Abstract

The concentrations of N (CN) and interstitial metal defects (CMi) and the film thickness (d) dependent microstructure and optical and electrical properties of InGaZnON thin films deposited by RF sputtering are studied. The thin films have a C-axis aligned crystalline structure with increased grain size and CMi and CN with rising substrate temperature and power during sputtering. The average visible optical transmittance (Tr) of 80% decreases with the increased d. The lowered Tr in the infrared region with the increment of free carrier absorption is observed. The refractive index and extinction coefficient and dielectric constants increase, and band gap decreases from 2.8 to 2.2 eV, due to the increased CN and d. The electrical resistivity decreases from 0.1 to 5.0 E-3 Ω.cm and the work function increases from 2.8 to 3.7 eV with the increased free carrier concentration (Ne). The electrical properties are air-stable stored for 1000 hrs due to the N passiviated surface. The thermoelectric properties, including the Seebeck coefficient (S) and power factor and electric thermal conductivity from 300 to 673 K, are evaluated. The S and extracted electron effective mass are temperature and Ne depended. The electron mean path and scattering time and plasma energy at room temperature are calculated.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Amorphous In2Ga2ZnO7 films with adjustable structural, electrical and optical properties deposited by magnetron sputtering

Xianjie Zhou, Jiwen Xu, Ling Yang, Xiaosheng Tang, Qiuping Wei, and Zhiming Yu
Opt. Mater. Express 5(7) 1628-1634 (2015)

Optical and electrical properties of In2MgO4 thin film for transistors

Jian Ke Yao, Fan Ye, and Ping Fan
Opt. Mater. Express 8(11) 3438-3446 (2018)

Epitaxial Bi2Sr2Co2Oy thin films as a promising p-type transparent conducting oxides

Shufang Wang, Liqing Sun, Hongrui Zhang, Dogheche Elhadj, Jianglong Wang, and Guangsheng Fu
Opt. Mater. Express 4(10) 2209-2214 (2014)

References

  • View by:
  • |
  • |
  • |

  1. P. Liu, Y. Chou, L. Teng, F. Li, and H. P. Shieh, “Nitrogenated amorphous InGaZnO thin film transistor,” Appl. Phys. Lett. 98(5), 052102 (2011).
    [Crossref]
  2. J. Raja, K. Jang, N. Balaji, W. choi, T. Thuy Trinh, and J. Yi, “Negative gate-bias temperature stability of N-doped InGaZnO active-layer thin-film transistors,” Appl. Phys. Lett. 102(8), 083505 (2013).
    [Crossref]
  3. C. Fuh, P. Liu, L. Teng, S. Huang, Y. Lee, H. P. Shieh, and S. M. Sze, “Effects of microwave annealing on nitrogenated amorphous In-Ga-Zn-O thin-film transistor for low thermal budget process application,” IEEE Elec. Dev. Lett. 34(9), 1157–1159 (2013).
    [Crossref]
  4. X. Huang, C. Wu, H. Lu, F. Ren, D. Chen, R. Zhang, and Y. Zheng, “Enhanced bias stress stability of a-InGaZnO thin film transistors by inserting an ultrathin interfacial InGaZnO: N layer,” Appl. Phys. Lett. 102(19), 193505 (2013).
    [Crossref]
  5. P. Liu, Y. Chou, L. Teng, F. Li, C. Fuh, and H. P. Shieh, “Ambient stability enhancement of thin-film transistor with InGaZnO capped with InGaZnO: N bilayer stack channel layers,” IEEE Elec. Dev. Lett. 32(10), 1397–1399 (2011).
    [Crossref]
  6. T. Kamiya, K. Nomura, and H. Hosono, “Origins of high mobility and low operation voltage of amorphous oxide TFTs: electronic structure, electron transport, defects and doping,” J. Disp. Technol. 5(12), 468–483 (2009).
    [Crossref]
  7. J. Y. Kwon, D. J. Lee, and K. B. Kim, “Transparent amorphous oxide semiconductor thin film transistor,” Electron. Mater. Lett. 7(1), 1–11 (2011).
    [Crossref]
  8. N. H. Tran Nguyen, T. H. Nguyen, Y. R. Liu, M. Aminzare, A. T. Pham, S. Cho, D. P. Wong, K. H. Chen, T. Seetawan, N. K. Pham, H. K. Ta, V. C. Tran, and T. B. Phan, “Thermoelectric properties of indium and gallium dually doped ZnO thin films,” ACS Appl. Mater. Interfaces 8(49), 33916–33923 (2016).
    [Crossref] [PubMed]
  9. P. T. Liu, C. H. Chang, C. S. Fuh, Y. T. Liao, and S. M. Sze, “Effects of nitrogen on amorphous nitrogenated InGaZnO (a-IGZO:N) thin film transistors,” J. Disp. Technol. 12(10), 1070–1077 (2016).
    [Crossref]
  10. B. Cho, H. Kim, D. Yang, N. Shrestha, and M. Sung, “Highly conductive air-stable ZnO thin film formation under in situ UV illumination for an indium-free transparent electrode,” RSC Advances 6(73), 69027–69032 (2016).
    [Crossref]
  11. L. Zhang, R. Yang, K. Chen, X. Wang, Y. Tang, F. Yang, R. Liu, Z. Ye, and Y. Li, “The fabrication of Cu nanowire/graphene/Al doped ZnO transparent conductive film on PET substrate with high flexibility and air stability,” Mater. Lett. 207, 62–65 (2017).
    [Crossref]
  12. W. Xiong, H. Liu, Y. Chen, M. Zheng, Y. Zhao, X. Kong, Y. Wang, X. Zhang, X. Kong, P. Wang, and L. Jiang, “Highly conductive, air-stable silver nanowire@Iongel composite films toward flexible transparent electrodes,” Adv. Mater. 28(33), 7167–7172 (2016).
    [Crossref] [PubMed]
  13. T. Minami, “Present status of transparent conducting oxide thin-film development for Indium-Tin-Oxide (ITO) substitutes,” Thin Solid Films 516(17), 5822–5828 (2008).
    [Crossref]
  14. C. Guillén and J. Herrero, “Stability of sputtered ITO thin films to the damp-heat test,” Surf. Coat. Tech. 201(1-2), 309–312 (2006).
    [Crossref]
  15. Y. Fujimoto, M. Uenuma, Y. Ishikawa, and Y. Uraoka, “Analysis of thermoelectric properties of amorphous InGaZnO thin film by controlling carrier concentration,” AIP Adv. 5(9), 097209 (2015).
    [Crossref]
  16. S. Cho, M. Jeong, J. Kim, Y. Kwon, H. Kim, J. Lee, and H. Cho, “A combinatorial approach to solution-processed InGaO3(ZnO)m superlattice films: growth mechanisms and their thermoelectric properties,” CrystEngComm 18(5), 807–815 (2016).
    [Crossref]
  17. S. Cho, S. Baek, D. Kim, Y. Kim, and H. Cho, “Microstructure-dependent thermoelectric properties of polycrystalline InGaO3(ZnO)2 superlattice films,” J. Vac. Sci. Technol. A 35(1), 01B126 (2017).
    [Crossref]
  18. G. Korotcenkov, V. Brinzari, and M. Ham, “In2O3-based thermoelectric materials: the state of the art and the role of surface state in the improvement of the efficiency of thermoelectric conversion,” Crystals 8(14), 1–37 (2018).
  19. C. Nunez, J. Pau, E. Ruız, and J. Piqueras, “Thin film transistors based on zinc nitride as a channel layer for optoelectronic devices,” Appl. Phys. Lett. 101(25), 253501 (2012).
    [Crossref]
  20. T. Li, C. Han, T. Kuan, and J. Lin, “Effects of sputtering-deposition inclination angle on the IGZO film microstructures, optical properties and photoluminescence,” Opt. Mater. Express 6, 343–366 (2016).
    [Crossref]
  21. M. Ryu, T. Kim, K. Son, H. Kim, J. Park, J. Seon, S. Seo, S. Kim, E. Lee, H. Lee, S. Jeon, S. Han, and S. Lee, “High mobility zinc oxynitride-TFT with operation stability under light-illuminated bias-stress conditions for large area and high resolution display applications,” IEDM 12, 112–114 (2012).
  22. J. K. Yao, S. Chen, X. Sun, and H. Kwok, “He plasma treatment of transparent conductive ZnO thin films,” Appl. Surf. Sci. 355, 702–705 (2015).
    [Crossref]
  23. K. S. Cole and R. H. Cole, “Dispersion and absorption in dielectrics I. alternating current characteristics,” J. Chem. Phys. 9(4), 341–351 (1941).
    [Crossref]

2018 (1)

G. Korotcenkov, V. Brinzari, and M. Ham, “In2O3-based thermoelectric materials: the state of the art and the role of surface state in the improvement of the efficiency of thermoelectric conversion,” Crystals 8(14), 1–37 (2018).

