Abstract

Gallium nitride (GaN), a wide-bandgap III–V semiconductor material with a bandgap wavelength λg = 366 nm (for Wurtzite GaN) and transparency window covering the visible spectrum, has a large number of applications for photonics and optoelectronics. However, the optical quality of this material suffers from growth imperfections due to the lack of a suitable substrate. Recent studies have shown that GaN grown on (−201) β – Ga2O3 (gallium oxide) has better lattice matching and hence superior optical quality as compared to GaN grown traditionally on Al2O3 (sapphire). In this work, we report on the fabrication of GaN waveguides on Ga2O3 substrate, followed by a wet-etch process aimed at the reduction of waveguide surface roughness and improvement of side-wall verticality in these waveguides. The propagation loss in the resulting waveguides has been experimentally determined to be 7.5 dB/cm.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Precision etching for multi-level AlGaAs waveguides

Zhongfa Liao and J. Stewart Aitchison
Opt. Mater. Express 7(3) 895-903 (2017)

Optimization of dry etching parameters for fabrication of polysilicon waveguides with smooth sidewall using a capacitively coupled plasma reactor

Surya Cheemalapati, Mikhail Ladanov, John Winskas, and Anna Pyayt
Appl. Opt. 53(25) 5745-5749 (2014)

Air-clad suspended nanocrystalline diamond ridge waveguides

Aly Abdou, Parashara Panduranga, Jens Richter, Evan L. H. Thomas, Soumen Mandal, Oliver A. Williams, Jeremy Witzens, and Maziar P. Nezhad
Opt. Express 26(11) 13883-13890 (2018)

References

  • View by:
  • |
  • |
  • |

  1. B. Monemar, “III–V nitrides–important future electronic materials,” J. Mater. Sci. Mater. Electron. 10, 227–254 (1999).
    [Crossref]
  2. S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. 64, 1687–1689 (1994).
    [Crossref]
  3. D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz,“Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8, 310–320 (2002).
    [Crossref]
  4. S. T. Sheppard, K. Doverspike, W. L. Pribble, S. T. Allen, J. W. Palmour, L. T. Kehias, and T. J. Jenkins, “High-power microwave GaN/AlGaN HEMTs on semi-insulating silicon carbide substrates,” IEEE Electron. Device Lett. 20, 161–163 (1999).
    [Crossref]
  5. T. Miyajima, T. Tojyo, T. Asano, K. Yanashima, S. Kijima, T. Hino, M. Takeya, S. Uchida, S. Tomiya, K. Funato, T. Asatsuma, T. Kobayashi, and M. Ikeda, “GaN-based blue laser diodes,” J. Phys. Condens. Matter 13, 7099–7114 (2001).
    [Crossref]
  6. V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photonics Technol. Lett. 14, 74–76 (2002).
    [Crossref]
  7. A. Gaggero, S. J. Nejad, F. Marsili, F. Mattioli, R. Leoni, D. Bitauld, D. Sahin, G. J. Hamhuis, R. Nötzel, R. Sanjines, and A. Fiore, “Nanowire superconducting single-photon detectors on GaAs for integrated quantum photonic applications,” Appl. Phys. Lett. 97, 151108 (2010).
    [Crossref]
  8. K. Dolgaleva, P. Sarrafi, P. Kultavewuti, K. M. Awan, N. Feher, J. S. Aitchison, L. Qian, M. Volatier, R. Arès, and V. Aimez, “Tuneable four-wave mixing in AlGaAs nanowires,” Opt. Express 23, 22477–22493 (2015).
    [Crossref] [PubMed]
  9. C. Stampfl and C. G. Van de Walle, “Energetics and electronic structure of stacking faults in AlN, GaN, and InN,” Phys. Rev. B 57, R15052 (1998).
    [Crossref]
  10. D. Kapolnek, X. H. Wu, B. Heying, S. Keller, B. P. Keller, U. K. Mishra, S. P. DenBaars, and J. S. Speck, “Structural evolution in epitaxial metalorganic chemical vapor deposition grown GaN films on sapphire,” Appl. Phys. Lett. 67, 1541–1543 (1995).
    [Crossref]
  11. T. L. Tansley and R. J. Egan, “Point-defect energies in the nitrides of aluminum, gallium, and indium,” Phys. Rev. B 45, 10942–10950 (1992).
    [Crossref]
  12. T. Sugahara, H. Sato, M. S. Hao, Y. Naoi, S. Kurai, S. Tottori, K. Yamashita, K. Nishino, L. T. Romano, and S. Sakai, “Role of Dislocation in InGaN Phase Separation,” Jpn. J. Appl. Phys. 37, L1195–L1198 (1998).
    [Crossref]
  13. M. M. Muhammed, M. Peres, Y. Yamashita, Y. Morishima, S. Sato, N. Franco, K. Lorenz, A. Kuramata, and I. S. Roqan, “High optical and structural quality of GaN epilayers grown on (−201) β−Ga2O3,” Appl. Phys. Lett. 105, 42112 (2014).
    [Crossref]
  14. M. M. Muhammed, M. A. Roldan, Y. Yamashita, S.-L. Sahonta, I. A. Ajia, K. Iizuka, A. Kuramata, C. J. Humphreys, and I. S. Roqan, “High-quality III-nitride films on conductive, transparent (−201)-oriented β – Ga2O3 using a GaN buffer layer,” Sci. Rep. 6, 29747 (2016).
    [Crossref]
  15. G. Yu, G. Wang, H. Ishikawa, M. Umeno, T. Soga, T. Egawa, J. Watanabe, and T. Jimbo, “Optical properties of wurtzite structure GaN on sapphire around fundamental absorption edge,” Appl. Phys. Lett. 70, 3209–3211 (1997).
    [Crossref]
  16. M. Rebien, W. Henrion, M. Hong, J. P. Mannaerts, and M. Fleischer, “Optical properties of gallium oxide thin films,” Appl. Phys. Lett. 81, 250–252 (2002).
    [Crossref]
  17. K. M. Awan, R. Sanatinia, and S. Anand, “Nanostructuring of GaAs with tailored topologies using colloidal lithography and dry etching,” J. Vac. Sci. Technol. B 32, 021801 (2014).
    [Crossref]
  18. K. M. Awan, S. A. Schulz, D. X. Liu, K. Dolgaleva, J. Upham, and R. W. Boyd, “Post-process wavelength tuning of silicon photonic crystal slow-light waveguides,” Opt. Lett. 40, 1952–1955 (2015).
    [Crossref] [PubMed]
  19. R. Sanatinia, K. M. Awan, S. Naureen, N. Anttu, E. Ebraert, and S. Anand, “GaAs nanopillar arrays with suppressed broadband reflectance and high optical quality for photovoltaic applications,” Opt. Mater. Express 2, 1671–1679 (2012).
    [Crossref]
  20. D. A. Stocker, E. F. Schubert, and J. M. Redwing, “Crystallographic wet chemical etching of GaN,” Appl. Phys. Lett. 73, 2654–2656 (1998).
    [Crossref]
  21. K. W. Kim, S. D. Jung, D. S. Kim, H. S. Kang, K. S. Im, J. J. Oh, J. B. Ha, J. K. Shin, and J. H. Lee, “Effects of TMAH treatment on device performance of normally off (Al2O3)/GaN MOSFET,” IEEE Electron. Device Lett. 32, 1376–1378 (2011).
    [Crossref]
  22. R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36, 143–147 (1985).
    [Crossref]
  23. A. Stolz, E. Cho, E. Dogheche, Y. Androussi, D. Troadec, D. Pavlidis, and D. Decoster, “Optical waveguide loss minimized into gallium nitride based structures grown by metal organic vapor phase epitaxy,” Appl. Phys. Lett. 98, 161903 (2011).
    [Crossref]
  24. R. Geiss, A. Chowdhury, C. M. Staus, H. M. Ng, S. S. Park, and J. Y. Han, “Low loss GaN at 1550nm,” Appl. Phys. Lett. 87, 132107 (2005).
    [Crossref]
  25. A. Lupu, F. H. Julien, S. Golka, G. Pozzovivo, G. Strasser, E. Baumann, F. Giorgetta, D. Hofstetter, S. Nicolay, M. Mosca, E. Feltin, J. Carlin, and N. Grandjean, “Lattice-Matched GaN–InAlN Waveguides at λ=1.55 µ m Grown by Metal–Organic Vapor Phase Epitaxy,” IEEE Photon. Technol. Lett. 20, 102–104 (2008).
    [Crossref]
  26. T. Sekiya, T. Sasaki, and K. Hane, “Design, fabrication, and optical characteristics of freestanding GaN waveguides on silicon substrate,” J. Vac. Sci. Technol. B 33, 031207 (2015).
    [Crossref]
  27. R. Hui, S. Taherion, Y. Wan, J. Li, S. X. Jin, J. Y. Lin, and H. X. Jiang, “GaN-based waveguide devices for long-wavelength optical communications,” Appl. Phys. Lett. 82, 1326–1328 (2003).
    [Crossref]
  28. O. Westreich, M. Katz, Y. Paltiel, O. Ternyak, and N. Sicron, “Low propagation loss in GaN/AlGaN-based ridge waveguides,” Phys. Stat. Sol. 212, 1043–1048 (2015).

