).
[Crossref]

E. V. Pestryakov, A. I. Alimpiev, and V. N. Matrosov, “Prospects for the development of femtosecond laser systems based on beryllium aluminate crystals doped with chromium and titanium ions,” Quantum Electron. 31(8), 689–696 (2001).
[Crossref]

1990 (1)

S. R. Scheps, B. M. Gately, J. F. Myers, J. S. Krasinski, and D. F. Heller, “Alexandrite laser pumped by semiconductor lasers,” Appl. Phys. Lett. 56(23), 2288–2290 (1990).
[Crossref]

1985 (2)

J. Walling, F. H. Donald, H. Samelson, D. J. Harter, J. Pete, and R. C. Morris, “Tunable Alexandrite lasers: development and performance,” IEEE J. Quantum Electron. 21(10), 1568–1581 (1985).
[Crossref]

R. C. Powell, L. Xi, X. Gang, G. J. Quarles, and J. C. Walling, “Spectroscopic properties of alexandrite crystals,” Phys. Rev. B Condens. Matter 32(5), 2788–2797 (1985).
[Crossref] [PubMed]

1983 (1)

H. Samelson, J. C. Walling, and D. F. Heller, “Unique applications of alexandrite lasers,” Proc. SPIE 0335, 85–94 (1983).
[Crossref]

1980 (1)

J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, and E. W. O’Dell, “Tunable Alexandrite lasers,” IEEE J. Quantum Electron. 16(12), 1302–1315 (1980).
[Crossref]

1979 (1)

C. F. Cline, R. C. Morris, M. Dutoit, and P. J. Harget, “Physical properties of BeAl2O4 single crystals,” J. Mater. Sci. 14(4), 941–944 (1979).
[Crossref]

Akbari, R.

R. Akbari, K. A. Fedorova, E. U. Rafailov, and A. Major, “Diode-pumped ultrafast Yb:KGW laser with 56 fs pulses and multi-100 kW peak power based on SESAM and Kerr-lens mode locking,” Appl. Phys. B 123(4), 123 (2017).
[Crossref]

S. Ghanbari, R. Akbari, and A. Major, “Femtosecond Kerr-lens mode-locked Alexandrite laser,” Opt. Express 24(13), 14836–14840 (2016).
[Crossref] [PubMed]

Alimpiev, A. I.

E. V. Pestryakov, A. I. Alimpiev, and V. N. Matrosov, “Prospects for the development of femtosecond laser systems based on beryllium aluminate crystals doped with chromium and titanium ions,” Quantum Electron. 31(8), 689–696 (2001).
[Crossref]

Archugov, S. A.

D. A. Vinnik, P. A. Popov, S. A. Archugov, and G. G. Mikhailov, “Heat conductivity of chromium-doped alexandrite single crystals,” Dokl. Phys. 54(10), 449–450 (2009).
[Crossref]

Baali, I.

Balembois, F.

P. Pichon, A. Barbet, J.-P. Blanchot, F. Druon, F. Balembois, and P. Georges, “LED-pumped alexandrite laser oscillator and amplifier,” Opt. Lett. 42(20), 4191–4194 (2017).
[Crossref] [PubMed]

S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[Crossref]

Barbet, A.

Baylam, I.

Beyatli, E.

Blanchot, J.-P.

Brickeen, B. K.

W. Y. Ching, Y.-N. Xu, and B. K. Brickeen, “Comparative study of the electronic structure of two laser crystals: BeAl2O4 and LiYF4,” Phys. Rev. B 63(11), 115101 (2001).
[Crossref]

Chenais, S.

S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[Crossref]

Ching, W. Y.

W. Y. Ching, Y.-N. Xu, and B. K. Brickeen, “Comparative study of the electronic structure of two laser crystals: BeAl2O4 and LiYF4,” Phys. Rev. B 63(11), 115101 (2001).
[Crossref]

Cihan, C.

Cline, C. F.

C. F. Cline, R. C. Morris, M. Dutoit, and P. J. Harget, “Physical properties of BeAl2O4 single crystals,” J. Mater. Sci. 14(4), 941–944 (1979).
[Crossref]

Damzen, M. J.

Demirbas, U.

Donald, F. H.

J. Walling, F. H. Donald, H. Samelson, D. J. Harter, J. Pete, and R. C. Morris, “Tunable Alexandrite lasers: development and performance,” IEEE J. Quantum Electron. 21(10), 1568–1581 (1985).
[Crossref]

Druon, F.

