Abstract

We investigated the effect of the relative ratio between the diacrylate (DA) and the monoacrylate (MA) reactive mesogen (RM) molecules on the transmission spectrum of polymer-stabilized cholesteric liquid crystal (PSCLC). The reflection color from the top substrate where the UV was exposed was shifted from red to green with increasing the fraction of DA. It was also found that the PSCLC sample with the fraction of DA over 5 wt% formed 2-dimensional poly-grain textures on the bottom substrate. The periodicity of the grains was about 1-2 μm with the consequence of a light-scattering optical texture of the PSCLC sample. By optimizing the relative fraction between MA and DA, we could obtain a vivid broadband PSCLC sample without a scattering of light.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Broadening the reflection bandwidth of polymer-stabilized cholesteric liquid crystal via a reactive surface coating layer

Jongyoon Kim, Hyungmin Kim, Seongil Kim, Suseok Choi, Wonbong Jang, Jinwuk Kim, and Ji-Hoon Lee
Appl. Opt. 56(20) 5731-5735 (2017)

Polymer stabilized cholesteric liquid crystal particles with high thermal stability

Qi Yan, Zhan Wei, Pengcheng Lin, Zhengdong Cheng, Mingrui Pu, Zhuoran Huang, and Wei Lin
Opt. Mater. Express 8(6) 1536-1550 (2018)

References

  • View by:
  • |
  • |
  • |

  1. G. Friedel, “The mesomorphic states of matter,” Ann. Phys. 18(18), 273–474 (1922).
    [Crossref]
  2. H. Kelker, “History of liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 21(1-2), 1–48 (1973).
    [Crossref]
  3. M. Mitov, “Cholesteric liquid crystals with a broad light reflection band,” Adv. Mater. 24(47), 6260–6276 (2012).
    [Crossref] [PubMed]
  4. S. A. Jewell, P. Vukusic, and N. W. Roberts, “Circularly polarized colour reflection from helicoidal structures in the beetle Plusiotis boucardi,” New J. Phys. 9(4), 1 (2007).
    [Crossref]
  5. D. M. Makow and C. Leroy-Sanders, “Additive colour properties and colour gamut of cholesteric liquid crystals,” Nature 276(5683), 48–50 (1978).
    [Crossref]
  6. D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature 378(6556), 467–469 (1995).
    [Crossref]
  7. R. A. M. Hikmet and H. Kemperman, “Electrically switchable mirror and optical components made from liquid-crystal gels,” Nature 392(6675), 476–479 (1998).
    [Crossref]
  8. S. Relaix and M. Mitov, “Polymer‐stabilised cholesteric liquid crystals with a double helical handedness: influence of an ultraviolet light absorber on the characteristics of the circularly polarised reflection band,” Liq. Cryst. 35(8), 1037–1042 (2008).
    [Crossref]
  9. M. Mitov and N. Dessaud, “Going beyond the reflectance limit of cholesteric liquid crystals,” Nat. Mater. 5(5), 361–364 (2006).
    [Crossref] [PubMed]
  10. S. Relaix, C. Bourgerette, and M. Mitov, “Broadband reflective cholesteric liquid crystalline gels: volume distribution of reflection properties and polymer network in relation with the geometry of the cell photopolymerization,” Liq. Cryst. 34(9), 1009–1018 (2007).
    [Crossref]
  11. S. Relaix, C. Bourgerette, and M. Mitov, “Polymer stabilized liquid crystal films reflecting both right-and left-circularly polarized light,” Appl. Phys. Lett. 92, 061101 (2008).
  12. R. Balamurugan and J.-H. Liu, “A review on the fabrication of photonic band gap materials based on cholesteric liquid crystals,” React. Funct. Polym. 105, 9–34 (2016).
    [Crossref]
  13. D. J. Gardiner, S. M. Morris, P. J. W. Hands, C. Mowatt, R. Rutledge, T. D. Wilkinson, and H. J. Coles, “Paintable band-edge liquid crystal lasers,” Opt. Express 19(3), 2432–2439 (2011).
    [Crossref] [PubMed]
  14. G. Tan, Y.-H. Lee, F. Gou, H. Chen, Y. Huang, Y. F. Lan, C.-Y. Tsai, and S.-T. Wu, “Review on polymer-stabilized short-pitch cholesteric liquid crystal displays,” J. Phys. D Appl. Phys. 50(49), 493001 (2017).
    [Crossref]
  15. D. J. Gardiner, S. M. Morris, F. Castles, M. M. Qasim, W.-S. Kim, S. S. Choi, H. J. Park, I.-J. Chung, and H. J. Coles, “Polymer stabilized chiral nematic liquid crystals for fast switching and high contrast electro-optic devices,” Appl. Phys. Lett. 98(26), 263508 (2011).
    [Crossref]
  16. D. Coates, “Development and applications of cholesteric liquid crystals,” Liq. Cryst. 42, 653–665 (2015).
  17. J.-H. Lee and B.-Y. Lee, “Boundary symmetry-stabilized memory in mono-layered cholesteric capsule,” Appl. Phys. Lett. 11(15), 153308 (2011).
    [Crossref]
  18. B.-Y. Lee and J.-H. Lee, “Printable flexible cholesteric capsule display with a fine resolution of RGB subpixels,” Curr. Appl. Phys. 11(6), 1389–1393 (2011).
    [Crossref]
  19. M. Mitov, “Cholesteric liquid crystals in living matter,” Soft Matter 13(23), 4176–4209 (2017).
    [Crossref] [PubMed]
  20. H.-G. Lee, S. Munir, and S.-Y. Park, “Cholesteric liquid crystal droplets for biosensors,” ACS Appl. Mater. Interfaces 8(39), 26407–26417 (2016).
    [Crossref] [PubMed]
  21. I. Dierking, L. L. Kosbar, A. C. Lowe, and G. A. Held, “Polymer network structure and electro-optic performance of polymer stabilized cholesteric textures I. The influence of curing temperature,” Liq. Cryst. 24(3), 387–395 (1998).
    [Crossref]
  22. J. Kim, H. Kim, S. Kim, S. Choi, W. Jang, J. Kim, and J.-H. Lee, “Broadening the reflection bandwidth of polymer-stabilized cholesteric liquid crystal via a reactive surface coating layer,” Appl. Opt. 56(20), 5731–5735 (2017).
    [Crossref] [PubMed]
  23. G. Agez, S. Relaix, and M. Mitov, “Cholesteric liquid crystal gels with a graded mechanical stress,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(2), 022513 (2014).
    [Crossref] [PubMed]
  24. I. Dierking, L. L. Kosbar, A. C. Lowe, and G. A. Held, “Polymer network structure and electro-optic performance of polymer stabilized cholesteric textures II. The effect of UV curing conditions,” Liq. Cryst. 24(3), 397–406 (1998).
    [Crossref]
  25. I. Dierking, L. L. Kosbar, A. Afzali-Ardakani, A. C. Lowe, and G. A. Held, “Network morphology of polymer stabilized liquid crystals,” Appl. Phys. Lett. 71(17), 2454–2456 (1997).
    [Crossref]
  26. C. J. Gerritsma and P. Van Zanten, “Periodic perturbation in the cholesteric plane texture,” Phys. Lett. A 37(1), 47–48 (1971).
    [Crossref]
  27. M. De Zwart and C. Z. Van Doorn, “The field-induced square grid perturbation in the planar texture of cholesteric liquid crystals,” J. Phys. Colloq. 40(C3), C3–C278 (1979).
    [Crossref]
  28. E. Niggemann and H. Stegemeyer, “Magnetic field-induced instabilities in cholesteric liquid crystals: Periodic deformations of the grandjean texture,” Liq. Cryst. 5(2), 739–747 (1989).
    [Crossref]
  29. J.-H. Huh, “Electrohydrodynamic instability in cholesteric liquid crystals in the presence of a magnetic field,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 477, 67–76 (2007).
    [Crossref]
  30. M. Mitov, A. Boudet, P. Sopena, and P. Sixou, “Morphological study of a chiral polymer network in a nematic liquid crystal from a concentration gradient,” Liq. Cryst. 23(6), 903–910 (1997).
    [Crossref]