2016 (1)

M. M. Muhammed, M. A. Roldan, Y. Yamashita, S.-L. Sahonta, I. A. Ajia, K. Iizuka, A. Kuramata, C. J. Humphreys, and I. S. Roqan, “High-quality III-nitride films on conductive, transparent (−201)-oriented β – Ga2O3 using a GaN buffer layer,” Sci. Rep. 6, 29747 (2016).
[Crossref]

2015 (4)

K. Dolgaleva, P. Sarrafi, P. Kultavewuti, K. M. Awan, N. Feher, J. S. Aitchison, L. Qian, M. Volatier, R. Arès, and V. Aimez, “Tuneable four-wave mixing in AlGaAs nanowires,” Opt. Express 23, 22477–22493 (2015).
[Crossref] [PubMed]

K. M. Awan, S. A. Schulz, D. X. Liu, K. Dolgaleva, J. Upham, and R. W. Boyd, “Post-process wavelength tuning of silicon photonic crystal slow-light waveguides,” Opt. Lett. 40, 1952–1955 (2015).
[Crossref] [PubMed]

T. Sekiya, T. Sasaki, and K. Hane, “Design, fabrication, and optical characteristics of freestanding GaN waveguides on silicon substrate,” J. Vac. Sci. Technol. B 33, 031207 (2015).
[Crossref]

O. Westreich, M. Katz, Y. Paltiel, O. Ternyak, and N. Sicron, “Low propagation loss in GaN/AlGaN-based ridge waveguides,” Phys. Stat. Sol. 212, 1043–1048 (2015).

2014 (2)

K. M. Awan, R. Sanatinia, and S. Anand, “Nanostructuring of GaAs with tailored topologies using colloidal lithography and dry etching,” J. Vac. Sci. Technol. B 32, 021801 (2014).
[Crossref]

M. M. Muhammed, M. Peres, Y. Yamashita, Y. Morishima, S. Sato, N. Franco, K. Lorenz, A. Kuramata, and I. S. Roqan, “High optical and structural quality of GaN epilayers grown on (−201) β−Ga2O3,” Appl. Phys. Lett. 105, 42112 (2014).
[Crossref]

2012 (1)

2011 (2)

K. W. Kim, S. D. Jung, D. S. Kim, H. S. Kang, K. S. Im, J. J. Oh, J. B. Ha, J. K. Shin, and J. H. Lee, “Effects of TMAH treatment on device performance of normally off (Al2O3)/GaN MOSFET,” IEEE Electron. Device Lett. 32, 1376–1378 (2011).
[Crossref]

A. Stolz, E. Cho, E. Dogheche, Y. Androussi, D. Troadec, D. Pavlidis, and D. Decoster, “Optical waveguide loss minimized into gallium nitride based structures grown by metal organic vapor phase epitaxy,” Appl. Phys. Lett. 98, 161903 (2011).
[Crossref]

2010 (1)

A. Gaggero, S. J. Nejad, F. Marsili, F. Mattioli, R. Leoni, D. Bitauld, D. Sahin, G. J. Hamhuis, R. Nötzel, R. Sanjines, and A. Fiore, “Nanowire superconducting single-photon detectors on GaAs for integrated quantum photonic applications,” Appl. Phys. Lett. 97, 151108 (2010).
[Crossref]

2008 (1)

A. Lupu, F. H. Julien, S. Golka, G. Pozzovivo, G. Strasser, E. Baumann, F. Giorgetta, D. Hofstetter, S. Nicolay, M. Mosca, E. Feltin, J. Carlin, and N. Grandjean, “Lattice-Matched GaN–InAlN Waveguides at λ=1.55 µ m Grown by Metal–Organic Vapor Phase Epitaxy,” IEEE Photon. Technol. Lett. 20, 102–104 (2008).
[Crossref]

2005 (1)

R. Geiss, A. Chowdhury, C. M. Staus, H. M. Ng, S. S. Park, and J. Y. Han, “Low loss GaN at 1550nm,” Appl. Phys. Lett. 87, 132107 (2005).
[Crossref]

2003 (1)

R. Hui, S. Taherion, Y. Wan, J. Li, S. X. Jin, J. Y. Lin, and H. X. Jiang, “GaN-based waveguide devices for long-wavelength optical communications,” Appl. Phys. Lett. 82, 1326–1328 (2003).
[Crossref]

2002 (3)

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photonics Technol. Lett. 14, 74–76 (2002).
[Crossref]

M. Rebien, W. Henrion, M. Hong, J. P. Mannaerts, and M. Fleischer, “Optical properties of gallium oxide thin films,” Appl. Phys. Lett. 81, 250–252 (2002).
[Crossref]

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz,“Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8, 310–320 (2002).
[Crossref]

2001 (1)

T. Miyajima, T. Tojyo, T. Asano, K. Yanashima, S. Kijima, T. Hino, M. Takeya, S. Uchida, S. Tomiya, K. Funato, T. Asatsuma, T. Kobayashi, and M. Ikeda, “GaN-based blue laser diodes,” J. Phys. Condens. Matter 13, 7099–7114 (2001).
[Crossref]

1999 (2)

S. T. Sheppard, K. Doverspike, W. L. Pribble, S. T. Allen, J. W. Palmour, L. T. Kehias, and T. J. Jenkins, “High-power microwave GaN/AlGaN HEMTs on semi-insulating silicon carbide substrates,” IEEE Electron. Device Lett. 20, 161–163 (1999).
[Crossref]

B. Monemar, “III–V nitrides–important future electronic materials,” J. Mater. Sci. Mater. Electron. 10, 227–254 (1999).
[Crossref]

1998 (3)

C. Stampfl and C. G. Van de Walle, “Energetics and electronic structure of stacking faults in AlN, GaN, and InN,” Phys. Rev. B 57, R15052 (1998).
[Crossref]

T. Sugahara, H. Sato, M. S. Hao, Y. Naoi, S. Kurai, S. Tottori, K. Yamashita, K. Nishino, L. T. Romano, and S. Sakai, “Role of Dislocation in InGaN Phase Separation,” Jpn. J. Appl. Phys. 37, L1195–L1198 (1998).
[Crossref]

D. A. Stocker, E. F. Schubert, and J. M. Redwing, “Crystallographic wet chemical etching of GaN,” Appl. Phys. Lett. 73, 2654–2656 (1998).
[Crossref]

1997 (1)

G. Yu, G. Wang, H. Ishikawa, M. Umeno, T. Soga, T. Egawa, J. Watanabe, and T. Jimbo, “Optical properties of wurtzite structure GaN on sapphire around fundamental absorption edge,” Appl. Phys. Lett. 70, 3209–3211 (1997).
[Crossref]

1995 (1)

D. Kapolnek, X. H. Wu, B. Heying, S. Keller, B. P. Keller, U. K. Mishra, S. P. DenBaars, and J. S. Speck, “Structural evolution in epitaxial metalorganic chemical vapor deposition grown GaN films on sapphire,” Appl. Phys. Lett. 67, 1541–1543 (1995).
[Crossref]

1994 (1)

S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. 64, 1687–1689 (1994).
[Crossref]

1992 (1)

T. L. Tansley and R. J. Egan, “Point-defect energies in the nitrides of aluminum, gallium, and indium,” Phys. Rev. B 45, 10942–10950 (1992).
[Crossref]

1985 (1)

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36, 143–147 (1985).
[Crossref]

Absil, P. P.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photonics Technol. Lett. 14, 74–76 (2002).
[Crossref]

Aimez, V.

Aitchison, J. S.

Ajia, I. A.

M. M. Muhammed, M. A. Roldan, Y. Yamashita, S.-L. Sahonta, I. A. Ajia, K. Iizuka, A. Kuramata, C. J. Humphreys, and I. S. Roqan, “High-quality III-nitride films on conductive, transparent (−201)-oriented β – Ga2O3 using a GaN buffer layer,” Sci. Rep. 6, 29747 (2016).
[Crossref]

Allen, S. T.

S. T. Sheppard, K. Doverspike, W. L. Pribble, S. T. Allen, J. W. Palmour, L. T. Kehias, and T. J. Jenkins, “High-power microwave GaN/AlGaN HEMTs on semi-insulating silicon carbide substrates,” IEEE Electron. Device Lett. 20, 161–163 (1999).
[Crossref]

Anand, S.

K. M. Awan, R. Sanatinia, and S. Anand, “Nanostructuring of GaAs with tailored topologies using colloidal lithography and dry etching,” J. Vac. Sci. Technol. B 32, 021801 (2014).
[Crossref]

R. Sanatinia, K. M. Awan, S. Naureen, N. Anttu, E. Ebraert, and S. Anand, “GaAs nanopillar arrays with suppressed broadband reflectance and high optical quality for photovoltaic applications,” Opt. Mater. Express 2, 1671–1679 (2012).
[Crossref]

Androussi, Y.

A. Stolz, E. Cho, E. Dogheche, Y. Androussi, D. Troadec, D. Pavlidis, and D. Decoster, “Optical waveguide loss minimized into gallium nitride based structures grown by metal organic vapor phase epitaxy,” Appl. Phys. Lett. 98, 161903 (2011).
[Crossref]

Anttu, N.

Arès, R.

Asano, T.

T. Miyajima, T. Tojyo, T. Asano, K. Yanashima, S. Kijima, T. Hino, M. Takeya, S. Uchida, S. Tomiya, K. Funato, T. Asatsuma, T. Kobayashi, and M. Ikeda, “GaN-based blue laser diodes,” J. Phys. Condens. Matter 13, 7099–7114 (2001).
[Crossref]

Asatsuma, T.

T. Miyajima, T. Tojyo, T. Asano, K. Yanashima, S. Kijima, T. Hino, M. Takeya, S. Uchida, S. Tomiya, K. Funato, T. Asatsuma, T. Kobayashi, and M. Ikeda, “GaN-based blue laser diodes,” J. Phys. Condens. Matter 13, 7099–7114 (2001).
[Crossref]

Awan, K. M.

Baumann, E.

