Abstract

We present high mode-locking performances from an erbium-doped fiber laser (EDFL) by using graphene oxide (GO) and reduced graphene oxide (r-GO) as saturable absorbers (SA) deposited onto the polished surface of a D-shaped optical fiber. The samples were prepared with different concentrations and its characterization was performed by using an optical microscope, a Raman spectrometer, nonlinear saturable absorption measurements, polarization setup, and laser mode-locking analysis. As a 1550-nm polarizer, the best GO (r-GO) samples exhibited higher polarization extinction ratio (PER) of 7.94 (7.65) dB, corresponding to 84 (83) %, both showing similar graphene TE absorption behavior. In a managed-intracavity dispersion laser, broadest bandwidths of 27.2 and 24.1 nm and the corresponding shortest pulse duration of 190 fs could be generated when incorporating the SA with high modulation depth (above 20%), being so far the best mode-locking results ever reported in the literature for GO and r-GO SA onto D-shaped optical fibers in EDFL.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
200-fs mode-locked Erbium-doped fiber laser by using mechanically exfoliated MoS2 saturable absorber onto D-shaped optical fiber

Eduardo J. Aiub, David Steinberg, Eunézio A. Thoroh de Souza, and Lúcia A. M. Saito
Opt. Express 25(9) 10546-10552 (2017)

Passive mode locking of ytterbium- and erbium-doped all-fiber lasers using graphene oxide saturable absorbers

Hou-Ren Chen, Chih-Ya Tsai, Hsin-Ming Cheng, Kuei-Huei Lin, and Wen-Feng Hsieh
Opt. Express 22(11) 12880-12889 (2014)

Graphene Oxide vs. Reduced Graphene Oxide as saturable absorbers for Er-doped passively mode-locked fiber laser

Grzegorz Sobon, Jaroslaw Sotor, Joanna Jagiello, Rafal Kozinski, Mariusz Zdrojek, Marcin Holdynski, Piotr Paletko, Jakub Boguslawski, Ludwika Lipinska, and Krzysztof M. Abramski
Opt. Express 20(17) 19463-19473 (2012)

References

  • View by:
  • |
  • |
  • |

  1. W. Shi, Q. Fang, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Fiber lasers and their applications [Invited],” Appl. Opt. 53(28), 6554–6568 (2014).
    [Crossref] [PubMed]
  2. U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
    [Crossref] [PubMed]
  3. Z. Sun, T. Hasan, and A. C. Ferrari, “Ultrafast lasers mode-locked by nanotubes and graphene,” Physica E 44(6), 1082–1091 (2012).
    [Crossref]
  4. R. M. Gerosa, D. Steinberg, H. G. Rosa, C. Barros, C. J. S. de Matos, and E. A. Thoroh de Souza, “CNT Film Fabrication for Mode-Locked Er-Doped Fiber Lasers: The Droplet Method,” IEEE Phot. Lett. 25(11), 1007–1010 (2013).
  5. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” 2D Materials 2(3), 031001 (2010).
  6. H. G. Rosa, J. C. V. Gomes, and E. A. T. de Souza, “Transfer of an exfoliated monolayer graphene flake onto an optical fiber end face for erbium-doped fiber laser mode-locking,” Nat. Photonics 4, 611–622 (2015).
  7. H. G. Rosa, D. Steinberg, J. D. Zapata, L. A. M. Saito, A. M. Cardenas, and E. A. Thoroh de Souza, “Raman Mapping Characterization of All-Fiber CVD Monolayer Graphene Saturable Absorbers for Erbium-Doped Fiber Laser Mode Locking,” J. Lightwave Technol. 33(19), 4118–4123 (2015).
    [Crossref]
  8. J. D. Zapata, D. Steinberg, L. A. M. Saito, R. E. de Oliveira, A. M. Cárdenas, and E. A. de Souza, “Efficient graphene saturable absorbers on D-shaped optical fiber for ultrashort pulse generation,” Sci. Rep. 6(1), 20644 (2016).
    [Crossref] [PubMed]
  9. J. D. Zapata, L. A. M. Saito, A. M. Cárdenas and E. A. Thoroh de Souza, “Sub-150 fs mode-locked Erbium doped fiber laser based on monolayer graphene on a D-shaped optical fiber” in Conference of Lasers and Optoelectronics (CLEO), OSA Technical Digest Series (Optical Society of America, 2016), paper JTu5A.71.
  10. G. Sobon and S. Jaroslaw, “Recent Advances in Ultrafast Fiber Lasers Mode-locked with Graphene-based Saturable Absorbers,” Curr. Nanosci. 12(3), 291–298 (2016).
    [Crossref]
  11. H. Zhang, Q. Bao, D. Tang, L. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95(14), 141103 (2009).
    [Crossref]
  12. H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene,” Opt. Express 17(20), 17630–17635 (2009).
    [Crossref] [PubMed]
  13. R. Woodward, I. Kelleher, and J. R. Edmund, “2D Saturable Absorbers for Fibre Lasers,” Applied Sciences 5(4), 1440–1456 (2015).
    [Crossref]
  14. J. Mohanraj, V. Velmurugan, and S. Sivabalan, “Transition metal dichalcogenides based saturable absorbers for pulsed laser technology,” Opt. Mater. 60, 601–617 (2016).
    [Crossref]
  15. H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide MoS2 as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22(6), 7249–7260 (2014).
    [Crossref] [PubMed]
  16. E. J. Aiub, D. Steinberg, E. A. Thoroh de Souza, and L. A. M. Saito, “200-fs mode-locked Erbium-doped fiber laser by using mechanically exfoliated MoS2 saturable absorber onto D-shaped optical fiber,” Opt. Express 25(9), 10546–10552 (2017).
    [Crossref] [PubMed]
  17. R. Khazaeinezhad, S. H. Kassani, H. Jeong, D. II Yeom, and K. Oh, “Femtosecond Soliton Pulse Generation Using Evanescent Field Interaction through Tungsten Disulfide (WS2) Film”,” J. Lightwave Technol. 33(17), 3550–3557 (2015).
    [Crossref]
  18. P. Tang, Z. Zhang, Y. Wang, H. Zhang, D. Shen, S. Wen, D. Tang, and D. Fan, “Topological insulator: Bi2Te3 saturable absorber for the passive Q-switching operation of an in-band pumped 1645-nm Er:YAG ceramic laser,” IEEE Photonics J. 5(2), 1500707 (2013).
    [Crossref]
  19. W. Liu, L. Pang, H. Han, W. Tian, H. Chen, M. Lei, P. Yan, and Z. Wei, “70-fs Mode-Locked Erbium-Doped Fiber Laser with Topological Insulator,” Sci. Rep. 6(1), 19997 (2016).
    [Crossref] [PubMed]
  20. J. Bogusławski, G. Soboń, R. Zybała, K. Mars, A. Mikuła, K. M. Abramski, and J. Sotor, “Investigation on pulse shaping in fiber laser hybrid mode-locked by Sb2Te3 saturable absorber,” Opt. Express 23(22), 29014–29023 (2015).
    [Crossref] [PubMed]
  21. D. Li, H. Jussila, L. Karvonen, G. Ye, H. Lipsanen, X. Chen, and Z. Sun, “Polarization and Thickness Dependent Absorption Properties of Black Phosphorus: New Saturable Absorber for Ultrafast Pulse Generation,” Sci. Rep. 5(1), 15899 (2015).
    [Crossref] [PubMed]
  22. Z. C. Luo, M. Liu, Z. N. Guo, X. F. Jiang, A. P. Luo, C. J. Zhao, X. F. Yu, W. C. Xu, and H. Zhang, “Microfiber-based few-layer black phosphorus saturable absorber for ultra-fast fiber laser,” Opt. Express 23(15), 20030–20039 (2015).
    [Crossref] [PubMed]
  23. D. Lee, K. Park, P. C. Debnath, I. Kim, and Y.-W. Song, “Thermal damage suppression of a black phosphorus saturable absorber for high-power operation of pulsed fiber lasers,” Nanotechnology 27(36), 365203 (2016).
    [Crossref] [PubMed]
  24. G. Eda and M. Chhowalla, “Chemically derived graphene oxide: Towards large-area thin-film electronics and optoelectronics,” Adv. Mater. 22(22), 2392–2415 (2010).
    [Crossref] [PubMed]
  25. O. C. Compton and S. T. Nguyen, “Graphene oxide, highly reduced graphene oxide, and graphene: Versatile building blocks for carbon-based materials,” Small 6(6), 711–723 (2010).
    [Crossref] [PubMed]
  26. M. Breusing, C. Ropers, and T. Elsaesser, “Ultrafast carrier dynamics in graphite,” Phys. Rev. Lett. 102(8), 086809 (2009).
    [Crossref] [PubMed]
  27. B. A. Ruzicka, L. K. Werake, H. Zhao, S. Wang, and K. P. Loh, “Femtosecond pump-probe studies of reduced graphene oxide thin films,” Appl. Phys. Lett. 96(17), 10–13 (2010).
    [Crossref]
  28. H. Shi, C. Wang, Z. Sun, Y. Zhou, K. Jin, S. A. Redfern, and G. Yang, “Tuning the nonlinear optical absorption of reduced graphene oxide by chemical reduction,” Opt. Express 22(16), 19375–19385 (2014).
    [Crossref] [PubMed]
  29. S. Bhattachraya, R. Maiti, A. C. Das, S. Saha, S. Mondal, S. K. Ray, S. N. B. Bhaktha, and P. K. Datta, “Efficient control of ultrafast optical nonlinearity of reduced graphene oxide by infrared reduction,” Phys. Lett. 120(1), 013101 (2016).
  30. X. F. Jiang, L. Polavarapu, S. T. Neo, T. Venkatesan, and Q. H. Xu, “Graphene oxides as tunable broadband nonlinear optical materials for femtosecond laser pulses,” J. Phys. Chem. Lett. 3(6), 785–790 (2012).
    [Crossref] [PubMed]
  31. X. Zhao, Z. B. Liu, Y. Wu, X. L. Zhang, Y. Chen, and J. G. Tian, “Ultrafast carrier dynamics and saturable absorption of solution-processable few-layered graphene oxide,” Appl. Phys. Lett. 98(12), 121905 (2011).
    [Crossref]
  32. G. Muruganandi, M. Saravanan, G. Vinitha, M. B. J. Raj, and T. C. S. Girisun, “Effect of reducing agents in tuning the third-order optical nonlinearity and optical limiting behavior of reduced graphene oxide,” Chem. Phys. 488–489, 55–61 (2017).
    [Crossref]
  33. S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruof, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon 45(7), 1558–1565 (2007).
    [Crossref]
  34. I. N. Kholmanov, S. H. Domingues, H. Chou, X. Wang, C. Tan, J. Y. Kim, H. Li, R. Piner, A. J. G. Zarbin, and R. S. Ruoff, “Reduced Graphene Oxide/Copper Nanowire Hybrid Films as High-Performance Transparent Electrodes,” ACS Nano 7(2), 1811–1816 (2013).
    [Crossref] [PubMed]
  35. R. Trusovas, G. Raciukaitis, G. Niaura, J. Barkauskas, G. Valušis, and R. Pauliukaite, “Recent Advances in Laser Utilization in the Chemical Modification of Graphene Oxide and Its Applications,” Advanced Optical Materials 4(1), 37–65 (2016).
    [Crossref]
  36. Z. B. Liu, X. He, and D. N. Wang, “Passively mode-locked fiber laser based on a hollow-core photonic crystal fiber filled with few-layered graphene oxide solution,” Opt. Lett. 36(16), 3024–3026 (2011).
    [Crossref] [PubMed]
  37. Y. G. Wang, H. R. Chen, X. M. Wen, W. F. Hsieh, and J. Tang, “A highly efficient graphene oxide absorber for Q-switched Nd:GdVO4 lasers,” Nanotechnology 22(45), 455203 (2011).
    [Crossref] [PubMed]
  38. H. R. Chen, C. Y. Tsai, H. M. Cheng, K. H. Lin, and W. F. Hsieh, “Passive mode locking of ytterbium- and erbium-doped all-fiber lasers using graphene oxide saturable absorbers,” Opt. Express 22(11), 12880–12889 (2014).
    [Crossref] [PubMed]
  39. J. Xu, S. Wu, H. Li, J. Liu, R. Sun, F. Tan, Q. H. Yang, and P. Wang, “Dissipative soliton generation from a graphene oxide mode-locked Er-doped fiber laser,” Opt. Express 20(21), 23653–23658 (2012).
    [Crossref] [PubMed]
  40. G. Sobon, J. Sotor, J. Jagiello, R. Kozinski, M. Zdrojek, M. Holdynski, P. Paletko, J. Boguslawski, L. Lipinska, and K. M. Abramski, “Graphene Oxide vs. reduced graphene oxide as saturable absorbers for Er-doped passively mode-locked fiber laser,” Opt. Express 20(17), 19463–19473 (2012).
    [Crossref] [PubMed]
  41. J. Xu, S. Wu, J. Liu, Y. Li, J. Ren, Q. H. Yang, and P. Wang, “All-Polarization-Maintaining Femtosecond Fiber lasers using Graphene Oxide Saturable Absorber,” Opt. Express 26(4), 346–348 (2014).
  42. J. Xu, J. Liu, S. Wu, Q. H. Yang, and P. Wang, “Graphene oxide mode-locked femtosecond erbium-doped fiber lasers,” Opt. Express 20(14), 15474–15480 (2012).
    [Crossref] [PubMed]
  43. J. Zhao, Y. Wang, S. Ruan, P. Yan, H. Zhang, Y. H. Tsang, J. Yang, and G. Huang, “Three operation regimes with an L-band ultrafast fiber laser passively mode-locked by graphene oxide saturable absorber,” J. Opt. Soc. Am. B 31(4), 716–722 (2014).
    [Crossref]
  44. Y. K. Yap, N. M. Huang, S. W. Harun, and H. Ahmad, “Graphene Oxide-Based Q-Switched Erbium-Doped Fiber Laser,” Chin. Phys. Lett. 30(2), 024208 (2013).
    [Crossref]
  45. G. Sobon, J. Sotor, J. Jagiello, R. Kozinski, K. Librant, M. Zdrojek, L. Lipinska, and K. M. Abramski, “Linearly polarized, Q-switched Er-doped fiber laser based on reduced graphene oxide saturable absorber,” Appl. Phys. Lett. 101(24), 241106 (2012).
    [Crossref]
  46. J. Boguslawski, J. Sotor, G. Sobon, R. Kozinski, K. Librant, M. Aksienionek, L. Lipinska, and K. M. Abramski, “Graphene oxide paper as a saturable absorber for Er- and Tm-doped fiber lasers,” Photon. Res. 3(4), 119–124 (2015).
    [Crossref]
  47. H. Ahmad, M. J. Faruki, M. Z. A. Razak, Z. C. Tiu, and M. F. Ismail, “Evanescent field interaction of tapered fiber with graphene oxide in generation of wide-bandwidth mode-locked pulses,” Opt. Laser Technol. 88, 166–171 (2017).
    [Crossref]
  48. X. He, Z. B. Liu, D. Wang, M. Yang, C. R. Liao, and X. Zhao, “Passively Mode-Locked Fiber Laser Based on Reduced Graphene Oxide on Micro fiber for Ultra-Wide-Band Doublet Pulse Generation,” J. Lightwave Technol. 30(7), 984–989 (2012).
    [Crossref]
  49. L. Gao, T. Zhu, Y. J. Li, W. Huang, and M. Liu, “Watt-Level Ultrafast Fiber Laser Based on Weak Evanescent Interaction with Reduced Graphene Oxide,” IEEE Photonics Technol. Lett. 28(11), 1245–1248 (2016).
    [Crossref]
  50. J. Lee, J. Koo, P. Debnath, Y. W. Song, and J. H. Lee, “A Q-switched, mode-locked fiber laser using a graphene oxide-based polarization sensitive saturable absorber,” Laser Phys. Lett. 10(3), 035103 (2013).
    [Crossref]
  51. H. Ahmad, M. J. Faruki, M. Z. A. Razak, Z. C. Tiu, and M. F. Ismail, “A Mode-Locked 1.91 μm Fiber Laser Based on Interaction between Graphene Oxide and Evanescent Field,” Appl. Phys. Express 5(11), 112702 (2012).
    [Crossref]
  52. R. M. Gerosa, D. Steinberg, F. N. Pellicer, S. H. Domingues, E. A. Thoroh de Souza and L. A. M. Saito, “300-fs mode-locked Erbium doped fiber laser using evanescent field interaction through graphene oxide saturable absorber in D-shaped fibers”in Latin America Optics & Photonics Conference America (LAOP), OSA Technical Digest Series (Optical Society of America, 2016) paper LTh2A.5.
  53. H. Ahmad, R. Safaei, M. Rezayi, and I. S. Amiri, “Novel D-shaped fiber fabrication method for saturable absorber application in the generation of ultra-short pulses,” Laser Phys. Lett. 14(8), 085001 (2017).
    [Crossref]
  54. S. H. Domingues, I. N. Kholmanov, T. Y. Kim, J. Y. Kim, C. Tan, H. Chou, Z. A. Alieva, R. Piner, A. J. G. Zarbin, and R. S. Ruoff, “Reduction of graphene oxide films on Al foil for hybrid transparent conductive film applications,” Carbon 63, 454–459 (2013).
    [Crossref]
  55. Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
    [Crossref]
  56. R. E. P. de Oliveira and C. J. S. de Matos, “Graphene Based Waveguide Polarizers: In-Depth Physical Analysis and Relevant Parameters,” Sci. Rep. 5(1), 16949 (2015).
    [Crossref] [PubMed]
  57. R. Grande, M. Haiml, R. Paschotta, G. J. Spuhler, L. Krainer, M. Golling, O. Ostinelli, and U. Keller, “New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers,” Appl. Phys. B 80(2), 151–158 (2005).
    [Crossref]
  58. C. A. Zaugg, Z. Sun, V. J. Wittwer, D. Popa, S. Milana, T. S. Kulmala, R. S. Sundaram, M. Mangold, O. D. Sieber, M. Golling, Y. Lee, J. H. Ahn, A. C. Ferrari, and U. Keller, “Ultrafast and widely tuneable vertical-external-cavity surface-emitting laser, mode-locked by a graphene-integrated distributed Bragg reflector,” Opt. Express 21(25), 31548–31559 (2013).
    [Crossref] [PubMed]
  59. T. R. Schibli, E. R. Thoen, F. X. Kärtner, and E. P. Ippen, “Suppression of Q-switched mode locking and break-up into multiple pulses by inverse saturable absorption,” Appl. Phys. B 70(S1), S41–S49 (2000).
    [Crossref]
  60. G. Sobon, J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “260 fs and 1 nJ pulse generation from a compact, mode-locked Tm-doped fiber laser,” Opt. Express 23(24), 31446–31451 (2015).
    [Crossref] [PubMed]
  61. B. Guo, Q. Lyu, Y. Yao, and P. Wang, “Direct generation of dip-type sidebands from WS2 mode-locked fiber laser,” Opt. Mater. Express 6(8), 2475–2486 (2016).
    [Crossref]
  62. S. M. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28(8), 806–807 (1992).
    [Crossref]
  63. M. L. Dennis and I. N. Duling, “Experimental study of sideband generation in femtosecond fiber lasers,” IEEE J. Quantum Electron. 30(6), 1469–1477 (1994).
    [Crossref]
  64. G. P. Agrawal, Nonlinear Fiber Optics, 5th edition (Academic Press, 2013).
  65. K. Tamura, L. E. Nelson, H. A. Haus, and E. P. Ippen, “Soliton versus nonsoliton operation of fiber ring lasers,” Appl. Phys. Lett. 64(2), 149–151 (1994).
    [Crossref]
  66. K. Tamura, E. P. Ippen, and H. A. Haus, “Pulse dynamics in stretched-pulse fiber lasers,” Opt. Commun. 67(2), 157–160 (1995).
  67. K. Krzempek, G. Sobon, P. Kaczmarek, and K. M. Abramski, “A sub-100 fs stretched-pulse 205 MHz repetition rate passively mode-locked Er-doped all-fiber laser,” Laser Phys. Lett. 10(10), 105103 (2013).
    [Crossref]
  68. L. Z. Chao, X. W. Chen, S. C. Xing, L. A. Ping, and C. W. Cheng, “Pulse-train no uniformity in an all-fiber ring laser passively mode-locked by nonlinear polarization rotation,” Chin. Phys. B 18(6), 2328–2333 (2009).
    [Crossref]