2017 (3)

G. Tan, Y.-H. Lee, F. Gou, H. Chen, Y. Huang, Y. F. Lan, C.-Y. Tsai, and S.-T. Wu, “Review on polymer-stabilized short-pitch cholesteric liquid crystal displays,” J. Phys. D Appl. Phys. 50(49), 493001 (2017).
[Crossref]

J. Kim, H. Kim, S. Kim, S. Choi, W. Jang, J. Kim, and J.-H. Lee, “Broadening the reflection bandwidth of polymer-stabilized cholesteric liquid crystal via a reactive surface coating layer,” Appl. Opt. 56(20), 5731–5735 (2017).
[Crossref] [PubMed]

M. Mitov, “Cholesteric liquid crystals in living matter,” Soft Matter 13(23), 4176–4209 (2017).
[Crossref] [PubMed]

2016 (2)

H.-G. Lee, S. Munir, and S.-Y. Park, “Cholesteric liquid crystal droplets for biosensors,” ACS Appl. Mater. Interfaces 8(39), 26407–26417 (2016).
[Crossref] [PubMed]

R. Balamurugan and J.-H. Liu, “A review on the fabrication of photonic band gap materials based on cholesteric liquid crystals,” React. Funct. Polym. 105, 9–34 (2016).
[Crossref]

2015 (1)

D. Coates, “Development and applications of cholesteric liquid crystals,” Liq. Cryst. 42, 653–665 (2015).

2014 (1)

G. Agez, S. Relaix, and M. Mitov, “Cholesteric liquid crystal gels with a graded mechanical stress,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(2), 022513 (2014).
[Crossref] [PubMed]

2012 (1)

M. Mitov, “Cholesteric liquid crystals with a broad light reflection band,” Adv. Mater. 24(47), 6260–6276 (2012).
[Crossref] [PubMed]

2011 (4)

J.-H. Lee and B.-Y. Lee, “Boundary symmetry-stabilized memory in mono-layered cholesteric capsule,” Appl. Phys. Lett. 11(15), 153308 (2011).
[Crossref]

B.-Y. Lee and J.-H. Lee, “Printable flexible cholesteric capsule display with a fine resolution of RGB subpixels,” Curr. Appl. Phys. 11(6), 1389–1393 (2011).
[Crossref]

D. J. Gardiner, S. M. Morris, F. Castles, M. M. Qasim, W.-S. Kim, S. S. Choi, H. J. Park, I.-J. Chung, and H. J. Coles, “Polymer stabilized chiral nematic liquid crystals for fast switching and high contrast electro-optic devices,” Appl. Phys. Lett. 98(26), 263508 (2011).
[Crossref]

D. J. Gardiner, S. M. Morris, P. J. W. Hands, C. Mowatt, R. Rutledge, T. D. Wilkinson, and H. J. Coles, “Paintable band-edge liquid crystal lasers,” Opt. Express 19(3), 2432–2439 (2011).
[Crossref] [PubMed]

2008 (2)

S. Relaix, C. Bourgerette, and M. Mitov, “Polymer stabilized liquid crystal films reflecting both right-and left-circularly polarized light,” Appl. Phys. Lett. 92, 061101 (2008).