P. Pichon, A. Barbet, J.-P. Blanchot, F. Druon, F. Balembois, and P. Georges, “LED-pumped alexandrite laser oscillator and amplifier,” Opt. Lett. 42(20), 4191–4194 (2017).
[Crossref] [PubMed]

S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[Crossref]

Dutoit, M.

C. F. Cline, R. C. Morris, M. Dutoit, and P. J. Harget, “Physical properties of BeAl2O4 single crystals,” J. Mater. Sci. 14(4), 941–944 (1979).
[Crossref]

Erbert, G.

Fedorova, K. A.

S. Ghanbari, K. A. Fedorova, A. B. Krysa, E. U. Rafailov, and A. Major, “Femtosecond Alexandrite laser passively mode-locked by an InP/InGaP quantum-dot saturable absorber,” Opt. Lett. 43(2), 232–234 (2018).
[Crossref] [PubMed]

R. Akbari, K. A. Fedorova, E. U. Rafailov, and A. Major, “Diode-pumped ultrafast Yb:KGW laser with 56 fs pulses and multi-100 kW peak power based on SESAM and Kerr-lens mode locking,” Appl. Phys. B 123(4), 123 (2017).
[Crossref]

Forget, S.

S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[Crossref]

Gang, X.

R. C. Powell, L. Xi, X. Gang, G. J. Quarles, and J. C. Walling, “Spectroscopic properties of alexandrite crystals,” Phys. Rev. B Condens. Matter 32(5), 2788–2797 (1985).
[Crossref] [PubMed]

Gately, B. M.

S. R. Scheps, B. M. Gately, J. F. Myers, J. S. Krasinski, and D. F. Heller, “Alexandrite laser pumped by semiconductor lasers,” Appl. Phys. Lett. 56(23), 2288–2290 (1990).
[Crossref]

Georges, P.

P. Pichon, A. Barbet, J.-P. Blanchot, F. Druon, F. Balembois, and P. Georges, “LED-pumped alexandrite laser oscillator and amplifier,” Opt. Lett. 42(20), 4191–4194 (2017).
[Crossref] [PubMed]

S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[Crossref]

Ghanbari, S.

Harget, P. J.

C. F. Cline, R. C. Morris, M. Dutoit, and P. J. Harget, “Physical properties of BeAl2O4 single crystals,” J. Mater. Sci. 14(4), 941–944 (1979).
[Crossref]

Harter, D. J.

J. Walling, F. H. Donald, H. Samelson, D. J. Harter, J. Pete, and R. C. Morris, “Tunable Alexandrite lasers: development and performance,” IEEE J. Quantum Electron. 21(10), 1568–1581 (1985).
[Crossref]

Heller, D. F.

S. R. Scheps, B. M. Gately, J. F. Myers, J. S. Krasinski, and D. F. Heller, “Alexandrite laser pumped by semiconductor lasers,” Appl. Phys. Lett. 56(23), 2288–2290 (1990).
[Crossref]

H. Samelson, J. C. Walling, and D. F. Heller, “Unique applications of alexandrite lasers,” Proc. SPIE 0335, 85–94 (1983).
[Crossref]

Jenssen, H. P.

J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, and E. W. O’Dell, “Tunable Alexandrite lasers,” IEEE J. Quantum Electron. 16(12), 1302–1315 (1980).
[Crossref]

Kocabas, A.

Kocabas, C.

Krasinski, J. S.

S. R. Scheps, B. M. Gately, J. F. Myers, J. S. Krasinski, and D. F. Heller, “Alexandrite laser pumped by semiconductor lasers,” Appl. Phys. Lett. 56(23), 2288–2290 (1990).
[Crossref]

Krysa, A. B.

Kuleshov, N. V.

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, G. E. Rachkovskaya, and A. A. Pavlyuk, A.A., “Thermo-optic dispersion formulas for monoclinic double tungstates KRe(WO4)2 where Re = Gd, Y, Lu, Yb,” Opt. Mater. 33(11), 1688–1694 (2011).
[Crossref]

Leitenstorfer, A.

Loiko, P.

Loiko, P. A.

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, G. E. Rachkovskaya, and A. A. Pavlyuk, A.A., “Thermo-optic dispersion formulas for monoclinic double tungstates KRe(WO4)2 where Re = Gd, Y, Lu, Yb,” Opt. Mater. 33(11), 1688–1694 (2011).
[Crossref]

Major, A.

Matrosov, V. N.