2017 (4)

E. J. Aiub, D. Steinberg, E. A. Thoroh de Souza, and L. A. M. Saito, “200-fs mode-locked Erbium-doped fiber laser by using mechanically exfoliated MoS2 saturable absorber onto D-shaped optical fiber,” Opt. Express 25(9), 10546–10552 (2017).
[Crossref] [PubMed]

G. Muruganandi, M. Saravanan, G. Vinitha, M. B. J. Raj, and T. C. S. Girisun, “Effect of reducing agents in tuning the third-order optical nonlinearity and optical limiting behavior of reduced graphene oxide,” Chem. Phys. 488–489, 55–61 (2017).
[Crossref]

H. Ahmad, M. J. Faruki, M. Z. A. Razak, Z. C. Tiu, and M. F. Ismail, “Evanescent field interaction of tapered fiber with graphene oxide in generation of wide-bandwidth mode-locked pulses,” Opt. Laser Technol. 88, 166–171 (2017).
[Crossref]

H. Ahmad, R. Safaei, M. Rezayi, and I. S. Amiri, “Novel D-shaped fiber fabrication method for saturable absorber application in the generation of ultra-short pulses,” Laser Phys. Lett. 14(8), 085001 (2017).
[Crossref]

2016 (9)

L. Gao, T. Zhu, Y. J. Li, W. Huang, and M. Liu, “Watt-Level Ultrafast Fiber Laser Based on Weak Evanescent Interaction with Reduced Graphene Oxide,” IEEE Photonics Technol. Lett. 28(11), 1245–1248 (2016).
[Crossref]

B. Guo, Q. Lyu, Y. Yao, and P. Wang, “Direct generation of dip-type sidebands from WS2 mode-locked fiber laser,” Opt. Mater. Express 6(8), 2475–2486 (2016).
[Crossref]

R. Trusovas, G. Raciukaitis, G. Niaura, J. Barkauskas, G. Valušis, and R. Pauliukaite, “Recent Advances in Laser Utilization in the Chemical Modification of Graphene Oxide and Its Applications,” Advanced Optical Materials 4(1), 37–65 (2016).
[Crossref]

S. Bhattachraya, R. Maiti, A. C. Das, S. Saha, S. Mondal, S. K. Ray, S. N. B. Bhaktha, and P. K. Datta, “Efficient control of ultrafast optical nonlinearity of reduced graphene oxide by infrared reduction,” Phys. Lett. 120(1), 013101 (2016).

W. Liu, L. Pang, H. Han, W. Tian, H. Chen, M. Lei, P. Yan, and Z. Wei, “70-fs Mode-Locked Erbium-Doped Fiber Laser with Topological Insulator,” Sci. Rep. 6(1), 19997 (2016).
[Crossref] [PubMed]

D. Lee, K. Park, P. C. Debnath, I. Kim, and Y.-W. Song, “Thermal damage suppression of a black phosphorus saturable absorber for high-power operation of pulsed fiber lasers,” Nanotechnology 27(36), 365203 (2016).
[Crossref] [PubMed]

J. Mohanraj, V. Velmurugan, and S. Sivabalan, “Transition metal dichalcogenides based saturable absorbers for pulsed laser technology,” Opt. Mater. 60, 601–617 (2016).
[Crossref]

J. D. Zapata, D. Steinberg, L. A. M. Saito, R. E. de Oliveira, A. M. Cárdenas, and E. A. de Souza, “Efficient graphene saturable absorbers on D-shaped optical fiber for ultrashort pulse generation,” Sci. Rep. 6(1), 20644 (2016).
[Crossref] [PubMed]

G. Sobon and S. Jaroslaw, “Recent Advances in Ultrafast Fiber Lasers Mode-locked with Graphene-based Saturable Absorbers,” Curr. Nanosci. 12(3), 291–298 (2016).
[Crossref]

2015 (10)

R. Khazaeinezhad, S. H. Kassani, H. Jeong, D. II Yeom, and K. Oh, “Femtosecond Soliton Pulse Generation Using Evanescent Field Interaction through Tungsten Disulfide (WS2) Film”,” J. Lightwave Technol. 33(17), 3550–3557 (2015).
[Crossref]

H. G. Rosa, J. C. V. Gomes, and E. A. T. de Souza, “Transfer of an exfoliated monolayer graphene flake onto an optical fiber end face for erbium-doped fiber laser mode-locking,” Nat. Photonics 4, 611–622 (2015).