S. Relaix and M. Mitov, “Polymer‐stabilised cholesteric liquid crystals with a double helical handedness: influence of an ultraviolet light absorber on the characteristics of the circularly polarised reflection band,” Liq. Cryst. 35(8), 1037–1042 (2008).
[Crossref]

2007 (3)

S. A. Jewell, P. Vukusic, and N. W. Roberts, “Circularly polarized colour reflection from helicoidal structures in the beetle Plusiotis boucardi,” New J. Phys. 9(4), 1 (2007).
[Crossref]

S. Relaix, C. Bourgerette, and M. Mitov, “Broadband reflective cholesteric liquid crystalline gels: volume distribution of reflection properties and polymer network in relation with the geometry of the cell photopolymerization,” Liq. Cryst. 34(9), 1009–1018 (2007).
[Crossref]

J.-H. Huh, “Electrohydrodynamic instability in cholesteric liquid crystals in the presence of a magnetic field,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 477, 67–76 (2007).
[Crossref]

2006 (1)

M. Mitov and N. Dessaud, “Going beyond the reflectance limit of cholesteric liquid crystals,” Nat. Mater. 5(5), 361–364 (2006).
[Crossref] [PubMed]

1998 (3)

R. A. M. Hikmet and H. Kemperman, “Electrically switchable mirror and optical components made from liquid-crystal gels,” Nature 392(6675), 476–479 (1998).
[Crossref]

I. Dierking, L. L. Kosbar, A. C. Lowe, and G. A. Held, “Polymer network structure and electro-optic performance of polymer stabilized cholesteric textures II. The effect of UV curing conditions,” Liq. Cryst. 24(3), 397–406 (1998).
[Crossref]

I. Dierking, L. L. Kosbar, A. C. Lowe, and G. A. Held, “Polymer network structure and electro-optic performance of polymer stabilized cholesteric textures I. The influence of curing temperature,” Liq. Cryst. 24(3), 387–395 (1998).
[Crossref]

1997 (2)

I. Dierking, L. L. Kosbar, A. Afzali-Ardakani, A. C. Lowe, and G. A. Held, “Network morphology of polymer stabilized liquid crystals,” Appl. Phys. Lett. 71(17), 2454–2456 (1997).
[Crossref]

M. Mitov, A. Boudet, P. Sopena, and P. Sixou, “Morphological study of a chiral polymer network in a nematic liquid crystal from a concentration gradient,” Liq. Cryst. 23(6), 903–910 (1997).
[Crossref]

1995 (1)

D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature 378(6556), 467–469 (1995).
[Crossref]

1989 (1)

E. Niggemann and H. Stegemeyer, “Magnetic field-induced instabilities in cholesteric liquid crystals: Periodic deformations of the grandjean texture,” Liq. Cryst. 5(2), 739–747 (1989).
[Crossref]

1979 (1)

M. De Zwart and C. Z. Van Doorn, “The field-induced square grid perturbation in the planar texture of cholesteric liquid crystals,” J. Phys. Colloq. 40(C3), C3–C278 (1979).
[Crossref]

1978 (1)

D. M. Makow and C. Leroy-Sanders, “Additive colour properties and colour gamut of cholesteric liquid crystals,” Nature 276(5683), 48–50 (1978).
[Crossref]

1973 (1)

H. Kelker, “History of liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 21(1-2), 1–48 (1973).
[Crossref]

1971 (1)

C. J. Gerritsma and P. Van Zanten, “Periodic perturbation in the cholesteric plane texture,” Phys. Lett. A 37(1), 47–48 (1971).
[Crossref]

1922 (1)

G. Friedel, “The mesomorphic states of matter,” Ann. Phys. 18(18), 273–474 (1922).
[Crossref]

Afzali-Ardakani, A.

I. Dierking, L. L. Kosbar, A. Afzali-Ardakani, A. C. Lowe, and G. A. Held, “Network morphology of polymer stabilized liquid crystals,” Appl. Phys. Lett. 71(17), 2454–2456 (1997).
[Crossref]

Agez, G.

G. Agez, S. Relaix, and M. Mitov, “Cholesteric liquid crystal gels with a graded mechanical stress,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(2), 022513 (2014).
[Crossref] [PubMed]

Balamurugan, R.

R. Balamurugan and J.-H. Liu, “A review on the fabrication of photonic band gap materials based on cholesteric liquid crystals,” React. Funct. Polym. 105, 9–34 (2016).
[Crossref]

Boudet, A.

M. Mitov, A. Boudet, P. Sopena, and P. Sixou, “Morphological study of a chiral polymer network in a nematic liquid crystal from a concentration gradient,” Liq. Cryst. 23(6), 903–910 (1997).
[Crossref]

Bourgerette, C.

S. Relaix, C. Bourgerette, and M. Mitov, “Polymer stabilized liquid crystal films reflecting both right-and left-circularly polarized light,” Appl. Phys. Lett. 92, 061101 (2008).

S. Relaix, C. Bourgerette, and M. Mitov, “Broadband reflective cholesteric liquid crystalline gels: volume distribution of reflection properties and polymer network in relation with the geometry of the cell photopolymerization,” Liq. Cryst. 34(9), 1009–1018 (2007).
[Crossref]

Broer, D. J.

D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature 378(6556), 467–469 (1995).
[Crossref]

Castles, F.

D. J. Gardiner, S. M. Morris, F. Castles, M. M. Qasim, W.-S. Kim, S. S. Choi, H. J. Park, I.-J. Chung, and H. J. Coles, “Polymer stabilized chiral nematic liquid crystals for fast switching and high contrast electro-optic devices,” Appl. Phys. Lett. 98(26), 263508 (2011).
[Crossref]

Chen, H.