A. Lupu, F. H. Julien, S. Golka, G. Pozzovivo, G. Strasser, E. Baumann, F. Giorgetta, D. Hofstetter, S. Nicolay, M. Mosca, E. Feltin, J. Carlin, and N. Grandjean, “Lattice-Matched GaN–InAlN Waveguides at λ=1.55 µ m Grown by Metal–Organic Vapor Phase Epitaxy,” IEEE Photon. Technol. Lett. 20, 102–104 (2008).
[Crossref]

Bhat, J. C.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz,“Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8, 310–320 (2002).
[Crossref]

Bitauld, D.

A. Gaggero, S. J. Nejad, F. Marsili, F. Mattioli, R. Leoni, D. Bitauld, D. Sahin, G. J. Hamhuis, R. Nötzel, R. Sanjines, and A. Fiore, “Nanowire superconducting single-photon detectors on GaAs for integrated quantum photonic applications,” Appl. Phys. Lett. 97, 151108 (2010).
[Crossref]

Boyd, R. W.

Carlin, J.

A. Lupu, F. H. Julien, S. Golka, G. Pozzovivo, G. Strasser, E. Baumann, F. Giorgetta, D. Hofstetter, S. Nicolay, M. Mosca, E. Feltin, J. Carlin, and N. Grandjean, “Lattice-Matched GaN–InAlN Waveguides at λ=1.55 µ m Grown by Metal–Organic Vapor Phase Epitaxy,” IEEE Photon. Technol. Lett. 20, 102–104 (2008).
[Crossref]

Cho, E.

A. Stolz, E. Cho, E. Dogheche, Y. Androussi, D. Troadec, D. Pavlidis, and D. Decoster, “Optical waveguide loss minimized into gallium nitride based structures grown by metal organic vapor phase epitaxy,” Appl. Phys. Lett. 98, 161903 (2011).
[Crossref]

Chowdhury, A.

R. Geiss, A. Chowdhury, C. M. Staus, H. M. Ng, S. S. Park, and J. Y. Han, “Low loss GaN at 1550nm,” Appl. Phys. Lett. 87, 132107 (2005).
[Crossref]

Collins, D.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz,“Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8, 310–320 (2002).
[Crossref]

Decoster, D.

A. Stolz, E. Cho, E. Dogheche, Y. Androussi, D. Troadec, D. Pavlidis, and D. Decoster, “Optical waveguide loss minimized into gallium nitride based structures grown by metal organic vapor phase epitaxy,” Appl. Phys. Lett. 98, 161903 (2011).
[Crossref]

DenBaars, S. P.

D. Kapolnek, X. H. Wu, B. Heying, S. Keller, B. P. Keller, U. K. Mishra, S. P. DenBaars, and J. S. Speck, “Structural evolution in epitaxial metalorganic chemical vapor deposition grown GaN films on sapphire,” Appl. Phys. Lett. 67, 1541–1543 (1995).
[Crossref]

Dogheche, E.

A. Stolz, E. Cho, E. Dogheche, Y. Androussi, D. Troadec, D. Pavlidis, and D. Decoster, “Optical waveguide loss minimized into gallium nitride based structures grown by metal organic vapor phase epitaxy,” Appl. Phys. Lett. 98, 161903 (2011).
[Crossref]

Dolgaleva, K.

Doverspike, K.

S. T. Sheppard, K. Doverspike, W. L. Pribble, S. T. Allen, J. W. Palmour, L. T. Kehias, and T. J. Jenkins, “High-power microwave GaN/AlGaN HEMTs on semi-insulating silicon carbide substrates,” IEEE Electron. Device Lett. 20, 161–163 (1999).
[Crossref]

Ebraert, E.

Egan, R. J.

T. L. Tansley and R. J. Egan, “Point-defect energies in the nitrides of aluminum, gallium, and indium,” Phys. Rev. B 45, 10942–10950 (1992).
[Crossref]

Egawa, T.

G. Yu, G. Wang, H. Ishikawa, M. Umeno, T. Soga, T. Egawa, J. Watanabe, and T. Jimbo, “Optical properties of wurtzite structure GaN on sapphire around fundamental absorption edge,” Appl. Phys. Lett. 70, 3209–3211 (1997).
[Crossref]

Feher, N.

Feltin, E.

A. Lupu, F. H. Julien, S. Golka, G. Pozzovivo, G. Strasser, E. Baumann, F. Giorgetta, D. Hofstetter, S. Nicolay, M. Mosca, E. Feltin, J. Carlin, and N. Grandjean, “Lattice-Matched GaN–InAlN Waveguides at λ=1.55 µ m Grown by Metal–Organic Vapor Phase Epitaxy,” IEEE Photon. Technol. Lett. 20, 102–104 (2008).
[Crossref]

Fiore, A.

A. Gaggero, S. J. Nejad, F. Marsili, F. Mattioli, R. Leoni, D. Bitauld, D. Sahin, G. J. Hamhuis, R. Nötzel, R. Sanjines, and A. Fiore, “Nanowire superconducting single-photon detectors on GaAs for integrated quantum photonic applications,” Appl. Phys. Lett. 97, 151108 (2010).
[Crossref]

Fleischer, M.

M. Rebien, W. Henrion, M. Hong, J. P. Mannaerts, and M. Fleischer, “Optical properties of gallium oxide thin films,” Appl. Phys. Lett. 81, 250–252 (2002).
[Crossref]

Fletcher, R. M.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz,“Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8, 310–320 (2002).
[Crossref]

Franco, N.

M. M. Muhammed, M. Peres, Y. Yamashita, Y. Morishima, S. Sato, N. Franco, K. Lorenz, A. Kuramata, and I. S. Roqan, “High optical and structural quality of GaN epilayers grown on (−201) β−Ga2O3,” Appl. Phys. Lett. 105, 42112 (2014).
[Crossref]

Funato, K.

T. Miyajima, T. Tojyo, T. Asano, K. Yanashima, S. Kijima, T. Hino, M. Takeya, S. Uchida, S. Tomiya, K. Funato, T. Asatsuma, T. Kobayashi, and M. Ikeda, “GaN-based blue laser diodes,” J. Phys. Condens. Matter 13, 7099–7114 (2001).
[Crossref]

Gaggero, A.

A. Gaggero, S. J. Nejad, F. Marsili, F. Mattioli, R. Leoni, D. Bitauld, D. Sahin, G. J. Hamhuis, R. Nötzel, R. Sanjines, and A. Fiore, “Nanowire superconducting single-photon detectors on GaAs for integrated quantum photonic applications,” Appl. Phys. Lett. 97, 151108 (2010).
[Crossref]

Geiss, R.

R. Geiss, A. Chowdhury, C. M. Staus, H. M. Ng, S. S. Park, and J. Y. Han, “Low loss GaN at 1550nm,” Appl. Phys. Lett. 87, 132107 (2005).
[Crossref]

Giorgetta, F.

A. Lupu, F. H. Julien, S. Golka, G. Pozzovivo, G. Strasser, E. Baumann, F. Giorgetta, D. Hofstetter, S. Nicolay, M. Mosca, E. Feltin, J. Carlin, and N. Grandjean, “Lattice-Matched GaN–InAlN Waveguides at λ=1.55 µ m Grown by Metal–Organic Vapor Phase Epitaxy,” IEEE Photon. Technol. Lett. 20, 102–104 (2008).
[Crossref]

Goldhar, J.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photonics Technol. Lett. 14, 74–76 (2002).
[Crossref]

Golka, S.

A. Lupu, F. H. Julien, S. Golka, G. Pozzovivo, G. Strasser, E. Baumann, F. Giorgetta, D. Hofstetter, S. Nicolay, M. Mosca, E. Feltin, J. Carlin, and N. Grandjean, “Lattice-Matched GaN–InAlN Waveguides at λ=1.55 µ m Grown by Metal–Organic Vapor Phase Epitaxy,” IEEE Photon. Technol. Lett. 20, 102–104 (2008).
[Crossref]

Grandjean, N.

A. Lupu, F. H. Julien, S. Golka, G. Pozzovivo, G. Strasser, E. Baumann, F. Giorgetta, D. Hofstetter, S. Nicolay, M. Mosca, E. Feltin, J. Carlin, and N. Grandjean, “Lattice-Matched GaN–InAlN Waveguides at λ=1.55 µ m Grown by Metal–Organic Vapor Phase Epitaxy,” IEEE Photon. Technol. Lett. 20, 102–104 (2008).
[Crossref]

Grover, R.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photonics Technol. Lett. 14, 74–76 (2002).
[Crossref]

Ha, J. B.

K. W. Kim, S. D. Jung, D. S. Kim, H. S. Kang, K. S. Im, J. J. Oh, J. B. Ha, J. K. Shin, and J. H. Lee, “Effects of TMAH treatment on device performance of normally off (Al2O3)/GaN MOSFET,” IEEE Electron. Device Lett. 32, 1376–1378 (2011).
[Crossref]

Hamhuis, G. J.

A. Gaggero, S. J. Nejad, F. Marsili, F. Mattioli, R. Leoni, D. Bitauld, D. Sahin, G. J. Hamhuis, R. Nötzel, R. Sanjines, and A. Fiore, “Nanowire superconducting single-photon detectors on GaAs for integrated quantum photonic applications,” Appl. Phys. Lett. 97, 151108 (2010).
[Crossref]

Han, J. Y.

R. Geiss, A. Chowdhury, C. M. Staus, H. M. Ng, S. S. Park, and J. Y. Han, “Low loss GaN at 1550nm,” Appl. Phys. Lett. 87, 132107 (2005).
[Crossref]

Hane, K.

T. Sekiya, T. Sasaki, and K. Hane, “Design, fabrication, and optical characteristics of freestanding GaN waveguides on silicon substrate,” J. Vac. Sci. Technol. B 33, 031207 (2015).
[Crossref]

Hao, M. S.