H. G. Rosa, D. Steinberg, J. D. Zapata, L. A. M. Saito, A. M. Cardenas, and E. A. Thoroh de Souza, “Raman Mapping Characterization of All-Fiber CVD Monolayer Graphene Saturable Absorbers for Erbium-Doped Fiber Laser Mode Locking,” J. Lightwave Technol. 33(19), 4118–4123 (2015).
[Crossref]

R. Woodward, I. Kelleher, and J. R. Edmund, “2D Saturable Absorbers for Fibre Lasers,” Applied Sciences 5(4), 1440–1456 (2015).
[Crossref]

J. Bogusławski, G. Soboń, R. Zybała, K. Mars, A. Mikuła, K. M. Abramski, and J. Sotor, “Investigation on pulse shaping in fiber laser hybrid mode-locked by Sb2Te3 saturable absorber,” Opt. Express 23(22), 29014–29023 (2015).
[Crossref] [PubMed]

D. Li, H. Jussila, L. Karvonen, G. Ye, H. Lipsanen, X. Chen, and Z. Sun, “Polarization and Thickness Dependent Absorption Properties of Black Phosphorus: New Saturable Absorber for Ultrafast Pulse Generation,” Sci. Rep. 5(1), 15899 (2015).
[Crossref] [PubMed]

Z. C. Luo, M. Liu, Z. N. Guo, X. F. Jiang, A. P. Luo, C. J. Zhao, X. F. Yu, W. C. Xu, and H. Zhang, “Microfiber-based few-layer black phosphorus saturable absorber for ultra-fast fiber laser,” Opt. Express 23(15), 20030–20039 (2015).
[Crossref] [PubMed]

G. Sobon, J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “260 fs and 1 nJ pulse generation from a compact, mode-locked Tm-doped fiber laser,” Opt. Express 23(24), 31446–31451 (2015).
[Crossref] [PubMed]

R. E. P. de Oliveira and C. J. S. de Matos, “Graphene Based Waveguide Polarizers: In-Depth Physical Analysis and Relevant Parameters,” Sci. Rep. 5(1), 16949 (2015).
[Crossref] [PubMed]

J. Boguslawski, J. Sotor, G. Sobon, R. Kozinski, K. Librant, M. Aksienionek, L. Lipinska, and K. M. Abramski, “Graphene oxide paper as a saturable absorber for Er- and Tm-doped fiber lasers,” Photon. Res. 3(4), 119–124 (2015).
[Crossref]

2014 (6)

2013 (8)

R. M. Gerosa, D. Steinberg, H. G. Rosa, C. Barros, C. J. S. de Matos, and E. A. Thoroh de Souza, “CNT Film Fabrication for Mode-Locked Er-Doped Fiber Lasers: The Droplet Method,” IEEE Phot. Lett. 25(11), 1007–1010 (2013).

P. Tang, Z. Zhang, Y. Wang, H. Zhang, D. Shen, S. Wen, D. Tang, and D. Fan, “Topological insulator: Bi2Te3 saturable absorber for the passive Q-switching operation of an in-band pumped 1645-nm Er:YAG ceramic laser,” IEEE Photonics J. 5(2), 1500707 (2013).
[Crossref]

Y. K. Yap, N. M. Huang, S. W. Harun, and H. Ahmad, “Graphene Oxide-Based Q-Switched Erbium-Doped Fiber Laser,” Chin. Phys. Lett. 30(2), 024208 (2013).
[Crossref]

I. N. Kholmanov, S. H. Domingues, H. Chou, X. Wang, C. Tan, J. Y. Kim, H. Li, R. Piner, A. J. G. Zarbin, and R. S. Ruoff, “Reduced Graphene Oxide/Copper Nanowire Hybrid Films as High-Performance Transparent Electrodes,” ACS Nano 7(2), 1811–1816 (2013).
[Crossref] [PubMed]

S. H. Domingues, I. N. Kholmanov, T. Y. Kim, J. Y. Kim, C. Tan, H. Chou, Z. A. Alieva, R. Piner, A. J. G. Zarbin, and R. S. Ruoff, “Reduction of graphene oxide films on Al foil for hybrid transparent conductive film applications,” Carbon 63, 454–459 (2013).
[Crossref]

J. Lee, J. Koo, P. Debnath, Y. W. Song, and J. H. Lee, “A Q-switched, mode-locked fiber laser using a graphene oxide-based polarization sensitive saturable absorber,” Laser Phys. Lett. 10(3), 035103 (2013).
[Crossref]

C. A. Zaugg, Z. Sun, V. J. Wittwer, D. Popa, S. Milana, T. S. Kulmala, R. S. Sundaram, M. Mangold, O. D. Sieber, M. Golling, Y. Lee, J. H. Ahn, A. C. Ferrari, and U. Keller, “Ultrafast and widely tuneable vertical-external-cavity surface-emitting laser, mode-locked by a graphene-integrated distributed Bragg reflector,” Opt. Express 21(25), 31548–31559 (2013).
[Crossref] [PubMed]

K. Krzempek, G. Sobon, P. Kaczmarek, and K. M. Abramski, “A sub-100 fs stretched-pulse 205 MHz repetition rate passively mode-locked Er-doped all-fiber laser,” Laser Phys. Lett. 10(10), 105103 (2013).
[Crossref]

2012 (8)

H. Ahmad, M. J. Faruki, M. Z. A. Razak, Z. C. Tiu, and M. F. Ismail, “A Mode-Locked 1.91 μm Fiber Laser Based on Interaction between Graphene Oxide and Evanescent Field,” Appl. Phys. Express 5(11), 112702 (2012).
[Crossref]

X. He, Z. B. Liu, D. Wang, M. Yang, C. R. Liao, and X. Zhao, “Passively Mode-Locked Fiber Laser Based on Reduced Graphene Oxide on Micro fiber for Ultra-Wide-Band Doublet Pulse Generation,” J. Lightwave Technol. 30(7), 984–989 (2012).
[Crossref]

G. Sobon, J. Sotor, J. Jagiello, R. Kozinski, K. Librant, M. Zdrojek, L. Lipinska, and K. M. Abramski, “Linearly polarized, Q-switched Er-doped fiber laser based on reduced graphene oxide saturable absorber,” Appl. Phys. Lett. 101(24), 241106 (2012).
[Crossref]

J. Xu, J. Liu, S. Wu, Q. H. Yang, and P. Wang, “Graphene oxide mode-locked femtosecond erbium-doped fiber lasers,” Opt. Express 20(14), 15474–15480 (2012).
[Crossref] [PubMed]

J. Xu, S. Wu, H. Li, J. Liu, R. Sun, F. Tan, Q. H. Yang, and P. Wang, “Dissipative soliton generation from a graphene oxide mode-locked Er-doped fiber laser,” Opt. Express 20(21), 23653–23658 (2012).
[Crossref] [PubMed]

G. Sobon, J. Sotor, J. Jagiello, R. Kozinski, M. Zdrojek, M. Holdynski, P. Paletko, J. Boguslawski, L. Lipinska, and K. M. Abramski, “Graphene Oxide vs. reduced graphene oxide as saturable absorbers for Er-doped passively mode-locked fiber laser,” Opt. Express 20(17), 19463–19473 (2012).
[Crossref] [PubMed]

Z. Sun, T. Hasan, and A. C. Ferrari, “Ultrafast lasers mode-locked by nanotubes and graphene,” Physica E 44(6), 1082–1091 (2012).
[Crossref]

X. F. Jiang, L. Polavarapu, S. T. Neo, T. Venkatesan, and Q. H. Xu, “Graphene oxides as tunable broadband nonlinear optical materials for femtosecond laser pulses,” J. Phys. Chem. Lett. 3(6), 785–790 (2012).
[Crossref] [PubMed]

2011 (4)

X. Zhao, Z. B. Liu, Y. Wu, X. L. Zhang, Y. Chen, and J. G. Tian, “Ultrafast carrier dynamics and saturable absorption of solution-processable few-layered graphene oxide,” Appl. Phys. Lett. 98(12), 121905 (2011).
[Crossref]

Z. B. Liu, X. He, and D. N. Wang, “Passively mode-locked fiber laser based on a hollow-core photonic crystal fiber filled with few-layered graphene oxide solution,” Opt. Lett. 36(16), 3024–3026 (2011).
[Crossref] [PubMed]

Y. G. Wang, H. R. Chen, X. M. Wen, W. F. Hsieh, and J. Tang, “A highly efficient graphene oxide absorber for Q-switched Nd:GdVO4 lasers,” Nanotechnology 22(45), 455203 (2011).
[Crossref] [PubMed]

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

2010 (4)

B. A. Ruzicka, L. K. Werake, H. Zhao, S. Wang, and K. P. Loh, “Femtosecond pump-probe studies of reduced graphene oxide thin films,” Appl. Phys. Lett. 96(17), 10–13 (2010).
[Crossref]

G. Eda and M. Chhowalla, “Chemically derived graphene oxide: Towards large-area thin-film electronics and optoelectronics,” Adv. Mater. 22(22), 2392–2415 (2010).
[Crossref] [PubMed]

O. C. Compton and S. T. Nguyen, “Graphene oxide, highly reduced graphene oxide, and graphene: Versatile building blocks for carbon-based materials,” Small 6(6), 711–723 (2010).
[Crossref] [PubMed]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” 2D Materials 2(3), 031001 (2010).

2009 (4)

H. Zhang, Q. Bao, D. Tang, L. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95(14), 141103 (2009).
[Crossref]

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene,” Opt. Express 17(20), 17630–17635 (2009).
[Crossref] [PubMed]

M. Breusing, C. Ropers, and T. Elsaesser, “Ultrafast carrier dynamics in graphite,” Phys. Rev. Lett. 102(8), 086809 (2009).
[Crossref] [PubMed]

L. Z. Chao, X. W. Chen, S. C. Xing, L. A. Ping, and C. W. Cheng, “Pulse-train no uniformity in an all-fiber ring laser passively mode-locked by nonlinear polarization rotation,” Chin. Phys. B 18(6), 2328–2333 (2009).
[Crossref]

2007 (1)

S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruof, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon 45(7), 1558–1565 (2007).
[Crossref]

2005 (1)

R. Grande, M. Haiml, R. Paschotta, G. J. Spuhler, L. Krainer, M. Golling, O. Ostinelli, and U. Keller, “New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers,” Appl. Phys. B 80(2), 151–158 (2005).
[Crossref]

2003 (1)

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
[Crossref] [PubMed]

2000 (1)

T. R. Schibli, E. R. Thoen, F. X. Kärtner, and E. P. Ippen, “Suppression of Q-switched mode locking and break-up into multiple pulses by inverse saturable absorption,” Appl. Phys. B 70(S1), S41–S49 (2000).
[Crossref]

1995 (1)

K. Tamura, E. P. Ippen, and H. A. Haus, “Pulse dynamics in stretched-pulse fiber lasers,” Opt. Commun. 67(2), 157–160 (1995).

1994 (2)

M. L. Dennis and I. N. Duling, “Experimental study of sideband generation in femtosecond fiber lasers,” IEEE J. Quantum Electron. 30(6), 1469–1477 (1994).
[Crossref]

K. Tamura, L. E. Nelson, H. A. Haus, and E. P. Ippen, “Soliton versus nonsoliton operation of fiber ring lasers,” Appl. Phys. Lett. 64(2), 149–151 (1994).
[Crossref]

1992 (1)

S. M. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28(8), 806–807 (1992).
[Crossref]

Abramski, K. M.

J. Boguslawski, J. Sotor, G. Sobon, R. Kozinski, K. Librant, M. Aksienionek, L. Lipinska, and K. M. Abramski, “Graphene oxide paper as a saturable absorber for Er- and Tm-doped fiber lasers,” Photon. Res. 3(4), 119–124 (2015).
[Crossref]

J. Bogusławski, G. Soboń, R. Zybała, K. Mars, A. Mikuła, K. M. Abramski, and J. Sotor, “Investigation on pulse shaping in fiber laser hybrid mode-locked by Sb2Te3 saturable absorber,” Opt. Express 23(22), 29014–29023 (2015).
[Crossref] [PubMed]

G. Sobon, J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “260 fs and 1 nJ pulse generation from a compact, mode-locked Tm-doped fiber laser,” Opt. Express 23(24), 31446–31451 (2015).
[Crossref] [PubMed]

K. Krzempek, G. Sobon, P. Kaczmarek, and K. M. Abramski, “A sub-100 fs stretched-pulse 205 MHz repetition rate passively mode-locked Er-doped all-fiber laser,” Laser Phys. Lett. 10(10), 105103 (2013).
[Crossref]

G. Sobon, J. Sotor, J. Jagiello, R. Kozinski, M. Zdrojek, M. Holdynski, P. Paletko, J. Boguslawski, L. Lipinska, and K. M. Abramski, “Graphene Oxide vs. reduced graphene oxide as saturable absorbers for Er-doped passively mode-locked fiber laser,” Opt. Express 20(17), 19463–19473 (2012).
[Crossref] [PubMed]

G. Sobon, J. Sotor, J. Jagiello, R. Kozinski, K. Librant, M. Zdrojek, L. Lipinska, and K. M. Abramski, “Linearly polarized, Q-switched Er-doped fiber laser based on reduced graphene oxide saturable absorber,” Appl. Phys. Lett. 101(24), 241106 (2012).
[Crossref]

Ahmad, H.

H. Ahmad, R. Safaei, M. Rezayi, and I. S. Amiri, “Novel D-shaped fiber fabrication method for saturable absorber application in the generation of ultra-short pulses,” Laser Phys. Lett. 14(8), 085001 (2017).
[Crossref]

H. Ahmad, M. J. Faruki, M. Z. A. Razak, Z. C. Tiu, and M. F. Ismail, “Evanescent field interaction of tapered fiber with graphene oxide in generation of wide-bandwidth mode-locked pulses,” Opt. Laser Technol. 88, 166–171 (2017).
[Crossref]

Y. K. Yap, N. M. Huang, S. W. Harun, and H. Ahmad, “Graphene Oxide-Based Q-Switched Erbium-Doped Fiber Laser,” Chin. Phys. Lett. 30(2), 024208 (2013).
[Crossref]

H. Ahmad, M. J. Faruki, M. Z. A. Razak, Z. C. Tiu, and M. F. Ismail, “A Mode-Locked 1.91 μm Fiber Laser Based on Interaction between Graphene Oxide and Evanescent Field,” Appl. Phys. Express 5(11), 112702 (2012).
[Crossref]

Ahn, J. H.