E. V. Pestryakov, A. I. Alimpiev, and V. N. Matrosov, “Prospects for the development of femtosecond laser systems based on beryllium aluminate crystals doped with chromium and titanium ions,” Quantum Electron. 31(8), 689–696 (2001).
[Crossref]

Mikhailov, G. G.

D. A. Vinnik, P. A. Popov, S. A. Archugov, and G. G. Mikhailov, “Heat conductivity of chromium-doped alexandrite single crystals,” Dokl. Phys. 54(10), 449–450 (2009).
[Crossref]

Minassian, A.

Morris, R. C.

J. Walling, F. H. Donald, H. Samelson, D. J. Harter, J. Pete, and R. C. Morris, “Tunable Alexandrite lasers: development and performance,” IEEE J. Quantum Electron. 21(10), 1568–1581 (1985).
[Crossref]

J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, and E. W. O’Dell, “Tunable Alexandrite lasers,” IEEE J. Quantum Electron. 16(12), 1302–1315 (1980).
[Crossref]

C. F. Cline, R. C. Morris, M. Dutoit, and P. J. Harget, “Physical properties of BeAl2O4 single crystals,” J. Mater. Sci. 14(4), 941–944 (1979).
[Crossref]

Muti, A.

Myers, J. F.

S. R. Scheps, B. M. Gately, J. F. Myers, J. S. Krasinski, and D. F. Heller, “Alexandrite laser pumped by semiconductor lasers,” Appl. Phys. Lett. 56(23), 2288–2290 (1990).
[Crossref]

O’Dell, E. W.

J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, and E. W. O’Dell, “Tunable Alexandrite lasers,” IEEE J. Quantum Electron. 16(12), 1302–1315 (1980).
[Crossref]

Pavlyuk, A. A.

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, G. E. Rachkovskaya, and A. A. Pavlyuk, A.A., “Thermo-optic dispersion formulas for monoclinic double tungstates KRe(WO4)2 where Re = Gd, Y, Lu, Yb,” Opt. Mater. 33(11), 1688–1694 (2011).
[Crossref]

Pestryakov, E. V.

E. V. Pestryakov, A. I. Alimpiev, and V. N. Matrosov, “Prospects for the development of femtosecond laser systems based on beryllium aluminate crystals doped with chromium and titanium ions,” Quantum Electron. 31(8), 689–696 (2001).
[Crossref]

Pete, J.

J. Walling, F. H. Donald, H. Samelson, D. J. Harter, J. Pete, and R. C. Morris, “Tunable Alexandrite lasers: development and performance,” IEEE J. Quantum Electron. 21(10), 1568–1581 (1985).
[Crossref]

Peterson, O. G.

J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, and E. W. O’Dell, “Tunable Alexandrite lasers,” IEEE J. Quantum Electron. 16(12), 1302–1315 (1980).
[Crossref]

Pichon, P.

Popov, P. A.

D. A. Vinnik, P. A. Popov, S. A. Archugov, and G. G. Mikhailov, “Heat conductivity of chromium-doped alexandrite single crystals,” Dokl. Phys. 54(10), 449–450 (2009).
[Crossref]

Powell, R. C.

R. C. Powell, L. Xi, X. Gang, G. J. Quarles, and J. C. Walling, “Spectroscopic properties of alexandrite crystals,” Phys. Rev. B Condens. Matter 32(5), 2788–2797 (1985).
[Crossref] [PubMed]

Quarles, G. J.

R. C. Powell, L. Xi, X. Gang, G. J. Quarles, and J. C. Walling, “Spectroscopic properties of alexandrite crystals,” Phys. Rev. B Condens. Matter 32(5), 2788–2797 (1985).
[Crossref] [PubMed]

Rachkovskaya, G. E.

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, G. E. Rachkovskaya, and A. A. Pavlyuk, A.A., “Thermo-optic dispersion formulas for monoclinic double tungstates KRe(WO4)2 where Re = Gd, Y, Lu, Yb,” Opt. Mater. 33(11), 1688–1694 (2011).
[Crossref]

Rafailov, E. U.

S. Ghanbari, K. A. Fedorova, A. B. Krysa, E. U. Rafailov, and A. Major, “Femtosecond Alexandrite laser passively mode-locked by an InP/InGaP quantum-dot saturable absorber,” Opt. Lett. 43(2), 232–234 (2018).
[Crossref] [PubMed]

R. Akbari, K. A. Fedorova, E. U. Rafailov, and A. Major, “Diode-pumped ultrafast Yb:KGW laser with 56 fs pulses and multi-100 kW peak power based on SESAM and Kerr-lens mode locking,” Appl. Phys. B 123(4), 123 (2017).
[Crossref]

Samelson, H.