2017 (2)

L. Zhang, R. Yang, K. Chen, X. Wang, Y. Tang, F. Yang, R. Liu, Z. Ye, and Y. Li, “The fabrication of Cu nanowire/graphene/Al doped ZnO transparent conductive film on PET substrate with high flexibility and air stability,” Mater. Lett. 207, 62–65 (2017).
[Crossref]

S. Cho, S. Baek, D. Kim, Y. Kim, and H. Cho, “Microstructure-dependent thermoelectric properties of polycrystalline InGaO3(ZnO)2 superlattice films,” J. Vac. Sci. Technol. A 35(1), 01B126 (2017).
[Crossref]

2016 (6)

T. Li, C. Han, T. Kuan, and J. Lin, “Effects of sputtering-deposition inclination angle on the IGZO film microstructures, optical properties and photoluminescence,” Opt. Mater. Express 6, 343–366 (2016).
[Crossref]

W. Xiong, H. Liu, Y. Chen, M. Zheng, Y. Zhao, X. Kong, Y. Wang, X. Zhang, X. Kong, P. Wang, and L. Jiang, “Highly conductive, air-stable silver nanowire@Iongel composite films toward flexible transparent electrodes,” Adv. Mater. 28(33), 7167–7172 (2016).
[Crossref] [PubMed]

S. Cho, M. Jeong, J. Kim, Y. Kwon, H. Kim, J. Lee, and H. Cho, “A combinatorial approach to solution-processed InGaO3(ZnO)m superlattice films: growth mechanisms and their thermoelectric properties,” CrystEngComm 18(5), 807–815 (2016).
[Crossref]

N. H. Tran Nguyen, T. H. Nguyen, Y. R. Liu, M. Aminzare, A. T. Pham, S. Cho, D. P. Wong, K. H. Chen, T. Seetawan, N. K. Pham, H. K. Ta, V. C. Tran, and T. B. Phan, “Thermoelectric properties of indium and gallium dually doped ZnO thin films,” ACS Appl. Mater. Interfaces 8(49), 33916–33923 (2016).
[Crossref] [PubMed]

P. T. Liu, C. H. Chang, C. S. Fuh, Y. T. Liao, and S. M. Sze, “Effects of nitrogen on amorphous nitrogenated InGaZnO (a-IGZO:N) thin film transistors,” J. Disp. Technol. 12(10), 1070–1077 (2016).
[Crossref]

B. Cho, H. Kim, D. Yang, N. Shrestha, and M. Sung, “Highly conductive air-stable ZnO thin film formation under in situ UV illumination for an indium-free transparent electrode,” RSC Advances 6(73), 69027–69032 (2016).
[Crossref]

2015 (2)

Y. Fujimoto, M. Uenuma, Y. Ishikawa, and Y. Uraoka, “Analysis of thermoelectric properties of amorphous InGaZnO thin film by controlling carrier concentration,” AIP Adv. 5(9), 097209 (2015).
[Crossref]

J. K. Yao, S. Chen, X. Sun, and H. Kwok, “He plasma treatment of transparent conductive ZnO thin films,” Appl. Surf. Sci. 355, 702–705 (2015).
[Crossref]

2013 (3)

J. Raja, K. Jang, N. Balaji, W. choi, T. Thuy Trinh, and J. Yi, “Negative gate-bias temperature stability of N-doped InGaZnO active-layer thin-film transistors,” Appl. Phys. Lett. 102(8), 083505 (2013).
[Crossref]

C. Fuh, P. Liu, L. Teng, S. Huang, Y. Lee, H. P. Shieh, and S. M. Sze, “Effects of microwave annealing on nitrogenated amorphous In-Ga-Zn-O thin-film transistor for low thermal budget process application,” IEEE Elec. Dev. Lett. 34(9), 1157–1159 (2013).
[Crossref]

X. Huang, C. Wu, H. Lu, F. Ren, D. Chen, R. Zhang, and Y. Zheng, “Enhanced bias stress stability of a-InGaZnO thin film transistors by inserting an ultrathin interfacial InGaZnO: N layer,” Appl. Phys. Lett. 102(19), 193505 (2013).
[Crossref]

2012 (2)

C. Nunez, J. Pau, E. Ruız, and J. Piqueras, “Thin film transistors based on zinc nitride as a channel layer for optoelectronic devices,” Appl. Phys. Lett. 101(25), 253501 (2012).
[Crossref]

M. Ryu, T. Kim, K. Son, H. Kim, J. Park, J. Seon, S. Seo, S. Kim, E. Lee, H. Lee, S. Jeon, S. Han, and S. Lee, “High mobility zinc oxynitride-TFT with operation stability under light-illuminated bias-stress conditions for large area and high resolution display applications,” IEDM 12, 112–114 (2012).

2011 (3)

P. Liu, Y. Chou, L. Teng, F. Li, C. Fuh, and H. P. Shieh, “Ambient stability enhancement of thin-film transistor with InGaZnO capped with InGaZnO: N bilayer stack channel layers,” IEEE Elec. Dev. Lett. 32(10), 1397–1399 (2011).
[Crossref]

P. Liu, Y. Chou, L. Teng, F. Li, and H. P. Shieh, “Nitrogenated amorphous InGaZnO thin film transistor,” Appl. Phys. Lett. 98(5), 052102 (2011).
[Crossref]

J. Y. Kwon, D. J. Lee, and K. B. Kim, “Transparent amorphous oxide semiconductor thin film transistor,” Electron. Mater. Lett. 7(1), 1–11 (2011).
[Crossref]

2009 (1)

T. Kamiya, K. Nomura, and H. Hosono, “Origins of high mobility and low operation voltage of amorphous oxide TFTs: electronic structure, electron transport, defects and doping,” J. Disp. Technol. 5(12), 468–483 (2009).
[Crossref]

2008 (1)

T. Minami, “Present status of transparent conducting oxide thin-film development for Indium-Tin-Oxide (ITO) substitutes,” Thin Solid Films 516(17), 5822–5828 (2008).
[Crossref]

2006 (1)

C. Guillén and J. Herrero, “Stability of sputtered ITO thin films to the damp-heat test,” Surf. Coat. Tech. 201(1-2), 309–312 (2006).
[Crossref]

1941 (1)

K. S. Cole and R. H. Cole, “Dispersion and absorption in dielectrics I. alternating current characteristics,” J. Chem. Phys. 9(4), 341–351 (1941).
[Crossref]

Aminzare, M.

N. H. Tran Nguyen, T. H. Nguyen, Y. R. Liu, M. Aminzare, A. T. Pham, S. Cho, D. P. Wong, K. H. Chen, T. Seetawan, N. K. Pham, H. K. Ta, V. C. Tran, and T. B. Phan, “Thermoelectric properties of indium and gallium dually doped ZnO thin films,” ACS Appl. Mater. Interfaces 8(49), 33916–33923 (2016).
[Crossref] [PubMed]

Baek, S.

S. Cho, S. Baek, D. Kim, Y. Kim, and H. Cho, “Microstructure-dependent thermoelectric properties of polycrystalline InGaO3(ZnO)2 superlattice films,” J. Vac. Sci. Technol. A 35(1), 01B126 (2017).
[Crossref]

Balaji, N.

J. Raja, K. Jang, N. Balaji, W. choi, T. Thuy Trinh, and J. Yi, “Negative gate-bias temperature stability of N-doped InGaZnO active-layer thin-film transistors,” Appl. Phys. Lett. 102(8), 083505 (2013).
[Crossref]

Brinzari, V.