Aiub, E. J.

Aksienionek, M.

Alieva, Z. A.

S. H. Domingues, I. N. Kholmanov, T. Y. Kim, J. Y. Kim, C. Tan, H. Chou, Z. A. Alieva, R. Piner, A. J. G. Zarbin, and R. S. Ruoff, “Reduction of graphene oxide films on Al foil for hybrid transparent conductive film applications,” Carbon 63, 454–459 (2013).
[Crossref]

Amiri, I. S.

H. Ahmad, R. Safaei, M. Rezayi, and I. S. Amiri, “Novel D-shaped fiber fabrication method for saturable absorber application in the generation of ultra-short pulses,” Laser Phys. Lett. 14(8), 085001 (2017).
[Crossref]

Bao, Q.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

H. Zhang, Q. Bao, D. Tang, L. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95(14), 141103 (2009).
[Crossref]

Bao, Q. L.

Barkauskas, J.

R. Trusovas, G. Raciukaitis, G. Niaura, J. Barkauskas, G. Valušis, and R. Pauliukaite, “Recent Advances in Laser Utilization in the Chemical Modification of Graphene Oxide and Its Applications,” Advanced Optical Materials 4(1), 37–65 (2016).
[Crossref]

Barros, C.

R. M. Gerosa, D. Steinberg, H. G. Rosa, C. Barros, C. J. S. de Matos, and E. A. Thoroh de Souza, “CNT Film Fabrication for Mode-Locked Er-Doped Fiber Lasers: The Droplet Method,” IEEE Phot. Lett. 25(11), 1007–1010 (2013).

Bhaktha, S. N. B.

S. Bhattachraya, R. Maiti, A. C. Das, S. Saha, S. Mondal, S. K. Ray, S. N. B. Bhaktha, and P. K. Datta, “Efficient control of ultrafast optical nonlinearity of reduced graphene oxide by infrared reduction,” Phys. Lett. 120(1), 013101 (2016).

Bhattachraya, S.

S. Bhattachraya, R. Maiti, A. C. Das, S. Saha, S. Mondal, S. K. Ray, S. N. B. Bhaktha, and P. K. Datta, “Efficient control of ultrafast optical nonlinearity of reduced graphene oxide by infrared reduction,” Phys. Lett. 120(1), 013101 (2016).

Boguslawski, J.

Bonaccorso, F.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” 2D Materials 2(3), 031001 (2010).

Breusing, M.

M. Breusing, C. Ropers, and T. Elsaesser, “Ultrafast carrier dynamics in graphite,” Phys. Rev. Lett. 102(8), 086809 (2009).
[Crossref] [PubMed]

Cardenas, A. M.

Cárdenas, A. M.

J. D. Zapata, D. Steinberg, L. A. M. Saito, R. E. de Oliveira, A. M. Cárdenas, and E. A. de Souza, “Efficient graphene saturable absorbers on D-shaped optical fiber for ultrashort pulse generation,” Sci. Rep. 6(1), 20644 (2016).
[Crossref] [PubMed]

Chao, L. Z.

L. Z. Chao, X. W. Chen, S. C. Xing, L. A. Ping, and C. W. Cheng, “Pulse-train no uniformity in an all-fiber ring laser passively mode-locked by nonlinear polarization rotation,” Chin. Phys. B 18(6), 2328–2333 (2009).
[Crossref]

Chen, H.

W. Liu, L. Pang, H. Han, W. Tian, H. Chen, M. Lei, P. Yan, and Z. Wei, “70-fs Mode-Locked Erbium-Doped Fiber Laser with Topological Insulator,” Sci. Rep. 6(1), 19997 (2016).
[Crossref] [PubMed]

Chen, H. R.

H. R. Chen, C. Y. Tsai, H. M. Cheng, K. H. Lin, and W. F. Hsieh, “Passive mode locking of ytterbium- and erbium-doped all-fiber lasers using graphene oxide saturable absorbers,” Opt. Express 22(11), 12880–12889 (2014).
[Crossref] [PubMed]

Y. G. Wang, H. R. Chen, X. M. Wen, W. F. Hsieh, and J. Tang, “A highly efficient graphene oxide absorber for Q-switched Nd:GdVO4 lasers,” Nanotechnology 22(45), 455203 (2011).
[Crossref] [PubMed]

Chen, X.

D. Li, H. Jussila, L. Karvonen, G. Ye, H. Lipsanen, X. Chen, and Z. Sun, “Polarization and Thickness Dependent Absorption Properties of Black Phosphorus: New Saturable Absorber for Ultrafast Pulse Generation,” Sci. Rep. 5(1), 15899 (2015).
[Crossref] [PubMed]

Chen, X. W.

L. Z. Chao, X. W. Chen, S. C. Xing, L. A. Ping, and C. W. Cheng, “Pulse-train no uniformity in an all-fiber ring laser passively mode-locked by nonlinear polarization rotation,” Chin. Phys. B 18(6), 2328–2333 (2009).
[Crossref]

Chen, Y.

X. Zhao, Z. B. Liu, Y. Wu, X. L. Zhang, Y. Chen, and J. G. Tian, “Ultrafast carrier dynamics and saturable absorption of solution-processable few-layered graphene oxide,” Appl. Phys. Lett. 98(12), 121905 (2011).
[Crossref]

Cheng, C. W.

L. Z. Chao, X. W. Chen, S. C. Xing, L. A. Ping, and C. W. Cheng, “Pulse-train no uniformity in an all-fiber ring laser passively mode-locked by nonlinear polarization rotation,” Chin. Phys. B 18(6), 2328–2333 (2009).
[Crossref]

Cheng, H. M.

Chhowalla, M.

G. Eda and M. Chhowalla, “Chemically derived graphene oxide: Towards large-area thin-film electronics and optoelectronics,” Adv. Mater. 22(22), 2392–2415 (2010).
[Crossref] [PubMed]

Chou, H.

I. N. Kholmanov, S. H. Domingues, H. Chou, X. Wang, C. Tan, J. Y. Kim, H. Li, R. Piner, A. J. G. Zarbin, and R. S. Ruoff, “Reduced Graphene Oxide/Copper Nanowire Hybrid Films as High-Performance Transparent Electrodes,” ACS Nano 7(2), 1811–1816 (2013).
[Crossref] [PubMed]

S. H. Domingues, I. N. Kholmanov, T. Y. Kim, J. Y. Kim, C. Tan, H. Chou, Z. A. Alieva, R. Piner, A. J. G. Zarbin, and R. S. Ruoff, “Reduction of graphene oxide films on Al foil for hybrid transparent conductive film applications,” Carbon 63, 454–459 (2013).
[Crossref]

Compton, O. C.

O. C. Compton and S. T. Nguyen, “Graphene oxide, highly reduced graphene oxide, and graphene: Versatile building blocks for carbon-based materials,” Small 6(6), 711–723 (2010).
[Crossref] [PubMed]

Das, A. C.

S. Bhattachraya, R. Maiti, A. C. Das, S. Saha, S. Mondal, S. K. Ray, S. N. B. Bhaktha, and P. K. Datta, “Efficient control of ultrafast optical nonlinearity of reduced graphene oxide by infrared reduction,” Phys. Lett. 120(1), 013101 (2016).

Datta, P. K.

S. Bhattachraya, R. Maiti, A. C. Das, S. Saha, S. Mondal, S. K. Ray, S. N. B. Bhaktha, and P. K. Datta, “Efficient control of ultrafast optical nonlinearity of reduced graphene oxide by infrared reduction,” Phys. Lett. 120(1), 013101 (2016).

de Matos, C. J. S.

R. E. P. de Oliveira and C. J. S. de Matos, “Graphene Based Waveguide Polarizers: In-Depth Physical Analysis and Relevant Parameters,” Sci. Rep. 5(1), 16949 (2015).
[Crossref] [PubMed]

R. M. Gerosa, D. Steinberg, H. G. Rosa, C. Barros, C. J. S. de Matos, and E. A. Thoroh de Souza, “CNT Film Fabrication for Mode-Locked Er-Doped Fiber Lasers: The Droplet Method,” IEEE Phot. Lett. 25(11), 1007–1010 (2013).

de Oliveira, R. E.

J. D. Zapata, D. Steinberg, L. A. M. Saito, R. E. de Oliveira, A. M. Cárdenas, and E. A. de Souza, “Efficient graphene saturable absorbers on D-shaped optical fiber for ultrashort pulse generation,” Sci. Rep. 6(1), 20644 (2016).
[Crossref] [PubMed]

de Oliveira, R. E. P.

R. E. P. de Oliveira and C. J. S. de Matos, “Graphene Based Waveguide Polarizers: In-Depth Physical Analysis and Relevant Parameters,” Sci. Rep. 5(1), 16949 (2015).
[Crossref] [PubMed]

de Souza, E. A.

J. D. Zapata, D. Steinberg, L. A. M. Saito, R. E. de Oliveira, A. M. Cárdenas, and E. A. de Souza, “Efficient graphene saturable absorbers on D-shaped optical fiber for ultrashort pulse generation,” Sci. Rep. 6(1), 20644 (2016).
[Crossref] [PubMed]

de Souza, E. A. T.

H. G. Rosa, J. C. V. Gomes, and E. A. T. de Souza, “Transfer of an exfoliated monolayer graphene flake onto an optical fiber end face for erbium-doped fiber laser mode-locking,” Nat. Photonics 4, 611–622 (2015).

Debnath, P.

J. Lee, J. Koo, P. Debnath, Y. W. Song, and J. H. Lee, “A Q-switched, mode-locked fiber laser using a graphene oxide-based polarization sensitive saturable absorber,” Laser Phys. Lett. 10(3), 035103 (2013).
[Crossref]

Debnath, P. C.

D. Lee, K. Park, P. C. Debnath, I. Kim, and Y.-W. Song, “Thermal damage suppression of a black phosphorus saturable absorber for high-power operation of pulsed fiber lasers,” Nanotechnology 27(36), 365203 (2016).
[Crossref] [PubMed]

Dennis, M. L.

M. L. Dennis and I. N. Duling, “Experimental study of sideband generation in femtosecond fiber lasers,” IEEE J. Quantum Electron. 30(6), 1469–1477 (1994).
[Crossref]

Dikin, D. A.

S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruof, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon 45(7), 1558–1565 (2007).
[Crossref]

Domingues, S. H.

I. N. Kholmanov, S. H. Domingues, H. Chou, X. Wang, C. Tan, J. Y. Kim, H. Li, R. Piner, A. J. G. Zarbin, and R. S. Ruoff, “Reduced Graphene Oxide/Copper Nanowire Hybrid Films as High-Performance Transparent Electrodes,” ACS Nano 7(2), 1811–1816 (2013).
[Crossref] [PubMed]

S. H. Domingues, I. N. Kholmanov, T. Y. Kim, J. Y. Kim, C. Tan, H. Chou, Z. A. Alieva, R. Piner, A. J. G. Zarbin, and R. S. Ruoff, “Reduction of graphene oxide films on Al foil for hybrid transparent conductive film applications,” Carbon 63, 454–459 (2013).
[Crossref]

Du, J.

Duling, I. N.

M. L. Dennis and I. N. Duling, “Experimental study of sideband generation in femtosecond fiber lasers,” IEEE J. Quantum Electron. 30(6), 1469–1477 (1994).
[Crossref]

Eda, G.

G. Eda and M. Chhowalla, “Chemically derived graphene oxide: Towards large-area thin-film electronics and optoelectronics,” Adv. Mater. 22(22), 2392–2415 (2010).
[Crossref] [PubMed]

Edmund, J. R.

R. Woodward, I. Kelleher, and J. R. Edmund, “2D Saturable Absorbers for Fibre Lasers,” Applied Sciences 5(4), 1440–1456 (2015).
[Crossref]

Elsaesser, T.

M. Breusing, C. Ropers, and T. Elsaesser, “Ultrafast carrier dynamics in graphite,” Phys. Rev. Lett. 102(8), 086809 (2009).
[Crossref] [PubMed]

Fan, D.

P. Tang, Z. Zhang, Y. Wang, H. Zhang, D. Shen, S. Wen, D. Tang, and D. Fan, “Topological insulator: Bi2Te3 saturable absorber for the passive Q-switching operation of an in-band pumped 1645-nm Er:YAG ceramic laser,” IEEE Photonics J. 5(2), 1500707 (2013).
[Crossref]

Fang, Q.

Faruki, M. J.

H. Ahmad, M. J. Faruki, M. Z. A. Razak, Z. C. Tiu, and M. F. Ismail, “Evanescent field interaction of tapered fiber with graphene oxide in generation of wide-bandwidth mode-locked pulses,” Opt. Laser Technol. 88, 166–171 (2017).
[Crossref]

H. Ahmad, M. J. Faruki, M. Z. A. Razak, Z. C. Tiu, and M. F. Ismail, “A Mode-Locked 1.91 μm Fiber Laser Based on Interaction between Graphene Oxide and Evanescent Field,” Appl. Phys. Express 5(11), 112702 (2012).
[Crossref]

Ferrari, A. C.

