Abstract

Quasi-periodic surface wrinkles prepared by an all-polymer process are introduced for improved light harvesting. The wrinkles' diffractive properties, as well as their external and internal reflectance, are analyzed experimentally and numerically. By applying the surface wrinkles as a coating on planar heterojunction crystalline silicon solar cells, we demonstrate an increase in light absorption due to the improved in-coupling of the incoming photons and to the recapturing of some of the light reflected on the solar cell front side. Furthermore, surface wrinkles prevent glare effects that are commonly experienced with periodic diffraction gratings. The up-scalable wrinkling process allows the adjustment of the diffraction properties of our structures, which might be exploited for different photovoltaic technologies.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultrafast laser-induced microstructure/nanostructure replication and optical properties

Paul O. Caffrey, Barada K. Nayak, and Mool C. Gupta
Appl. Opt. 51(5) 604-609 (2012)

Inexpensive graded-index antireflective surfaces for silicon-based optoelectronic devices

Arpita Haldar, M. Srinivas Reddy, and R. Vijaya
J. Opt. Soc. Am. B 33(11) 2331-2338 (2016)

References

  • View by:
  • |
  • |
  • |

  1. S. M. Mahpeykar, Q. Xiong, J. Wei, L. Meng, B. K. Russell, P. Hermansen, A. V. Singhal, and X. Wang, “Stretchable hexagonal diffraction gratings as optical diffusers for in situ tunable broadband photon management,” Adv. Opt. Mater. 4, 1106–1114 (2016).
    [Crossref]
  2. P. Kim, Y. Hu, J. Alvarenga, M. Kolle, Z. Suo, and J. Aizenberg, “Rational design of mechano-responsive optical materials by fine tuning the evolution of strain-dependent wrinkling patterns,” Adv. Opt. Mater. 1, 381–388 (2013).
    [Crossref]
  3. C. Kluge, M. Rädler, A. Pradana, M. Bremer, P.-J. Jakobs, N. Barié, M. Guttmann, and M. Gerken, “Extraction of guided modes from organic emission layers by compound binary gratings,” Opt. Lett. 37, 2646–2648 (2012).
    [Crossref] [PubMed]
  4. T. Buß, J. Teisseire, S. Mazoyer, C. L. Smith, M. B. Mikkelsen, A. Kristensen, and E. Søndergård, “Controlled angular redirection of light via nanoimprinted disordered gratings,” Appl. Opt. 52, 709–716 (2013).
    [Crossref]
  5. A. Bozzola, M. Liscidini, and L. C. Andreani, “Broadband light trapping with disordered photonic structures in thin-film silicon solar cells,” Prog. Photovoltaics 22, 1237–1245 (2014).
  6. R. A. Pala, J. S. Liu, E. S. Barnard, D. Askarov, E. C. Garnett, S. Fan, and M. L. Brongersma, “Optimization of non-periodic plasmonic light-trapping layers for thin-film solar cells,” Nat. Commun. 4, 2095 (2013).
    [Crossref] [PubMed]
  7. J. Liu, L. Lalouat, E. Drouard, and R. Orobtchouk, “Binary coded patterns for photon control using necklace problem concept,” Opt. Express 24, 1133–1142 (2016).
    [Crossref] [PubMed]
  8. J. Bingi and V. M. Murukeshan, “Individual speckle diffraction based 1d and 2d random grating fabrication for detector and solar energy harvesting applications,” Sci. Rep. 6, 20501 (2016).
    [Crossref] [PubMed]
  9. T.-B. Lim, K. H. Cho, Y.-H. Kim, and Y.-C. Jeong, “Enhanced light extraction efficiency of oleds with quasiperiodic diffraction grating layer,” Opt. Express 24, 17950–17959 (2016).
    [Crossref] [PubMed]
  10. W. H. Koo, Y. Zhe, and F. So, “Direct fabrication of organic light-emitting diodes on buckled substrates for light extraction,” Adv. Opt. Mater. 1, 404–408 (2013).
    [Crossref]
  11. J.-H. Park, W.-S. Chu, M.-C. Oh, K. Lee, J. Moon, S. K. Park, H. Cho, and D.-H. Cho, “Outcoupling efficiency analysis of oleds fabricated on a wrinkled substrate,” J. Display Technol. 12, 801–807 (2016).
    [Crossref]
  12. H. Cho, E. Kim, J. Moon, C. W. Joo, E. Kim, S. K. Park, J. Lee, B.-G. Yu, J.-I. Lee, S. Yoo, and et al., “Organic wrinkles embedded in high-index medium as planar internal scattering structures for organic light-emitting diodes,” Org. Electron. 46, 139–144 (2017).
    [Crossref]
  13. W. H. Koo, S. M. Jeong, F. Araoka, K. Ishikawa, S. Nishimura, T. Toyooka, and H. Takezoe, “Light extraction from organic light-emitting diodes enhanced by spontaneously formed buckles,” Nat. Photon. 4, 222–226 (2010).
  14. J. B. Kim, P. Kim, N. C. Pégard, S. J. Oh, C. R. Kagan, J. W. Fleischer, H. A. Stone, and Y.-L. Loo, “Wrinkles and deep folds as photonic structures in photovoltaics,” Nat. Photon. 6, 327–332 (2012).
    [Crossref]
  15. S. K. Ram, D. Desta, R. Rizzoli, B. P. Falcão, E. H. Eriksen, M. Bellettato, B. R. Jeppesen, P. B. Jensen, C. Summonte, R. N. Pereira, and et al., “Efficient light-trapping with quasi-periodic uniaxial nanowrinkles for thin-film silicon solar cells,” Nano Energy 35, 341–349 (2017).
    [Crossref]
  16. S. Y. Ryu, J. H. Seo, H. Hafeez, M. Song, J. Y. Shin, D. H. Kim, Y. C. Jung, and C. S. Kim, “Effects of the wrinkle structure and flat structure formed during static low-temperature annealing of zno on the performance of inverted polymer solar cells,” J. Phys. Chem. C 121, 9191–9201 (2017).
    [Crossref]
  17. Y.-C. Tsao, T. Søndergaard, E. Skovsen, L. Gurevich, K. Pedersen, and T. G. Pedersen, “Pore size dependence of diffuse light scattering from anodized aluminum solar cell backside reflectors,” Opt. Express 21, A84–A95 (2013).
    [Crossref] [PubMed]
  18. J. J. Vos, “On the cause of disability glare and its dependence on glare angle, age and ocular pigmentation,” Clinical and experimental optometry 86, 363–370 (2003).
    [Crossref] [PubMed]
  19. F. Ruesch, A. Bohren, M. Battaglia, and S. Brunold, “Quantification of glare from reflected sunlight of solar installations,” Energy Procedia 91, 997–1004 (2016).
    [Crossref]
  20. J. Jakubiec and C. Reinhart, “Assessing disability glare potential of reflections from new construction: Case study analysis and recommendations for the future,” Transport. Res. Rec. 2449, 114–122 (2014).
    [Crossref]
  21. T. Rose and A. Wollert, “The dark side of photovoltaic-3D simulation of glare assessing risk and discomfort,” Environ. Impact Assess. Rev. 52, 24–30 (2015).
    [Crossref]
  22. E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
    [Crossref] [PubMed]
  23. S. Schauer, T. Meier, M. Reinhard, M. Röehrig, M. Schneider, M. Heilig, A. Kolew, M. Worgull, and H. Hölscher, “Tunable diffractive optical elements based on shape-memory polymers fabricated via hot embossing,” ACS Appl. Mater. Interfaces 8, 9423–9430 (2016).
    [Crossref] [PubMed]
  24. K. Ding, U. Aeberhard, F. Finger, and U. Rau, “Silicon heterojunction solar cell with amorphous silicon oxide buffer and microcrystalline silicon oxide contact layers,” Phys. Status Solidi 6, 193–195 (2012).
  25. Lumerical Inc., http://www.lumerical.com/tcad-products/fdtd/ .
  26. A. Lendlein and S. Kelch, “Shape memory polymers,” Angew. Chem. 41, 2034–2057 (2002).
    [Crossref]
  27. C. Liu, H. Qin, and P. T. Mather, “Review of Progress in Shape-Memory Polymers,” J. Mater. Chem. 17, 1543–1558 (2007).
    [Crossref]
  28. P. T. Mather, X. Luo, and I. A. Rousseau, “Shape Memory Polymer Research,” Annu. Rev. Mater. Res. 39, 445–471 (2009).
    [Crossref]
  29. A. Lendlein, Shape-Memory Polymers (Springer, Berlin, 2010).
    [Crossref]
  30. Q. Zhao, H. J. Qi, and T. Xie, “Recent progress in shape memory polymer: New behavior, enabling materials, and mechanistic understanding,” Prog. Polym. Sci. 49–50, 1–42 (2015).
  31. M. D. Hager, S. Bode, C. Weber, and U. S. Schubert, “Shape Memory Polymers: Past, Present and Future Developments,” Prog. Polym. Sci. 49–50, 1–31 (2015).
  32. M. Worgull, Hot Embossing - Theory and Technology of Microreplication (Elsevier Science,).
  33. S. Schauer, M. Worgull, and H. Hölscher, “Bio-inspired hierarchical micro- and nano-wrinkles obtained via mechanically directed self-assembly on shape-memory polymers,” Soft Matter 13, 4328–4334 (2017).
    [Crossref] [PubMed]
  34. T. Xie, X. Xioa, J. Li, and R. Wang, “Encoding localized strain history through wrinkle based structural colors,” Adv. Mater. 22, 4390–4394 (2010).
    [Crossref] [PubMed]
  35. Z. Chen, Y. Y. Kim, and S. Krishnaswamy, “Anisotropic wrinkle formation on shape-memory polymer substrates,” J. Appl. Phys. 112, 124319 (2012).
    [Crossref]
  36. A. Schweikart and A. Fery, “Controlled wrinkling as a novel method for the fabrication of patterned surfaces,” Microchim Acta 165, 249–263 (2009).
    [Crossref]
  37. C. A. Palmer and E. G. Loewen, Diffraction Grating Handbook (Newport CorporationNew York, 2005).
  38. N. Adjouadi, N. Laouar, C. Bousbaa, N. Bouaouadja, and G. Fantozzi, “Study of light scattering on a soda lime glass eroded by sandblasting,” J. Eur. Ceram. Soc. 27, 3221–3229 (2007).
    [Crossref]