G. Korotcenkov, V. Brinzari, and M. Ham, “In2O3-based thermoelectric materials: the state of the art and the role of surface state in the improvement of the efficiency of thermoelectric conversion,” Crystals 8(14), 1–37 (2018).

Chang, C. H.

P. T. Liu, C. H. Chang, C. S. Fuh, Y. T. Liao, and S. M. Sze, “Effects of nitrogen on amorphous nitrogenated InGaZnO (a-IGZO:N) thin film transistors,” J. Disp. Technol. 12(10), 1070–1077 (2016).
[Crossref]

Chen, D.

X. Huang, C. Wu, H. Lu, F. Ren, D. Chen, R. Zhang, and Y. Zheng, “Enhanced bias stress stability of a-InGaZnO thin film transistors by inserting an ultrathin interfacial InGaZnO: N layer,” Appl. Phys. Lett. 102(19), 193505 (2013).
[Crossref]

Chen, K.

L. Zhang, R. Yang, K. Chen, X. Wang, Y. Tang, F. Yang, R. Liu, Z. Ye, and Y. Li, “The fabrication of Cu nanowire/graphene/Al doped ZnO transparent conductive film on PET substrate with high flexibility and air stability,” Mater. Lett. 207, 62–65 (2017).
[Crossref]

Chen, K. H.

N. H. Tran Nguyen, T. H. Nguyen, Y. R. Liu, M. Aminzare, A. T. Pham, S. Cho, D. P. Wong, K. H. Chen, T. Seetawan, N. K. Pham, H. K. Ta, V. C. Tran, and T. B. Phan, “Thermoelectric properties of indium and gallium dually doped ZnO thin films,” ACS Appl. Mater. Interfaces 8(49), 33916–33923 (2016).
[Crossref] [PubMed]

Chen, S.

J. K. Yao, S. Chen, X. Sun, and H. Kwok, “He plasma treatment of transparent conductive ZnO thin films,” Appl. Surf. Sci. 355, 702–705 (2015).
[Crossref]

Chen, Y.

W. Xiong, H. Liu, Y. Chen, M. Zheng, Y. Zhao, X. Kong, Y. Wang, X. Zhang, X. Kong, P. Wang, and L. Jiang, “Highly conductive, air-stable silver nanowire@Iongel composite films toward flexible transparent electrodes,” Adv. Mater. 28(33), 7167–7172 (2016).
[Crossref] [PubMed]

Cho, B.

B. Cho, H. Kim, D. Yang, N. Shrestha, and M. Sung, “Highly conductive air-stable ZnO thin film formation under in situ UV illumination for an indium-free transparent electrode,” RSC Advances 6(73), 69027–69032 (2016).
[Crossref]

Cho, H.

S. Cho, S. Baek, D. Kim, Y. Kim, and H. Cho, “Microstructure-dependent thermoelectric properties of polycrystalline InGaO3(ZnO)2 superlattice films,” J. Vac. Sci. Technol. A 35(1), 01B126 (2017).
[Crossref]

S. Cho, M. Jeong, J. Kim, Y. Kwon, H. Kim, J. Lee, and H. Cho, “A combinatorial approach to solution-processed InGaO3(ZnO)m superlattice films: growth mechanisms and their thermoelectric properties,” CrystEngComm 18(5), 807–815 (2016).
[Crossref]

Cho, S.

S. Cho, S. Baek, D. Kim, Y. Kim, and H. Cho, “Microstructure-dependent thermoelectric properties of polycrystalline InGaO3(ZnO)2 superlattice films,” J. Vac. Sci. Technol. A 35(1), 01B126 (2017).
[Crossref]

S. Cho, M. Jeong, J. Kim, Y. Kwon, H. Kim, J. Lee, and H. Cho, “A combinatorial approach to solution-processed InGaO3(ZnO)m superlattice films: growth mechanisms and their thermoelectric properties,” CrystEngComm 18(5), 807–815 (2016).
[Crossref]

N. H. Tran Nguyen, T. H. Nguyen, Y. R. Liu, M. Aminzare, A. T. Pham, S. Cho, D. P. Wong, K. H. Chen, T. Seetawan, N. K. Pham, H. K. Ta, V. C. Tran, and T. B. Phan, “Thermoelectric properties of indium and gallium dually doped ZnO thin films,” ACS Appl. Mater. Interfaces 8(49), 33916–33923 (2016).
[Crossref] [PubMed]

choi, W.

J. Raja, K. Jang, N. Balaji, W. choi, T. Thuy Trinh, and J. Yi, “Negative gate-bias temperature stability of N-doped InGaZnO active-layer thin-film transistors,” Appl. Phys. Lett. 102(8), 083505 (2013).
[Crossref]

Chou, Y.

P. Liu, Y. Chou, L. Teng, F. Li, and H. P. Shieh, “Nitrogenated amorphous InGaZnO thin film transistor,” Appl. Phys. Lett. 98(5), 052102 (2011).
[Crossref]

P. Liu, Y. Chou, L. Teng, F. Li, C. Fuh, and H. P. Shieh, “Ambient stability enhancement of thin-film transistor with InGaZnO capped with InGaZnO: N bilayer stack channel layers,” IEEE Elec. Dev. Lett. 32(10), 1397–1399 (2011).
[Crossref]

Cole, K. S.

K. S. Cole and R. H. Cole, “Dispersion and absorption in dielectrics I. alternating current characteristics,” J. Chem. Phys. 9(4), 341–351 (1941).
[Crossref]

Cole, R. H.

K. S. Cole and R. H. Cole, “Dispersion and absorption in dielectrics I. alternating current characteristics,” J. Chem. Phys. 9(4), 341–351 (1941).
[Crossref]

Fuh, C.

C. Fuh, P. Liu, L. Teng, S. Huang, Y. Lee, H. P. Shieh, and S. M. Sze, “Effects of microwave annealing on nitrogenated amorphous In-Ga-Zn-O thin-film transistor for low thermal budget process application,” IEEE Elec. Dev. Lett. 34(9), 1157–1159 (2013).
[Crossref]

P. Liu, Y. Chou, L. Teng, F. Li, C. Fuh, and H. P. Shieh, “Ambient stability enhancement of thin-film transistor with InGaZnO capped with InGaZnO: N bilayer stack channel layers,” IEEE Elec. Dev. Lett. 32(10), 1397–1399 (2011).
[Crossref]

Fuh, C. S.

P. T. Liu, C. H. Chang, C. S. Fuh, Y. T. Liao, and S. M. Sze, “Effects of nitrogen on amorphous nitrogenated InGaZnO (a-IGZO:N) thin film transistors,” J. Disp. Technol. 12(10), 1070–1077 (2016).
[Crossref]

Fujimoto, Y.

Y. Fujimoto, M. Uenuma, Y. Ishikawa, and Y. Uraoka, “Analysis of thermoelectric properties of amorphous InGaZnO thin film by controlling carrier concentration,” AIP Adv. 5(9), 097209 (2015).
[Crossref]

Guillén, C.

C. Guillén and J. Herrero, “Stability of sputtered ITO thin films to the damp-heat test,” Surf. Coat. Tech. 201(1-2), 309–312 (2006).
[Crossref]

Ham, M.

G. Korotcenkov, V. Brinzari, and M. Ham, “In2O3-based thermoelectric materials: the state of the art and the role of surface state in the improvement of the efficiency of thermoelectric conversion,” Crystals 8(14), 1–37 (2018).

Han, C.

Han, S.

M. Ryu, T. Kim, K. Son, H. Kim, J. Park, J. Seon, S. Seo, S. Kim, E. Lee, H. Lee, S. Jeon, S. Han, and S. Lee, “High mobility zinc oxynitride-TFT with operation stability under light-illuminated bias-stress conditions for large area and high resolution display applications,” IEDM 12, 112–114 (2012).

Herrero, J.

C. Guillén and J. Herrero, “Stability of sputtered ITO thin films to the damp-heat test,” Surf. Coat. Tech. 201(1-2), 309–312 (2006).
[Crossref]

Hosono, H.

T. Kamiya, K. Nomura, and H. Hosono, “Origins of high mobility and low operation voltage of amorphous oxide TFTs: electronic structure, electron transport, defects and doping,” J. Disp. Technol. 5(12), 468–483 (2009).
[Crossref]

Huang, S.