C. A. Zaugg, Z. Sun, V. J. Wittwer, D. Popa, S. Milana, T. S. Kulmala, R. S. Sundaram, M. Mangold, O. D. Sieber, M. Golling, Y. Lee, J. H. Ahn, A. C. Ferrari, and U. Keller, “Ultrafast and widely tuneable vertical-external-cavity surface-emitting laser, mode-locked by a graphene-integrated distributed Bragg reflector,” Opt. Express 21(25), 31548–31559 (2013).
[Crossref] [PubMed]

Z. Sun, T. Hasan, and A. C. Ferrari, “Ultrafast lasers mode-locked by nanotubes and graphene,” Physica E 44(6), 1082–1091 (2012).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” 2D Materials 2(3), 031001 (2010).

Gao, L.

L. Gao, T. Zhu, Y. J. Li, W. Huang, and M. Liu, “Watt-Level Ultrafast Fiber Laser Based on Weak Evanescent Interaction with Reduced Graphene Oxide,” IEEE Photonics Technol. Lett. 28(11), 1245–1248 (2016).
[Crossref]

Gerosa, R. M.

R. M. Gerosa, D. Steinberg, H. G. Rosa, C. Barros, C. J. S. de Matos, and E. A. Thoroh de Souza, “CNT Film Fabrication for Mode-Locked Er-Doped Fiber Lasers: The Droplet Method,” IEEE Phot. Lett. 25(11), 1007–1010 (2013).

Girisun, T. C. S.

G. Muruganandi, M. Saravanan, G. Vinitha, M. B. J. Raj, and T. C. S. Girisun, “Effect of reducing agents in tuning the third-order optical nonlinearity and optical limiting behavior of reduced graphene oxide,” Chem. Phys. 488–489, 55–61 (2017).
[Crossref]

Golling, M.

Gomes, J. C. V.

H. G. Rosa, J. C. V. Gomes, and E. A. T. de Souza, “Transfer of an exfoliated monolayer graphene flake onto an optical fiber end face for erbium-doped fiber laser mode-locking,” Nat. Photonics 4, 611–622 (2015).

Grande, R.

R. Grande, M. Haiml, R. Paschotta, G. J. Spuhler, L. Krainer, M. Golling, O. Ostinelli, and U. Keller, “New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers,” Appl. Phys. B 80(2), 151–158 (2005).
[Crossref]

Guo, B.

Guo, Z. N.

Haiml, M.

R. Grande, M. Haiml, R. Paschotta, G. J. Spuhler, L. Krainer, M. Golling, O. Ostinelli, and U. Keller, “New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers,” Appl. Phys. B 80(2), 151–158 (2005).
[Crossref]

Han, H.

W. Liu, L. Pang, H. Han, W. Tian, H. Chen, M. Lei, P. Yan, and Z. Wei, “70-fs Mode-Locked Erbium-Doped Fiber Laser with Topological Insulator,” Sci. Rep. 6(1), 19997 (2016).
[Crossref] [PubMed]

Harun, S. W.

Y. K. Yap, N. M. Huang, S. W. Harun, and H. Ahmad, “Graphene Oxide-Based Q-Switched Erbium-Doped Fiber Laser,” Chin. Phys. Lett. 30(2), 024208 (2013).
[Crossref]

Hasan, T.

Z. Sun, T. Hasan, and A. C. Ferrari, “Ultrafast lasers mode-locked by nanotubes and graphene,” Physica E 44(6), 1082–1091 (2012).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” 2D Materials 2(3), 031001 (2010).

Haus, H. A.

K. Tamura, E. P. Ippen, and H. A. Haus, “Pulse dynamics in stretched-pulse fiber lasers,” Opt. Commun. 67(2), 157–160 (1995).

K. Tamura, L. E. Nelson, H. A. Haus, and E. P. Ippen, “Soliton versus nonsoliton operation of fiber ring lasers,” Appl. Phys. Lett. 64(2), 149–151 (1994).
[Crossref]

He, X.

Holdynski, M.

Hsieh, W. F.

H. R. Chen, C. Y. Tsai, H. M. Cheng, K. H. Lin, and W. F. Hsieh, “Passive mode locking of ytterbium- and erbium-doped all-fiber lasers using graphene oxide saturable absorbers,” Opt. Express 22(11), 12880–12889 (2014).
[Crossref] [PubMed]

Y. G. Wang, H. R. Chen, X. M. Wen, W. F. Hsieh, and J. Tang, “A highly efficient graphene oxide absorber for Q-switched Nd:GdVO4 lasers,” Nanotechnology 22(45), 455203 (2011).
[Crossref] [PubMed]

Huang, G.

Huang, N. M.

Y. K. Yap, N. M. Huang, S. W. Harun, and H. Ahmad, “Graphene Oxide-Based Q-Switched Erbium-Doped Fiber Laser,” Chin. Phys. Lett. 30(2), 024208 (2013).
[Crossref]

Huang, W.

L. Gao, T. Zhu, Y. J. Li, W. Huang, and M. Liu, “Watt-Level Ultrafast Fiber Laser Based on Weak Evanescent Interaction with Reduced Graphene Oxide,” IEEE Photonics Technol. Lett. 28(11), 1245–1248 (2016).
[Crossref]

II Yeom, D.

Ippen, E. P.

T. R. Schibli, E. R. Thoen, F. X. Kärtner, and E. P. Ippen, “Suppression of Q-switched mode locking and break-up into multiple pulses by inverse saturable absorption,” Appl. Phys. B 70(S1), S41–S49 (2000).
[Crossref]

K. Tamura, E. P. Ippen, and H. A. Haus, “Pulse dynamics in stretched-pulse fiber lasers,” Opt. Commun. 67(2), 157–160 (1995).

K. Tamura, L. E. Nelson, H. A. Haus, and E. P. Ippen, “Soliton versus nonsoliton operation of fiber ring lasers,” Appl. Phys. Lett. 64(2), 149–151 (1994).
[Crossref]

Ismail, M. F.

H. Ahmad, M. J. Faruki, M. Z. A. Razak, Z. C. Tiu, and M. F. Ismail, “Evanescent field interaction of tapered fiber with graphene oxide in generation of wide-bandwidth mode-locked pulses,” Opt. Laser Technol. 88, 166–171 (2017).
[Crossref]

H. Ahmad, M. J. Faruki, M. Z. A. Razak, Z. C. Tiu, and M. F. Ismail, “A Mode-Locked 1.91 μm Fiber Laser Based on Interaction between Graphene Oxide and Evanescent Field,” Appl. Phys. Express 5(11), 112702 (2012).
[Crossref]

Jagiello, J.

G. Sobon, J. Sotor, J. Jagiello, R. Kozinski, M. Zdrojek, M. Holdynski, P. Paletko, J. Boguslawski, L. Lipinska, and K. M. Abramski, “Graphene Oxide vs. reduced graphene oxide as saturable absorbers for Er-doped passively mode-locked fiber laser,” Opt. Express 20(17), 19463–19473 (2012).
[Crossref] [PubMed]

G. Sobon, J. Sotor, J. Jagiello, R. Kozinski, K. Librant, M. Zdrojek, L. Lipinska, and K. M. Abramski, “Linearly polarized, Q-switched Er-doped fiber laser based on reduced graphene oxide saturable absorber,” Appl. Phys. Lett. 101(24), 241106 (2012).
[Crossref]

Jaroslaw, S.

G. Sobon and S. Jaroslaw, “Recent Advances in Ultrafast Fiber Lasers Mode-locked with Graphene-based Saturable Absorbers,” Curr. Nanosci. 12(3), 291–298 (2016).
[Crossref]

Jeong, H.

Jia, Y.

S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruof, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon 45(7), 1558–1565 (2007).
[Crossref]

Jiang, X. F.

Z. C. Luo, M. Liu, Z. N. Guo, X. F. Jiang, A. P. Luo, C. J. Zhao, X. F. Yu, W. C. Xu, and H. Zhang, “Microfiber-based few-layer black phosphorus saturable absorber for ultra-fast fiber laser,” Opt. Express 23(15), 20030–20039 (2015).
[Crossref] [PubMed]

X. F. Jiang, L. Polavarapu, S. T. Neo, T. Venkatesan, and Q. H. Xu, “Graphene oxides as tunable broadband nonlinear optical materials for femtosecond laser pulses,” J. Phys. Chem. Lett. 3(6), 785–790 (2012).
[Crossref] [PubMed]

Jin, K.

Jussila, H.

D. Li, H. Jussila, L. Karvonen, G. Ye, H. Lipsanen, X. Chen, and Z. Sun, “Polarization and Thickness Dependent Absorption Properties of Black Phosphorus: New Saturable Absorber for Ultrafast Pulse Generation,” Sci. Rep. 5(1), 15899 (2015).
[Crossref] [PubMed]

Kaczmarek, P.

K. Krzempek, G. Sobon, P. Kaczmarek, and K. M. Abramski, “A sub-100 fs stretched-pulse 205 MHz repetition rate passively mode-locked Er-doped all-fiber laser,” Laser Phys. Lett. 10(10), 105103 (2013).
[Crossref]

Kärtner, F. X.

T. R. Schibli, E. R. Thoen, F. X. Kärtner, and E. P. Ippen, “Suppression of Q-switched mode locking and break-up into multiple pulses by inverse saturable absorption,” Appl. Phys. B 70(S1), S41–S49 (2000).
[Crossref]

Karvonen, L.

D. Li, H. Jussila, L. Karvonen, G. Ye, H. Lipsanen, X. Chen, and Z. Sun, “Polarization and Thickness Dependent Absorption Properties of Black Phosphorus: New Saturable Absorber for Ultrafast Pulse Generation,” Sci. Rep. 5(1), 15899 (2015).
[Crossref] [PubMed]

Kassani, S. H.

Kelleher, I.

R. Woodward, I. Kelleher, and J. R. Edmund, “2D Saturable Absorbers for Fibre Lasers,” Applied Sciences 5(4), 1440–1456 (2015).
[Crossref]

Keller, U.

C. A. Zaugg, Z. Sun, V. J. Wittwer, D. Popa, S. Milana, T. S. Kulmala, R. S. Sundaram, M. Mangold, O. D. Sieber, M. Golling, Y. Lee, J. H. Ahn, A. C. Ferrari, and U. Keller, “Ultrafast and widely tuneable vertical-external-cavity surface-emitting laser, mode-locked by a graphene-integrated distributed Bragg reflector,” Opt. Express 21(25), 31548–31559 (2013).
[Crossref] [PubMed]

R. Grande, M. Haiml, R. Paschotta, G. J. Spuhler, L. Krainer, M. Golling, O. Ostinelli, and U. Keller, “New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers,” Appl. Phys. B 80(2), 151–158 (2005).
[Crossref]

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
[Crossref] [PubMed]

Kelly, S. M.

S. M. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28(8), 806–807 (1992).
[Crossref]

Khazaeinezhad, R.

Kholmanov, I. N.

S. H. Domingues, I. N. Kholmanov, T. Y. Kim, J. Y. Kim, C. Tan, H. Chou, Z. A. Alieva, R. Piner, A. J. G. Zarbin, and R. S. Ruoff, “Reduction of graphene oxide films on Al foil for hybrid transparent conductive film applications,” Carbon 63, 454–459 (2013).
[Crossref]

I. N. Kholmanov, S. H. Domingues, H. Chou, X. Wang, C. Tan, J. Y. Kim, H. Li, R. Piner, A. J. G. Zarbin, and R. S. Ruoff, “Reduced Graphene Oxide/Copper Nanowire Hybrid Films as High-Performance Transparent Electrodes,” ACS Nano 7(2), 1811–1816 (2013).
[Crossref] [PubMed]

Kim, I.

D. Lee, K. Park, P. C. Debnath, I. Kim, and Y.-W. Song, “Thermal damage suppression of a black phosphorus saturable absorber for high-power operation of pulsed fiber lasers,” Nanotechnology 27(36), 365203 (2016).
[Crossref] [PubMed]

Kim, J. Y.

I. N. Kholmanov, S. H. Domingues, H. Chou, X. Wang, C. Tan, J. Y. Kim, H. Li, R. Piner, A. J. G. Zarbin, and R. S. Ruoff, “Reduced Graphene Oxide/Copper Nanowire Hybrid Films as High-Performance Transparent Electrodes,” ACS Nano 7(2), 1811–1816 (2013).
[Crossref] [PubMed]

S. H. Domingues, I. N. Kholmanov, T. Y. Kim, J. Y. Kim, C. Tan, H. Chou, Z. A. Alieva, R. Piner, A. J. G. Zarbin, and R. S. Ruoff, “Reduction of graphene oxide films on Al foil for hybrid transparent conductive film applications,” Carbon 63, 454–459 (2013).
[Crossref]

Kim, T. Y.