G. Tan, Y.-H. Lee, F. Gou, H. Chen, Y. Huang, Y. F. Lan, C.-Y. Tsai, and S.-T. Wu, “Review on polymer-stabilized short-pitch cholesteric liquid crystal displays,” J. Phys. D Appl. Phys. 50(49), 493001 (2017).
[Crossref]

Choi, S.

Choi, S. S.

D. J. Gardiner, S. M. Morris, F. Castles, M. M. Qasim, W.-S. Kim, S. S. Choi, H. J. Park, I.-J. Chung, and H. J. Coles, “Polymer stabilized chiral nematic liquid crystals for fast switching and high contrast electro-optic devices,” Appl. Phys. Lett. 98(26), 263508 (2011).
[Crossref]

Chung, I.-J.

D. J. Gardiner, S. M. Morris, F. Castles, M. M. Qasim, W.-S. Kim, S. S. Choi, H. J. Park, I.-J. Chung, and H. J. Coles, “Polymer stabilized chiral nematic liquid crystals for fast switching and high contrast electro-optic devices,” Appl. Phys. Lett. 98(26), 263508 (2011).
[Crossref]

Coates, D.

D. Coates, “Development and applications of cholesteric liquid crystals,” Liq. Cryst. 42, 653–665 (2015).

Coles, H. J.

D. J. Gardiner, S. M. Morris, F. Castles, M. M. Qasim, W.-S. Kim, S. S. Choi, H. J. Park, I.-J. Chung, and H. J. Coles, “Polymer stabilized chiral nematic liquid crystals for fast switching and high contrast electro-optic devices,” Appl. Phys. Lett. 98(26), 263508 (2011).
[Crossref]

D. J. Gardiner, S. M. Morris, P. J. W. Hands, C. Mowatt, R. Rutledge, T. D. Wilkinson, and H. J. Coles, “Paintable band-edge liquid crystal lasers,” Opt. Express 19(3), 2432–2439 (2011).
[Crossref] [PubMed]

De Zwart, M.

M. De Zwart and C. Z. Van Doorn, “The field-induced square grid perturbation in the planar texture of cholesteric liquid crystals,” J. Phys. Colloq. 40(C3), C3–C278 (1979).
[Crossref]

Dessaud, N.

M. Mitov and N. Dessaud, “Going beyond the reflectance limit of cholesteric liquid crystals,” Nat. Mater. 5(5), 361–364 (2006).
[Crossref] [PubMed]

Dierking, I.

I. Dierking, L. L. Kosbar, A. C. Lowe, and G. A. Held, “Polymer network structure and electro-optic performance of polymer stabilized cholesteric textures I. The influence of curing temperature,” Liq. Cryst. 24(3), 387–395 (1998).
[Crossref]

I. Dierking, L. L. Kosbar, A. C. Lowe, and G. A. Held, “Polymer network structure and electro-optic performance of polymer stabilized cholesteric textures II. The effect of UV curing conditions,” Liq. Cryst. 24(3), 397–406 (1998).
[Crossref]

I. Dierking, L. L. Kosbar, A. Afzali-Ardakani, A. C. Lowe, and G. A. Held, “Network morphology of polymer stabilized liquid crystals,” Appl. Phys. Lett. 71(17), 2454–2456 (1997).
[Crossref]

Friedel, G.

G. Friedel, “The mesomorphic states of matter,” Ann. Phys. 18(18), 273–474 (1922).
[Crossref]

Gardiner, D. J.

D. J. Gardiner, S. M. Morris, P. J. W. Hands, C. Mowatt, R. Rutledge, T. D. Wilkinson, and H. J. Coles, “Paintable band-edge liquid crystal lasers,” Opt. Express 19(3), 2432–2439 (2011).
[Crossref] [PubMed]

D. J. Gardiner, S. M. Morris, F. Castles, M. M. Qasim, W.-S. Kim, S. S. Choi, H. J. Park, I.-J. Chung, and H. J. Coles, “Polymer stabilized chiral nematic liquid crystals for fast switching and high contrast electro-optic devices,” Appl. Phys. Lett. 98(26), 263508 (2011).
[Crossref]

Gerritsma, C. J.

C. J. Gerritsma and P. Van Zanten, “Periodic perturbation in the cholesteric plane texture,” Phys. Lett. A 37(1), 47–48 (1971).
[Crossref]

Gou, F.

G. Tan, Y.-H. Lee, F. Gou, H. Chen, Y. Huang, Y. F. Lan, C.-Y. Tsai, and S.-T. Wu, “Review on polymer-stabilized short-pitch cholesteric liquid crystal displays,” J. Phys. D Appl. Phys. 50(49), 493001 (2017).
[Crossref]

Hands, P. J. W.

Held, G. A.

I. Dierking, L. L. Kosbar, A. C. Lowe, and G. A. Held, “Polymer network structure and electro-optic performance of polymer stabilized cholesteric textures I. The influence of curing temperature,” Liq. Cryst. 24(3), 387–395 (1998).
[Crossref]

I. Dierking, L. L. Kosbar, A. C. Lowe, and G. A. Held, “Polymer network structure and electro-optic performance of polymer stabilized cholesteric textures II. The effect of UV curing conditions,” Liq. Cryst. 24(3), 397–406 (1998).
[Crossref]

I. Dierking, L. L. Kosbar, A. Afzali-Ardakani, A. C. Lowe, and G. A. Held, “Network morphology of polymer stabilized liquid crystals,” Appl. Phys. Lett. 71(17), 2454–2456 (1997).
[Crossref]

Hikmet, R. A. M.