2017 (4)

H. Cho, E. Kim, J. Moon, C. W. Joo, E. Kim, S. K. Park, J. Lee, B.-G. Yu, J.-I. Lee, S. Yoo, and et al., “Organic wrinkles embedded in high-index medium as planar internal scattering structures for organic light-emitting diodes,” Org. Electron. 46, 139–144 (2017).
[Crossref]

S. K. Ram, D. Desta, R. Rizzoli, B. P. Falcão, E. H. Eriksen, M. Bellettato, B. R. Jeppesen, P. B. Jensen, C. Summonte, R. N. Pereira, and et al., “Efficient light-trapping with quasi-periodic uniaxial nanowrinkles for thin-film silicon solar cells,” Nano Energy 35, 341–349 (2017).
[Crossref]

S. Y. Ryu, J. H. Seo, H. Hafeez, M. Song, J. Y. Shin, D. H. Kim, Y. C. Jung, and C. S. Kim, “Effects of the wrinkle structure and flat structure formed during static low-temperature annealing of zno on the performance of inverted polymer solar cells,” J. Phys. Chem. C 121, 9191–9201 (2017).
[Crossref]

S. Schauer, M. Worgull, and H. Hölscher, “Bio-inspired hierarchical micro- and nano-wrinkles obtained via mechanically directed self-assembly on shape-memory polymers,” Soft Matter 13, 4328–4334 (2017).
[Crossref] [PubMed]

2016 (7)

F. Ruesch, A. Bohren, M. Battaglia, and S. Brunold, “Quantification of glare from reflected sunlight of solar installations,” Energy Procedia 91, 997–1004 (2016).
[Crossref]

S. Schauer, T. Meier, M. Reinhard, M. Röehrig, M. Schneider, M. Heilig, A. Kolew, M. Worgull, and H. Hölscher, “Tunable diffractive optical elements based on shape-memory polymers fabricated via hot embossing,” ACS Appl. Mater. Interfaces 8, 9423–9430 (2016).
[Crossref] [PubMed]

J.-H. Park, W.-S. Chu, M.-C. Oh, K. Lee, J. Moon, S. K. Park, H. Cho, and D.-H. Cho, “Outcoupling efficiency analysis of oleds fabricated on a wrinkled substrate,” J. Display Technol. 12, 801–807 (2016).
[Crossref]

S. M. Mahpeykar, Q. Xiong, J. Wei, L. Meng, B. K. Russell, P. Hermansen, A. V. Singhal, and X. Wang, “Stretchable hexagonal diffraction gratings as optical diffusers for in situ tunable broadband photon management,” Adv. Opt. Mater. 4, 1106–1114 (2016).
[Crossref]

J. Liu, L. Lalouat, E. Drouard, and R. Orobtchouk, “Binary coded patterns for photon control using necklace problem concept,” Opt. Express 24, 1133–1142 (2016).
[Crossref] [PubMed]

J. Bingi and V. M. Murukeshan, “Individual speckle diffraction based 1d and 2d random grating fabrication for detector and solar energy harvesting applications,” Sci. Rep. 6, 20501 (2016).
[Crossref] [PubMed]

T.-B. Lim, K. H. Cho, Y.-H. Kim, and Y.-C. Jeong, “Enhanced light extraction efficiency of oleds with quasiperiodic diffraction grating layer,” Opt. Express 24, 17950–17959 (2016).
[Crossref] [PubMed]

2015 (3)

T. Rose and A. Wollert, “The dark side of photovoltaic-3D simulation of glare assessing risk and discomfort,” Environ. Impact Assess. Rev. 52, 24–30 (2015).
[Crossref]

Q. Zhao, H. J. Qi, and T. Xie, “Recent progress in shape memory polymer: New behavior, enabling materials, and mechanistic understanding,” Prog. Polym. Sci. 49–50, 1–42 (2015).

M. D. Hager, S. Bode, C. Weber, and U. S. Schubert, “Shape Memory Polymers: Past, Present and Future Developments,” Prog. Polym. Sci. 49–50, 1–31 (2015).

2014 (2)

J. Jakubiec and C. Reinhart, “Assessing disability glare potential of reflections from new construction: Case study analysis and recommendations for the future,” Transport. Res. Rec. 2449, 114–122 (2014).
[Crossref]

A. Bozzola, M. Liscidini, and L. C. Andreani, “Broadband light trapping with disordered photonic structures in thin-film silicon solar cells,” Prog. Photovoltaics 22, 1237–1245 (2014).

2013 (6)

R. A. Pala, J. S. Liu, E. S. Barnard, D. Askarov, E. C. Garnett, S. Fan, and M. L. Brongersma, “Optimization of non-periodic plasmonic light-trapping layers for thin-film solar cells,” Nat. Commun. 4, 2095 (2013).
[Crossref] [PubMed]

P. Kim, Y. Hu, J. Alvarenga, M. Kolle, Z. Suo, and J. Aizenberg, “Rational design of mechano-responsive optical materials by fine tuning the evolution of strain-dependent wrinkling patterns,” Adv. Opt. Mater. 1, 381–388 (2013).
[Crossref]

W. H. Koo, Y. Zhe, and F. So, “Direct fabrication of organic light-emitting diodes on buckled substrates for light extraction,” Adv. Opt. Mater. 1, 404–408 (2013).
[Crossref]

T. Buß, J. Teisseire, S. Mazoyer, C. L. Smith, M. B. Mikkelsen, A. Kristensen, and E. Søndergård, “Controlled angular redirection of light via nanoimprinted disordered gratings,” Appl. Opt. 52, 709–716 (2013).
[Crossref]

Y.-C. Tsao, T. Søndergaard, E. Skovsen, L. Gurevich, K. Pedersen, and T. G. Pedersen, “Pore size dependence of diffuse light scattering from anodized aluminum solar cell backside reflectors,” Opt. Express 21, A84–A95 (2013).
[Crossref] [PubMed]

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[Crossref] [PubMed]

2012 (4)

K. Ding, U. Aeberhard, F. Finger, and U. Rau, “Silicon heterojunction solar cell with amorphous silicon oxide buffer and microcrystalline silicon oxide contact layers,” Phys. Status Solidi 6, 193–195 (2012).

J. B. Kim, P. Kim, N. C. Pégard, S. J. Oh, C. R. Kagan, J. W. Fleischer, H. A. Stone, and Y.-L. Loo, “Wrinkles and deep folds as photonic structures in photovoltaics,” Nat. Photon. 6, 327–332 (2012).
[Crossref]

Z. Chen, Y. Y. Kim, and S. Krishnaswamy, “Anisotropic wrinkle formation on shape-memory polymer substrates,” J. Appl. Phys. 112, 124319 (2012).
[Crossref]

C. Kluge, M. Rädler, A. Pradana, M. Bremer, P.-J. Jakobs, N. Barié, M. Guttmann, and M. Gerken, “Extraction of guided modes from organic emission layers by compound binary gratings,” Opt. Lett. 37, 2646–2648 (2012).
[Crossref] [PubMed]

2010 (2)

W. H. Koo, S. M. Jeong, F. Araoka, K. Ishikawa, S. Nishimura, T. Toyooka, and H. Takezoe, “Light extraction from organic light-emitting diodes enhanced by spontaneously formed buckles,” Nat. Photon. 4, 222–226 (2010).

T. Xie, X. Xioa, J. Li, and R. Wang, “Encoding localized strain history through wrinkle based structural colors,” Adv. Mater. 22, 4390–4394 (2010).
[Crossref] [PubMed]

2009 (2)

A. Schweikart and A. Fery, “Controlled wrinkling as a novel method for the fabrication of patterned surfaces,” Microchim Acta 165, 249–263 (2009).
[Crossref]

P. T. Mather, X. Luo, and I. A. Rousseau, “Shape Memory Polymer Research,” Annu. Rev. Mater. Res. 39, 445–471 (2009).
[Crossref]

2007 (2)

N. Adjouadi, N. Laouar, C. Bousbaa, N. Bouaouadja, and G. Fantozzi, “Study of light scattering on a soda lime glass eroded by sandblasting,” J. Eur. Ceram. Soc. 27, 3221–3229 (2007).
[Crossref]

C. Liu, H. Qin, and P. T. Mather, “Review of Progress in Shape-Memory Polymers,” J. Mater. Chem. 17, 1543–1558 (2007).
[Crossref]

2003 (1)

J. J. Vos, “On the cause of disability glare and its dependence on glare angle, age and ocular pigmentation,” Clinical and experimental optometry 86, 363–370 (2003).
[Crossref] [PubMed]

2002 (1)

A. Lendlein and S. Kelch, “Shape memory polymers,” Angew. Chem. 41, 2034–2057 (2002).
[Crossref]

Adjouadi, N.