C. Fuh, P. Liu, L. Teng, S. Huang, Y. Lee, H. P. Shieh, and S. M. Sze, “Effects of microwave annealing on nitrogenated amorphous In-Ga-Zn-O thin-film transistor for low thermal budget process application,” IEEE Elec. Dev. Lett. 34(9), 1157–1159 (2013).
[Crossref]

Huang, X.

X. Huang, C. Wu, H. Lu, F. Ren, D. Chen, R. Zhang, and Y. Zheng, “Enhanced bias stress stability of a-InGaZnO thin film transistors by inserting an ultrathin interfacial InGaZnO: N layer,” Appl. Phys. Lett. 102(19), 193505 (2013).
[Crossref]

Ishikawa, Y.

Y. Fujimoto, M. Uenuma, Y. Ishikawa, and Y. Uraoka, “Analysis of thermoelectric properties of amorphous InGaZnO thin film by controlling carrier concentration,” AIP Adv. 5(9), 097209 (2015).
[Crossref]

Jang, K.

J. Raja, K. Jang, N. Balaji, W. choi, T. Thuy Trinh, and J. Yi, “Negative gate-bias temperature stability of N-doped InGaZnO active-layer thin-film transistors,” Appl. Phys. Lett. 102(8), 083505 (2013).
[Crossref]

Jeon, S.

M. Ryu, T. Kim, K. Son, H. Kim, J. Park, J. Seon, S. Seo, S. Kim, E. Lee, H. Lee, S. Jeon, S. Han, and S. Lee, “High mobility zinc oxynitride-TFT with operation stability under light-illuminated bias-stress conditions for large area and high resolution display applications,” IEDM 12, 112–114 (2012).

Jeong, M.

S. Cho, M. Jeong, J. Kim, Y. Kwon, H. Kim, J. Lee, and H. Cho, “A combinatorial approach to solution-processed InGaO3(ZnO)m superlattice films: growth mechanisms and their thermoelectric properties,” CrystEngComm 18(5), 807–815 (2016).
[Crossref]

Jiang, L.

W. Xiong, H. Liu, Y. Chen, M. Zheng, Y. Zhao, X. Kong, Y. Wang, X. Zhang, X. Kong, P. Wang, and L. Jiang, “Highly conductive, air-stable silver nanowire@Iongel composite films toward flexible transparent electrodes,” Adv. Mater. 28(33), 7167–7172 (2016).
[Crossref] [PubMed]

Kamiya, T.

T. Kamiya, K. Nomura, and H. Hosono, “Origins of high mobility and low operation voltage of amorphous oxide TFTs: electronic structure, electron transport, defects and doping,” J. Disp. Technol. 5(12), 468–483 (2009).
[Crossref]

Kim, D.

S. Cho, S. Baek, D. Kim, Y. Kim, and H. Cho, “Microstructure-dependent thermoelectric properties of polycrystalline InGaO3(ZnO)2 superlattice films,” J. Vac. Sci. Technol. A 35(1), 01B126 (2017).
[Crossref]

Kim, H.

S. Cho, M. Jeong, J. Kim, Y. Kwon, H. Kim, J. Lee, and H. Cho, “A combinatorial approach to solution-processed InGaO3(ZnO)m superlattice films: growth mechanisms and their thermoelectric properties,” CrystEngComm 18(5), 807–815 (2016).
[Crossref]

B. Cho, H. Kim, D. Yang, N. Shrestha, and M. Sung, “Highly conductive air-stable ZnO thin film formation under in situ UV illumination for an indium-free transparent electrode,” RSC Advances 6(73), 69027–69032 (2016).
[Crossref]

M. Ryu, T. Kim, K. Son, H. Kim, J. Park, J. Seon, S. Seo, S. Kim, E. Lee, H. Lee, S. Jeon, S. Han, and S. Lee, “High mobility zinc oxynitride-TFT with operation stability under light-illuminated bias-stress conditions for large area and high resolution display applications,” IEDM 12, 112–114 (2012).

Kim, J.

S. Cho, M. Jeong, J. Kim, Y. Kwon, H. Kim, J. Lee, and H. Cho, “A combinatorial approach to solution-processed InGaO3(ZnO)m superlattice films: growth mechanisms and their thermoelectric properties,” CrystEngComm 18(5), 807–815 (2016).
[Crossref]

Kim, K. B.

J. Y. Kwon, D. J. Lee, and K. B. Kim, “Transparent amorphous oxide semiconductor thin film transistor,” Electron. Mater. Lett. 7(1), 1–11 (2011).
[Crossref]

Kim, S.

M. Ryu, T. Kim, K. Son, H. Kim, J. Park, J. Seon, S. Seo, S. Kim, E. Lee, H. Lee, S. Jeon, S. Han, and S. Lee, “High mobility zinc oxynitride-TFT with operation stability under light-illuminated bias-stress conditions for large area and high resolution display applications,” IEDM 12, 112–114 (2012).

Kim, T.

M. Ryu, T. Kim, K. Son, H. Kim, J. Park, J. Seon, S. Seo, S. Kim, E. Lee, H. Lee, S. Jeon, S. Han, and S. Lee, “High mobility zinc oxynitride-TFT with operation stability under light-illuminated bias-stress conditions for large area and high resolution display applications,” IEDM 12, 112–114 (2012).

Kim, Y.

S. Cho, S. Baek, D. Kim, Y. Kim, and H. Cho, “Microstructure-dependent thermoelectric properties of polycrystalline InGaO3(ZnO)2 superlattice films,” J. Vac. Sci. Technol. A 35(1), 01B126 (2017).
[Crossref]

Kong, X.

W. Xiong, H. Liu, Y. Chen, M. Zheng, Y. Zhao, X. Kong, Y. Wang, X. Zhang, X. Kong, P. Wang, and L. Jiang, “Highly conductive, air-stable silver nanowire@Iongel composite films toward flexible transparent electrodes,” Adv. Mater. 28(33), 7167–7172 (2016).
[Crossref] [PubMed]

W. Xiong, H. Liu, Y. Chen, M. Zheng, Y. Zhao, X. Kong, Y. Wang, X. Zhang, X. Kong, P. Wang, and L. Jiang, “Highly conductive, air-stable silver nanowire@Iongel composite films toward flexible transparent electrodes,” Adv. Mater. 28(33), 7167–7172 (2016).
[Crossref] [PubMed]

Korotcenkov, G.

G. Korotcenkov, V. Brinzari, and M. Ham, “In2O3-based thermoelectric materials: the state of the art and the role of surface state in the improvement of the efficiency of thermoelectric conversion,” Crystals 8(14), 1–37 (2018).

Kuan, T.

Kwok, H.

J. K. Yao, S. Chen, X. Sun, and H. Kwok, “He plasma treatment of transparent conductive ZnO thin films,” Appl. Surf. Sci. 355, 702–705 (2015).
[Crossref]

Kwon, J. Y.

J. Y. Kwon, D. J. Lee, and K. B. Kim, “Transparent amorphous oxide semiconductor thin film transistor,” Electron. Mater. Lett. 7(1), 1–11 (2011).
[Crossref]

Kwon, Y.

S. Cho, M. Jeong, J. Kim, Y. Kwon, H. Kim, J. Lee, and H. Cho, “A combinatorial approach to solution-processed InGaO3(ZnO)m superlattice films: growth mechanisms and their thermoelectric properties,” CrystEngComm 18(5), 807–815 (2016).
[Crossref]

Lee, D. J.

J. Y. Kwon, D. J. Lee, and K. B. Kim, “Transparent amorphous oxide semiconductor thin film transistor,” Electron. Mater. Lett. 7(1), 1–11 (2011).
[Crossref]

Lee, E.

M. Ryu, T. Kim, K. Son, H. Kim, J. Park, J. Seon, S. Seo, S. Kim, E. Lee, H. Lee, S. Jeon, S. Han, and S. Lee, “High mobility zinc oxynitride-TFT with operation stability under light-illuminated bias-stress conditions for large area and high resolution display applications,” IEDM 12, 112–114 (2012).

Lee, H.