R. A. M. Hikmet and H. Kemperman, “Electrically switchable mirror and optical components made from liquid-crystal gels,” Nature 392(6675), 476–479 (1998).
[Crossref]

Huang, Y.

G. Tan, Y.-H. Lee, F. Gou, H. Chen, Y. Huang, Y. F. Lan, C.-Y. Tsai, and S.-T. Wu, “Review on polymer-stabilized short-pitch cholesteric liquid crystal displays,” J. Phys. D Appl. Phys. 50(49), 493001 (2017).
[Crossref]

Huh, J.-H.

J.-H. Huh, “Electrohydrodynamic instability in cholesteric liquid crystals in the presence of a magnetic field,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 477, 67–76 (2007).
[Crossref]

Jang, W.

Jewell, S. A.

S. A. Jewell, P. Vukusic, and N. W. Roberts, “Circularly polarized colour reflection from helicoidal structures in the beetle Plusiotis boucardi,” New J. Phys. 9(4), 1 (2007).
[Crossref]

Kelker, H.

H. Kelker, “History of liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 21(1-2), 1–48 (1973).
[Crossref]

Kemperman, H.

R. A. M. Hikmet and H. Kemperman, “Electrically switchable mirror and optical components made from liquid-crystal gels,” Nature 392(6675), 476–479 (1998).
[Crossref]

Kim, H.

Kim, J.

Kim, S.

Kim, W.-S.

D. J. Gardiner, S. M. Morris, F. Castles, M. M. Qasim, W.-S. Kim, S. S. Choi, H. J. Park, I.-J. Chung, and H. J. Coles, “Polymer stabilized chiral nematic liquid crystals for fast switching and high contrast electro-optic devices,” Appl. Phys. Lett. 98(26), 263508 (2011).
[Crossref]

Kosbar, L. L.

I. Dierking, L. L. Kosbar, A. C. Lowe, and G. A. Held, “Polymer network structure and electro-optic performance of polymer stabilized cholesteric textures I. The influence of curing temperature,” Liq. Cryst. 24(3), 387–395 (1998).
[Crossref]

I. Dierking, L. L. Kosbar, A. C. Lowe, and G. A. Held, “Polymer network structure and electro-optic performance of polymer stabilized cholesteric textures II. The effect of UV curing conditions,” Liq. Cryst. 24(3), 397–406 (1998).
[Crossref]

I. Dierking, L. L. Kosbar, A. Afzali-Ardakani, A. C. Lowe, and G. A. Held, “Network morphology of polymer stabilized liquid crystals,” Appl. Phys. Lett. 71(17), 2454–2456 (1997).
[Crossref]

Lan, Y. F.

G. Tan, Y.-H. Lee, F. Gou, H. Chen, Y. Huang, Y. F. Lan, C.-Y. Tsai, and S.-T. Wu, “Review on polymer-stabilized short-pitch cholesteric liquid crystal displays,” J. Phys. D Appl. Phys. 50(49), 493001 (2017).
[Crossref]

Lee, B.-Y.

J.-H. Lee and B.-Y. Lee, “Boundary symmetry-stabilized memory in mono-layered cholesteric capsule,” Appl. Phys. Lett. 11(15), 153308 (2011).
[Crossref]

B.-Y. Lee and J.-H. Lee, “Printable flexible cholesteric capsule display with a fine resolution of RGB subpixels,” Curr. Appl. Phys. 11(6), 1389–1393 (2011).
[Crossref]

Lee, H.-G.

H.-G. Lee, S. Munir, and S.-Y. Park, “Cholesteric liquid crystal droplets for biosensors,” ACS Appl. Mater. Interfaces 8(39), 26407–26417 (2016).
[Crossref] [PubMed]

Lee, J.-H.

J. Kim, H. Kim, S. Kim, S. Choi, W. Jang, J. Kim, and J.-H. Lee, “Broadening the reflection bandwidth of polymer-stabilized cholesteric liquid crystal via a reactive surface coating layer,” Appl. Opt. 56(20), 5731–5735 (2017).
[Crossref] [PubMed]

J.-H. Lee and B.-Y. Lee, “Boundary symmetry-stabilized memory in mono-layered cholesteric capsule,” Appl. Phys. Lett. 11(15), 153308 (2011).
[Crossref]

B.-Y. Lee and J.-H. Lee, “Printable flexible cholesteric capsule display with a fine resolution of RGB subpixels,” Curr. Appl. Phys. 11(6), 1389–1393 (2011).
[Crossref]

Lee, Y.-H.

G. Tan, Y.-H. Lee, F. Gou, H. Chen, Y. Huang, Y. F. Lan, C.-Y. Tsai, and S.-T. Wu, “Review on polymer-stabilized short-pitch cholesteric liquid crystal displays,” J. Phys. D Appl. Phys. 50(49), 493001 (2017).
[Crossref]

Leroy-Sanders, C.

D. M. Makow and C. Leroy-Sanders, “Additive colour properties and colour gamut of cholesteric liquid crystals,” Nature 276(5683), 48–50 (1978).
[Crossref]

Liu, J.-H.

R. Balamurugan and J.-H. Liu, “A review on the fabrication of photonic band gap materials based on cholesteric liquid crystals,” React. Funct. Polym. 105, 9–34 (2016).
[Crossref]

Lowe, A. C.