T. Sugahara, H. Sato, M. S. Hao, Y. Naoi, S. Kurai, S. Tottori, K. Yamashita, K. Nishino, L. T. Romano, and S. Sakai, “Role of Dislocation in InGaN Phase Separation,” Jpn. J. Appl. Phys. 37, L1195–L1198 (1998).
[Crossref]

Henrion, W.

M. Rebien, W. Henrion, M. Hong, J. P. Mannaerts, and M. Fleischer, “Optical properties of gallium oxide thin films,” Appl. Phys. Lett. 81, 250–252 (2002).
[Crossref]

Heying, B.

D. Kapolnek, X. H. Wu, B. Heying, S. Keller, B. P. Keller, U. K. Mishra, S. P. DenBaars, and J. S. Speck, “Structural evolution in epitaxial metalorganic chemical vapor deposition grown GaN films on sapphire,” Appl. Phys. Lett. 67, 1541–1543 (1995).
[Crossref]

Hino, T.

T. Miyajima, T. Tojyo, T. Asano, K. Yanashima, S. Kijima, T. Hino, M. Takeya, S. Uchida, S. Tomiya, K. Funato, T. Asatsuma, T. Kobayashi, and M. Ikeda, “GaN-based blue laser diodes,” J. Phys. Condens. Matter 13, 7099–7114 (2001).
[Crossref]

Ho, P.-T.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photonics Technol. Lett. 14, 74–76 (2002).
[Crossref]

Hofstetter, D.

A. Lupu, F. H. Julien, S. Golka, G. Pozzovivo, G. Strasser, E. Baumann, F. Giorgetta, D. Hofstetter, S. Nicolay, M. Mosca, E. Feltin, J. Carlin, and N. Grandjean, “Lattice-Matched GaN–InAlN Waveguides at λ=1.55 µ m Grown by Metal–Organic Vapor Phase Epitaxy,” IEEE Photon. Technol. Lett. 20, 102–104 (2008).
[Crossref]

Holcomb, M. O.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz,“Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8, 310–320 (2002).
[Crossref]

Hong, M.

M. Rebien, W. Henrion, M. Hong, J. P. Mannaerts, and M. Fleischer, “Optical properties of gallium oxide thin films,” Appl. Phys. Lett. 81, 250–252 (2002).
[Crossref]

Hui, R.

R. Hui, S. Taherion, Y. Wan, J. Li, S. X. Jin, J. Y. Lin, and H. X. Jiang, “GaN-based waveguide devices for long-wavelength optical communications,” Appl. Phys. Lett. 82, 1326–1328 (2003).
[Crossref]

Humphreys, C. J.

M. M. Muhammed, M. A. Roldan, Y. Yamashita, S.-L. Sahonta, I. A. Ajia, K. Iizuka, A. Kuramata, C. J. Humphreys, and I. S. Roqan, “High-quality III-nitride films on conductive, transparent (−201)-oriented β – Ga2O3 using a GaN buffer layer,” Sci. Rep. 6, 29747 (2016).
[Crossref]

Ibrahim, T. A.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photonics Technol. Lett. 14, 74–76 (2002).
[Crossref]

Iizuka, K.

M. M. Muhammed, M. A. Roldan, Y. Yamashita, S.-L. Sahonta, I. A. Ajia, K. Iizuka, A. Kuramata, C. J. Humphreys, and I. S. Roqan, “High-quality III-nitride films on conductive, transparent (−201)-oriented β – Ga2O3 using a GaN buffer layer,” Sci. Rep. 6, 29747 (2016).
[Crossref]

Ikeda, M.

T. Miyajima, T. Tojyo, T. Asano, K. Yanashima, S. Kijima, T. Hino, M. Takeya, S. Uchida, S. Tomiya, K. Funato, T. Asatsuma, T. Kobayashi, and M. Ikeda, “GaN-based blue laser diodes,” J. Phys. Condens. Matter 13, 7099–7114 (2001).
[Crossref]

Im, K. S.

K. W. Kim, S. D. Jung, D. S. Kim, H. S. Kang, K. S. Im, J. J. Oh, J. B. Ha, J. K. Shin, and J. H. Lee, “Effects of TMAH treatment on device performance of normally off (Al2O3)/GaN MOSFET,” IEEE Electron. Device Lett. 32, 1376–1378 (2011).
[Crossref]

Ishikawa, H.

G. Yu, G. Wang, H. Ishikawa, M. Umeno, T. Soga, T. Egawa, J. Watanabe, and T. Jimbo, “Optical properties of wurtzite structure GaN on sapphire around fundamental absorption edge,” Appl. Phys. Lett. 70, 3209–3211 (1997).
[Crossref]

Jenkins, T. J.

S. T. Sheppard, K. Doverspike, W. L. Pribble, S. T. Allen, J. W. Palmour, L. T. Kehias, and T. J. Jenkins, “High-power microwave GaN/AlGaN HEMTs on semi-insulating silicon carbide substrates,” IEEE Electron. Device Lett. 20, 161–163 (1999).
[Crossref]

Jiang, H. X.

R. Hui, S. Taherion, Y. Wan, J. Li, S. X. Jin, J. Y. Lin, and H. X. Jiang, “GaN-based waveguide devices for long-wavelength optical communications,” Appl. Phys. Lett. 82, 1326–1328 (2003).
[Crossref]

Jimbo, T.

G. Yu, G. Wang, H. Ishikawa, M. Umeno, T. Soga, T. Egawa, J. Watanabe, and T. Jimbo, “Optical properties of wurtzite structure GaN on sapphire around fundamental absorption edge,” Appl. Phys. Lett. 70, 3209–3211 (1997).
[Crossref]

Jin, S. X.

R. Hui, S. Taherion, Y. Wan, J. Li, S. X. Jin, J. Y. Lin, and H. X. Jiang, “GaN-based waveguide devices for long-wavelength optical communications,” Appl. Phys. Lett. 82, 1326–1328 (2003).
[Crossref]

Johnson, F. G.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photonics Technol. Lett. 14, 74–76 (2002).
[Crossref]

Julien, F. H.

A. Lupu, F. H. Julien, S. Golka, G. Pozzovivo, G. Strasser, E. Baumann, F. Giorgetta, D. Hofstetter, S. Nicolay, M. Mosca, E. Feltin, J. Carlin, and N. Grandjean, “Lattice-Matched GaN–InAlN Waveguides at λ=1.55 µ m Grown by Metal–Organic Vapor Phase Epitaxy,” IEEE Photon. Technol. Lett. 20, 102–104 (2008).
[Crossref]

Jung, S. D.

K. W. Kim, S. D. Jung, D. S. Kim, H. S. Kang, K. S. Im, J. J. Oh, J. B. Ha, J. K. Shin, and J. H. Lee, “Effects of TMAH treatment on device performance of normally off (Al2O3)/GaN MOSFET,” IEEE Electron. Device Lett. 32, 1376–1378 (2011).
[Crossref]

Kang, H. S.

K. W. Kim, S. D. Jung, D. S. Kim, H. S. Kang, K. S. Im, J. J. Oh, J. B. Ha, J. K. Shin, and J. H. Lee, “Effects of TMAH treatment on device performance of normally off (Al2O3)/GaN MOSFET,” IEEE Electron. Device Lett. 32, 1376–1378 (2011).
[Crossref]

Kapolnek, D.

D. Kapolnek, X. H. Wu, B. Heying, S. Keller, B. P. Keller, U. K. Mishra, S. P. DenBaars, and J. S. Speck, “Structural evolution in epitaxial metalorganic chemical vapor deposition grown GaN films on sapphire,” Appl. Phys. Lett. 67, 1541–1543 (1995).
[Crossref]

Katz, M.

O. Westreich, M. Katz, Y. Paltiel, O. Ternyak, and N. Sicron, “Low propagation loss in GaN/AlGaN-based ridge waveguides,” Phys. Stat. Sol. 212, 1043–1048 (2015).

Kehias, L. T.

S. T. Sheppard, K. Doverspike, W. L. Pribble, S. T. Allen, J. W. Palmour, L. T. Kehias, and T. J. Jenkins, “High-power microwave GaN/AlGaN HEMTs on semi-insulating silicon carbide substrates,” IEEE Electron. Device Lett. 20, 161–163 (1999).
[Crossref]

Keller, B. P.

D. Kapolnek, X. H. Wu, B. Heying, S. Keller, B. P. Keller, U. K. Mishra, S. P. DenBaars, and J. S. Speck, “Structural evolution in epitaxial metalorganic chemical vapor deposition grown GaN films on sapphire,” Appl. Phys. Lett. 67, 1541–1543 (1995).
[Crossref]

Keller, S.

D. Kapolnek, X. H. Wu, B. Heying, S. Keller, B. P. Keller, U. K. Mishra, S. P. DenBaars, and J. S. Speck, “Structural evolution in epitaxial metalorganic chemical vapor deposition grown GaN films on sapphire,” Appl. Phys. Lett. 67, 1541–1543 (1995).
[Crossref]

Kijima, S.

T. Miyajima, T. Tojyo, T. Asano, K. Yanashima, S. Kijima, T. Hino, M. Takeya, S. Uchida, S. Tomiya, K. Funato, T. Asatsuma, T. Kobayashi, and M. Ikeda, “GaN-based blue laser diodes,” J. Phys. Condens. Matter 13, 7099–7114 (2001).
[Crossref]

Kim, D. S.

K. W. Kim, S. D. Jung, D. S. Kim, H. S. Kang, K. S. Im, J. J. Oh, J. B. Ha, J. K. Shin, and J. H. Lee, “Effects of TMAH treatment on device performance of normally off (Al2O3)/GaN MOSFET,” IEEE Electron. Device Lett. 32, 1376–1378 (2011).
[Crossref]

Kim, K. W.