N. Adjouadi, N. Laouar, C. Bousbaa, N. Bouaouadja, and G. Fantozzi, “Study of light scattering on a soda lime glass eroded by sandblasting,” J. Eur. Ceram. Soc. 27, 3221–3229 (2007).
[Crossref]

Aeberhard, U.

K. Ding, U. Aeberhard, F. Finger, and U. Rau, “Silicon heterojunction solar cell with amorphous silicon oxide buffer and microcrystalline silicon oxide contact layers,” Phys. Status Solidi 6, 193–195 (2012).

Aizenberg, J.

P. Kim, Y. Hu, J. Alvarenga, M. Kolle, Z. Suo, and J. Aizenberg, “Rational design of mechano-responsive optical materials by fine tuning the evolution of strain-dependent wrinkling patterns,” Adv. Opt. Mater. 1, 381–388 (2013).
[Crossref]

Alvarenga, J.

P. Kim, Y. Hu, J. Alvarenga, M. Kolle, Z. Suo, and J. Aizenberg, “Rational design of mechano-responsive optical materials by fine tuning the evolution of strain-dependent wrinkling patterns,” Adv. Opt. Mater. 1, 381–388 (2013).
[Crossref]

Andreani, L. C.

A. Bozzola, M. Liscidini, and L. C. Andreani, “Broadband light trapping with disordered photonic structures in thin-film silicon solar cells,” Prog. Photovoltaics 22, 1237–1245 (2014).

Araoka, F.

W. H. Koo, S. M. Jeong, F. Araoka, K. Ishikawa, S. Nishimura, T. Toyooka, and H. Takezoe, “Light extraction from organic light-emitting diodes enhanced by spontaneously formed buckles,” Nat. Photon. 4, 222–226 (2010).

Askarov, D.

R. A. Pala, J. S. Liu, E. S. Barnard, D. Askarov, E. C. Garnett, S. Fan, and M. L. Brongersma, “Optimization of non-periodic plasmonic light-trapping layers for thin-film solar cells,” Nat. Commun. 4, 2095 (2013).
[Crossref] [PubMed]

Barié, N.

Barnard, E. S.

R. A. Pala, J. S. Liu, E. S. Barnard, D. Askarov, E. C. Garnett, S. Fan, and M. L. Brongersma, “Optimization of non-periodic plasmonic light-trapping layers for thin-film solar cells,” Nat. Commun. 4, 2095 (2013).
[Crossref] [PubMed]

Battaglia, M.

F. Ruesch, A. Bohren, M. Battaglia, and S. Brunold, “Quantification of glare from reflected sunlight of solar installations,” Energy Procedia 91, 997–1004 (2016).
[Crossref]

Bellettato, M.

S. K. Ram, D. Desta, R. Rizzoli, B. P. Falcão, E. H. Eriksen, M. Bellettato, B. R. Jeppesen, P. B. Jensen, C. Summonte, R. N. Pereira, and et al., “Efficient light-trapping with quasi-periodic uniaxial nanowrinkles for thin-film silicon solar cells,” Nano Energy 35, 341–349 (2017).
[Crossref]

Bingi, J.

J. Bingi and V. M. Murukeshan, “Individual speckle diffraction based 1d and 2d random grating fabrication for detector and solar energy harvesting applications,” Sci. Rep. 6, 20501 (2016).
[Crossref] [PubMed]

Bode, S.

M. D. Hager, S. Bode, C. Weber, and U. S. Schubert, “Shape Memory Polymers: Past, Present and Future Developments,” Prog. Polym. Sci. 49–50, 1–31 (2015).

Bohren, A.

F. Ruesch, A. Bohren, M. Battaglia, and S. Brunold, “Quantification of glare from reflected sunlight of solar installations,” Energy Procedia 91, 997–1004 (2016).
[Crossref]

Bouaouadja, N.

N. Adjouadi, N. Laouar, C. Bousbaa, N. Bouaouadja, and G. Fantozzi, “Study of light scattering on a soda lime glass eroded by sandblasting,” J. Eur. Ceram. Soc. 27, 3221–3229 (2007).
[Crossref]

Bousbaa, C.

N. Adjouadi, N. Laouar, C. Bousbaa, N. Bouaouadja, and G. Fantozzi, “Study of light scattering on a soda lime glass eroded by sandblasting,” J. Eur. Ceram. Soc. 27, 3221–3229 (2007).
[Crossref]

Bozzola, A.

A. Bozzola, M. Liscidini, and L. C. Andreani, “Broadband light trapping with disordered photonic structures in thin-film silicon solar cells,” Prog. Photovoltaics 22, 1237–1245 (2014).

Bremer, M.

Brongersma, M. L.

R. A. Pala, J. S. Liu, E. S. Barnard, D. Askarov, E. C. Garnett, S. Fan, and M. L. Brongersma, “Optimization of non-periodic plasmonic light-trapping layers for thin-film solar cells,” Nat. Commun. 4, 2095 (2013).
[Crossref] [PubMed]

Brunold, S.

F. Ruesch, A. Bohren, M. Battaglia, and S. Brunold, “Quantification of glare from reflected sunlight of solar installations,” Energy Procedia 91, 997–1004 (2016).
[Crossref]

Buß, T.

Chen, Z.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[Crossref] [PubMed]

Z. Chen, Y. Y. Kim, and S. Krishnaswamy, “Anisotropic wrinkle formation on shape-memory polymer substrates,” J. Appl. Phys. 112, 124319 (2012).
[Crossref]

Cho, D.-H.

Cho, H.

H. Cho, E. Kim, J. Moon, C. W. Joo, E. Kim, S. K. Park, J. Lee, B.-G. Yu, J.-I. Lee, S. Yoo, and et al., “Organic wrinkles embedded in high-index medium as planar internal scattering structures for organic light-emitting diodes,” Org. Electron. 46, 139–144 (2017).
[Crossref]

J.-H. Park, W.-S. Chu, M.-C. Oh, K. Lee, J. Moon, S. K. Park, H. Cho, and D.-H. Cho, “Outcoupling efficiency analysis of oleds fabricated on a wrinkled substrate,” J. Display Technol. 12, 801–807 (2016).
[Crossref]

Cho, K. H.

Chu, W.-S.

Depauw, V.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[Crossref] [PubMed]

Desta, D.

S. K. Ram, D. Desta, R. Rizzoli, B. P. Falcão, E. H. Eriksen, M. Bellettato, B. R. Jeppesen, P. B. Jensen, C. Summonte, R. N. Pereira, and et al., “Efficient light-trapping with quasi-periodic uniaxial nanowrinkles for thin-film silicon solar cells,” Nano Energy 35, 341–349 (2017).
[Crossref]

Ding, K.

K. Ding, U. Aeberhard, F. Finger, and U. Rau, “Silicon heterojunction solar cell with amorphous silicon oxide buffer and microcrystalline silicon oxide contact layers,” Phys. Status Solidi 6, 193–195 (2012).

Drouard, E.

Eriksen, E. H.

S. K. Ram, D. Desta, R. Rizzoli, B. P. Falcão, E. H. Eriksen, M. Bellettato, B. R. Jeppesen, P. B. Jensen, C. Summonte, R. N. Pereira, and et al., “Efficient light-trapping with quasi-periodic uniaxial nanowrinkles for thin-film silicon solar cells,” Nano Energy 35, 341–349 (2017).
[Crossref]

Falcão, B. P.

S. K. Ram, D. Desta, R. Rizzoli, B. P. Falcão, E. H. Eriksen, M. Bellettato, B. R. Jeppesen, P. B. Jensen, C. Summonte, R. N. Pereira, and et al., “Efficient light-trapping with quasi-periodic uniaxial nanowrinkles for thin-film silicon solar cells,” Nano Energy 35, 341–349 (2017).
[Crossref]

Fan, S.

R. A. Pala, J. S. Liu, E. S. Barnard, D. Askarov, E. C. Garnett, S. Fan, and M. L. Brongersma, “Optimization of non-periodic plasmonic light-trapping layers for thin-film solar cells,” Nat. Commun. 4, 2095 (2013).
[Crossref] [PubMed]

Fantozzi, G.

N. Adjouadi, N. Laouar, C. Bousbaa, N. Bouaouadja, and G. Fantozzi, “Study of light scattering on a soda lime glass eroded by sandblasting,” J. Eur. Ceram. Soc. 27, 3221–3229 (2007).
[Crossref]

Fery, A.

A. Schweikart and A. Fery, “Controlled wrinkling as a novel method for the fabrication of patterned surfaces,” Microchim Acta 165, 249–263 (2009).
[Crossref]

Finger, F.