I. Dierking, L. L. Kosbar, A. C. Lowe, and G. A. Held, “Polymer network structure and electro-optic performance of polymer stabilized cholesteric textures I. The influence of curing temperature,” Liq. Cryst. 24(3), 387–395 (1998).
[Crossref]

I. Dierking, L. L. Kosbar, A. C. Lowe, and G. A. Held, “Polymer network structure and electro-optic performance of polymer stabilized cholesteric textures II. The effect of UV curing conditions,” Liq. Cryst. 24(3), 397–406 (1998).
[Crossref]

I. Dierking, L. L. Kosbar, A. Afzali-Ardakani, A. C. Lowe, and G. A. Held, “Network morphology of polymer stabilized liquid crystals,” Appl. Phys. Lett. 71(17), 2454–2456 (1997).
[Crossref]

Lub, J.

D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature 378(6556), 467–469 (1995).
[Crossref]

Makow, D. M.

D. M. Makow and C. Leroy-Sanders, “Additive colour properties and colour gamut of cholesteric liquid crystals,” Nature 276(5683), 48–50 (1978).
[Crossref]

Mitov, M.

M. Mitov, “Cholesteric liquid crystals in living matter,” Soft Matter 13(23), 4176–4209 (2017).
[Crossref] [PubMed]

G. Agez, S. Relaix, and M. Mitov, “Cholesteric liquid crystal gels with a graded mechanical stress,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(2), 022513 (2014).
[Crossref] [PubMed]

M. Mitov, “Cholesteric liquid crystals with a broad light reflection band,” Adv. Mater. 24(47), 6260–6276 (2012).
[Crossref] [PubMed]

S. Relaix and M. Mitov, “Polymer‐stabilised cholesteric liquid crystals with a double helical handedness: influence of an ultraviolet light absorber on the characteristics of the circularly polarised reflection band,” Liq. Cryst. 35(8), 1037–1042 (2008).
[Crossref]

S. Relaix, C. Bourgerette, and M. Mitov, “Polymer stabilized liquid crystal films reflecting both right-and left-circularly polarized light,” Appl. Phys. Lett. 92, 061101 (2008).

S. Relaix, C. Bourgerette, and M. Mitov, “Broadband reflective cholesteric liquid crystalline gels: volume distribution of reflection properties and polymer network in relation with the geometry of the cell photopolymerization,” Liq. Cryst. 34(9), 1009–1018 (2007).
[Crossref]

M. Mitov and N. Dessaud, “Going beyond the reflectance limit of cholesteric liquid crystals,” Nat. Mater. 5(5), 361–364 (2006).
[Crossref] [PubMed]

M. Mitov, A. Boudet, P. Sopena, and P. Sixou, “Morphological study of a chiral polymer network in a nematic liquid crystal from a concentration gradient,” Liq. Cryst. 23(6), 903–910 (1997).
[Crossref]

Mol, G. N.

D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature 378(6556), 467–469 (1995).
[Crossref]

Morris, S. M.

D. J. Gardiner, S. M. Morris, P. J. W. Hands, C. Mowatt, R. Rutledge, T. D. Wilkinson, and H. J. Coles, “Paintable band-edge liquid crystal lasers,” Opt. Express 19(3), 2432–2439 (2011).
[Crossref] [PubMed]

D. J. Gardiner, S. M. Morris, F. Castles, M. M. Qasim, W.-S. Kim, S. S. Choi, H. J. Park, I.-J. Chung, and H. J. Coles, “Polymer stabilized chiral nematic liquid crystals for fast switching and high contrast electro-optic devices,” Appl. Phys. Lett. 98(26), 263508 (2011).
[Crossref]

Mowatt, C.

Munir, S.

H.-G. Lee, S. Munir, and S.-Y. Park, “Cholesteric liquid crystal droplets for biosensors,” ACS Appl. Mater. Interfaces 8(39), 26407–26417 (2016).
[Crossref] [PubMed]

Niggemann, E.

E. Niggemann and H. Stegemeyer, “Magnetic field-induced instabilities in cholesteric liquid crystals: Periodic deformations of the grandjean texture,” Liq. Cryst. 5(2), 739–747 (1989).
[Crossref]

Park, H. J.

D. J. Gardiner, S. M. Morris, F. Castles, M. M. Qasim, W.-S. Kim, S. S. Choi, H. J. Park, I.-J. Chung, and H. J. Coles, “Polymer stabilized chiral nematic liquid crystals for fast switching and high contrast electro-optic devices,” Appl. Phys. Lett. 98(26), 263508 (2011).
[Crossref]

Park, S.-Y.

H.-G. Lee, S. Munir, and S.-Y. Park, “Cholesteric liquid crystal droplets for biosensors,” ACS Appl. Mater. Interfaces 8(39), 26407–26417 (2016).
[Crossref] [PubMed]

Qasim, M. M.

D. J. Gardiner, S. M. Morris, F. Castles, M. M. Qasim, W.-S. Kim, S. S. Choi, H. J. Park, I.-J. Chung, and H. J. Coles, “Polymer stabilized chiral nematic liquid crystals for fast switching and high contrast electro-optic devices,” Appl. Phys. Lett. 98(26), 263508 (2011).
[Crossref]

Relaix, S.

G. Agez, S. Relaix, and M. Mitov, “Cholesteric liquid crystal gels with a graded mechanical stress,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(2), 022513 (2014).
[Crossref] [PubMed]

S. Relaix and M. Mitov, “Polymer‐stabilised cholesteric liquid crystals with a double helical handedness: influence of an ultraviolet light absorber on the characteristics of the circularly polarised reflection band,” Liq. Cryst. 35(8), 1037–1042 (2008).
[Crossref]

S. Relaix, C. Bourgerette, and M. Mitov, “Polymer stabilized liquid crystal films reflecting both right-and left-circularly polarized light,” Appl. Phys. Lett. 92, 061101 (2008).