K. W. Kim, S. D. Jung, D. S. Kim, H. S. Kang, K. S. Im, J. J. Oh, J. B. Ha, J. K. Shin, and J. H. Lee, “Effects of TMAH treatment on device performance of normally off (Al2O3)/GaN MOSFET,” IEEE Electron. Device Lett. 32, 1376–1378 (2011).
[Crossref]

Kobayashi, T.

T. Miyajima, T. Tojyo, T. Asano, K. Yanashima, S. Kijima, T. Hino, M. Takeya, S. Uchida, S. Tomiya, K. Funato, T. Asatsuma, T. Kobayashi, and M. Ikeda, “GaN-based blue laser diodes,” J. Phys. Condens. Matter 13, 7099–7114 (2001).
[Crossref]

Kultavewuti, P.

Kurai, S.

T. Sugahara, H. Sato, M. S. Hao, Y. Naoi, S. Kurai, S. Tottori, K. Yamashita, K. Nishino, L. T. Romano, and S. Sakai, “Role of Dislocation in InGaN Phase Separation,” Jpn. J. Appl. Phys. 37, L1195–L1198 (1998).
[Crossref]

Kuramata, A.

M. M. Muhammed, M. A. Roldan, Y. Yamashita, S.-L. Sahonta, I. A. Ajia, K. Iizuka, A. Kuramata, C. J. Humphreys, and I. S. Roqan, “High-quality III-nitride films on conductive, transparent (−201)-oriented β – Ga2O3 using a GaN buffer layer,” Sci. Rep. 6, 29747 (2016).
[Crossref]

M. M. Muhammed, M. Peres, Y. Yamashita, Y. Morishima, S. Sato, N. Franco, K. Lorenz, A. Kuramata, and I. S. Roqan, “High optical and structural quality of GaN epilayers grown on (−201) β−Ga2O3,” Appl. Phys. Lett. 105, 42112 (2014).
[Crossref]

Lee, J. H.

K. W. Kim, S. D. Jung, D. S. Kim, H. S. Kang, K. S. Im, J. J. Oh, J. B. Ha, J. K. Shin, and J. H. Lee, “Effects of TMAH treatment on device performance of normally off (Al2O3)/GaN MOSFET,” IEEE Electron. Device Lett. 32, 1376–1378 (2011).
[Crossref]

Leoni, R.

A. Gaggero, S. J. Nejad, F. Marsili, F. Mattioli, R. Leoni, D. Bitauld, D. Sahin, G. J. Hamhuis, R. Nötzel, R. Sanjines, and A. Fiore, “Nanowire superconducting single-photon detectors on GaAs for integrated quantum photonic applications,” Appl. Phys. Lett. 97, 151108 (2010).
[Crossref]

Li, J.

R. Hui, S. Taherion, Y. Wan, J. Li, S. X. Jin, J. Y. Lin, and H. X. Jiang, “GaN-based waveguide devices for long-wavelength optical communications,” Appl. Phys. Lett. 82, 1326–1328 (2003).
[Crossref]

Lin, J. Y.

R. Hui, S. Taherion, Y. Wan, J. Li, S. X. Jin, J. Y. Lin, and H. X. Jiang, “GaN-based waveguide devices for long-wavelength optical communications,” Appl. Phys. Lett. 82, 1326–1328 (2003).
[Crossref]

Liu, D. X.

Lorenz, K.

M. M. Muhammed, M. Peres, Y. Yamashita, Y. Morishima, S. Sato, N. Franco, K. Lorenz, A. Kuramata, and I. S. Roqan, “High optical and structural quality of GaN epilayers grown on (−201) β−Ga2O3,” Appl. Phys. Lett. 105, 42112 (2014).
[Crossref]

Ludowise, M. J.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz,“Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8, 310–320 (2002).
[Crossref]

Lupu, A.

A. Lupu, F. H. Julien, S. Golka, G. Pozzovivo, G. Strasser, E. Baumann, F. Giorgetta, D. Hofstetter, S. Nicolay, M. Mosca, E. Feltin, J. Carlin, and N. Grandjean, “Lattice-Matched GaN–InAlN Waveguides at λ=1.55 µ m Grown by Metal–Organic Vapor Phase Epitaxy,” IEEE Photon. Technol. Lett. 20, 102–104 (2008).
[Crossref]

Mannaerts, J. P.

M. Rebien, W. Henrion, M. Hong, J. P. Mannaerts, and M. Fleischer, “Optical properties of gallium oxide thin films,” Appl. Phys. Lett. 81, 250–252 (2002).
[Crossref]

Marsili, F.

A. Gaggero, S. J. Nejad, F. Marsili, F. Mattioli, R. Leoni, D. Bitauld, D. Sahin, G. J. Hamhuis, R. Nötzel, R. Sanjines, and A. Fiore, “Nanowire superconducting single-photon detectors on GaAs for integrated quantum photonic applications,” Appl. Phys. Lett. 97, 151108 (2010).
[Crossref]

Martin, P. S.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz,“Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8, 310–320 (2002).
[Crossref]

Mattioli, F.

A. Gaggero, S. J. Nejad, F. Marsili, F. Mattioli, R. Leoni, D. Bitauld, D. Sahin, G. J. Hamhuis, R. Nötzel, R. Sanjines, and A. Fiore, “Nanowire superconducting single-photon detectors on GaAs for integrated quantum photonic applications,” Appl. Phys. Lett. 97, 151108 (2010).
[Crossref]

Mishra, U. K.

D. Kapolnek, X. H. Wu, B. Heying, S. Keller, B. P. Keller, U. K. Mishra, S. P. DenBaars, and J. S. Speck, “Structural evolution in epitaxial metalorganic chemical vapor deposition grown GaN films on sapphire,” Appl. Phys. Lett. 67, 1541–1543 (1995).
[Crossref]

Miyajima, T.

T. Miyajima, T. Tojyo, T. Asano, K. Yanashima, S. Kijima, T. Hino, M. Takeya, S. Uchida, S. Tomiya, K. Funato, T. Asatsuma, T. Kobayashi, and M. Ikeda, “GaN-based blue laser diodes,” J. Phys. Condens. Matter 13, 7099–7114 (2001).
[Crossref]

Monemar, B.

B. Monemar, “III–V nitrides–important future electronic materials,” J. Mater. Sci. Mater. Electron. 10, 227–254 (1999).
[Crossref]

Morishima, Y.

M. M. Muhammed, M. Peres, Y. Yamashita, Y. Morishima, S. Sato, N. Franco, K. Lorenz, A. Kuramata, and I. S. Roqan, “High optical and structural quality of GaN epilayers grown on (−201) β−Ga2O3,” Appl. Phys. Lett. 105, 42112 (2014).
[Crossref]

Mosca, M.

A. Lupu, F. H. Julien, S. Golka, G. Pozzovivo, G. Strasser, E. Baumann, F. Giorgetta, D. Hofstetter, S. Nicolay, M. Mosca, E. Feltin, J. Carlin, and N. Grandjean, “Lattice-Matched GaN–InAlN Waveguides at λ=1.55 µ m Grown by Metal–Organic Vapor Phase Epitaxy,” IEEE Photon. Technol. Lett. 20, 102–104 (2008).
[Crossref]

Muhammed, M. M.

M. M. Muhammed, M. A. Roldan, Y. Yamashita, S.-L. Sahonta, I. A. Ajia, K. Iizuka, A. Kuramata, C. J. Humphreys, and I. S. Roqan, “High-quality III-nitride films on conductive, transparent (−201)-oriented β – Ga2O3 using a GaN buffer layer,” Sci. Rep. 6, 29747 (2016).
[Crossref]

M. M. Muhammed, M. Peres, Y. Yamashita, Y. Morishima, S. Sato, N. Franco, K. Lorenz, A. Kuramata, and I. S. Roqan, “High optical and structural quality of GaN epilayers grown on (−201) β−Ga2O3,” Appl. Phys. Lett. 105, 42112 (2014).
[Crossref]

Mukai, T.

S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. 64, 1687–1689 (1994).
[Crossref]

Nakamura, S.

S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. 64, 1687–1689 (1994).
[Crossref]

Naoi, Y.

T. Sugahara, H. Sato, M. S. Hao, Y. Naoi, S. Kurai, S. Tottori, K. Yamashita, K. Nishino, L. T. Romano, and S. Sakai, “Role of Dislocation in InGaN Phase Separation,” Jpn. J. Appl. Phys. 37, L1195–L1198 (1998).
[Crossref]

Naureen, S.

Nejad, S. J.

A. Gaggero, S. J. Nejad, F. Marsili, F. Mattioli, R. Leoni, D. Bitauld, D. Sahin, G. J. Hamhuis, R. Nötzel, R. Sanjines, and A. Fiore, “Nanowire superconducting single-photon detectors on GaAs for integrated quantum photonic applications,” Appl. Phys. Lett. 97, 151108 (2010).
[Crossref]

Ng, H. M.

R. Geiss, A. Chowdhury, C. M. Staus, H. M. Ng, S. S. Park, and J. Y. Han, “Low loss GaN at 1550nm,” Appl. Phys. Lett. 87, 132107 (2005).
[Crossref]

Nicolay, S.

A. Lupu, F. H. Julien, S. Golka, G. Pozzovivo, G. Strasser, E. Baumann, F. Giorgetta, D. Hofstetter, S. Nicolay, M. Mosca, E. Feltin, J. Carlin, and N. Grandjean, “Lattice-Matched GaN–InAlN Waveguides at λ=1.55 µ m Grown by Metal–Organic Vapor Phase Epitaxy,” IEEE Photon. Technol. Lett. 20, 102–104 (2008).
[Crossref]

Nishino, K.