K. Ding, U. Aeberhard, F. Finger, and U. Rau, “Silicon heterojunction solar cell with amorphous silicon oxide buffer and microcrystalline silicon oxide contact layers,” Phys. Status Solidi 6, 193–195 (2012).

Fleischer, J. W.

J. B. Kim, P. Kim, N. C. Pégard, S. J. Oh, C. R. Kagan, J. W. Fleischer, H. A. Stone, and Y.-L. Loo, “Wrinkles and deep folds as photonic structures in photovoltaics,” Nat. Photon. 6, 327–332 (2012).
[Crossref]

Garnett, E. C.

R. A. Pala, J. S. Liu, E. S. Barnard, D. Askarov, E. C. Garnett, S. Fan, and M. L. Brongersma, “Optimization of non-periodic plasmonic light-trapping layers for thin-film solar cells,” Nat. Commun. 4, 2095 (2013).
[Crossref] [PubMed]

Gerken, M.

Gurevich, L.

Guttmann, M.

Hafeez, H.

S. Y. Ryu, J. H. Seo, H. Hafeez, M. Song, J. Y. Shin, D. H. Kim, Y. C. Jung, and C. S. Kim, “Effects of the wrinkle structure and flat structure formed during static low-temperature annealing of zno on the performance of inverted polymer solar cells,” J. Phys. Chem. C 121, 9191–9201 (2017).
[Crossref]

Hager, M. D.

M. D. Hager, S. Bode, C. Weber, and U. S. Schubert, “Shape Memory Polymers: Past, Present and Future Developments,” Prog. Polym. Sci. 49–50, 1–31 (2015).

Heilig, M.

S. Schauer, T. Meier, M. Reinhard, M. Röehrig, M. Schneider, M. Heilig, A. Kolew, M. Worgull, and H. Hölscher, “Tunable diffractive optical elements based on shape-memory polymers fabricated via hot embossing,” ACS Appl. Mater. Interfaces 8, 9423–9430 (2016).
[Crossref] [PubMed]

Hermansen, P.

S. M. Mahpeykar, Q. Xiong, J. Wei, L. Meng, B. K. Russell, P. Hermansen, A. V. Singhal, and X. Wang, “Stretchable hexagonal diffraction gratings as optical diffusers for in situ tunable broadband photon management,” Adv. Opt. Mater. 4, 1106–1114 (2016).
[Crossref]

Hölscher, H.

S. Schauer, M. Worgull, and H. Hölscher, “Bio-inspired hierarchical micro- and nano-wrinkles obtained via mechanically directed self-assembly on shape-memory polymers,” Soft Matter 13, 4328–4334 (2017).
[Crossref] [PubMed]

S. Schauer, T. Meier, M. Reinhard, M. Röehrig, M. Schneider, M. Heilig, A. Kolew, M. Worgull, and H. Hölscher, “Tunable diffractive optical elements based on shape-memory polymers fabricated via hot embossing,” ACS Appl. Mater. Interfaces 8, 9423–9430 (2016).
[Crossref] [PubMed]

Hu, Y.

P. Kim, Y. Hu, J. Alvarenga, M. Kolle, Z. Suo, and J. Aizenberg, “Rational design of mechano-responsive optical materials by fine tuning the evolution of strain-dependent wrinkling patterns,” Adv. Opt. Mater. 1, 381–388 (2013).
[Crossref]

Ishikawa, K.

W. H. Koo, S. M. Jeong, F. Araoka, K. Ishikawa, S. Nishimura, T. Toyooka, and H. Takezoe, “Light extraction from organic light-emitting diodes enhanced by spontaneously formed buckles,” Nat. Photon. 4, 222–226 (2010).

Jakobs, P.-J.

Jakubiec, J.

J. Jakubiec and C. Reinhart, “Assessing disability glare potential of reflections from new construction: Case study analysis and recommendations for the future,” Transport. Res. Rec. 2449, 114–122 (2014).
[Crossref]

Jensen, P. B.

S. K. Ram, D. Desta, R. Rizzoli, B. P. Falcão, E. H. Eriksen, M. Bellettato, B. R. Jeppesen, P. B. Jensen, C. Summonte, R. N. Pereira, and et al., “Efficient light-trapping with quasi-periodic uniaxial nanowrinkles for thin-film silicon solar cells,” Nano Energy 35, 341–349 (2017).
[Crossref]

Jeong, S. M.

W. H. Koo, S. M. Jeong, F. Araoka, K. Ishikawa, S. Nishimura, T. Toyooka, and H. Takezoe, “Light extraction from organic light-emitting diodes enhanced by spontaneously formed buckles,” Nat. Photon. 4, 222–226 (2010).

Jeong, Y.-C.

Jeppesen, B. R.

S. K. Ram, D. Desta, R. Rizzoli, B. P. Falcão, E. H. Eriksen, M. Bellettato, B. R. Jeppesen, P. B. Jensen, C. Summonte, R. N. Pereira, and et al., “Efficient light-trapping with quasi-periodic uniaxial nanowrinkles for thin-film silicon solar cells,” Nano Energy 35, 341–349 (2017).
[Crossref]

Joo, C. W.

H. Cho, E. Kim, J. Moon, C. W. Joo, E. Kim, S. K. Park, J. Lee, B.-G. Yu, J.-I. Lee, S. Yoo, and et al., “Organic wrinkles embedded in high-index medium as planar internal scattering structures for organic light-emitting diodes,” Org. Electron. 46, 139–144 (2017).
[Crossref]

Jung, Y. C.

S. Y. Ryu, J. H. Seo, H. Hafeez, M. Song, J. Y. Shin, D. H. Kim, Y. C. Jung, and C. S. Kim, “Effects of the wrinkle structure and flat structure formed during static low-temperature annealing of zno on the performance of inverted polymer solar cells,” J. Phys. Chem. C 121, 9191–9201 (2017).
[Crossref]

Kagan, C. R.

J. B. Kim, P. Kim, N. C. Pégard, S. J. Oh, C. R. Kagan, J. W. Fleischer, H. A. Stone, and Y.-L. Loo, “Wrinkles and deep folds as photonic structures in photovoltaics,” Nat. Photon. 6, 327–332 (2012).
[Crossref]

Kelch, S.

A. Lendlein and S. Kelch, “Shape memory polymers,” Angew. Chem. 41, 2034–2057 (2002).
[Crossref]

Kim, C. S.

S. Y. Ryu, J. H. Seo, H. Hafeez, M. Song, J. Y. Shin, D. H. Kim, Y. C. Jung, and C. S. Kim, “Effects of the wrinkle structure and flat structure formed during static low-temperature annealing of zno on the performance of inverted polymer solar cells,” J. Phys. Chem. C 121, 9191–9201 (2017).
[Crossref]

Kim, D. H.

S. Y. Ryu, J. H. Seo, H. Hafeez, M. Song, J. Y. Shin, D. H. Kim, Y. C. Jung, and C. S. Kim, “Effects of the wrinkle structure and flat structure formed during static low-temperature annealing of zno on the performance of inverted polymer solar cells,” J. Phys. Chem. C 121, 9191–9201 (2017).
[Crossref]

Kim, E.

H. Cho, E. Kim, J. Moon, C. W. Joo, E. Kim, S. K. Park, J. Lee, B.-G. Yu, J.-I. Lee, S. Yoo, and et al., “Organic wrinkles embedded in high-index medium as planar internal scattering structures for organic light-emitting diodes,” Org. Electron. 46, 139–144 (2017).
[Crossref]

H. Cho, E. Kim, J. Moon, C. W. Joo, E. Kim, S. K. Park, J. Lee, B.-G. Yu, J.-I. Lee, S. Yoo, and et al., “Organic wrinkles embedded in high-index medium as planar internal scattering structures for organic light-emitting diodes,” Org. Electron. 46, 139–144 (2017).
[Crossref]

Kim, J. B.

J. B. Kim, P. Kim, N. C. Pégard, S. J. Oh, C. R. Kagan, J. W. Fleischer, H. A. Stone, and Y.-L. Loo, “Wrinkles and deep folds as photonic structures in photovoltaics,” Nat. Photon. 6, 327–332 (2012).
[Crossref]

Kim, P.

P. Kim, Y. Hu, J. Alvarenga, M. Kolle, Z. Suo, and J. Aizenberg, “Rational design of mechano-responsive optical materials by fine tuning the evolution of strain-dependent wrinkling patterns,” Adv. Opt. Mater. 1, 381–388 (2013).
[Crossref]

J. B. Kim, P. Kim, N. C. Pégard, S. J. Oh, C. R. Kagan, J. W. Fleischer, H. A. Stone, and Y.-L. Loo, “Wrinkles and deep folds as photonic structures in photovoltaics,” Nat. Photon. 6, 327–332 (2012).
[Crossref]

Kim, Y. Y.

Z. Chen, Y. Y. Kim, and S. Krishnaswamy, “Anisotropic wrinkle formation on shape-memory polymer substrates,” J. Appl. Phys. 112, 124319 (2012).
[Crossref]

Kim, Y.-H.

Kluge, C.

Kolew, A.

S. Schauer, T. Meier, M. Reinhard, M. Röehrig, M. Schneider, M. Heilig, A. Kolew, M. Worgull, and H. Hölscher, “Tunable diffractive optical elements based on shape-memory polymers fabricated via hot embossing,” ACS Appl. Mater. Interfaces 8, 9423–9430 (2016).
[Crossref] [PubMed]

Kolle, M.