S. Relaix, C. Bourgerette, and M. Mitov, “Broadband reflective cholesteric liquid crystalline gels: volume distribution of reflection properties and polymer network in relation with the geometry of the cell photopolymerization,” Liq. Cryst. 34(9), 1009–1018 (2007).
[Crossref]

Roberts, N. W.

S. A. Jewell, P. Vukusic, and N. W. Roberts, “Circularly polarized colour reflection from helicoidal structures in the beetle Plusiotis boucardi,” New J. Phys. 9(4), 1 (2007).
[Crossref]

Rutledge, R.

Sixou, P.

M. Mitov, A. Boudet, P. Sopena, and P. Sixou, “Morphological study of a chiral polymer network in a nematic liquid crystal from a concentration gradient,” Liq. Cryst. 23(6), 903–910 (1997).
[Crossref]

Sopena, P.

M. Mitov, A. Boudet, P. Sopena, and P. Sixou, “Morphological study of a chiral polymer network in a nematic liquid crystal from a concentration gradient,” Liq. Cryst. 23(6), 903–910 (1997).
[Crossref]

Stegemeyer, H.

E. Niggemann and H. Stegemeyer, “Magnetic field-induced instabilities in cholesteric liquid crystals: Periodic deformations of the grandjean texture,” Liq. Cryst. 5(2), 739–747 (1989).
[Crossref]

Tan, G.

G. Tan, Y.-H. Lee, F. Gou, H. Chen, Y. Huang, Y. F. Lan, C.-Y. Tsai, and S.-T. Wu, “Review on polymer-stabilized short-pitch cholesteric liquid crystal displays,” J. Phys. D Appl. Phys. 50(49), 493001 (2017).
[Crossref]

Tsai, C.-Y.

G. Tan, Y.-H. Lee, F. Gou, H. Chen, Y. Huang, Y. F. Lan, C.-Y. Tsai, and S.-T. Wu, “Review on polymer-stabilized short-pitch cholesteric liquid crystal displays,” J. Phys. D Appl. Phys. 50(49), 493001 (2017).
[Crossref]

Van Doorn, C. Z.

M. De Zwart and C. Z. Van Doorn, “The field-induced square grid perturbation in the planar texture of cholesteric liquid crystals,” J. Phys. Colloq. 40(C3), C3–C278 (1979).
[Crossref]

Van Zanten, P.

C. J. Gerritsma and P. Van Zanten, “Periodic perturbation in the cholesteric plane texture,” Phys. Lett. A 37(1), 47–48 (1971).
[Crossref]

Vukusic, P.

S. A. Jewell, P. Vukusic, and N. W. Roberts, “Circularly polarized colour reflection from helicoidal structures in the beetle Plusiotis boucardi,” New J. Phys. 9(4), 1 (2007).
[Crossref]

Wilkinson, T. D.

Wu, S.-T.

G. Tan, Y.-H. Lee, F. Gou, H. Chen, Y. Huang, Y. F. Lan, C.-Y. Tsai, and S.-T. Wu, “Review on polymer-stabilized short-pitch cholesteric liquid crystal displays,” J. Phys. D Appl. Phys. 50(49), 493001 (2017).
[Crossref]

ACS Appl. Mater. Interfaces (1)

H.-G. Lee, S. Munir, and S.-Y. Park, “Cholesteric liquid crystal droplets for biosensors,” ACS Appl. Mater. Interfaces 8(39), 26407–26417 (2016).
[Crossref] [PubMed]

Adv. Mater. (1)

M. Mitov, “Cholesteric liquid crystals with a broad light reflection band,” Adv. Mater. 24(47), 6260–6276 (2012).
[Crossref] [PubMed]

Ann. Phys. (1)

G. Friedel, “The mesomorphic states of matter,” Ann. Phys. 18(18), 273–474 (1922).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

I. Dierking, L. L. Kosbar, A. Afzali-Ardakani, A. C. Lowe, and G. A. Held, “Network morphology of polymer stabilized liquid crystals,” Appl. Phys. Lett. 71(17), 2454–2456 (1997).
[Crossref]

S. Relaix, C. Bourgerette, and M. Mitov, “Polymer stabilized liquid crystal films reflecting both right-and left-circularly polarized light,” Appl. Phys. Lett. 92, 061101 (2008).

D. J. Gardiner, S. M. Morris, F. Castles, M. M. Qasim, W.-S. Kim, S. S. Choi, H. J. Park, I.-J. Chung, and H. J. Coles, “Polymer stabilized chiral nematic liquid crystals for fast switching and high contrast electro-optic devices,” Appl. Phys. Lett. 98(26), 263508 (2011).
[Crossref]

J.-H. Lee and B.-Y. Lee, “Boundary symmetry-stabilized memory in mono-layered cholesteric capsule,” Appl. Phys. Lett. 11(15), 153308 (2011).
[Crossref]

Curr. Appl. Phys. (1)

B.-Y. Lee and J.-H. Lee, “Printable flexible cholesteric capsule display with a fine resolution of RGB subpixels,” Curr. Appl. Phys. 11(6), 1389–1393 (2011).
[Crossref]

J. Phys. Colloq. (1)

M. De Zwart and C. Z. Van Doorn, “The field-induced square grid perturbation in the planar texture of cholesteric liquid crystals,” J. Phys. Colloq. 40(C3), C3–C278 (1979).
[Crossref]

J. Phys. D Appl. Phys. (1)

G. Tan, Y.-H. Lee, F. Gou, H. Chen, Y. Huang, Y. F. Lan, C.-Y. Tsai, and S.-T. Wu, “Review on polymer-stabilized short-pitch cholesteric liquid crystal displays,” J. Phys. D Appl. Phys. 50(49), 493001 (2017).
[Crossref]