T. Sugahara, H. Sato, M. S. Hao, Y. Naoi, S. Kurai, S. Tottori, K. Yamashita, K. Nishino, L. T. Romano, and S. Sakai, “Role of Dislocation in InGaN Phase Separation,” Jpn. J. Appl. Phys. 37, L1195–L1198 (1998).
[Crossref]

Nötzel, R.

A. Gaggero, S. J. Nejad, F. Marsili, F. Mattioli, R. Leoni, D. Bitauld, D. Sahin, G. J. Hamhuis, R. Nötzel, R. Sanjines, and A. Fiore, “Nanowire superconducting single-photon detectors on GaAs for integrated quantum photonic applications,” Appl. Phys. Lett. 97, 151108 (2010).
[Crossref]

Oh, J. J.

K. W. Kim, S. D. Jung, D. S. Kim, H. S. Kang, K. S. Im, J. J. Oh, J. B. Ha, J. K. Shin, and J. H. Lee, “Effects of TMAH treatment on device performance of normally off (Al2O3)/GaN MOSFET,” IEEE Electron. Device Lett. 32, 1376–1378 (2011).
[Crossref]

Palmour, J. W.

S. T. Sheppard, K. Doverspike, W. L. Pribble, S. T. Allen, J. W. Palmour, L. T. Kehias, and T. J. Jenkins, “High-power microwave GaN/AlGaN HEMTs on semi-insulating silicon carbide substrates,” IEEE Electron. Device Lett. 20, 161–163 (1999).
[Crossref]

Paltiel, Y.

O. Westreich, M. Katz, Y. Paltiel, O. Ternyak, and N. Sicron, “Low propagation loss in GaN/AlGaN-based ridge waveguides,” Phys. Stat. Sol. 212, 1043–1048 (2015).

Park, S. S.

R. Geiss, A. Chowdhury, C. M. Staus, H. M. Ng, S. S. Park, and J. Y. Han, “Low loss GaN at 1550nm,” Appl. Phys. Lett. 87, 132107 (2005).
[Crossref]

Pavlidis, D.

A. Stolz, E. Cho, E. Dogheche, Y. Androussi, D. Troadec, D. Pavlidis, and D. Decoster, “Optical waveguide loss minimized into gallium nitride based structures grown by metal organic vapor phase epitaxy,” Appl. Phys. Lett. 98, 161903 (2011).
[Crossref]

Peres, M.

M. M. Muhammed, M. Peres, Y. Yamashita, Y. Morishima, S. Sato, N. Franco, K. Lorenz, A. Kuramata, and I. S. Roqan, “High optical and structural quality of GaN epilayers grown on (−201) β−Ga2O3,” Appl. Phys. Lett. 105, 42112 (2014).
[Crossref]

Pozzovivo, G.

A. Lupu, F. H. Julien, S. Golka, G. Pozzovivo, G. Strasser, E. Baumann, F. Giorgetta, D. Hofstetter, S. Nicolay, M. Mosca, E. Feltin, J. Carlin, and N. Grandjean, “Lattice-Matched GaN–InAlN Waveguides at λ=1.55 µ m Grown by Metal–Organic Vapor Phase Epitaxy,” IEEE Photon. Technol. Lett. 20, 102–104 (2008).
[Crossref]

Pribble, W. L.

S. T. Sheppard, K. Doverspike, W. L. Pribble, S. T. Allen, J. W. Palmour, L. T. Kehias, and T. J. Jenkins, “High-power microwave GaN/AlGaN HEMTs on semi-insulating silicon carbide substrates,” IEEE Electron. Device Lett. 20, 161–163 (1999).
[Crossref]

Qian, L.

Rebien, M.

M. Rebien, W. Henrion, M. Hong, J. P. Mannaerts, and M. Fleischer, “Optical properties of gallium oxide thin films,” Appl. Phys. Lett. 81, 250–252 (2002).
[Crossref]

Redwing, J. M.

D. A. Stocker, E. F. Schubert, and J. M. Redwing, “Crystallographic wet chemical etching of GaN,” Appl. Phys. Lett. 73, 2654–2656 (1998).
[Crossref]

Regener, R.

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36, 143–147 (1985).
[Crossref]

Ritter, K.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photonics Technol. Lett. 14, 74–76 (2002).
[Crossref]

Roldan, M. A.

M. M. Muhammed, M. A. Roldan, Y. Yamashita, S.-L. Sahonta, I. A. Ajia, K. Iizuka, A. Kuramata, C. J. Humphreys, and I. S. Roqan, “High-quality III-nitride films on conductive, transparent (−201)-oriented β – Ga2O3 using a GaN buffer layer,” Sci. Rep. 6, 29747 (2016).
[Crossref]

Romano, L. T.

T. Sugahara, H. Sato, M. S. Hao, Y. Naoi, S. Kurai, S. Tottori, K. Yamashita, K. Nishino, L. T. Romano, and S. Sakai, “Role of Dislocation in InGaN Phase Separation,” Jpn. J. Appl. Phys. 37, L1195–L1198 (1998).
[Crossref]

Roqan, I. S.

M. M. Muhammed, M. A. Roldan, Y. Yamashita, S.-L. Sahonta, I. A. Ajia, K. Iizuka, A. Kuramata, C. J. Humphreys, and I. S. Roqan, “High-quality III-nitride films on conductive, transparent (−201)-oriented β – Ga2O3 using a GaN buffer layer,” Sci. Rep. 6, 29747 (2016).
[Crossref]

M. M. Muhammed, M. Peres, Y. Yamashita, Y. Morishima, S. Sato, N. Franco, K. Lorenz, A. Kuramata, and I. S. Roqan, “High optical and structural quality of GaN epilayers grown on (−201) β−Ga2O3,” Appl. Phys. Lett. 105, 42112 (2014).
[Crossref]

Rudaz, S. L.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz,“Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8, 310–320 (2002).
[Crossref]

Sahin, D.

A. Gaggero, S. J. Nejad, F. Marsili, F. Mattioli, R. Leoni, D. Bitauld, D. Sahin, G. J. Hamhuis, R. Nötzel, R. Sanjines, and A. Fiore, “Nanowire superconducting single-photon detectors on GaAs for integrated quantum photonic applications,” Appl. Phys. Lett. 97, 151108 (2010).
[Crossref]

Sahonta, S.-L.

M. M. Muhammed, M. A. Roldan, Y. Yamashita, S.-L. Sahonta, I. A. Ajia, K. Iizuka, A. Kuramata, C. J. Humphreys, and I. S. Roqan, “High-quality III-nitride films on conductive, transparent (−201)-oriented β – Ga2O3 using a GaN buffer layer,” Sci. Rep. 6, 29747 (2016).
[Crossref]

Sakai, S.

T. Sugahara, H. Sato, M. S. Hao, Y. Naoi, S. Kurai, S. Tottori, K. Yamashita, K. Nishino, L. T. Romano, and S. Sakai, “Role of Dislocation in InGaN Phase Separation,” Jpn. J. Appl. Phys. 37, L1195–L1198 (1998).
[Crossref]

Sanatinia, R.

K. M. Awan, R. Sanatinia, and S. Anand, “Nanostructuring of GaAs with tailored topologies using colloidal lithography and dry etching,” J. Vac. Sci. Technol. B 32, 021801 (2014).
[Crossref]

R. Sanatinia, K. M. Awan, S. Naureen, N. Anttu, E. Ebraert, and S. Anand, “GaAs nanopillar arrays with suppressed broadband reflectance and high optical quality for photovoltaic applications,” Opt. Mater. Express 2, 1671–1679 (2012).
[Crossref]

Sanjines, R.

A. Gaggero, S. J. Nejad, F. Marsili, F. Mattioli, R. Leoni, D. Bitauld, D. Sahin, G. J. Hamhuis, R. Nötzel, R. Sanjines, and A. Fiore, “Nanowire superconducting single-photon detectors on GaAs for integrated quantum photonic applications,” Appl. Phys. Lett. 97, 151108 (2010).
[Crossref]

Sarrafi, P.

Sasaki, T.

T. Sekiya, T. Sasaki, and K. Hane, “Design, fabrication, and optical characteristics of freestanding GaN waveguides on silicon substrate,” J. Vac. Sci. Technol. B 33, 031207 (2015).
[Crossref]

Sato, H.

T. Sugahara, H. Sato, M. S. Hao, Y. Naoi, S. Kurai, S. Tottori, K. Yamashita, K. Nishino, L. T. Romano, and S. Sakai, “Role of Dislocation in InGaN Phase Separation,” Jpn. J. Appl. Phys. 37, L1195–L1198 (1998).
[Crossref]

Sato, S.

M. M. Muhammed, M. Peres, Y. Yamashita, Y. Morishima, S. Sato, N. Franco, K. Lorenz, A. Kuramata, and I. S. Roqan, “High optical and structural quality of GaN epilayers grown on (−201) β−Ga2O3,” Appl. Phys. Lett. 105, 42112 (2014).
[Crossref]

Schubert, E. F.

D. A. Stocker, E. F. Schubert, and J. M. Redwing, “Crystallographic wet chemical etching of GaN,” Appl. Phys. Lett. 73, 2654–2656 (1998).
[Crossref]

Schulz, S. A.

Sekiya, T.

T. Sekiya, T. Sasaki, and K. Hane, “Design, fabrication, and optical characteristics of freestanding GaN waveguides on silicon substrate,” J. Vac. Sci. Technol. B 33, 031207 (2015).
[Crossref]

Senoh, M.

S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. 64, 1687–1689 (1994).
[Crossref]

Sheppard, S. T.