M. Ryu, T. Kim, K. Son, H. Kim, J. Park, J. Seon, S. Seo, S. Kim, E. Lee, H. Lee, S. Jeon, S. Han, and S. Lee, “High mobility zinc oxynitride-TFT with operation stability under light-illuminated bias-stress conditions for large area and high resolution display applications,” IEDM 12, 112–114 (2012).

Lee, J.

S. Cho, M. Jeong, J. Kim, Y. Kwon, H. Kim, J. Lee, and H. Cho, “A combinatorial approach to solution-processed InGaO3(ZnO)m superlattice films: growth mechanisms and their thermoelectric properties,” CrystEngComm 18(5), 807–815 (2016).
[Crossref]

Lee, S.

M. Ryu, T. Kim, K. Son, H. Kim, J. Park, J. Seon, S. Seo, S. Kim, E. Lee, H. Lee, S. Jeon, S. Han, and S. Lee, “High mobility zinc oxynitride-TFT with operation stability under light-illuminated bias-stress conditions for large area and high resolution display applications,” IEDM 12, 112–114 (2012).

Lee, Y.

C. Fuh, P. Liu, L. Teng, S. Huang, Y. Lee, H. P. Shieh, and S. M. Sze, “Effects of microwave annealing on nitrogenated amorphous In-Ga-Zn-O thin-film transistor for low thermal budget process application,” IEEE Elec. Dev. Lett. 34(9), 1157–1159 (2013).
[Crossref]

Li, F.

P. Liu, Y. Chou, L. Teng, F. Li, and H. P. Shieh, “Nitrogenated amorphous InGaZnO thin film transistor,” Appl. Phys. Lett. 98(5), 052102 (2011).
[Crossref]

P. Liu, Y. Chou, L. Teng, F. Li, C. Fuh, and H. P. Shieh, “Ambient stability enhancement of thin-film transistor with InGaZnO capped with InGaZnO: N bilayer stack channel layers,” IEEE Elec. Dev. Lett. 32(10), 1397–1399 (2011).
[Crossref]

Li, T.

Li, Y.

L. Zhang, R. Yang, K. Chen, X. Wang, Y. Tang, F. Yang, R. Liu, Z. Ye, and Y. Li, “The fabrication of Cu nanowire/graphene/Al doped ZnO transparent conductive film on PET substrate with high flexibility and air stability,” Mater. Lett. 207, 62–65 (2017).
[Crossref]

Liao, Y. T.

P. T. Liu, C. H. Chang, C. S. Fuh, Y. T. Liao, and S. M. Sze, “Effects of nitrogen on amorphous nitrogenated InGaZnO (a-IGZO:N) thin film transistors,” J. Disp. Technol. 12(10), 1070–1077 (2016).
[Crossref]

Lin, J.

Liu, H.

W. Xiong, H. Liu, Y. Chen, M. Zheng, Y. Zhao, X. Kong, Y. Wang, X. Zhang, X. Kong, P. Wang, and L. Jiang, “Highly conductive, air-stable silver nanowire@Iongel composite films toward flexible transparent electrodes,” Adv. Mater. 28(33), 7167–7172 (2016).
[Crossref] [PubMed]

Liu, P.

C. Fuh, P. Liu, L. Teng, S. Huang, Y. Lee, H. P. Shieh, and S. M. Sze, “Effects of microwave annealing on nitrogenated amorphous In-Ga-Zn-O thin-film transistor for low thermal budget process application,” IEEE Elec. Dev. Lett. 34(9), 1157–1159 (2013).
[Crossref]

P. Liu, Y. Chou, L. Teng, F. Li, and H. P. Shieh, “Nitrogenated amorphous InGaZnO thin film transistor,” Appl. Phys. Lett. 98(5), 052102 (2011).
[Crossref]

P. Liu, Y. Chou, L. Teng, F. Li, C. Fuh, and H. P. Shieh, “Ambient stability enhancement of thin-film transistor with InGaZnO capped with InGaZnO: N bilayer stack channel layers,” IEEE Elec. Dev. Lett. 32(10), 1397–1399 (2011).
[Crossref]

Liu, P. T.

P. T. Liu, C. H. Chang, C. S. Fuh, Y. T. Liao, and S. M. Sze, “Effects of nitrogen on amorphous nitrogenated InGaZnO (a-IGZO:N) thin film transistors,” J. Disp. Technol. 12(10), 1070–1077 (2016).
[Crossref]

Liu, R.

L. Zhang, R. Yang, K. Chen, X. Wang, Y. Tang, F. Yang, R. Liu, Z. Ye, and Y. Li, “The fabrication of Cu nanowire/graphene/Al doped ZnO transparent conductive film on PET substrate with high flexibility and air stability,” Mater. Lett. 207, 62–65 (2017).
[Crossref]

Liu, Y. R.

N. H. Tran Nguyen, T. H. Nguyen, Y. R. Liu, M. Aminzare, A. T. Pham, S. Cho, D. P. Wong, K. H. Chen, T. Seetawan, N. K. Pham, H. K. Ta, V. C. Tran, and T. B. Phan, “Thermoelectric properties of indium and gallium dually doped ZnO thin films,” ACS Appl. Mater. Interfaces 8(49), 33916–33923 (2016).
[Crossref] [PubMed]

Lu, H.

X. Huang, C. Wu, H. Lu, F. Ren, D. Chen, R. Zhang, and Y. Zheng, “Enhanced bias stress stability of a-InGaZnO thin film transistors by inserting an ultrathin interfacial InGaZnO: N layer,” Appl. Phys. Lett. 102(19), 193505 (2013).
[Crossref]

Minami, T.

T. Minami, “Present status of transparent conducting oxide thin-film development for Indium-Tin-Oxide (ITO) substitutes,” Thin Solid Films 516(17), 5822–5828 (2008).
[Crossref]

Nguyen, T. H.

N. H. Tran Nguyen, T. H. Nguyen, Y. R. Liu, M. Aminzare, A. T. Pham, S. Cho, D. P. Wong, K. H. Chen, T. Seetawan, N. K. Pham, H. K. Ta, V. C. Tran, and T. B. Phan, “Thermoelectric properties of indium and gallium dually doped ZnO thin films,” ACS Appl. Mater. Interfaces 8(49), 33916–33923 (2016).
[Crossref] [PubMed]

Nomura, K.

T. Kamiya, K. Nomura, and H. Hosono, “Origins of high mobility and low operation voltage of amorphous oxide TFTs: electronic structure, electron transport, defects and doping,” J. Disp. Technol. 5(12), 468–483 (2009).
[Crossref]

Nunez, C.

C. Nunez, J. Pau, E. Ruız, and J. Piqueras, “Thin film transistors based on zinc nitride as a channel layer for optoelectronic devices,” Appl. Phys. Lett. 101(25), 253501 (2012).
[Crossref]

Park, J.

M. Ryu, T. Kim, K. Son, H. Kim, J. Park, J. Seon, S. Seo, S. Kim, E. Lee, H. Lee, S. Jeon, S. Han, and S. Lee, “High mobility zinc oxynitride-TFT with operation stability under light-illuminated bias-stress conditions for large area and high resolution display applications,” IEDM 12, 112–114 (2012).

Pau, J.

C. Nunez, J. Pau, E. Ruız, and J. Piqueras, “Thin film transistors based on zinc nitride as a channel layer for optoelectronic devices,” Appl. Phys. Lett. 101(25), 253501 (2012).
[Crossref]

Pham, A. T.

N. H. Tran Nguyen, T. H. Nguyen, Y. R. Liu, M. Aminzare, A. T. Pham, S. Cho, D. P. Wong, K. H. Chen, T. Seetawan, N. K. Pham, H. K. Ta, V. C. Tran, and T. B. Phan, “Thermoelectric properties of indium and gallium dually doped ZnO thin films,” ACS Appl. Mater. Interfaces 8(49), 33916–33923 (2016).
[Crossref] [PubMed]

Pham, N. K.

N. H. Tran Nguyen, T. H. Nguyen, Y. R. Liu, M. Aminzare, A. T. Pham, S. Cho, D. P. Wong, K. H. Chen, T. Seetawan, N. K. Pham, H. K. Ta, V. C. Tran, and T. B. Phan, “Thermoelectric properties of indium and gallium dually doped ZnO thin films,” ACS Appl. Mater. Interfaces 8(49), 33916–33923 (2016).
[Crossref] [PubMed]

Phan, T. B.