Liq. Cryst. (7)

I. Dierking, L. L. Kosbar, A. C. Lowe, and G. A. Held, “Polymer network structure and electro-optic performance of polymer stabilized cholesteric textures II. The effect of UV curing conditions,” Liq. Cryst. 24(3), 397–406 (1998).
[Crossref]

I. Dierking, L. L. Kosbar, A. C. Lowe, and G. A. Held, “Polymer network structure and electro-optic performance of polymer stabilized cholesteric textures I. The influence of curing temperature,” Liq. Cryst. 24(3), 387–395 (1998).
[Crossref]

E. Niggemann and H. Stegemeyer, “Magnetic field-induced instabilities in cholesteric liquid crystals: Periodic deformations of the grandjean texture,” Liq. Cryst. 5(2), 739–747 (1989).
[Crossref]

M. Mitov, A. Boudet, P. Sopena, and P. Sixou, “Morphological study of a chiral polymer network in a nematic liquid crystal from a concentration gradient,” Liq. Cryst. 23(6), 903–910 (1997).
[Crossref]

D. Coates, “Development and applications of cholesteric liquid crystals,” Liq. Cryst. 42, 653–665 (2015).

S. Relaix, C. Bourgerette, and M. Mitov, “Broadband reflective cholesteric liquid crystalline gels: volume distribution of reflection properties and polymer network in relation with the geometry of the cell photopolymerization,” Liq. Cryst. 34(9), 1009–1018 (2007).
[Crossref]

S. Relaix and M. Mitov, “Polymer‐stabilised cholesteric liquid crystals with a double helical handedness: influence of an ultraviolet light absorber on the characteristics of the circularly polarised reflection band,” Liq. Cryst. 35(8), 1037–1042 (2008).
[Crossref]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (2)

H. Kelker, “History of liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 21(1-2), 1–48 (1973).
[Crossref]

J.-H. Huh, “Electrohydrodynamic instability in cholesteric liquid crystals in the presence of a magnetic field,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 477, 67–76 (2007).
[Crossref]

Nat. Mater. (1)

M. Mitov and N. Dessaud, “Going beyond the reflectance limit of cholesteric liquid crystals,” Nat. Mater. 5(5), 361–364 (2006).
[Crossref] [PubMed]

Nature (3)

D. M. Makow and C. Leroy-Sanders, “Additive colour properties and colour gamut of cholesteric liquid crystals,” Nature 276(5683), 48–50 (1978).
[Crossref]

D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature 378(6556), 467–469 (1995).
[Crossref]

R. A. M. Hikmet and H. Kemperman, “Electrically switchable mirror and optical components made from liquid-crystal gels,” Nature 392(6675), 476–479 (1998).
[Crossref]

New J. Phys. (1)

S. A. Jewell, P. Vukusic, and N. W. Roberts, “Circularly polarized colour reflection from helicoidal structures in the beetle Plusiotis boucardi,” New J. Phys. 9(4), 1 (2007).
[Crossref]

Opt. Express (1)

Phys. Lett. A (1)

C. J. Gerritsma and P. Van Zanten, “Periodic perturbation in the cholesteric plane texture,” Phys. Lett. A 37(1), 47–48 (1971).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

G. Agez, S. Relaix, and M. Mitov, “Cholesteric liquid crystal gels with a graded mechanical stress,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(2), 022513 (2014).
[Crossref] [PubMed]

React. Funct. Polym. (1)

R. Balamurugan and J.-H. Liu, “A review on the fabrication of photonic band gap materials based on cholesteric liquid crystals,” React. Funct. Polym. 105, 9–34 (2016).
[Crossref]

Soft Matter (1)

M. Mitov, “Cholesteric liquid crystals in living matter,” Soft Matter 13(23), 4176–4209 (2017).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic illustration of the PSCLC sample (a) before and (b) after UV irradiation. The CLC molecules in (b) were painted for better understanding.
Fig. 2
Fig. 2 TR of the PSCLC samples with (a) 0.4, (b) 2.0, (c) 5.2, (d) 9.0, and (e) 12.8 wt% DA RM before and after UV polymerization.
Fig. 3
Fig. 3 Photograph of the PSCLC samples with 0.4 [(a), (f)], 2.0 [(b), (g)], 5.2 [(c), (h)], 9.0 [(d), (i)], and 12.8 wt% [(e), (j)] DA. The light was reflected on the top and the bottom substrate in (a)-(e) and (f)-(j), respectively. The UV light was exposed on the top substrate of the samples.
Fig. 4
Fig. 4 (a) TR of the PSCLC samples with 0.4 wt% DA vs. UV exposure time. (b) Reflective POM image of the corresponding sample vs. UV exposure time.
Fig. 5
Fig. 5 Reflective POM texture of the PSCLC samples with 0.4 [(a), (f)], 2.0 [(b), (g)], 5.2 [(c), (h)], 9.0 [(d), (i)], and 12.8 wt% [(e), (j)] DA-RM. The light was reflected on the top and the bottom substrate in (a)-(e) and (f)-(j), respectively. Scale bars correspond to 20 μm.
Fig. 6
Fig. 6 SEM image of the surface of the PSCLC samples with (a) 0.4, (b) 2.0, (c) 5.2, (d) 9.0, and (e) 12.8 wt% DA-RM. (a)-(e) and (f)-(j) correspond to the top and the bottom substrate surface, respectively.
Fig. 7
Fig. 7 Photograph of the reflected image of the PSCLC sample with 0.4 wt% diacrylate RM.

Metrics