S. T. Sheppard, K. Doverspike, W. L. Pribble, S. T. Allen, J. W. Palmour, L. T. Kehias, and T. J. Jenkins, “High-power microwave GaN/AlGaN HEMTs on semi-insulating silicon carbide substrates,” IEEE Electron. Device Lett. 20, 161–163 (1999).
[Crossref]

Shin, J. K.

K. W. Kim, S. D. Jung, D. S. Kim, H. S. Kang, K. S. Im, J. J. Oh, J. B. Ha, J. K. Shin, and J. H. Lee, “Effects of TMAH treatment on device performance of normally off (Al2O3)/GaN MOSFET,” IEEE Electron. Device Lett. 32, 1376–1378 (2011).
[Crossref]

Sicron, N.

O. Westreich, M. Katz, Y. Paltiel, O. Ternyak, and N. Sicron, “Low propagation loss in GaN/AlGaN-based ridge waveguides,” Phys. Stat. Sol. 212, 1043–1048 (2015).

Soga, T.

G. Yu, G. Wang, H. Ishikawa, M. Umeno, T. Soga, T. Egawa, J. Watanabe, and T. Jimbo, “Optical properties of wurtzite structure GaN on sapphire around fundamental absorption edge,” Appl. Phys. Lett. 70, 3209–3211 (1997).
[Crossref]

Sohler, W.

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36, 143–147 (1985).
[Crossref]

Speck, J. S.

D. Kapolnek, X. H. Wu, B. Heying, S. Keller, B. P. Keller, U. K. Mishra, S. P. DenBaars, and J. S. Speck, “Structural evolution in epitaxial metalorganic chemical vapor deposition grown GaN films on sapphire,” Appl. Phys. Lett. 67, 1541–1543 (1995).
[Crossref]

Stampfl, C.

C. Stampfl and C. G. Van de Walle, “Energetics and electronic structure of stacking faults in AlN, GaN, and InN,” Phys. Rev. B 57, R15052 (1998).
[Crossref]

Staus, C. M.

R. Geiss, A. Chowdhury, C. M. Staus, H. M. Ng, S. S. Park, and J. Y. Han, “Low loss GaN at 1550nm,” Appl. Phys. Lett. 87, 132107 (2005).
[Crossref]

Steigerwald, D. A.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz,“Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8, 310–320 (2002).
[Crossref]

Stocker, D. A.

D. A. Stocker, E. F. Schubert, and J. M. Redwing, “Crystallographic wet chemical etching of GaN,” Appl. Phys. Lett. 73, 2654–2656 (1998).
[Crossref]

Stolz, A.

A. Stolz, E. Cho, E. Dogheche, Y. Androussi, D. Troadec, D. Pavlidis, and D. Decoster, “Optical waveguide loss minimized into gallium nitride based structures grown by metal organic vapor phase epitaxy,” Appl. Phys. Lett. 98, 161903 (2011).
[Crossref]

Strasser, G.

A. Lupu, F. H. Julien, S. Golka, G. Pozzovivo, G. Strasser, E. Baumann, F. Giorgetta, D. Hofstetter, S. Nicolay, M. Mosca, E. Feltin, J. Carlin, and N. Grandjean, “Lattice-Matched GaN–InAlN Waveguides at λ=1.55 µ m Grown by Metal–Organic Vapor Phase Epitaxy,” IEEE Photon. Technol. Lett. 20, 102–104 (2008).
[Crossref]

Sugahara, T.

T. Sugahara, H. Sato, M. S. Hao, Y. Naoi, S. Kurai, S. Tottori, K. Yamashita, K. Nishino, L. T. Romano, and S. Sakai, “Role of Dislocation in InGaN Phase Separation,” Jpn. J. Appl. Phys. 37, L1195–L1198 (1998).
[Crossref]

Taherion, S.

R. Hui, S. Taherion, Y. Wan, J. Li, S. X. Jin, J. Y. Lin, and H. X. Jiang, “GaN-based waveguide devices for long-wavelength optical communications,” Appl. Phys. Lett. 82, 1326–1328 (2003).
[Crossref]

Takeya, M.

T. Miyajima, T. Tojyo, T. Asano, K. Yanashima, S. Kijima, T. Hino, M. Takeya, S. Uchida, S. Tomiya, K. Funato, T. Asatsuma, T. Kobayashi, and M. Ikeda, “GaN-based blue laser diodes,” J. Phys. Condens. Matter 13, 7099–7114 (2001).
[Crossref]

Tansley, T. L.

T. L. Tansley and R. J. Egan, “Point-defect energies in the nitrides of aluminum, gallium, and indium,” Phys. Rev. B 45, 10942–10950 (1992).
[Crossref]

Ternyak, O.

O. Westreich, M. Katz, Y. Paltiel, O. Ternyak, and N. Sicron, “Low propagation loss in GaN/AlGaN-based ridge waveguides,” Phys. Stat. Sol. 212, 1043–1048 (2015).

Tojyo, T.

T. Miyajima, T. Tojyo, T. Asano, K. Yanashima, S. Kijima, T. Hino, M. Takeya, S. Uchida, S. Tomiya, K. Funato, T. Asatsuma, T. Kobayashi, and M. Ikeda, “GaN-based blue laser diodes,” J. Phys. Condens. Matter 13, 7099–7114 (2001).
[Crossref]

Tomiya, S.

T. Miyajima, T. Tojyo, T. Asano, K. Yanashima, S. Kijima, T. Hino, M. Takeya, S. Uchida, S. Tomiya, K. Funato, T. Asatsuma, T. Kobayashi, and M. Ikeda, “GaN-based blue laser diodes,” J. Phys. Condens. Matter 13, 7099–7114 (2001).
[Crossref]

Tottori, S.

T. Sugahara, H. Sato, M. S. Hao, Y. Naoi, S. Kurai, S. Tottori, K. Yamashita, K. Nishino, L. T. Romano, and S. Sakai, “Role of Dislocation in InGaN Phase Separation,” Jpn. J. Appl. Phys. 37, L1195–L1198 (1998).
[Crossref]

Troadec, D.

A. Stolz, E. Cho, E. Dogheche, Y. Androussi, D. Troadec, D. Pavlidis, and D. Decoster, “Optical waveguide loss minimized into gallium nitride based structures grown by metal organic vapor phase epitaxy,” Appl. Phys. Lett. 98, 161903 (2011).
[Crossref]

Uchida, S.

T. Miyajima, T. Tojyo, T. Asano, K. Yanashima, S. Kijima, T. Hino, M. Takeya, S. Uchida, S. Tomiya, K. Funato, T. Asatsuma, T. Kobayashi, and M. Ikeda, “GaN-based blue laser diodes,” J. Phys. Condens. Matter 13, 7099–7114 (2001).
[Crossref]

Umeno, M.

G. Yu, G. Wang, H. Ishikawa, M. Umeno, T. Soga, T. Egawa, J. Watanabe, and T. Jimbo, “Optical properties of wurtzite structure GaN on sapphire around fundamental absorption edge,” Appl. Phys. Lett. 70, 3209–3211 (1997).
[Crossref]

Upham, J.

Van, V.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photonics Technol. Lett. 14, 74–76 (2002).
[Crossref]

Van de Walle, C. G.

C. Stampfl and C. G. Van de Walle, “Energetics and electronic structure of stacking faults in AlN, GaN, and InN,” Phys. Rev. B 57, R15052 (1998).
[Crossref]

Volatier, M.

Wan, Y.

R. Hui, S. Taherion, Y. Wan, J. Li, S. X. Jin, J. Y. Lin, and H. X. Jiang, “GaN-based waveguide devices for long-wavelength optical communications,” Appl. Phys. Lett. 82, 1326–1328 (2003).
[Crossref]

Wang, G.

G. Yu, G. Wang, H. Ishikawa, M. Umeno, T. Soga, T. Egawa, J. Watanabe, and T. Jimbo, “Optical properties of wurtzite structure GaN on sapphire around fundamental absorption edge,” Appl. Phys. Lett. 70, 3209–3211 (1997).
[Crossref]

Watanabe, J.

G. Yu, G. Wang, H. Ishikawa, M. Umeno, T. Soga, T. Egawa, J. Watanabe, and T. Jimbo, “Optical properties of wurtzite structure GaN on sapphire around fundamental absorption edge,” Appl. Phys. Lett. 70, 3209–3211 (1997).
[Crossref]

Westreich, O.

O. Westreich, M. Katz, Y. Paltiel, O. Ternyak, and N. Sicron, “Low propagation loss in GaN/AlGaN-based ridge waveguides,” Phys. Stat. Sol. 212, 1043–1048 (2015).

Wu, X. H.

D. Kapolnek, X. H. Wu, B. Heying, S. Keller, B. P. Keller, U. K. Mishra, S. P. DenBaars, and J. S. Speck, “Structural evolution in epitaxial metalorganic chemical vapor deposition grown GaN films on sapphire,” Appl. Phys. Lett. 67, 1541–1543 (1995).
[Crossref]

Yamashita, K.

T. Sugahara, H. Sato, M. S. Hao, Y. Naoi, S. Kurai, S. Tottori, K. Yamashita, K. Nishino, L. T. Romano, and S. Sakai, “Role of Dislocation in InGaN Phase Separation,” Jpn. J. Appl. Phys. 37, L1195–L1198 (1998).
[Crossref]

Yamashita, Y.