P. Kim, Y. Hu, J. Alvarenga, M. Kolle, Z. Suo, and J. Aizenberg, “Rational design of mechano-responsive optical materials by fine tuning the evolution of strain-dependent wrinkling patterns,” Adv. Opt. Mater. 1, 381–388 (2013).
[Crossref]

Koo, W. H.

W. H. Koo, Y. Zhe, and F. So, “Direct fabrication of organic light-emitting diodes on buckled substrates for light extraction,” Adv. Opt. Mater. 1, 404–408 (2013).
[Crossref]

W. H. Koo, S. M. Jeong, F. Araoka, K. Ishikawa, S. Nishimura, T. Toyooka, and H. Takezoe, “Light extraction from organic light-emitting diodes enhanced by spontaneously formed buckles,” Nat. Photon. 4, 222–226 (2010).

Krauss, T. F.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[Crossref] [PubMed]

Krishnaswamy, S.

Z. Chen, Y. Y. Kim, and S. Krishnaswamy, “Anisotropic wrinkle formation on shape-memory polymer substrates,” J. Appl. Phys. 112, 124319 (2012).
[Crossref]

Kristensen, A.

Lalouat, L.

Laouar, N.

N. Adjouadi, N. Laouar, C. Bousbaa, N. Bouaouadja, and G. Fantozzi, “Study of light scattering on a soda lime glass eroded by sandblasting,” J. Eur. Ceram. Soc. 27, 3221–3229 (2007).
[Crossref]

Lee, J.

H. Cho, E. Kim, J. Moon, C. W. Joo, E. Kim, S. K. Park, J. Lee, B.-G. Yu, J.-I. Lee, S. Yoo, and et al., “Organic wrinkles embedded in high-index medium as planar internal scattering structures for organic light-emitting diodes,” Org. Electron. 46, 139–144 (2017).
[Crossref]

Lee, J.-I.

H. Cho, E. Kim, J. Moon, C. W. Joo, E. Kim, S. K. Park, J. Lee, B.-G. Yu, J.-I. Lee, S. Yoo, and et al., “Organic wrinkles embedded in high-index medium as planar internal scattering structures for organic light-emitting diodes,” Org. Electron. 46, 139–144 (2017).
[Crossref]

Lee, K.

Lendlein, A.

A. Lendlein and S. Kelch, “Shape memory polymers,” Angew. Chem. 41, 2034–2057 (2002).
[Crossref]

A. Lendlein, Shape-Memory Polymers (Springer, Berlin, 2010).
[Crossref]

Li, J.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[Crossref] [PubMed]

T. Xie, X. Xioa, J. Li, and R. Wang, “Encoding localized strain history through wrinkle based structural colors,” Adv. Mater. 22, 4390–4394 (2010).
[Crossref] [PubMed]

Lim, T.-B.

Liscidini, M.

A. Bozzola, M. Liscidini, and L. C. Andreani, “Broadband light trapping with disordered photonic structures in thin-film silicon solar cells,” Prog. Photovoltaics 22, 1237–1245 (2014).

Liu, C.

C. Liu, H. Qin, and P. T. Mather, “Review of Progress in Shape-Memory Polymers,” J. Mater. Chem. 17, 1543–1558 (2007).
[Crossref]

Liu, J.

Liu, J. S.

R. A. Pala, J. S. Liu, E. S. Barnard, D. Askarov, E. C. Garnett, S. Fan, and M. L. Brongersma, “Optimization of non-periodic plasmonic light-trapping layers for thin-film solar cells,” Nat. Commun. 4, 2095 (2013).
[Crossref] [PubMed]

Liu, Y.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[Crossref] [PubMed]

Loewen, E. G.

C. A. Palmer and E. G. Loewen, Diffraction Grating Handbook (Newport CorporationNew York, 2005).

Loo, Y.-L.

J. B. Kim, P. Kim, N. C. Pégard, S. J. Oh, C. R. Kagan, J. W. Fleischer, H. A. Stone, and Y.-L. Loo, “Wrinkles and deep folds as photonic structures in photovoltaics,” Nat. Photon. 6, 327–332 (2012).
[Crossref]

Luo, X.

P. T. Mather, X. Luo, and I. A. Rousseau, “Shape Memory Polymer Research,” Annu. Rev. Mater. Res. 39, 445–471 (2009).
[Crossref]

Mahpeykar, S. M.

S. M. Mahpeykar, Q. Xiong, J. Wei, L. Meng, B. K. Russell, P. Hermansen, A. V. Singhal, and X. Wang, “Stretchable hexagonal diffraction gratings as optical diffusers for in situ tunable broadband photon management,” Adv. Opt. Mater. 4, 1106–1114 (2016).
[Crossref]

Martins, E. R.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[Crossref] [PubMed]

Mather, P. T.

P. T. Mather, X. Luo, and I. A. Rousseau, “Shape Memory Polymer Research,” Annu. Rev. Mater. Res. 39, 445–471 (2009).
[Crossref]

C. Liu, H. Qin, and P. T. Mather, “Review of Progress in Shape-Memory Polymers,” J. Mater. Chem. 17, 1543–1558 (2007).
[Crossref]

Mazoyer, S.

Meier, T.

S. Schauer, T. Meier, M. Reinhard, M. Röehrig, M. Schneider, M. Heilig, A. Kolew, M. Worgull, and H. Hölscher, “Tunable diffractive optical elements based on shape-memory polymers fabricated via hot embossing,” ACS Appl. Mater. Interfaces 8, 9423–9430 (2016).
[Crossref] [PubMed]

Meng, L.

S. M. Mahpeykar, Q. Xiong, J. Wei, L. Meng, B. K. Russell, P. Hermansen, A. V. Singhal, and X. Wang, “Stretchable hexagonal diffraction gratings as optical diffusers for in situ tunable broadband photon management,” Adv. Opt. Mater. 4, 1106–1114 (2016).
[Crossref]

Mikkelsen, M. B.

Moon, J.

H. Cho, E. Kim, J. Moon, C. W. Joo, E. Kim, S. K. Park, J. Lee, B.-G. Yu, J.-I. Lee, S. Yoo, and et al., “Organic wrinkles embedded in high-index medium as planar internal scattering structures for organic light-emitting diodes,” Org. Electron. 46, 139–144 (2017).
[Crossref]

J.-H. Park, W.-S. Chu, M.-C. Oh, K. Lee, J. Moon, S. K. Park, H. Cho, and D.-H. Cho, “Outcoupling efficiency analysis of oleds fabricated on a wrinkled substrate,” J. Display Technol. 12, 801–807 (2016).
[Crossref]

Murukeshan, V. M.

J. Bingi and V. M. Murukeshan, “Individual speckle diffraction based 1d and 2d random grating fabrication for detector and solar energy harvesting applications,” Sci. Rep. 6, 20501 (2016).
[Crossref] [PubMed]

Nishimura, S.

W. H. Koo, S. M. Jeong, F. Araoka, K. Ishikawa, S. Nishimura, T. Toyooka, and H. Takezoe, “Light extraction from organic light-emitting diodes enhanced by spontaneously formed buckles,” Nat. Photon. 4, 222–226 (2010).

Oh, M.-C.

Oh, S. J.

J. B. Kim, P. Kim, N. C. Pégard, S. J. Oh, C. R. Kagan, J. W. Fleischer, H. A. Stone, and Y.-L. Loo, “Wrinkles and deep folds as photonic structures in photovoltaics,” Nat. Photon. 6, 327–332 (2012).
[Crossref]

Orobtchouk, R.

Pala, R. A.

R. A. Pala, J. S. Liu, E. S. Barnard, D. Askarov, E. C. Garnett, S. Fan, and M. L. Brongersma, “Optimization of non-periodic plasmonic light-trapping layers for thin-film solar cells,” Nat. Commun. 4, 2095 (2013).
[Crossref] [PubMed]

Palmer, C. A.

C. A. Palmer and E. G. Loewen, Diffraction Grating Handbook (Newport CorporationNew York, 2005).

Park, J.-H.

Park, S. K.

H. Cho, E. Kim, J. Moon, C. W. Joo, E. Kim, S. K. Park, J. Lee, B.-G. Yu, J.-I. Lee, S. Yoo, and et al., “Organic wrinkles embedded in high-index medium as planar internal scattering structures for organic light-emitting diodes,” Org. Electron. 46, 139–144 (2017).
[Crossref]

J.-H. Park, W.-S. Chu, M.-C. Oh, K. Lee, J. Moon, S. K. Park, H. Cho, and D.-H. Cho, “Outcoupling efficiency analysis of oleds fabricated on a wrinkled substrate,” J. Display Technol. 12, 801–807 (2016).
[Crossref]

Pedersen, K.

Pedersen, T. G.

Pégard, N. C.

J. B. Kim, P. Kim, N. C. Pégard, S. J. Oh, C. R. Kagan, J. W. Fleischer, H. A. Stone, and Y.-L. Loo, “Wrinkles and deep folds as photonic structures in photovoltaics,” Nat. Photon. 6, 327–332 (2012).
[Crossref]

Pereira, R. N.