N. H. Tran Nguyen, T. H. Nguyen, Y. R. Liu, M. Aminzare, A. T. Pham, S. Cho, D. P. Wong, K. H. Chen, T. Seetawan, N. K. Pham, H. K. Ta, V. C. Tran, and T. B. Phan, “Thermoelectric properties of indium and gallium dually doped ZnO thin films,” ACS Appl. Mater. Interfaces 8(49), 33916–33923 (2016).
[Crossref] [PubMed]

Piqueras, J.

C. Nunez, J. Pau, E. Ruız, and J. Piqueras, “Thin film transistors based on zinc nitride as a channel layer for optoelectronic devices,” Appl. Phys. Lett. 101(25), 253501 (2012).
[Crossref]

Raja, J.

J. Raja, K. Jang, N. Balaji, W. choi, T. Thuy Trinh, and J. Yi, “Negative gate-bias temperature stability of N-doped InGaZnO active-layer thin-film transistors,” Appl. Phys. Lett. 102(8), 083505 (2013).
[Crossref]

Ren, F.

X. Huang, C. Wu, H. Lu, F. Ren, D. Chen, R. Zhang, and Y. Zheng, “Enhanced bias stress stability of a-InGaZnO thin film transistors by inserting an ultrathin interfacial InGaZnO: N layer,” Appl. Phys. Lett. 102(19), 193505 (2013).
[Crossref]

Ruiz, E.

C. Nunez, J. Pau, E. Ruız, and J. Piqueras, “Thin film transistors based on zinc nitride as a channel layer for optoelectronic devices,” Appl. Phys. Lett. 101(25), 253501 (2012).
[Crossref]

Ryu, M.

M. Ryu, T. Kim, K. Son, H. Kim, J. Park, J. Seon, S. Seo, S. Kim, E. Lee, H. Lee, S. Jeon, S. Han, and S. Lee, “High mobility zinc oxynitride-TFT with operation stability under light-illuminated bias-stress conditions for large area and high resolution display applications,” IEDM 12, 112–114 (2012).

Seetawan, T.

N. H. Tran Nguyen, T. H. Nguyen, Y. R. Liu, M. Aminzare, A. T. Pham, S. Cho, D. P. Wong, K. H. Chen, T. Seetawan, N. K. Pham, H. K. Ta, V. C. Tran, and T. B. Phan, “Thermoelectric properties of indium and gallium dually doped ZnO thin films,” ACS Appl. Mater. Interfaces 8(49), 33916–33923 (2016).
[Crossref] [PubMed]

Seo, S.

M. Ryu, T. Kim, K. Son, H. Kim, J. Park, J. Seon, S. Seo, S. Kim, E. Lee, H. Lee, S. Jeon, S. Han, and S. Lee, “High mobility zinc oxynitride-TFT with operation stability under light-illuminated bias-stress conditions for large area and high resolution display applications,” IEDM 12, 112–114 (2012).

Seon, J.

M. Ryu, T. Kim, K. Son, H. Kim, J. Park, J. Seon, S. Seo, S. Kim, E. Lee, H. Lee, S. Jeon, S. Han, and S. Lee, “High mobility zinc oxynitride-TFT with operation stability under light-illuminated bias-stress conditions for large area and high resolution display applications,” IEDM 12, 112–114 (2012).

Shieh, H. P.

C. Fuh, P. Liu, L. Teng, S. Huang, Y. Lee, H. P. Shieh, and S. M. Sze, “Effects of microwave annealing on nitrogenated amorphous In-Ga-Zn-O thin-film transistor for low thermal budget process application,” IEEE Elec. Dev. Lett. 34(9), 1157–1159 (2013).
[Crossref]

P. Liu, Y. Chou, L. Teng, F. Li, and H. P. Shieh, “Nitrogenated amorphous InGaZnO thin film transistor,” Appl. Phys. Lett. 98(5), 052102 (2011).
[Crossref]

P. Liu, Y. Chou, L. Teng, F. Li, C. Fuh, and H. P. Shieh, “Ambient stability enhancement of thin-film transistor with InGaZnO capped with InGaZnO: N bilayer stack channel layers,” IEEE Elec. Dev. Lett. 32(10), 1397–1399 (2011).
[Crossref]

Shrestha, N.

B. Cho, H. Kim, D. Yang, N. Shrestha, and M. Sung, “Highly conductive air-stable ZnO thin film formation under in situ UV illumination for an indium-free transparent electrode,” RSC Advances 6(73), 69027–69032 (2016).
[Crossref]

Son, K.

M. Ryu, T. Kim, K. Son, H. Kim, J. Park, J. Seon, S. Seo, S. Kim, E. Lee, H. Lee, S. Jeon, S. Han, and S. Lee, “High mobility zinc oxynitride-TFT with operation stability under light-illuminated bias-stress conditions for large area and high resolution display applications,” IEDM 12, 112–114 (2012).

Sun, X.

J. K. Yao, S. Chen, X. Sun, and H. Kwok, “He plasma treatment of transparent conductive ZnO thin films,” Appl. Surf. Sci. 355, 702–705 (2015).
[Crossref]

Sung, M.

B. Cho, H. Kim, D. Yang, N. Shrestha, and M. Sung, “Highly conductive air-stable ZnO thin film formation under in situ UV illumination for an indium-free transparent electrode,” RSC Advances 6(73), 69027–69032 (2016).
[Crossref]

Sze, S. M.

P. T. Liu, C. H. Chang, C. S. Fuh, Y. T. Liao, and S. M. Sze, “Effects of nitrogen on amorphous nitrogenated InGaZnO (a-IGZO:N) thin film transistors,” J. Disp. Technol. 12(10), 1070–1077 (2016).
[Crossref]

C. Fuh, P. Liu, L. Teng, S. Huang, Y. Lee, H. P. Shieh, and S. M. Sze, “Effects of microwave annealing on nitrogenated amorphous In-Ga-Zn-O thin-film transistor for low thermal budget process application,” IEEE Elec. Dev. Lett. 34(9), 1157–1159 (2013).
[Crossref]

Ta, H. K.

N. H. Tran Nguyen, T. H. Nguyen, Y. R. Liu, M. Aminzare, A. T. Pham, S. Cho, D. P. Wong, K. H. Chen, T. Seetawan, N. K. Pham, H. K. Ta, V. C. Tran, and T. B. Phan, “Thermoelectric properties of indium and gallium dually doped ZnO thin films,” ACS Appl. Mater. Interfaces 8(49), 33916–33923 (2016).
[Crossref] [PubMed]

Tang, Y.

L. Zhang, R. Yang, K. Chen, X. Wang, Y. Tang, F. Yang, R. Liu, Z. Ye, and Y. Li, “The fabrication of Cu nanowire/graphene/Al doped ZnO transparent conductive film on PET substrate with high flexibility and air stability,” Mater. Lett. 207, 62–65 (2017).
[Crossref]

Teng, L.

C. Fuh, P. Liu, L. Teng, S. Huang, Y. Lee, H. P. Shieh, and S. M. Sze, “Effects of microwave annealing on nitrogenated amorphous In-Ga-Zn-O thin-film transistor for low thermal budget process application,” IEEE Elec. Dev. Lett. 34(9), 1157–1159 (2013).
[Crossref]

P. Liu, Y. Chou, L. Teng, F. Li, and H. P. Shieh, “Nitrogenated amorphous InGaZnO thin film transistor,” Appl. Phys. Lett. 98(5), 052102 (2011).
[Crossref]

P. Liu, Y. Chou, L. Teng, F. Li, C. Fuh, and H. P. Shieh, “Ambient stability enhancement of thin-film transistor with InGaZnO capped with InGaZnO: N bilayer stack channel layers,” IEEE Elec. Dev. Lett. 32(10), 1397–1399 (2011).
[Crossref]

Thuy Trinh, T.

J. Raja, K. Jang, N. Balaji, W. choi, T. Thuy Trinh, and J. Yi, “Negative gate-bias temperature stability of N-doped InGaZnO active-layer thin-film transistors,” Appl. Phys. Lett. 102(8), 083505 (2013).
[Crossref]

Tran, V. C.