M. M. Muhammed, M. A. Roldan, Y. Yamashita, S.-L. Sahonta, I. A. Ajia, K. Iizuka, A. Kuramata, C. J. Humphreys, and I. S. Roqan, “High-quality III-nitride films on conductive, transparent (−201)-oriented β – Ga2O3 using a GaN buffer layer,” Sci. Rep. 6, 29747 (2016).
[Crossref]

M. M. Muhammed, M. Peres, Y. Yamashita, Y. Morishima, S. Sato, N. Franco, K. Lorenz, A. Kuramata, and I. S. Roqan, “High optical and structural quality of GaN epilayers grown on (−201) β−Ga2O3,” Appl. Phys. Lett. 105, 42112 (2014).
[Crossref]

Yanashima, K.

T. Miyajima, T. Tojyo, T. Asano, K. Yanashima, S. Kijima, T. Hino, M. Takeya, S. Uchida, S. Tomiya, K. Funato, T. Asatsuma, T. Kobayashi, and M. Ikeda, “GaN-based blue laser diodes,” J. Phys. Condens. Matter 13, 7099–7114 (2001).
[Crossref]

Yu, G.

G. Yu, G. Wang, H. Ishikawa, M. Umeno, T. Soga, T. Egawa, J. Watanabe, and T. Jimbo, “Optical properties of wurtzite structure GaN on sapphire around fundamental absorption edge,” Appl. Phys. Lett. 70, 3209–3211 (1997).
[Crossref]

Appl. Phys. B (1)

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36, 143–147 (1985).
[Crossref]

Appl. Phys. Lett. (10)

A. Stolz, E. Cho, E. Dogheche, Y. Androussi, D. Troadec, D. Pavlidis, and D. Decoster, “Optical waveguide loss minimized into gallium nitride based structures grown by metal organic vapor phase epitaxy,” Appl. Phys. Lett. 98, 161903 (2011).
[Crossref]

R. Geiss, A. Chowdhury, C. M. Staus, H. M. Ng, S. S. Park, and J. Y. Han, “Low loss GaN at 1550nm,” Appl. Phys. Lett. 87, 132107 (2005).
[Crossref]

D. A. Stocker, E. F. Schubert, and J. M. Redwing, “Crystallographic wet chemical etching of GaN,” Appl. Phys. Lett. 73, 2654–2656 (1998).
[Crossref]

R. Hui, S. Taherion, Y. Wan, J. Li, S. X. Jin, J. Y. Lin, and H. X. Jiang, “GaN-based waveguide devices for long-wavelength optical communications,” Appl. Phys. Lett. 82, 1326–1328 (2003).
[Crossref]

S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. 64, 1687–1689 (1994).
[Crossref]

A. Gaggero, S. J. Nejad, F. Marsili, F. Mattioli, R. Leoni, D. Bitauld, D. Sahin, G. J. Hamhuis, R. Nötzel, R. Sanjines, and A. Fiore, “Nanowire superconducting single-photon detectors on GaAs for integrated quantum photonic applications,” Appl. Phys. Lett. 97, 151108 (2010).
[Crossref]

D. Kapolnek, X. H. Wu, B. Heying, S. Keller, B. P. Keller, U. K. Mishra, S. P. DenBaars, and J. S. Speck, “Structural evolution in epitaxial metalorganic chemical vapor deposition grown GaN films on sapphire,” Appl. Phys. Lett. 67, 1541–1543 (1995).
[Crossref]

M. M. Muhammed, M. Peres, Y. Yamashita, Y. Morishima, S. Sato, N. Franco, K. Lorenz, A. Kuramata, and I. S. Roqan, “High optical and structural quality of GaN epilayers grown on (−201) β−Ga2O3,” Appl. Phys. Lett. 105, 42112 (2014).
[Crossref]

G. Yu, G. Wang, H. Ishikawa, M. Umeno, T. Soga, T. Egawa, J. Watanabe, and T. Jimbo, “Optical properties of wurtzite structure GaN on sapphire around fundamental absorption edge,” Appl. Phys. Lett. 70, 3209–3211 (1997).
[Crossref]

M. Rebien, W. Henrion, M. Hong, J. P. Mannaerts, and M. Fleischer, “Optical properties of gallium oxide thin films,” Appl. Phys. Lett. 81, 250–252 (2002).
[Crossref]

IEEE Electron. Device Lett. (2)

S. T. Sheppard, K. Doverspike, W. L. Pribble, S. T. Allen, J. W. Palmour, L. T. Kehias, and T. J. Jenkins, “High-power microwave GaN/AlGaN HEMTs on semi-insulating silicon carbide substrates,” IEEE Electron. Device Lett. 20, 161–163 (1999).
[Crossref]

K. W. Kim, S. D. Jung, D. S. Kim, H. S. Kang, K. S. Im, J. J. Oh, J. B. Ha, J. K. Shin, and J. H. Lee, “Effects of TMAH treatment on device performance of normally off (Al2O3)/GaN MOSFET,” IEEE Electron. Device Lett. 32, 1376–1378 (2011).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz,“Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8, 310–320 (2002).
[Crossref]

IEEE Photon. Technol. Lett. (1)

A. Lupu, F. H. Julien, S. Golka, G. Pozzovivo, G. Strasser, E. Baumann, F. Giorgetta, D. Hofstetter, S. Nicolay, M. Mosca, E. Feltin, J. Carlin, and N. Grandjean, “Lattice-Matched GaN–InAlN Waveguides at λ=1.55 µ m Grown by Metal–Organic Vapor Phase Epitaxy,” IEEE Photon. Technol. Lett. 20, 102–104 (2008).
[Crossref]

IEEE Photonics Technol. Lett. (1)

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photonics Technol. Lett. 14, 74–76 (2002).
[Crossref]

J. Mater. Sci. Mater. Electron. (1)

B. Monemar, “III–V nitrides–important future electronic materials,” J. Mater. Sci. Mater. Electron. 10, 227–254 (1999).
[Crossref]

J. Phys. Condens. Matter (1)

T. Miyajima, T. Tojyo, T. Asano, K. Yanashima, S. Kijima, T. Hino, M. Takeya, S. Uchida, S. Tomiya, K. Funato, T. Asatsuma, T. Kobayashi, and M. Ikeda, “GaN-based blue laser diodes,” J. Phys. Condens. Matter 13, 7099–7114 (2001).
[Crossref]

J. Vac. Sci. Technol. B (2)

K. M. Awan, R. Sanatinia, and S. Anand, “Nanostructuring of GaAs with tailored topologies using colloidal lithography and dry etching,” J. Vac. Sci. Technol. B 32, 021801 (2014).
[Crossref]

T. Sekiya, T. Sasaki, and K. Hane, “Design, fabrication, and optical characteristics of freestanding GaN waveguides on silicon substrate,” J. Vac. Sci. Technol. B 33, 031207 (2015).
[Crossref]

Jpn. J. Appl. Phys. (1)

T. Sugahara, H. Sato, M. S. Hao, Y. Naoi, S. Kurai, S. Tottori, K. Yamashita, K. Nishino, L. T. Romano, and S. Sakai, “Role of Dislocation in InGaN Phase Separation,” Jpn. J. Appl. Phys. 37, L1195–L1198 (1998).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Rev. B (2)

T. L. Tansley and R. J. Egan, “Point-defect energies in the nitrides of aluminum, gallium, and indium,” Phys. Rev. B 45, 10942–10950 (1992).
[Crossref]

C. Stampfl and C. G. Van de Walle, “Energetics and electronic structure of stacking faults in AlN, GaN, and InN,” Phys. Rev. B 57, R15052 (1998).
[Crossref]

Phys. Stat. Sol. (1)

O. Westreich, M. Katz, Y. Paltiel, O. Ternyak, and N. Sicron, “Low propagation loss in GaN/AlGaN-based ridge waveguides,” Phys. Stat. Sol. 212, 1043–1048 (2015).

Sci. Rep. (1)

M. M. Muhammed, M. A. Roldan, Y. Yamashita, S.-L. Sahonta, I. A. Ajia, K. Iizuka, A. Kuramata, C. J. Humphreys, and I. S. Roqan, “High-quality III-nitride films on conductive, transparent (−201)-oriented β – Ga2O3 using a GaN buffer layer,” Sci. Rep. 6, 29747 (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Electric field distribution of the fundamental TE mode in the designed GaN-on-Ga2O3 waveguide
Fig. 2
Fig. 2 Schematic representation of the fabrication process. The PECVD deposition of a 400 -nm-thick layer of SiO2 on top of the GaN wafer was followed by an e-beam evaporation deposition of a 50-nm-thick layer of Chromium. After that, a 200-nm-thick layer of HSQ was spin-coated and patterned by e-beam lithography. The HSQ mask was then used to imprint the waveguide profile into Chromium, and the chromium was then used as a mask for etching the SiO2 layer. GaN was finally etched through the SiO2 mask.
Fig. 3
Fig. 3 SEM images of three GaN ICP-RIE experimental trials. Each scale bar represents 1 µm. The etching recipes and parameters for each of the trials are summarized in Table 1.
Fig. 4
Fig. 4 Cross-sectional SEM images of (a) silica mask after e-beam lithography and plasma etching of chromium and silica, (b) GaN waveguide etched using the optimized etch recipe, (c) GaN waveguide after TMAH post-processing (the side wall of the etched waveguide became nearly vertical), and (d) the waveguide after stripping the silica mask with hydrofluoric acid. Each scale bar represents 1 µm.
Fig. 5
Fig. 5 3D AFM plots of a 2 µm × 2 µm region of GaN surface: (a) before the post-processing, (b) after the post-processing.
Fig. 6
Fig. 6 Optical characterization setup for measuring the propagation loss by the Fabry-Perot method. The inset displays the image of a guided mode as seen on the IR camera.

Tables (1)

Tables Icon

Table 1 Etching parameters and properties of the etch profile, namely, the etching rate, selectivity compared to silica, and side wall angle, presented for the three trial etching recipes with the resulting SEM images shown in Fig. 3.

Metrics