S. H. Domingues, I. N. Kholmanov, T. Y. Kim, J. Y. Kim, C. Tan, H. Chou, Z. A. Alieva, R. Piner, A. J. G. Zarbin, and R. S. Ruoff, “Reduction of graphene oxide films on Al foil for hybrid transparent conductive film applications,” Carbon 63, 454–459 (2013).
[Crossref]

Kleinhammes, A.

S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruof, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon 45(7), 1558–1565 (2007).
[Crossref]

Kohlhaas, K. A.

S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruof, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon 45(7), 1558–1565 (2007).
[Crossref]

Koo, J.

J. Lee, J. Koo, P. Debnath, Y. W. Song, and J. H. Lee, “A Q-switched, mode-locked fiber laser using a graphene oxide-based polarization sensitive saturable absorber,” Laser Phys. Lett. 10(3), 035103 (2013).
[Crossref]

Kozinski, R.

Krainer, L.

R. Grande, M. Haiml, R. Paschotta, G. J. Spuhler, L. Krainer, M. Golling, O. Ostinelli, and U. Keller, “New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers,” Appl. Phys. B 80(2), 151–158 (2005).
[Crossref]

Krajewska, A.

Krzempek, K.

K. Krzempek, G. Sobon, P. Kaczmarek, and K. M. Abramski, “A sub-100 fs stretched-pulse 205 MHz repetition rate passively mode-locked Er-doped all-fiber laser,” Laser Phys. Lett. 10(10), 105103 (2013).
[Crossref]

Kulmala, T. S.

Lee, D.

D. Lee, K. Park, P. C. Debnath, I. Kim, and Y.-W. Song, “Thermal damage suppression of a black phosphorus saturable absorber for high-power operation of pulsed fiber lasers,” Nanotechnology 27(36), 365203 (2016).
[Crossref] [PubMed]

Lee, J.

J. Lee, J. Koo, P. Debnath, Y. W. Song, and J. H. Lee, “A Q-switched, mode-locked fiber laser using a graphene oxide-based polarization sensitive saturable absorber,” Laser Phys. Lett. 10(3), 035103 (2013).
[Crossref]

Lee, J. H.

J. Lee, J. Koo, P. Debnath, Y. W. Song, and J. H. Lee, “A Q-switched, mode-locked fiber laser using a graphene oxide-based polarization sensitive saturable absorber,” Laser Phys. Lett. 10(3), 035103 (2013).
[Crossref]

Lee, Y.

Lei, M.

W. Liu, L. Pang, H. Han, W. Tian, H. Chen, M. Lei, P. Yan, and Z. Wei, “70-fs Mode-Locked Erbium-Doped Fiber Laser with Topological Insulator,” Sci. Rep. 6(1), 19997 (2016).
[Crossref] [PubMed]

Li, D.

D. Li, H. Jussila, L. Karvonen, G. Ye, H. Lipsanen, X. Chen, and Z. Sun, “Polarization and Thickness Dependent Absorption Properties of Black Phosphorus: New Saturable Absorber for Ultrafast Pulse Generation,” Sci. Rep. 5(1), 15899 (2015).
[Crossref] [PubMed]

Li, H.

I. N. Kholmanov, S. H. Domingues, H. Chou, X. Wang, C. Tan, J. Y. Kim, H. Li, R. Piner, A. J. G. Zarbin, and R. S. Ruoff, “Reduced Graphene Oxide/Copper Nanowire Hybrid Films as High-Performance Transparent Electrodes,” ACS Nano 7(2), 1811–1816 (2013).
[Crossref] [PubMed]

J. Xu, S. Wu, H. Li, J. Liu, R. Sun, F. Tan, Q. H. Yang, and P. Wang, “Dissipative soliton generation from a graphene oxide mode-locked Er-doped fiber laser,” Opt. Express 20(21), 23653–23658 (2012).
[Crossref] [PubMed]

Li, Y.

J. Xu, S. Wu, J. Liu, Y. Li, J. Ren, Q. H. Yang, and P. Wang, “All-Polarization-Maintaining Femtosecond Fiber lasers using Graphene Oxide Saturable Absorber,” Opt. Express 26(4), 346–348 (2014).

Li, Y. J.

L. Gao, T. Zhu, Y. J. Li, W. Huang, and M. Liu, “Watt-Level Ultrafast Fiber Laser Based on Weak Evanescent Interaction with Reduced Graphene Oxide,” IEEE Photonics Technol. Lett. 28(11), 1245–1248 (2016).
[Crossref]

Liao, C. R.

Librant, K.

J. Boguslawski, J. Sotor, G. Sobon, R. Kozinski, K. Librant, M. Aksienionek, L. Lipinska, and K. M. Abramski, “Graphene oxide paper as a saturable absorber for Er- and Tm-doped fiber lasers,” Photon. Res. 3(4), 119–124 (2015).
[Crossref]

G. Sobon, J. Sotor, J. Jagiello, R. Kozinski, K. Librant, M. Zdrojek, L. Lipinska, and K. M. Abramski, “Linearly polarized, Q-switched Er-doped fiber laser based on reduced graphene oxide saturable absorber,” Appl. Phys. Lett. 101(24), 241106 (2012).
[Crossref]

Lim, C. H. Y. X.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Lin, K. H.

Lipinska, L.

Lipsanen, H.

D. Li, H. Jussila, L. Karvonen, G. Ye, H. Lipsanen, X. Chen, and Z. Sun, “Polarization and Thickness Dependent Absorption Properties of Black Phosphorus: New Saturable Absorber for Ultrafast Pulse Generation,” Sci. Rep. 5(1), 15899 (2015).
[Crossref] [PubMed]

Liu, J.

Liu, M.

L. Gao, T. Zhu, Y. J. Li, W. Huang, and M. Liu, “Watt-Level Ultrafast Fiber Laser Based on Weak Evanescent Interaction with Reduced Graphene Oxide,” IEEE Photonics Technol. Lett. 28(11), 1245–1248 (2016).
[Crossref]

Z. C. Luo, M. Liu, Z. N. Guo, X. F. Jiang, A. P. Luo, C. J. Zhao, X. F. Yu, W. C. Xu, and H. Zhang, “Microfiber-based few-layer black phosphorus saturable absorber for ultra-fast fiber laser,” Opt. Express 23(15), 20030–20039 (2015).
[Crossref] [PubMed]

Liu, W.

W. Liu, L. Pang, H. Han, W. Tian, H. Chen, M. Lei, P. Yan, and Z. Wei, “70-fs Mode-Locked Erbium-Doped Fiber Laser with Topological Insulator,” Sci. Rep. 6(1), 19997 (2016).
[Crossref] [PubMed]

Liu, Z. B.

Loh, K.

H. Zhang, Q. Bao, D. Tang, L. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95(14), 141103 (2009).
[Crossref]

Loh, K. P.

H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide MoS2 as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22(6), 7249–7260 (2014).
[Crossref] [PubMed]

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

B. A. Ruzicka, L. K. Werake, H. Zhao, S. Wang, and K. P. Loh, “Femtosecond pump-probe studies of reduced graphene oxide thin films,” Appl. Phys. Lett. 96(17), 10–13 (2010).
[Crossref]

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene,” Opt. Express 17(20), 17630–17635 (2009).
[Crossref] [PubMed]

Lu, S. B.

Luo, A. P.

Luo, Z. C.

Lyu, Q.

Maiti, R.

S. Bhattachraya, R. Maiti, A. C. Das, S. Saha, S. Mondal, S. K. Ray, S. N. B. Bhaktha, and P. K. Datta, “Efficient control of ultrafast optical nonlinearity of reduced graphene oxide by infrared reduction,” Phys. Lett. 120(1), 013101 (2016).

Mangold, M.

Mars, K.

Mikula, A.

Milana, S.

Mohanraj, J.

J. Mohanraj, V. Velmurugan, and S. Sivabalan, “Transition metal dichalcogenides based saturable absorbers for pulsed laser technology,” Opt. Mater. 60, 601–617 (2016).
[Crossref]

Mondal, S.

S. Bhattachraya, R. Maiti, A. C. Das, S. Saha, S. Mondal, S. K. Ray, S. N. B. Bhaktha, and P. K. Datta, “Efficient control of ultrafast optical nonlinearity of reduced graphene oxide by infrared reduction,” Phys. Lett. 120(1), 013101 (2016).

Muruganandi, G.

G. Muruganandi, M. Saravanan, G. Vinitha, M. B. J. Raj, and T. C. S. Girisun, “Effect of reducing agents in tuning the third-order optical nonlinearity and optical limiting behavior of reduced graphene oxide,” Chem. Phys. 488–489, 55–61 (2017).
[Crossref]

Nelson, L. E.

K. Tamura, L. E. Nelson, H. A. Haus, and E. P. Ippen, “Soliton versus nonsoliton operation of fiber ring lasers,” Appl. Phys. Lett. 64(2), 149–151 (1994).
[Crossref]

Neo, S. T.

X. F. Jiang, L. Polavarapu, S. T. Neo, T. Venkatesan, and Q. H. Xu, “Graphene oxides as tunable broadband nonlinear optical materials for femtosecond laser pulses,” J. Phys. Chem. Lett. 3(6), 785–790 (2012).
[Crossref] [PubMed]

Nguyen, S. T.

O. C. Compton and S. T. Nguyen, “Graphene oxide, highly reduced graphene oxide, and graphene: Versatile building blocks for carbon-based materials,” Small 6(6), 711–723 (2010).
[Crossref] [PubMed]

S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruof, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon 45(7), 1558–1565 (2007).
[Crossref]

Ni, Z.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Niaura, G.

R. Trusovas, G. Raciukaitis, G. Niaura, J. Barkauskas, G. Valušis, and R. Pauliukaite, “Recent Advances in Laser Utilization in the Chemical Modification of Graphene Oxide and Its Applications,” Advanced Optical Materials 4(1), 37–65 (2016).
[Crossref]

Norwood, R. A.

Oh, K.

Ostinelli, O.

R. Grande, M. Haiml, R. Paschotta, G. J. Spuhler, L. Krainer, M. Golling, O. Ostinelli, and U. Keller, “New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers,” Appl. Phys. B 80(2), 151–158 (2005).
[Crossref]

Paletko, P.

Pang, L.

W. Liu, L. Pang, H. Han, W. Tian, H. Chen, M. Lei, P. Yan, and Z. Wei, “70-fs Mode-Locked Erbium-Doped Fiber Laser with Topological Insulator,” Sci. Rep. 6(1), 19997 (2016).
[Crossref] [PubMed]

Park, K.

D. Lee, K. Park, P. C. Debnath, I. Kim, and Y.-W. Song, “Thermal damage suppression of a black phosphorus saturable absorber for high-power operation of pulsed fiber lasers,” Nanotechnology 27(36), 365203 (2016).
[Crossref] [PubMed]

Paschotta, R.

R. Grande, M. Haiml, R. Paschotta, G. J. Spuhler, L. Krainer, M. Golling, O. Ostinelli, and U. Keller, “New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers,” Appl. Phys. B 80(2), 151–158 (2005).
[Crossref]

Pasternak, I.

Pauliukaite, R.

R. Trusovas, G. Raciukaitis, G. Niaura, J. Barkauskas, G. Valušis, and R. Pauliukaite, “Recent Advances in Laser Utilization in the Chemical Modification of Graphene Oxide and Its Applications,” Advanced Optical Materials 4(1), 37–65 (2016).
[Crossref]

Peyghambarian, N.

Piner, R.

I. N. Kholmanov, S. H. Domingues, H. Chou, X. Wang, C. Tan, J. Y. Kim, H. Li, R. Piner, A. J. G. Zarbin, and R. S. Ruoff, “Reduced Graphene Oxide/Copper Nanowire Hybrid Films as High-Performance Transparent Electrodes,” ACS Nano 7(2), 1811–1816 (2013).
[Crossref] [PubMed]

S. H. Domingues, I. N. Kholmanov, T. Y. Kim, J. Y. Kim, C. Tan, H. Chou, Z. A. Alieva, R. Piner, A. J. G. Zarbin, and R. S. Ruoff, “Reduction of graphene oxide films on Al foil for hybrid transparent conductive film applications,” Carbon 63, 454–459 (2013).
[Crossref]

Piner, R. D.

S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruof, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon 45(7), 1558–1565 (2007).
[Crossref]

Ping, L. A.

L. Z. Chao, X. W. Chen, S. C. Xing, L. A. Ping, and C. W. Cheng, “Pulse-train no uniformity in an all-fiber ring laser passively mode-locked by nonlinear polarization rotation,” Chin. Phys. B 18(6), 2328–2333 (2009).
[Crossref]

Polavarapu, L.

X. F. Jiang, L. Polavarapu, S. T. Neo, T. Venkatesan, and Q. H. Xu, “Graphene oxides as tunable broadband nonlinear optical materials for femtosecond laser pulses,” J. Phys. Chem. Lett. 3(6), 785–790 (2012).
[Crossref] [PubMed]

Popa, D.

Raciukaitis, G.

R. Trusovas, G. Raciukaitis, G. Niaura, J. Barkauskas, G. Valušis, and R. Pauliukaite, “Recent Advances in Laser Utilization in the Chemical Modification of Graphene Oxide and Its Applications,” Advanced Optical Materials 4(1), 37–65 (2016).
[Crossref]

Raj, M. B. J.