S. K. Ram, D. Desta, R. Rizzoli, B. P. Falcão, E. H. Eriksen, M. Bellettato, B. R. Jeppesen, P. B. Jensen, C. Summonte, R. N. Pereira, and et al., “Efficient light-trapping with quasi-periodic uniaxial nanowrinkles for thin-film silicon solar cells,” Nano Energy 35, 341–349 (2017).
[Crossref]

Pradana, A.

Qi, H. J.

Q. Zhao, H. J. Qi, and T. Xie, “Recent progress in shape memory polymer: New behavior, enabling materials, and mechanistic understanding,” Prog. Polym. Sci. 49–50, 1–42 (2015).

Qin, H.

C. Liu, H. Qin, and P. T. Mather, “Review of Progress in Shape-Memory Polymers,” J. Mater. Chem. 17, 1543–1558 (2007).
[Crossref]

Rädler, M.

Ram, S. K.

S. K. Ram, D. Desta, R. Rizzoli, B. P. Falcão, E. H. Eriksen, M. Bellettato, B. R. Jeppesen, P. B. Jensen, C. Summonte, R. N. Pereira, and et al., “Efficient light-trapping with quasi-periodic uniaxial nanowrinkles for thin-film silicon solar cells,” Nano Energy 35, 341–349 (2017).
[Crossref]

Rau, U.

K. Ding, U. Aeberhard, F. Finger, and U. Rau, “Silicon heterojunction solar cell with amorphous silicon oxide buffer and microcrystalline silicon oxide contact layers,” Phys. Status Solidi 6, 193–195 (2012).

Reinhard, M.

S. Schauer, T. Meier, M. Reinhard, M. Röehrig, M. Schneider, M. Heilig, A. Kolew, M. Worgull, and H. Hölscher, “Tunable diffractive optical elements based on shape-memory polymers fabricated via hot embossing,” ACS Appl. Mater. Interfaces 8, 9423–9430 (2016).
[Crossref] [PubMed]

Reinhart, C.

J. Jakubiec and C. Reinhart, “Assessing disability glare potential of reflections from new construction: Case study analysis and recommendations for the future,” Transport. Res. Rec. 2449, 114–122 (2014).
[Crossref]

Rizzoli, R.

S. K. Ram, D. Desta, R. Rizzoli, B. P. Falcão, E. H. Eriksen, M. Bellettato, B. R. Jeppesen, P. B. Jensen, C. Summonte, R. N. Pereira, and et al., “Efficient light-trapping with quasi-periodic uniaxial nanowrinkles for thin-film silicon solar cells,” Nano Energy 35, 341–349 (2017).
[Crossref]

Röehrig, M.

S. Schauer, T. Meier, M. Reinhard, M. Röehrig, M. Schneider, M. Heilig, A. Kolew, M. Worgull, and H. Hölscher, “Tunable diffractive optical elements based on shape-memory polymers fabricated via hot embossing,” ACS Appl. Mater. Interfaces 8, 9423–9430 (2016).
[Crossref] [PubMed]

Rose, T.

T. Rose and A. Wollert, “The dark side of photovoltaic-3D simulation of glare assessing risk and discomfort,” Environ. Impact Assess. Rev. 52, 24–30 (2015).
[Crossref]

Rousseau, I. A.

P. T. Mather, X. Luo, and I. A. Rousseau, “Shape Memory Polymer Research,” Annu. Rev. Mater. Res. 39, 445–471 (2009).
[Crossref]

Ruesch, F.

F. Ruesch, A. Bohren, M. Battaglia, and S. Brunold, “Quantification of glare from reflected sunlight of solar installations,” Energy Procedia 91, 997–1004 (2016).
[Crossref]

Russell, B. K.

S. M. Mahpeykar, Q. Xiong, J. Wei, L. Meng, B. K. Russell, P. Hermansen, A. V. Singhal, and X. Wang, “Stretchable hexagonal diffraction gratings as optical diffusers for in situ tunable broadband photon management,” Adv. Opt. Mater. 4, 1106–1114 (2016).
[Crossref]

Ryu, S. Y.

S. Y. Ryu, J. H. Seo, H. Hafeez, M. Song, J. Y. Shin, D. H. Kim, Y. C. Jung, and C. S. Kim, “Effects of the wrinkle structure and flat structure formed during static low-temperature annealing of zno on the performance of inverted polymer solar cells,” J. Phys. Chem. C 121, 9191–9201 (2017).
[Crossref]

Schauer, S.

S. Schauer, M. Worgull, and H. Hölscher, “Bio-inspired hierarchical micro- and nano-wrinkles obtained via mechanically directed self-assembly on shape-memory polymers,” Soft Matter 13, 4328–4334 (2017).
[Crossref] [PubMed]

S. Schauer, T. Meier, M. Reinhard, M. Röehrig, M. Schneider, M. Heilig, A. Kolew, M. Worgull, and H. Hölscher, “Tunable diffractive optical elements based on shape-memory polymers fabricated via hot embossing,” ACS Appl. Mater. Interfaces 8, 9423–9430 (2016).
[Crossref] [PubMed]

Schneider, M.

S. Schauer, T. Meier, M. Reinhard, M. Röehrig, M. Schneider, M. Heilig, A. Kolew, M. Worgull, and H. Hölscher, “Tunable diffractive optical elements based on shape-memory polymers fabricated via hot embossing,” ACS Appl. Mater. Interfaces 8, 9423–9430 (2016).
[Crossref] [PubMed]

Schubert, U. S.

M. D. Hager, S. Bode, C. Weber, and U. S. Schubert, “Shape Memory Polymers: Past, Present and Future Developments,” Prog. Polym. Sci. 49–50, 1–31 (2015).

Schweikart, A.

A. Schweikart and A. Fery, “Controlled wrinkling as a novel method for the fabrication of patterned surfaces,” Microchim Acta 165, 249–263 (2009).
[Crossref]

Seo, J. H.

S. Y. Ryu, J. H. Seo, H. Hafeez, M. Song, J. Y. Shin, D. H. Kim, Y. C. Jung, and C. S. Kim, “Effects of the wrinkle structure and flat structure formed during static low-temperature annealing of zno on the performance of inverted polymer solar cells,” J. Phys. Chem. C 121, 9191–9201 (2017).
[Crossref]

Shin, J. Y.

S. Y. Ryu, J. H. Seo, H. Hafeez, M. Song, J. Y. Shin, D. H. Kim, Y. C. Jung, and C. S. Kim, “Effects of the wrinkle structure and flat structure formed during static low-temperature annealing of zno on the performance of inverted polymer solar cells,” J. Phys. Chem. C 121, 9191–9201 (2017).
[Crossref]

Singhal, A. V.

S. M. Mahpeykar, Q. Xiong, J. Wei, L. Meng, B. K. Russell, P. Hermansen, A. V. Singhal, and X. Wang, “Stretchable hexagonal diffraction gratings as optical diffusers for in situ tunable broadband photon management,” Adv. Opt. Mater. 4, 1106–1114 (2016).
[Crossref]

Skovsen, E.

Smith, C. L.

So, F.

W. H. Koo, Y. Zhe, and F. So, “Direct fabrication of organic light-emitting diodes on buckled substrates for light extraction,” Adv. Opt. Mater. 1, 404–408 (2013).
[Crossref]

Søndergaard, T.

Søndergård, E.

Song, M.

S. Y. Ryu, J. H. Seo, H. Hafeez, M. Song, J. Y. Shin, D. H. Kim, Y. C. Jung, and C. S. Kim, “Effects of the wrinkle structure and flat structure formed during static low-temperature annealing of zno on the performance of inverted polymer solar cells,” J. Phys. Chem. C 121, 9191–9201 (2017).
[Crossref]

Stone, H. A.

J. B. Kim, P. Kim, N. C. Pégard, S. J. Oh, C. R. Kagan, J. W. Fleischer, H. A. Stone, and Y.-L. Loo, “Wrinkles and deep folds as photonic structures in photovoltaics,” Nat. Photon. 6, 327–332 (2012).
[Crossref]

Summonte, C.

S. K. Ram, D. Desta, R. Rizzoli, B. P. Falcão, E. H. Eriksen, M. Bellettato, B. R. Jeppesen, P. B. Jensen, C. Summonte, R. N. Pereira, and et al., “Efficient light-trapping with quasi-periodic uniaxial nanowrinkles for thin-film silicon solar cells,” Nano Energy 35, 341–349 (2017).
[Crossref]

Suo, Z.

P. Kim, Y. Hu, J. Alvarenga, M. Kolle, Z. Suo, and J. Aizenberg, “Rational design of mechano-responsive optical materials by fine tuning the evolution of strain-dependent wrinkling patterns,” Adv. Opt. Mater. 1, 381–388 (2013).
[Crossref]

Takezoe, H.

W. H. Koo, S. M. Jeong, F. Araoka, K. Ishikawa, S. Nishimura, T. Toyooka, and H. Takezoe, “Light extraction from organic light-emitting diodes enhanced by spontaneously formed buckles,” Nat. Photon. 4, 222–226 (2010).

Teisseire, J.

Toyooka, T.

W. H. Koo, S. M. Jeong, F. Araoka, K. Ishikawa, S. Nishimura, T. Toyooka, and H. Takezoe, “Light extraction from organic light-emitting diodes enhanced by spontaneously formed buckles,” Nat. Photon. 4, 222–226 (2010).