N. H. Tran Nguyen, T. H. Nguyen, Y. R. Liu, M. Aminzare, A. T. Pham, S. Cho, D. P. Wong, K. H. Chen, T. Seetawan, N. K. Pham, H. K. Ta, V. C. Tran, and T. B. Phan, “Thermoelectric properties of indium and gallium dually doped ZnO thin films,” ACS Appl. Mater. Interfaces 8(49), 33916–33923 (2016).
[Crossref] [PubMed]

Tran Nguyen, N. H.

N. H. Tran Nguyen, T. H. Nguyen, Y. R. Liu, M. Aminzare, A. T. Pham, S. Cho, D. P. Wong, K. H. Chen, T. Seetawan, N. K. Pham, H. K. Ta, V. C. Tran, and T. B. Phan, “Thermoelectric properties of indium and gallium dually doped ZnO thin films,” ACS Appl. Mater. Interfaces 8(49), 33916–33923 (2016).
[Crossref] [PubMed]

Uenuma, M.

Y. Fujimoto, M. Uenuma, Y. Ishikawa, and Y. Uraoka, “Analysis of thermoelectric properties of amorphous InGaZnO thin film by controlling carrier concentration,” AIP Adv. 5(9), 097209 (2015).
[Crossref]

Uraoka, Y.

Y. Fujimoto, M. Uenuma, Y. Ishikawa, and Y. Uraoka, “Analysis of thermoelectric properties of amorphous InGaZnO thin film by controlling carrier concentration,” AIP Adv. 5(9), 097209 (2015).
[Crossref]

Wang, P.

W. Xiong, H. Liu, Y. Chen, M. Zheng, Y. Zhao, X. Kong, Y. Wang, X. Zhang, X. Kong, P. Wang, and L. Jiang, “Highly conductive, air-stable silver nanowire@Iongel composite films toward flexible transparent electrodes,” Adv. Mater. 28(33), 7167–7172 (2016).
[Crossref] [PubMed]

Wang, X.

L. Zhang, R. Yang, K. Chen, X. Wang, Y. Tang, F. Yang, R. Liu, Z. Ye, and Y. Li, “The fabrication of Cu nanowire/graphene/Al doped ZnO transparent conductive film on PET substrate with high flexibility and air stability,” Mater. Lett. 207, 62–65 (2017).
[Crossref]

Wang, Y.

W. Xiong, H. Liu, Y. Chen, M. Zheng, Y. Zhao, X. Kong, Y. Wang, X. Zhang, X. Kong, P. Wang, and L. Jiang, “Highly conductive, air-stable silver nanowire@Iongel composite films toward flexible transparent electrodes,” Adv. Mater. 28(33), 7167–7172 (2016).
[Crossref] [PubMed]

Wong, D. P.

N. H. Tran Nguyen, T. H. Nguyen, Y. R. Liu, M. Aminzare, A. T. Pham, S. Cho, D. P. Wong, K. H. Chen, T. Seetawan, N. K. Pham, H. K. Ta, V. C. Tran, and T. B. Phan, “Thermoelectric properties of indium and gallium dually doped ZnO thin films,” ACS Appl. Mater. Interfaces 8(49), 33916–33923 (2016).
[Crossref] [PubMed]

Wu, C.

X. Huang, C. Wu, H. Lu, F. Ren, D. Chen, R. Zhang, and Y. Zheng, “Enhanced bias stress stability of a-InGaZnO thin film transistors by inserting an ultrathin interfacial InGaZnO: N layer,” Appl. Phys. Lett. 102(19), 193505 (2013).
[Crossref]

Xiong, W.

W. Xiong, H. Liu, Y. Chen, M. Zheng, Y. Zhao, X. Kong, Y. Wang, X. Zhang, X. Kong, P. Wang, and L. Jiang, “Highly conductive, air-stable silver nanowire@Iongel composite films toward flexible transparent electrodes,” Adv. Mater. 28(33), 7167–7172 (2016).
[Crossref] [PubMed]

Yang, D.

B. Cho, H. Kim, D. Yang, N. Shrestha, and M. Sung, “Highly conductive air-stable ZnO thin film formation under in situ UV illumination for an indium-free transparent electrode,” RSC Advances 6(73), 69027–69032 (2016).
[Crossref]

Yang, F.

L. Zhang, R. Yang, K. Chen, X. Wang, Y. Tang, F. Yang, R. Liu, Z. Ye, and Y. Li, “The fabrication of Cu nanowire/graphene/Al doped ZnO transparent conductive film on PET substrate with high flexibility and air stability,” Mater. Lett. 207, 62–65 (2017).
[Crossref]

Yang, R.

L. Zhang, R. Yang, K. Chen, X. Wang, Y. Tang, F. Yang, R. Liu, Z. Ye, and Y. Li, “The fabrication of Cu nanowire/graphene/Al doped ZnO transparent conductive film on PET substrate with high flexibility and air stability,” Mater. Lett. 207, 62–65 (2017).
[Crossref]

Yao, J. K.

J. K. Yao, S. Chen, X. Sun, and H. Kwok, “He plasma treatment of transparent conductive ZnO thin films,” Appl. Surf. Sci. 355, 702–705 (2015).
[Crossref]

Ye, Z.

L. Zhang, R. Yang, K. Chen, X. Wang, Y. Tang, F. Yang, R. Liu, Z. Ye, and Y. Li, “The fabrication of Cu nanowire/graphene/Al doped ZnO transparent conductive film on PET substrate with high flexibility and air stability,” Mater. Lett. 207, 62–65 (2017).
[Crossref]

Yi, J.

J. Raja, K. Jang, N. Balaji, W. choi, T. Thuy Trinh, and J. Yi, “Negative gate-bias temperature stability of N-doped InGaZnO active-layer thin-film transistors,” Appl. Phys. Lett. 102(8), 083505 (2013).
[Crossref]

Zhang, L.

L. Zhang, R. Yang, K. Chen, X. Wang, Y. Tang, F. Yang, R. Liu, Z. Ye, and Y. Li, “The fabrication of Cu nanowire/graphene/Al doped ZnO transparent conductive film on PET substrate with high flexibility and air stability,” Mater. Lett. 207, 62–65 (2017).
[Crossref]

Zhang, R.

X. Huang, C. Wu, H. Lu, F. Ren, D. Chen, R. Zhang, and Y. Zheng, “Enhanced bias stress stability of a-InGaZnO thin film transistors by inserting an ultrathin interfacial InGaZnO: N layer,” Appl. Phys. Lett. 102(19), 193505 (2013).
[Crossref]

Zhang, X.

W. Xiong, H. Liu, Y. Chen, M. Zheng, Y. Zhao, X. Kong, Y. Wang, X. Zhang, X. Kong, P. Wang, and L. Jiang, “Highly conductive, air-stable silver nanowire@Iongel composite films toward flexible transparent electrodes,” Adv. Mater. 28(33), 7167–7172 (2016).
[Crossref] [PubMed]

Zhao, Y.

W. Xiong, H. Liu, Y. Chen, M. Zheng, Y. Zhao, X. Kong, Y. Wang, X. Zhang, X. Kong, P. Wang, and L. Jiang, “Highly conductive, air-stable silver nanowire@Iongel composite films toward flexible transparent electrodes,” Adv. Mater. 28(33), 7167–7172 (2016).
[Crossref] [PubMed]

Zheng, M.

W. Xiong, H. Liu, Y. Chen, M. Zheng, Y. Zhao, X. Kong, Y. Wang, X. Zhang, X. Kong, P. Wang, and L. Jiang, “Highly conductive, air-stable silver nanowire@Iongel composite films toward flexible transparent electrodes,” Adv. Mater. 28(33), 7167–7172 (2016).
[Crossref] [PubMed]

Zheng, Y.