J. Walling, F. H. Donald, H. Samelson, D. J. Harter, J. Pete, and R. C. Morris, “Tunable Alexandrite lasers: development and performance,” IEEE J. Quantum Electron. 21(10), 1568–1581 (1985).
[Crossref]

H. Samelson, J. C. Walling, and D. F. Heller, “Unique applications of alexandrite lasers,” Proc. SPIE 0335, 85–94 (1983).
[Crossref]

Scheps, S. R.

S. R. Scheps, B. M. Gately, J. F. Myers, J. S. Krasinski, and D. F. Heller, “Alexandrite laser pumped by semiconductor lasers,” Appl. Phys. Lett. 56(23), 2288–2290 (1990).
[Crossref]

Sennaroglu, A.

Sumpf, B.

Teppitaksak, A.

Thomas, G. M.

Vinnik, D. A.

D. A. Vinnik, P. A. Popov, S. A. Archugov, and G. G. Mikhailov, “Heat conductivity of chromium-doped alexandrite single crystals,” Dokl. Phys. 54(10), 449–450 (2009).
[Crossref]

Walling, J.

J. Walling, F. H. Donald, H. Samelson, D. J. Harter, J. Pete, and R. C. Morris, “Tunable Alexandrite lasers: development and performance,” IEEE J. Quantum Electron. 21(10), 1568–1581 (1985).
[Crossref]

Walling, J. C.

R. C. Powell, L. Xi, X. Gang, G. J. Quarles, and J. C. Walling, “Spectroscopic properties of alexandrite crystals,” Phys. Rev. B Condens. Matter 32(5), 2788–2797 (1985).
[Crossref] [PubMed]

H. Samelson, J. C. Walling, and D. F. Heller, “Unique applications of alexandrite lasers,” Proc. SPIE 0335, 85–94 (1983).
[Crossref]

J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, and E. W. O’Dell, “Tunable Alexandrite lasers,” IEEE J. Quantum Electron. 16(12), 1302–1315 (1980).
[Crossref]

Xi, L.

R. C. Powell, L. Xi, X. Gang, G. J. Quarles, and J. C. Walling, “Spectroscopic properties of alexandrite crystals,” Phys. Rev. B Condens. Matter 32(5), 2788–2797 (1985).
[Crossref] [PubMed]

Xu, Y.-N.

W. Y. Ching, Y.-N. Xu, and B. K. Brickeen, “Comparative study of the electronic structure of two laser crystals: BeAl2O4 and LiYF4,” Phys. Rev. B 63(11), 115101 (2001).
[Crossref]

Yumashev, K. V.

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, G. E. Rachkovskaya, and A. A. Pavlyuk, A.A., “Thermo-optic dispersion formulas for monoclinic double tungstates KRe(WO4)2 where Re = Gd, Y, Lu, Yb,” Opt. Mater. 33(11), 1688–1694 (2011).
[Crossref]

Appl. Phys. B (1)

R. Akbari, K. A. Fedorova, E. U. Rafailov, and A. Major, “Diode-pumped ultrafast Yb:KGW laser with 56 fs pulses and multi-100 kW peak power based on SESAM and Kerr-lens mode locking,” Appl. Phys. B 123(4), 123 (2017).
[Crossref]

Appl. Phys. Lett. (1)

S. R. Scheps, B. M. Gately, J. F. Myers, J. S. Krasinski, and D. F. Heller, “Alexandrite laser pumped by semiconductor lasers,” Appl. Phys. Lett. 56(23), 2288–2290 (1990).
[Crossref]

Dokl. Phys. (1)

D. A. Vinnik, P. A. Popov, S. A. Archugov, and G. G. Mikhailov, “Heat conductivity of chromium-doped alexandrite single crystals,” Dokl. Phys. 54(10), 449–450 (2009).
[Crossref]

IEEE J. Quantum Electron. (2)

J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, and E. W. O’Dell, “Tunable Alexandrite lasers,” IEEE J. Quantum Electron. 16(12), 1302–1315 (1980).
[Crossref]

J. Walling, F. H. Donald, H. Samelson, D. J. Harter, J. Pete, and R. C. Morris, “Tunable Alexandrite lasers: development and performance,” IEEE J. Quantum Electron. 21(10), 1568–1581 (1985).
[Crossref]