Tsao, Y.-C.

Vos, J. J.

J. J. Vos, “On the cause of disability glare and its dependence on glare angle, age and ocular pigmentation,” Clinical and experimental optometry 86, 363–370 (2003).
[Crossref] [PubMed]

Wang, R.

T. Xie, X. Xioa, J. Li, and R. Wang, “Encoding localized strain history through wrinkle based structural colors,” Adv. Mater. 22, 4390–4394 (2010).
[Crossref] [PubMed]

Wang, X.

S. M. Mahpeykar, Q. Xiong, J. Wei, L. Meng, B. K. Russell, P. Hermansen, A. V. Singhal, and X. Wang, “Stretchable hexagonal diffraction gratings as optical diffusers for in situ tunable broadband photon management,” Adv. Opt. Mater. 4, 1106–1114 (2016).
[Crossref]

Weber, C.

M. D. Hager, S. Bode, C. Weber, and U. S. Schubert, “Shape Memory Polymers: Past, Present and Future Developments,” Prog. Polym. Sci. 49–50, 1–31 (2015).

Wei, J.

S. M. Mahpeykar, Q. Xiong, J. Wei, L. Meng, B. K. Russell, P. Hermansen, A. V. Singhal, and X. Wang, “Stretchable hexagonal diffraction gratings as optical diffusers for in situ tunable broadband photon management,” Adv. Opt. Mater. 4, 1106–1114 (2016).
[Crossref]

Wollert, A.

T. Rose and A. Wollert, “The dark side of photovoltaic-3D simulation of glare assessing risk and discomfort,” Environ. Impact Assess. Rev. 52, 24–30 (2015).
[Crossref]

Worgull, M.

S. Schauer, M. Worgull, and H. Hölscher, “Bio-inspired hierarchical micro- and nano-wrinkles obtained via mechanically directed self-assembly on shape-memory polymers,” Soft Matter 13, 4328–4334 (2017).
[Crossref] [PubMed]

S. Schauer, T. Meier, M. Reinhard, M. Röehrig, M. Schneider, M. Heilig, A. Kolew, M. Worgull, and H. Hölscher, “Tunable diffractive optical elements based on shape-memory polymers fabricated via hot embossing,” ACS Appl. Mater. Interfaces 8, 9423–9430 (2016).
[Crossref] [PubMed]

M. Worgull, Hot Embossing - Theory and Technology of Microreplication (Elsevier Science,).

Xie, T.

Q. Zhao, H. J. Qi, and T. Xie, “Recent progress in shape memory polymer: New behavior, enabling materials, and mechanistic understanding,” Prog. Polym. Sci. 49–50, 1–42 (2015).

T. Xie, X. Xioa, J. Li, and R. Wang, “Encoding localized strain history through wrinkle based structural colors,” Adv. Mater. 22, 4390–4394 (2010).
[Crossref] [PubMed]

Xioa, X.

T. Xie, X. Xioa, J. Li, and R. Wang, “Encoding localized strain history through wrinkle based structural colors,” Adv. Mater. 22, 4390–4394 (2010).
[Crossref] [PubMed]

Xiong, Q.

S. M. Mahpeykar, Q. Xiong, J. Wei, L. Meng, B. K. Russell, P. Hermansen, A. V. Singhal, and X. Wang, “Stretchable hexagonal diffraction gratings as optical diffusers for in situ tunable broadband photon management,” Adv. Opt. Mater. 4, 1106–1114 (2016).
[Crossref]

Yoo, S.

H. Cho, E. Kim, J. Moon, C. W. Joo, E. Kim, S. K. Park, J. Lee, B.-G. Yu, J.-I. Lee, S. Yoo, and et al., “Organic wrinkles embedded in high-index medium as planar internal scattering structures for organic light-emitting diodes,” Org. Electron. 46, 139–144 (2017).
[Crossref]

Yu, B.-G.

H. Cho, E. Kim, J. Moon, C. W. Joo, E. Kim, S. K. Park, J. Lee, B.-G. Yu, J.-I. Lee, S. Yoo, and et al., “Organic wrinkles embedded in high-index medium as planar internal scattering structures for organic light-emitting diodes,” Org. Electron. 46, 139–144 (2017).
[Crossref]

Zhao, Q.

Q. Zhao, H. J. Qi, and T. Xie, “Recent progress in shape memory polymer: New behavior, enabling materials, and mechanistic understanding,” Prog. Polym. Sci. 49–50, 1–42 (2015).

Zhe, Y.

W. H. Koo, Y. Zhe, and F. So, “Direct fabrication of organic light-emitting diodes on buckled substrates for light extraction,” Adv. Opt. Mater. 1, 404–408 (2013).
[Crossref]

Zhou, J.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

S. Schauer, T. Meier, M. Reinhard, M. Röehrig, M. Schneider, M. Heilig, A. Kolew, M. Worgull, and H. Hölscher, “Tunable diffractive optical elements based on shape-memory polymers fabricated via hot embossing,” ACS Appl. Mater. Interfaces 8, 9423–9430 (2016).
[Crossref] [PubMed]

Adv. Mater. (1)

T. Xie, X. Xioa, J. Li, and R. Wang, “Encoding localized strain history through wrinkle based structural colors,” Adv. Mater. 22, 4390–4394 (2010).
[Crossref] [PubMed]

Adv. Opt. Mater. (3)

S. M. Mahpeykar, Q. Xiong, J. Wei, L. Meng, B. K. Russell, P. Hermansen, A. V. Singhal, and X. Wang, “Stretchable hexagonal diffraction gratings as optical diffusers for in situ tunable broadband photon management,” Adv. Opt. Mater. 4, 1106–1114 (2016).
[Crossref]

P. Kim, Y. Hu, J. Alvarenga, M. Kolle, Z. Suo, and J. Aizenberg, “Rational design of mechano-responsive optical materials by fine tuning the evolution of strain-dependent wrinkling patterns,” Adv. Opt. Mater. 1, 381–388 (2013).
[Crossref]

W. H. Koo, Y. Zhe, and F. So, “Direct fabrication of organic light-emitting diodes on buckled substrates for light extraction,” Adv. Opt. Mater. 1, 404–408 (2013).
[Crossref]

Angew. Chem. (1)

A. Lendlein and S. Kelch, “Shape memory polymers,” Angew. Chem. 41, 2034–2057 (2002).
[Crossref]

Annu. Rev. Mater. Res. (1)

P. T. Mather, X. Luo, and I. A. Rousseau, “Shape Memory Polymer Research,” Annu. Rev. Mater. Res. 39, 445–471 (2009).
[Crossref]

Appl. Opt. (1)

Clinical and experimental optometry (1)

J. J. Vos, “On the cause of disability glare and its dependence on glare angle, age and ocular pigmentation,” Clinical and experimental optometry 86, 363–370 (2003).
[Crossref] [PubMed]

Energy Procedia (1)

F. Ruesch, A. Bohren, M. Battaglia, and S. Brunold, “Quantification of glare from reflected sunlight of solar installations,” Energy Procedia 91, 997–1004 (2016).
[Crossref]

Environ. Impact Assess. Rev. (1)

T. Rose and A. Wollert, “The dark side of photovoltaic-3D simulation of glare assessing risk and discomfort,” Environ. Impact Assess. Rev. 52, 24–30 (2015).
[Crossref]

J. Appl. Phys. (1)

Z. Chen, Y. Y. Kim, and S. Krishnaswamy, “Anisotropic wrinkle formation on shape-memory polymer substrates,” J. Appl. Phys. 112, 124319 (2012).
[Crossref]

J. Display Technol. (1)

J. Eur. Ceram. Soc. (1)

N. Adjouadi, N. Laouar, C. Bousbaa, N. Bouaouadja, and G. Fantozzi, “Study of light scattering on a soda lime glass eroded by sandblasting,” J. Eur. Ceram. Soc. 27, 3221–3229 (2007).
[Crossref]

J. Mater. Chem. (1)

C. Liu, H. Qin, and P. T. Mather, “Review of Progress in Shape-Memory Polymers,” J. Mater. Chem. 17, 1543–1558 (2007).
[Crossref]

J. Phys. Chem. C (1)

S. Y. Ryu, J. H. Seo, H. Hafeez, M. Song, J. Y. Shin, D. H. Kim, Y. C. Jung, and C. S. Kim, “Effects of the wrinkle structure and flat structure formed during static low-temperature annealing of zno on the performance of inverted polymer solar cells,” J. Phys. Chem. C 121, 9191–9201 (2017).
[Crossref]

Microchim Acta (1)

A. Schweikart and A. Fery, “Controlled wrinkling as a novel method for the fabrication of patterned surfaces,” Microchim Acta 165, 249–263 (2009).
[Crossref]

Nano Energy (1)

S. K. Ram, D. Desta, R. Rizzoli, B. P. Falcão, E. H. Eriksen, M. Bellettato, B. R. Jeppesen, P. B. Jensen, C. Summonte, R. N. Pereira, and et al., “Efficient light-trapping with quasi-periodic uniaxial nanowrinkles for thin-film silicon solar cells,” Nano Energy 35, 341–349 (2017).
[Crossref]

Nat. Commun. (2)

R. A. Pala, J. S. Liu, E. S. Barnard, D. Askarov, E. C. Garnett, S. Fan, and M. L. Brongersma, “Optimization of non-periodic plasmonic light-trapping layers for thin-film solar cells,” Nat. Commun. 4, 2095 (2013).
[Crossref] [PubMed]

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[Crossref] [PubMed]

Nat. Photon. (2)

W. H. Koo, S. M. Jeong, F. Araoka, K. Ishikawa, S. Nishimura, T. Toyooka, and H. Takezoe, “Light extraction from organic light-emitting diodes enhanced by spontaneously formed buckles,” Nat. Photon. 4, 222–226 (2010).