G. Muruganandi, M. Saravanan, G. Vinitha, M. B. J. Raj, and T. C. S. Girisun, “Effect of reducing agents in tuning the third-order optical nonlinearity and optical limiting behavior of reduced graphene oxide,” Chem. Phys. 488–489, 55–61 (2017).
[Crossref]

Ray, S. K.

S. Bhattachraya, R. Maiti, A. C. Das, S. Saha, S. Mondal, S. K. Ray, S. N. B. Bhaktha, and P. K. Datta, “Efficient control of ultrafast optical nonlinearity of reduced graphene oxide by infrared reduction,” Phys. Lett. 120(1), 013101 (2016).

Razak, M. Z. A.

H. Ahmad, M. J. Faruki, M. Z. A. Razak, Z. C. Tiu, and M. F. Ismail, “Evanescent field interaction of tapered fiber with graphene oxide in generation of wide-bandwidth mode-locked pulses,” Opt. Laser Technol. 88, 166–171 (2017).
[Crossref]

H. Ahmad, M. J. Faruki, M. Z. A. Razak, Z. C. Tiu, and M. F. Ismail, “A Mode-Locked 1.91 μm Fiber Laser Based on Interaction between Graphene Oxide and Evanescent Field,” Appl. Phys. Express 5(11), 112702 (2012).
[Crossref]

Redfern, S. A.

Ren, J.

J. Xu, S. Wu, J. Liu, Y. Li, J. Ren, Q. H. Yang, and P. Wang, “All-Polarization-Maintaining Femtosecond Fiber lasers using Graphene Oxide Saturable Absorber,” Opt. Express 26(4), 346–348 (2014).

Rezayi, M.

H. Ahmad, R. Safaei, M. Rezayi, and I. S. Amiri, “Novel D-shaped fiber fabrication method for saturable absorber application in the generation of ultra-short pulses,” Laser Phys. Lett. 14(8), 085001 (2017).
[Crossref]

Ropers, C.

M. Breusing, C. Ropers, and T. Elsaesser, “Ultrafast carrier dynamics in graphite,” Phys. Rev. Lett. 102(8), 086809 (2009).
[Crossref] [PubMed]

Rosa, H. G.

H. G. Rosa, J. C. V. Gomes, and E. A. T. de Souza, “Transfer of an exfoliated monolayer graphene flake onto an optical fiber end face for erbium-doped fiber laser mode-locking,” Nat. Photonics 4, 611–622 (2015).

H. G. Rosa, D. Steinberg, J. D. Zapata, L. A. M. Saito, A. M. Cardenas, and E. A. Thoroh de Souza, “Raman Mapping Characterization of All-Fiber CVD Monolayer Graphene Saturable Absorbers for Erbium-Doped Fiber Laser Mode Locking,” J. Lightwave Technol. 33(19), 4118–4123 (2015).
[Crossref]

R. M. Gerosa, D. Steinberg, H. G. Rosa, C. Barros, C. J. S. de Matos, and E. A. Thoroh de Souza, “CNT Film Fabrication for Mode-Locked Er-Doped Fiber Lasers: The Droplet Method,” IEEE Phot. Lett. 25(11), 1007–1010 (2013).

Ruan, S.

Ruof, R. S.

S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruof, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon 45(7), 1558–1565 (2007).
[Crossref]

Ruoff, R. S.

I. N. Kholmanov, S. H. Domingues, H. Chou, X. Wang, C. Tan, J. Y. Kim, H. Li, R. Piner, A. J. G. Zarbin, and R. S. Ruoff, “Reduced Graphene Oxide/Copper Nanowire Hybrid Films as High-Performance Transparent Electrodes,” ACS Nano 7(2), 1811–1816 (2013).
[Crossref] [PubMed]

S. H. Domingues, I. N. Kholmanov, T. Y. Kim, J. Y. Kim, C. Tan, H. Chou, Z. A. Alieva, R. Piner, A. J. G. Zarbin, and R. S. Ruoff, “Reduction of graphene oxide films on Al foil for hybrid transparent conductive film applications,” Carbon 63, 454–459 (2013).
[Crossref]

Ruzicka, B. A.

B. A. Ruzicka, L. K. Werake, H. Zhao, S. Wang, and K. P. Loh, “Femtosecond pump-probe studies of reduced graphene oxide thin films,” Appl. Phys. Lett. 96(17), 10–13 (2010).
[Crossref]

Safaei, R.

H. Ahmad, R. Safaei, M. Rezayi, and I. S. Amiri, “Novel D-shaped fiber fabrication method for saturable absorber application in the generation of ultra-short pulses,” Laser Phys. Lett. 14(8), 085001 (2017).
[Crossref]

Saha, S.

S. Bhattachraya, R. Maiti, A. C. Das, S. Saha, S. Mondal, S. K. Ray, S. N. B. Bhaktha, and P. K. Datta, “Efficient control of ultrafast optical nonlinearity of reduced graphene oxide by infrared reduction,” Phys. Lett. 120(1), 013101 (2016).

Saito, L. A. M.

Saravanan, M.

G. Muruganandi, M. Saravanan, G. Vinitha, M. B. J. Raj, and T. C. S. Girisun, “Effect of reducing agents in tuning the third-order optical nonlinearity and optical limiting behavior of reduced graphene oxide,” Chem. Phys. 488–489, 55–61 (2017).
[Crossref]

Schibli, T. R.

T. R. Schibli, E. R. Thoen, F. X. Kärtner, and E. P. Ippen, “Suppression of Q-switched mode locking and break-up into multiple pulses by inverse saturable absorption,” Appl. Phys. B 70(S1), S41–S49 (2000).
[Crossref]

Shen, D.

P. Tang, Z. Zhang, Y. Wang, H. Zhang, D. Shen, S. Wen, D. Tang, and D. Fan, “Topological insulator: Bi2Te3 saturable absorber for the passive Q-switching operation of an in-band pumped 1645-nm Er:YAG ceramic laser,” IEEE Photonics J. 5(2), 1500707 (2013).
[Crossref]

Shi, H.

Shi, W.

Sieber, O. D.

Sivabalan, S.

J. Mohanraj, V. Velmurugan, and S. Sivabalan, “Transition metal dichalcogenides based saturable absorbers for pulsed laser technology,” Opt. Mater. 60, 601–617 (2016).
[Crossref]

Sobon, G.

G. Sobon and S. Jaroslaw, “Recent Advances in Ultrafast Fiber Lasers Mode-locked with Graphene-based Saturable Absorbers,” Curr. Nanosci. 12(3), 291–298 (2016).
[Crossref]

J. Boguslawski, J. Sotor, G. Sobon, R. Kozinski, K. Librant, M. Aksienionek, L. Lipinska, and K. M. Abramski, “Graphene oxide paper as a saturable absorber for Er- and Tm-doped fiber lasers,” Photon. Res. 3(4), 119–124 (2015).
[Crossref]

J. Bogusławski, G. Soboń, R. Zybała, K. Mars, A. Mikuła, K. M. Abramski, and J. Sotor, “Investigation on pulse shaping in fiber laser hybrid mode-locked by Sb2Te3 saturable absorber,” Opt. Express 23(22), 29014–29023 (2015).
[Crossref] [PubMed]

G. Sobon, J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “260 fs and 1 nJ pulse generation from a compact, mode-locked Tm-doped fiber laser,” Opt. Express 23(24), 31446–31451 (2015).
[Crossref] [PubMed]

K. Krzempek, G. Sobon, P. Kaczmarek, and K. M. Abramski, “A sub-100 fs stretched-pulse 205 MHz repetition rate passively mode-locked Er-doped all-fiber laser,” Laser Phys. Lett. 10(10), 105103 (2013).
[Crossref]

G. Sobon, J. Sotor, J. Jagiello, R. Kozinski, M. Zdrojek, M. Holdynski, P. Paletko, J. Boguslawski, L. Lipinska, and K. M. Abramski, “Graphene Oxide vs. reduced graphene oxide as saturable absorbers for Er-doped passively mode-locked fiber laser,” Opt. Express 20(17), 19463–19473 (2012).
[Crossref] [PubMed]

G. Sobon, J. Sotor, J. Jagiello, R. Kozinski, K. Librant, M. Zdrojek, L. Lipinska, and K. M. Abramski, “Linearly polarized, Q-switched Er-doped fiber laser based on reduced graphene oxide saturable absorber,” Appl. Phys. Lett. 101(24), 241106 (2012).
[Crossref]

Song, Y. W.

J. Lee, J. Koo, P. Debnath, Y. W. Song, and J. H. Lee, “A Q-switched, mode-locked fiber laser using a graphene oxide-based polarization sensitive saturable absorber,” Laser Phys. Lett. 10(3), 035103 (2013).
[Crossref]

Song, Y.-W.

D. Lee, K. Park, P. C. Debnath, I. Kim, and Y.-W. Song, “Thermal damage suppression of a black phosphorus saturable absorber for high-power operation of pulsed fiber lasers,” Nanotechnology 27(36), 365203 (2016).
[Crossref] [PubMed]

Sotor, J.

Spuhler, G. J.

R. Grande, M. Haiml, R. Paschotta, G. J. Spuhler, L. Krainer, M. Golling, O. Ostinelli, and U. Keller, “New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers,” Appl. Phys. B 80(2), 151–158 (2005).
[Crossref]

Stankovich, S.

S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruof, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon 45(7), 1558–1565 (2007).
[Crossref]

Steinberg, D.

E. J. Aiub, D. Steinberg, E. A. Thoroh de Souza, and L. A. M. Saito, “200-fs mode-locked Erbium-doped fiber laser by using mechanically exfoliated MoS2 saturable absorber onto D-shaped optical fiber,” Opt. Express 25(9), 10546–10552 (2017).
[Crossref] [PubMed]

J. D. Zapata, D. Steinberg, L. A. M. Saito, R. E. de Oliveira, A. M. Cárdenas, and E. A. de Souza, “Efficient graphene saturable absorbers on D-shaped optical fiber for ultrashort pulse generation,” Sci. Rep. 6(1), 20644 (2016).
[Crossref] [PubMed]

H. G. Rosa, D. Steinberg, J. D. Zapata, L. A. M. Saito, A. M. Cardenas, and E. A. Thoroh de Souza, “Raman Mapping Characterization of All-Fiber CVD Monolayer Graphene Saturable Absorbers for Erbium-Doped Fiber Laser Mode Locking,” J. Lightwave Technol. 33(19), 4118–4123 (2015).
[Crossref]

R. M. Gerosa, D. Steinberg, H. G. Rosa, C. Barros, C. J. S. de Matos, and E. A. Thoroh de Souza, “CNT Film Fabrication for Mode-Locked Er-Doped Fiber Lasers: The Droplet Method,” IEEE Phot. Lett. 25(11), 1007–1010 (2013).

Strupinski, W.

Sun, R.

Sun, Z.

D. Li, H. Jussila, L. Karvonen, G. Ye, H. Lipsanen, X. Chen, and Z. Sun, “Polarization and Thickness Dependent Absorption Properties of Black Phosphorus: New Saturable Absorber for Ultrafast Pulse Generation,” Sci. Rep. 5(1), 15899 (2015).
[Crossref] [PubMed]

H. Shi, C. Wang, Z. Sun, Y. Zhou, K. Jin, S. A. Redfern, and G. Yang, “Tuning the nonlinear optical absorption of reduced graphene oxide by chemical reduction,” Opt. Express 22(16), 19375–19385 (2014).
[Crossref] [PubMed]

C. A. Zaugg, Z. Sun, V. J. Wittwer, D. Popa, S. Milana, T. S. Kulmala, R. S. Sundaram, M. Mangold, O. D. Sieber, M. Golling, Y. Lee, J. H. Ahn, A. C. Ferrari, and U. Keller, “Ultrafast and widely tuneable vertical-external-cavity surface-emitting laser, mode-locked by a graphene-integrated distributed Bragg reflector,” Opt. Express 21(25), 31548–31559 (2013).
[Crossref] [PubMed]

Z. Sun, T. Hasan, and A. C. Ferrari, “Ultrafast lasers mode-locked by nanotubes and graphene,” Physica E 44(6), 1082–1091 (2012).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” 2D Materials 2(3), 031001 (2010).

Sundaram, R. S.

Tamura, K.

K. Tamura, E. P. Ippen, and H. A. Haus, “Pulse dynamics in stretched-pulse fiber lasers,” Opt. Commun. 67(2), 157–160 (1995).

K. Tamura, L. E. Nelson, H. A. Haus, and E. P. Ippen, “Soliton versus nonsoliton operation of fiber ring lasers,” Appl. Phys. Lett. 64(2), 149–151 (1994).
[Crossref]

Tan, C.