J. Mater. Sci. (1)

C. F. Cline, R. C. Morris, M. Dutoit, and P. J. Harget, “Physical properties of BeAl2O4 single crystals,” J. Mater. Sci. 14(4), 941–944 (1979).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Phys. (1)

S. Ghanbari and A. Major, “High power continuous-wave Alexandrite laser with green pump,” Laser Phys. 26(7), 075001 (2016).
[Crossref]

Opt. Express (2)

Opt. Lett. (4)

Opt. Mater. (1)

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, G. E. Rachkovskaya, and A. A. Pavlyuk, A.A., “Thermo-optic dispersion formulas for monoclinic double tungstates KRe(WO4)2 where Re = Gd, Y, Lu, Yb,” Opt. Mater. 33(11), 1688–1694 (2011).
[Crossref]

Opt. Mater. Express (1)

Phys. Rev. B (1)

W. Y. Ching, Y.-N. Xu, and B. K. Brickeen, “Comparative study of the electronic structure of two laser crystals: BeAl2O4 and LiYF4,” Phys. Rev. B 63(11), 115101 (2001).
[Crossref]

Phys. Rev. B Condens. Matter (1)

R. C. Powell, L. Xi, X. Gang, G. J. Quarles, and J. C. Walling, “Spectroscopic properties of alexandrite crystals,” Phys. Rev. B Condens. Matter 32(5), 2788–2797 (1985).
[Crossref] [PubMed]

Proc. SPIE (1)

H. Samelson, J. C. Walling, and D. F. Heller, “Unique applications of alexandrite lasers,” Proc. SPIE 0335, 85–94 (1983).
[Crossref]

Prog. Quantum Electron. (1)

S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[Crossref]

Quantum Electron. (1)

E. V. Pestryakov, A. I. Alimpiev, and V. N. Matrosov, “Prospects for the development of femtosecond laser systems based on beryllium aluminate crystals doped with chromium and titanium ions,” Quantum Electron. 31(8), 689–696 (2001).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Schematic of the CW Alexandrite laser: M1 - HR plane mirror, R1 and R2 - HR concave folding mirrors (RoC = 100 mm), OC - output coupler, L1 = 53 mm, L2 = 48.5 mm, L3 = 802 mm, L4 = 702 mm, θ1 = θ2 = 9°; (b) set-up for the thermal lens measurement: F – filter, L – lens.
Fig. 2
Fig. 2 Thermo-optical properties of Alexandrite: (a-c) dispersion of TCOP for the a-cut (a), b-cut (b) and c-cut (c) crystals: symbols – experimental data, curves – data calculated using the thermo-optic dispersion formulas, Eq. (2), error bars indicate the uncertainty arising from the laser beam deviation method; (d) dispersion of TOCs: symbols – experimental data, curves – their fitting with Eq. (1), error bars indicate the uncertainty arising from the averaging of the dn/dT values for two different crystal cuts. Inset in (a) – photo of the studied crystal.
Fig. 3
Fig. 3 Spatial profiles of the laser mode from the Alexandrite laser corresponding to the various output power levels: (a) 0.18 W; (b) 0.40 W; (c) 0.65 W; (d) 0.87 W; (e) 1.11 W. The laser polarization, E || b, is horizontal, the a-axis is vertical.
Fig. 4
Fig. 4 (a) Evaluation of the beam quality factor M2 for the Alexandrite laser (Pabs = 5.1 W) in horizontal and vertical directions, x and y, respectively; (b) measured M2x,y parameters for the Alexandrite laser; (c) determined optical power of the thermal lens Dx,y: symbols – experimental data, lines – their linear fits for the calculation of the sensitivity factors Mx,y.

Tables (2)

Tables Icon

Table 1 Coefficients in the Thermo-Optic Dispersion Formulas for Alexandrite Crystal, Eq. (2)

Tables Icon

Table 2 Thermal Coefficients of the Optical Path (10−6 K−1) of Alexandrite Crystal at 0.75 µm

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

d n i /dT= α vol ( n i 2 1) 2 n i (λ) λ 2 λ 2 λ g 2 1 E gi d E gi dT ( n i 2 1) 2 n i (λ) ( λ 2 λ 2 λ gi 2 ) 2 .
dn/dT= A 0 + A 1 λ 2 + A 2 λ 4 + A 3 λ 6 ,1 0 6 K 1 .