J. B. Kim, P. Kim, N. C. Pégard, S. J. Oh, C. R. Kagan, J. W. Fleischer, H. A. Stone, and Y.-L. Loo, “Wrinkles and deep folds as photonic structures in photovoltaics,” Nat. Photon. 6, 327–332 (2012).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Org. Electron. (1)

H. Cho, E. Kim, J. Moon, C. W. Joo, E. Kim, S. K. Park, J. Lee, B.-G. Yu, J.-I. Lee, S. Yoo, and et al., “Organic wrinkles embedded in high-index medium as planar internal scattering structures for organic light-emitting diodes,” Org. Electron. 46, 139–144 (2017).
[Crossref]

Phys. Status Solidi (1)

K. Ding, U. Aeberhard, F. Finger, and U. Rau, “Silicon heterojunction solar cell with amorphous silicon oxide buffer and microcrystalline silicon oxide contact layers,” Phys. Status Solidi 6, 193–195 (2012).

Prog. Photovoltaics (1)

A. Bozzola, M. Liscidini, and L. C. Andreani, “Broadband light trapping with disordered photonic structures in thin-film silicon solar cells,” Prog. Photovoltaics 22, 1237–1245 (2014).

Prog. Polym. Sci. (2)

Q. Zhao, H. J. Qi, and T. Xie, “Recent progress in shape memory polymer: New behavior, enabling materials, and mechanistic understanding,” Prog. Polym. Sci. 49–50, 1–42 (2015).

M. D. Hager, S. Bode, C. Weber, and U. S. Schubert, “Shape Memory Polymers: Past, Present and Future Developments,” Prog. Polym. Sci. 49–50, 1–31 (2015).

Sci. Rep. (1)

J. Bingi and V. M. Murukeshan, “Individual speckle diffraction based 1d and 2d random grating fabrication for detector and solar energy harvesting applications,” Sci. Rep. 6, 20501 (2016).
[Crossref] [PubMed]

Soft Matter (1)

S. Schauer, M. Worgull, and H. Hölscher, “Bio-inspired hierarchical micro- and nano-wrinkles obtained via mechanically directed self-assembly on shape-memory polymers,” Soft Matter 13, 4328–4334 (2017).
[Crossref] [PubMed]

Transport. Res. Rec. (1)

J. Jakubiec and C. Reinhart, “Assessing disability glare potential of reflections from new construction: Case study analysis and recommendations for the future,” Transport. Res. Rec. 2449, 114–122 (2014).
[Crossref]

Other (4)

M. Worgull, Hot Embossing - Theory and Technology of Microreplication (Elsevier Science,).

C. A. Palmer and E. G. Loewen, Diffraction Grating Handbook (Newport CorporationNew York, 2005).

Lumerical Inc., http://www.lumerical.com/tcad-products/fdtd/ .

A. Lendlein, Shape-Memory Polymers (Springer, Berlin, 2010).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Overview of the fabrication and replication routes of disordered diffraction gratings. (a) A shape-memory polymer substrate is stretched uniaxially and subsequently coated with a thin film of a second polymer. Subsequently, the sample shrinks back to its original size upon triggering the recovery process and 1D wrinkles form on the surface. (b) The transfer of the wrinkles onto various substrates, such as the planar front side layer of c-Si solar cells, is achieved by replicating the inverse texture into a PDMS layer, which is then used as a mold to imprint the disordered diffraction grating into a transparent resist layer.
Fig. 2
Fig. 2 Versatility of the shape-memory polymer wrinkling approach for the fabrication of disordered diffraction gratings. (a) The range of periods over which the wrinkled structures can be tailored is exemplified by the AFM pictures of SMP-PMMA samples with mean periods ranging from 0.40 µm (top) to 3.52 µm (bottom). (b) Structural disorder, visible in both the period (SEM images) and height (AFM cross-section) variation, is revealed for the selected Λ = 1.30 µm wrinkled structure. (c) The topography of the periodic grating fabricated with laser interference lithography and used as a reference is also shown. The AFM profiles reported here are representative of their corresponding samples.
Fig. 3
Fig. 3 Influence of surface wrinkles’ structural disorder on the diffracted light angular distribution. (a) The measured and normalized diffracted light angular distribution is displayed for reflection (left column) and for transmission (right column) of the periodic grating. Photographs obtained under white light illumination also illustrate the color dissociation and distinct diffraction orders caused by the diffraction grating. (b) As shown in the photographs, a faint background between attenuated diffraction orders is generated by the structural disorder of surface wrinkle structures. The angular broadening of the diffraction peaks is also verified quantitatively.
Fig. 4
Fig. 4 Light harvesting properties of the surface wrinkles. (a) The overall front side reflectance of a flat surface, the periodic grating, and of the SW sample, averaged between λ = 400 nm and 1100 nm, is plotted as a function of the AOI. The dashed lines are a guide for the eye only. Relative to the two references, the surface wrinkles improve light in-coupling by roughly 50% for all AOIs. All the samples include a black absorber on their rear side to prevent reflection from the back surface. (b) The graph shows the overall reflectance measured by illuminating the grating and the SW samples under near normal incidence, either from their front or back side. The shaded region represents the reflectance difference between backward and forward propagating light in the surface wrinkles case, and emphasizes the retro-reflection potential of the SW sample.
Fig. 5
Fig. 5 Anti-glaring effect and enhanced light harvesting properties in c-Si solar cells covered with wrinkled coatings. (a) The schematic illustrates the planar heterojunction c-Si solar cell stack incorporating the replicated wrinkles on its front side. (b) The photographs highlight the low disability glare potential of the cells covered by wrinkles ( Λ ¯ = 1.30 μ m ) compared to periodic diffraction gratings (also with Λ = 1.30 µm) observed in the same conditions (viewing angle around 50°). These two light harvesting structures were imprinted in the same transparent coating material. (c) An absorption increase in the c-Si solar cell with the wrinkled light harvesting coating is observed compared to a flat resist coating. (d) The corresponding external quantum efficiency is shown. All measurements were carried out at near normal incidence.
Fig. 6
Fig. 6 Schematic of the setups used for the optical characterization. (a) The samples are placed inside an integrating sphere on a rotation sample holder. As the investigated surface structures are 1D, they are measured in two orientations with respect to the incidence plane (here shown in ⊥-orientation). The measured intensity of the reflected, monochromatic light includes both its specular and diffuse components. (b) Mounted on a bi-axial rotation stage, the white, LED-based light source together with the glass hemisphere and the sample can be moved around both azimuth φ and polar angle θ. By collecting the light at a fixed position and guiding it via an optical fiber to a monochromator with CCD-camera, one obtains the spectral intensity distribution of every (φ, θ) position of the half-space.
Fig. 7
Fig. 7 Impact of the grating height and period variations on its simulated diffracted light angular distribution. (a) In the absence of structural disorder (ΔΛ = 0 µm and Δh = 0 µm), discrete and narrow diffraction peaks are simulated and match those measured with the grating (compare with Fig. 3(a)). (b) A deviation in the height (Δh = 0.13 µm) of surface wrinkles, which are otherwise periodically arranged, mostly affects the relative peaks intensities in reflection. (c) A pronounced modification of the angular distribution occurs upon the introduction of disorder in the wrinkles period (ΔΛ = 0.39 µm), leading to both a redistribution of the peaks intensities and to strong peak broadening effects. (d) When disorder in both height and period is considered, using perturbation magnitudes that correspond to actual values extracted from AFM scans of the SW sample (ΔΛ = 0.39 µm and Δh = 0.13 µm), a diffused background is obtained in reflection, and a large angular spread is observed in transmission. In reflection, different peak intensities appear for positive and negative scattering angles. This effect is attributed to the simulated oblique angle of incidence of 20° used to reproduce the experimental measurement conditions, where the scattering angles of the reflected light are relative values with respect to the zeroth order set to 0°.
Fig. 8
Fig. 8 Current density-voltage characteristics of the solar cells integrating the SW and the grating coatings (a) Current density-voltage (J-V) curves of the planar heterojunction c-Si solar cells coated by a flat and by a SW patterned transparent resist layer. The short-circuit current density difference corresponds to a relative enhancement of 4.8% upon integration of the SW. (b) (J-V) characteristics of the grating coated solar cell reveal a relative increase of only 1.2% with respect to its flat reference. The two configurations (SW or grating) and their corresponding flat reference were implemented in separated but equivalent devices.
Fig. 9
Fig. 9 Light harvesting properties of the grating coated solar cells (a) The external quantum efficiency (EQE) spectrum of the c-Si solar cell coated with the grating is compared to the one measured with devices integrating a flat coating. (b) Corresponding absorptance spectra. All measurements were carried out at near normal incidence.

Metrics