X. Huang, C. Wu, H. Lu, F. Ren, D. Chen, R. Zhang, and Y. Zheng, “Enhanced bias stress stability of a-InGaZnO thin film transistors by inserting an ultrathin interfacial InGaZnO: N layer,” Appl. Phys. Lett. 102(19), 193505 (2013).
[Crossref]

ACS Appl. Mater. Interfaces (1)

N. H. Tran Nguyen, T. H. Nguyen, Y. R. Liu, M. Aminzare, A. T. Pham, S. Cho, D. P. Wong, K. H. Chen, T. Seetawan, N. K. Pham, H. K. Ta, V. C. Tran, and T. B. Phan, “Thermoelectric properties of indium and gallium dually doped ZnO thin films,” ACS Appl. Mater. Interfaces 8(49), 33916–33923 (2016).
[Crossref] [PubMed]

Adv. Mater. (1)

W. Xiong, H. Liu, Y. Chen, M. Zheng, Y. Zhao, X. Kong, Y. Wang, X. Zhang, X. Kong, P. Wang, and L. Jiang, “Highly conductive, air-stable silver nanowire@Iongel composite films toward flexible transparent electrodes,” Adv. Mater. 28(33), 7167–7172 (2016).
[Crossref] [PubMed]

AIP Adv. (1)

Y. Fujimoto, M. Uenuma, Y. Ishikawa, and Y. Uraoka, “Analysis of thermoelectric properties of amorphous InGaZnO thin film by controlling carrier concentration,” AIP Adv. 5(9), 097209 (2015).
[Crossref]

Appl. Phys. Lett. (4)

C. Nunez, J. Pau, E. Ruız, and J. Piqueras, “Thin film transistors based on zinc nitride as a channel layer for optoelectronic devices,” Appl. Phys. Lett. 101(25), 253501 (2012).
[Crossref]

P. Liu, Y. Chou, L. Teng, F. Li, and H. P. Shieh, “Nitrogenated amorphous InGaZnO thin film transistor,” Appl. Phys. Lett. 98(5), 052102 (2011).
[Crossref]

J. Raja, K. Jang, N. Balaji, W. choi, T. Thuy Trinh, and J. Yi, “Negative gate-bias temperature stability of N-doped InGaZnO active-layer thin-film transistors,” Appl. Phys. Lett. 102(8), 083505 (2013).
[Crossref]

X. Huang, C. Wu, H. Lu, F. Ren, D. Chen, R. Zhang, and Y. Zheng, “Enhanced bias stress stability of a-InGaZnO thin film transistors by inserting an ultrathin interfacial InGaZnO: N layer,” Appl. Phys. Lett. 102(19), 193505 (2013).
[Crossref]

Appl. Surf. Sci. (1)

J. K. Yao, S. Chen, X. Sun, and H. Kwok, “He plasma treatment of transparent conductive ZnO thin films,” Appl. Surf. Sci. 355, 702–705 (2015).
[Crossref]

Crystals (1)

G. Korotcenkov, V. Brinzari, and M. Ham, “In2O3-based thermoelectric materials: the state of the art and the role of surface state in the improvement of the efficiency of thermoelectric conversion,” Crystals 8(14), 1–37 (2018).

CrystEngComm (1)

S. Cho, M. Jeong, J. Kim, Y. Kwon, H. Kim, J. Lee, and H. Cho, “A combinatorial approach to solution-processed InGaO3(ZnO)m superlattice films: growth mechanisms and their thermoelectric properties,” CrystEngComm 18(5), 807–815 (2016).
[Crossref]

Electron. Mater. Lett. (1)

J. Y. Kwon, D. J. Lee, and K. B. Kim, “Transparent amorphous oxide semiconductor thin film transistor,” Electron. Mater. Lett. 7(1), 1–11 (2011).
[Crossref]

IEDM (1)

M. Ryu, T. Kim, K. Son, H. Kim, J. Park, J. Seon, S. Seo, S. Kim, E. Lee, H. Lee, S. Jeon, S. Han, and S. Lee, “High mobility zinc oxynitride-TFT with operation stability under light-illuminated bias-stress conditions for large area and high resolution display applications,” IEDM 12, 112–114 (2012).

IEEE Elec. Dev. Lett. (2)

P. Liu, Y. Chou, L. Teng, F. Li, C. Fuh, and H. P. Shieh, “Ambient stability enhancement of thin-film transistor with InGaZnO capped with InGaZnO: N bilayer stack channel layers,” IEEE Elec. Dev. Lett. 32(10), 1397–1399 (2011).
[Crossref]

C. Fuh, P. Liu, L. Teng, S. Huang, Y. Lee, H. P. Shieh, and S. M. Sze, “Effects of microwave annealing on nitrogenated amorphous In-Ga-Zn-O thin-film transistor for low thermal budget process application,” IEEE Elec. Dev. Lett. 34(9), 1157–1159 (2013).
[Crossref]

J. Chem. Phys. (1)

K. S. Cole and R. H. Cole, “Dispersion and absorption in dielectrics I. alternating current characteristics,” J. Chem. Phys. 9(4), 341–351 (1941).
[Crossref]

J. Disp. Technol. (2)

T. Kamiya, K. Nomura, and H. Hosono, “Origins of high mobility and low operation voltage of amorphous oxide TFTs: electronic structure, electron transport, defects and doping,” J. Disp. Technol. 5(12), 468–483 (2009).
[Crossref]

P. T. Liu, C. H. Chang, C. S. Fuh, Y. T. Liao, and S. M. Sze, “Effects of nitrogen on amorphous nitrogenated InGaZnO (a-IGZO:N) thin film transistors,” J. Disp. Technol. 12(10), 1070–1077 (2016).
[Crossref]

J. Vac. Sci. Technol. A (1)

S. Cho, S. Baek, D. Kim, Y. Kim, and H. Cho, “Microstructure-dependent thermoelectric properties of polycrystalline InGaO3(ZnO)2 superlattice films,” J. Vac. Sci. Technol. A 35(1), 01B126 (2017).
[Crossref]

Mater. Lett. (1)

L. Zhang, R. Yang, K. Chen, X. Wang, Y. Tang, F. Yang, R. Liu, Z. Ye, and Y. Li, “The fabrication of Cu nanowire/graphene/Al doped ZnO transparent conductive film on PET substrate with high flexibility and air stability,” Mater. Lett. 207, 62–65 (2017).
[Crossref]

Opt. Mater. Express (1)

RSC Advances (1)

B. Cho, H. Kim, D. Yang, N. Shrestha, and M. Sung, “Highly conductive air-stable ZnO thin film formation under in situ UV illumination for an indium-free transparent electrode,” RSC Advances 6(73), 69027–69032 (2016).
[Crossref]

Surf. Coat. Tech. (1)

C. Guillén and J. Herrero, “Stability of sputtered ITO thin films to the damp-heat test,” Surf. Coat. Tech. 201(1-2), 309–312 (2006).
[Crossref]

Thin Solid Films (1)

T. Minami, “Present status of transparent conducting oxide thin-film development for Indium-Tin-Oxide (ITO) substitutes,” Thin Solid Films 516(17), 5822–5828 (2008).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 XRD patterns of IGZON thin films.
Fig. 2
Fig. 2 The surface morphology by SEM for IGZON thin films.
Fig. 3
Fig. 3 In3d, Ga2p, and Zn2p and O1s and N1s XPS spectra and φ by UPS of IGZON films.
Fig. 4
Fig. 4 (a) The relation between ρ, μ and Ne and the variation of (b) ρ (c) μ and (d) Ne with exposure time in air for IGZON films.
Fig. 5
Fig. 5 (a) Transmittance and (b) band gap for IGZON thin films.
Fig. 6
Fig. 6 Electrical properties of IGZON thin films with temperature (a) σ (b) S and (c) PF and (d) κe.
Fig. 7
Fig. 7 (a) S and (b) me*as a function of Ne and T.
Fig. 8
Fig. 8 Calculated (a) n (b) k and (c) ε1 and (d) ε2 and (e) ε and (f) le and Ep for IGZON films.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

α=ln ( T r /d ).
σ= σ 0 exp[ E σ /( k B T)],
PF=σ S 2 ,
κ e = L o Tσ,
L o =π k B /(3q),
ZT= S 2 σT/κ,
S= 8 π 2 k B 2 T 3q h 2 m e * ( π 3 N e ) 2/3 ,
ε 1 = n 2 k 2 ,
ε 2 =2nk,
l e = h 2q ( 3 N e π ) 1/3 μ,
E p = ( h 2 q 2 N e 4 π 2 m * e ε ε 0 ) 1/2 ,
τ= m e * μ/q,

Metrics