S. H. Domingues, I. N. Kholmanov, T. Y. Kim, J. Y. Kim, C. Tan, H. Chou, Z. A. Alieva, R. Piner, A. J. G. Zarbin, and R. S. Ruoff, “Reduction of graphene oxide films on Al foil for hybrid transparent conductive film applications,” Carbon 63, 454–459 (2013).
[Crossref]

I. N. Kholmanov, S. H. Domingues, H. Chou, X. Wang, C. Tan, J. Y. Kim, H. Li, R. Piner, A. J. G. Zarbin, and R. S. Ruoff, “Reduced Graphene Oxide/Copper Nanowire Hybrid Films as High-Performance Transparent Electrodes,” ACS Nano 7(2), 1811–1816 (2013).
[Crossref] [PubMed]

Tan, F.

Tang, D.

P. Tang, Z. Zhang, Y. Wang, H. Zhang, D. Shen, S. Wen, D. Tang, and D. Fan, “Topological insulator: Bi2Te3 saturable absorber for the passive Q-switching operation of an in-band pumped 1645-nm Er:YAG ceramic laser,” IEEE Photonics J. 5(2), 1500707 (2013).
[Crossref]

H. Zhang, Q. Bao, D. Tang, L. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95(14), 141103 (2009).
[Crossref]

Tang, D. Y.

Tang, J.

Y. G. Wang, H. R. Chen, X. M. Wen, W. F. Hsieh, and J. Tang, “A highly efficient graphene oxide absorber for Q-switched Nd:GdVO4 lasers,” Nanotechnology 22(45), 455203 (2011).
[Crossref] [PubMed]

Tang, P.

P. Tang, Z. Zhang, Y. Wang, H. Zhang, D. Shen, S. Wen, D. Tang, and D. Fan, “Topological insulator: Bi2Te3 saturable absorber for the passive Q-switching operation of an in-band pumped 1645-nm Er:YAG ceramic laser,” IEEE Photonics J. 5(2), 1500707 (2013).
[Crossref]

Thoen, E. R.

T. R. Schibli, E. R. Thoen, F. X. Kärtner, and E. P. Ippen, “Suppression of Q-switched mode locking and break-up into multiple pulses by inverse saturable absorption,” Appl. Phys. B 70(S1), S41–S49 (2000).
[Crossref]

Thoroh de Souza, E. A.

Tian, J. G.

X. Zhao, Z. B. Liu, Y. Wu, X. L. Zhang, Y. Chen, and J. G. Tian, “Ultrafast carrier dynamics and saturable absorption of solution-processable few-layered graphene oxide,” Appl. Phys. Lett. 98(12), 121905 (2011).
[Crossref]

Tian, W.

W. Liu, L. Pang, H. Han, W. Tian, H. Chen, M. Lei, P. Yan, and Z. Wei, “70-fs Mode-Locked Erbium-Doped Fiber Laser with Topological Insulator,” Sci. Rep. 6(1), 19997 (2016).
[Crossref] [PubMed]

Tiu, Z. C.

H. Ahmad, M. J. Faruki, M. Z. A. Razak, Z. C. Tiu, and M. F. Ismail, “Evanescent field interaction of tapered fiber with graphene oxide in generation of wide-bandwidth mode-locked pulses,” Opt. Laser Technol. 88, 166–171 (2017).
[Crossref]

H. Ahmad, M. J. Faruki, M. Z. A. Razak, Z. C. Tiu, and M. F. Ismail, “A Mode-Locked 1.91 μm Fiber Laser Based on Interaction between Graphene Oxide and Evanescent Field,” Appl. Phys. Express 5(11), 112702 (2012).
[Crossref]

Trusovas, R.

R. Trusovas, G. Raciukaitis, G. Niaura, J. Barkauskas, G. Valušis, and R. Pauliukaite, “Recent Advances in Laser Utilization in the Chemical Modification of Graphene Oxide and Its Applications,” Advanced Optical Materials 4(1), 37–65 (2016).
[Crossref]

Tsai, C. Y.

Tsang, Y. H.

Valušis, G.

R. Trusovas, G. Raciukaitis, G. Niaura, J. Barkauskas, G. Valušis, and R. Pauliukaite, “Recent Advances in Laser Utilization in the Chemical Modification of Graphene Oxide and Its Applications,” Advanced Optical Materials 4(1), 37–65 (2016).
[Crossref]

Velmurugan, V.

J. Mohanraj, V. Velmurugan, and S. Sivabalan, “Transition metal dichalcogenides based saturable absorbers for pulsed laser technology,” Opt. Mater. 60, 601–617 (2016).
[Crossref]

Venkatesan, T.

X. F. Jiang, L. Polavarapu, S. T. Neo, T. Venkatesan, and Q. H. Xu, “Graphene oxides as tunable broadband nonlinear optical materials for femtosecond laser pulses,” J. Phys. Chem. Lett. 3(6), 785–790 (2012).
[Crossref] [PubMed]

Vinitha, G.

G. Muruganandi, M. Saravanan, G. Vinitha, M. B. J. Raj, and T. C. S. Girisun, “Effect of reducing agents in tuning the third-order optical nonlinearity and optical limiting behavior of reduced graphene oxide,” Chem. Phys. 488–489, 55–61 (2017).
[Crossref]

Wang, B.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Wang, C.

Wang, D.

Wang, D. N.

Wang, P.

Wang, S.

B. A. Ruzicka, L. K. Werake, H. Zhao, S. Wang, and K. P. Loh, “Femtosecond pump-probe studies of reduced graphene oxide thin films,” Appl. Phys. Lett. 96(17), 10–13 (2010).
[Crossref]

Wang, X.

I. N. Kholmanov, S. H. Domingues, H. Chou, X. Wang, C. Tan, J. Y. Kim, H. Li, R. Piner, A. J. G. Zarbin, and R. S. Ruoff, “Reduced Graphene Oxide/Copper Nanowire Hybrid Films as High-Performance Transparent Electrodes,” ACS Nano 7(2), 1811–1816 (2013).
[Crossref] [PubMed]

Wang, Y.

J. Zhao, Y. Wang, S. Ruan, P. Yan, H. Zhang, Y. H. Tsang, J. Yang, and G. Huang, “Three operation regimes with an L-band ultrafast fiber laser passively mode-locked by graphene oxide saturable absorber,” J. Opt. Soc. Am. B 31(4), 716–722 (2014).
[Crossref]

P. Tang, Z. Zhang, Y. Wang, H. Zhang, D. Shen, S. Wen, D. Tang, and D. Fan, “Topological insulator: Bi2Te3 saturable absorber for the passive Q-switching operation of an in-band pumped 1645-nm Er:YAG ceramic laser,” IEEE Photonics J. 5(2), 1500707 (2013).
[Crossref]

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Wang, Y. G.

Y. G. Wang, H. R. Chen, X. M. Wen, W. F. Hsieh, and J. Tang, “A highly efficient graphene oxide absorber for Q-switched Nd:GdVO4 lasers,” Nanotechnology 22(45), 455203 (2011).
[Crossref] [PubMed]

Wei, Z.

W. Liu, L. Pang, H. Han, W. Tian, H. Chen, M. Lei, P. Yan, and Z. Wei, “70-fs Mode-Locked Erbium-Doped Fiber Laser with Topological Insulator,” Sci. Rep. 6(1), 19997 (2016).
[Crossref] [PubMed]

Wen, S.

P. Tang, Z. Zhang, Y. Wang, H. Zhang, D. Shen, S. Wen, D. Tang, and D. Fan, “Topological insulator: Bi2Te3 saturable absorber for the passive Q-switching operation of an in-band pumped 1645-nm Er:YAG ceramic laser,” IEEE Photonics J. 5(2), 1500707 (2013).
[Crossref]

Wen, S. C.

Wen, X. M.

Y. G. Wang, H. R. Chen, X. M. Wen, W. F. Hsieh, and J. Tang, “A highly efficient graphene oxide absorber for Q-switched Nd:GdVO4 lasers,” Nanotechnology 22(45), 455203 (2011).
[Crossref] [PubMed]

Werake, L. K.

B. A. Ruzicka, L. K. Werake, H. Zhao, S. Wang, and K. P. Loh, “Femtosecond pump-probe studies of reduced graphene oxide thin films,” Appl. Phys. Lett. 96(17), 10–13 (2010).
[Crossref]

Wittwer, V. J.

Woodward, R.

R. Woodward, I. Kelleher, and J. R. Edmund, “2D Saturable Absorbers for Fibre Lasers,” Applied Sciences 5(4), 1440–1456 (2015).
[Crossref]

Wu, S.

Wu, Y.

X. Zhao, Z. B. Liu, Y. Wu, X. L. Zhang, Y. Chen, and J. G. Tian, “Ultrafast carrier dynamics and saturable absorption of solution-processable few-layered graphene oxide,” Appl. Phys. Lett. 98(12), 121905 (2011).
[Crossref]

S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruof, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon 45(7), 1558–1565 (2007).
[Crossref]

Xing, S. C.

L. Z. Chao, X. W. Chen, S. C. Xing, L. A. Ping, and C. W. Cheng, “Pulse-train no uniformity in an all-fiber ring laser passively mode-locked by nonlinear polarization rotation,” Chin. Phys. B 18(6), 2328–2333 (2009).
[Crossref]

Xu, J.

Xu, Q. H.

X. F. Jiang, L. Polavarapu, S. T. Neo, T. Venkatesan, and Q. H. Xu, “Graphene oxides as tunable broadband nonlinear optical materials for femtosecond laser pulses,” J. Phys. Chem. Lett. 3(6), 785–790 (2012).
[Crossref] [PubMed]

Xu, W. C.

Yan, P.

Yang, G.

Yang, J.

Yang, M.

Yang, Q. H.

Yao, Y.

Yap, Y. K.

Y. K. Yap, N. M. Huang, S. W. Harun, and H. Ahmad, “Graphene Oxide-Based Q-Switched Erbium-Doped Fiber Laser,” Chin. Phys. Lett. 30(2), 024208 (2013).
[Crossref]

Ye, G.

D. Li, H. Jussila, L. Karvonen, G. Ye, H. Lipsanen, X. Chen, and Z. Sun, “Polarization and Thickness Dependent Absorption Properties of Black Phosphorus: New Saturable Absorber for Ultrafast Pulse Generation,” Sci. Rep. 5(1), 15899 (2015).
[Crossref] [PubMed]

Yu, X. F.

Zapata, J. D.

J. D. Zapata, D. Steinberg, L. A. M. Saito, R. E. de Oliveira, A. M. Cárdenas, and E. A. de Souza, “Efficient graphene saturable absorbers on D-shaped optical fiber for ultrashort pulse generation,” Sci. Rep. 6(1), 20644 (2016).
[Crossref] [PubMed]

H. G. Rosa, D. Steinberg, J. D. Zapata, L. A. M. Saito, A. M. Cardenas, and E. A. Thoroh de Souza, “Raman Mapping Characterization of All-Fiber CVD Monolayer Graphene Saturable Absorbers for Erbium-Doped Fiber Laser Mode Locking,” J. Lightwave Technol. 33(19), 4118–4123 (2015).
[Crossref]

Zarbin, A. J. G.

I. N. Kholmanov, S. H. Domingues, H. Chou, X. Wang, C. Tan, J. Y. Kim, H. Li, R. Piner, A. J. G. Zarbin, and R. S. Ruoff, “Reduced Graphene Oxide/Copper Nanowire Hybrid Films as High-Performance Transparent Electrodes,” ACS Nano 7(2), 1811–1816 (2013).
[Crossref] [PubMed]

S. H. Domingues, I. N. Kholmanov, T. Y. Kim, J. Y. Kim, C. Tan, H. Chou, Z. A. Alieva, R. Piner, A. J. G. Zarbin, and R. S. Ruoff, “Reduction of graphene oxide films on Al foil for hybrid transparent conductive film applications,” Carbon 63, 454–459 (2013).
[Crossref]

Zaugg, C. A.

Zdrojek, M.

G. Sobon, J. Sotor, J. Jagiello, R. Kozinski, M. Zdrojek, M. Holdynski, P. Paletko, J. Boguslawski, L. Lipinska, and K. M. Abramski, “Graphene Oxide vs. reduced graphene oxide as saturable absorbers for Er-doped passively mode-locked fiber laser,” Opt. Express 20(17), 19463–19473 (2012).
[Crossref] [PubMed]

G. Sobon, J. Sotor, J. Jagiello, R. Kozinski, K. Librant, M. Zdrojek, L. Lipinska, and K. M. Abramski, “Linearly polarized, Q-switched Er-doped fiber laser based on reduced graphene oxide saturable absorber,” Appl. Phys. Lett. 101(24), 241106 (2012).
[Crossref]

Zhang, H.

Z. C. Luo, M. Liu, Z. N. Guo, X. F. Jiang, A. P. Luo, C. J. Zhao, X. F. Yu, W. C. Xu, and H. Zhang, “Microfiber-based few-layer black phosphorus saturable absorber for ultra-fast fiber laser,” Opt. Express 23(15), 20030–20039 (2015).
[Crossref] [PubMed]

H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide MoS2 as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22(6), 7249–7260 (2014).
[Crossref] [PubMed]

J. Zhao, Y. Wang, S. Ruan, P. Yan, H. Zhang, Y. H. Tsang, J. Yang, and G. Huang, “Three operation regimes with an L-band ultrafast fiber laser passively mode-locked by graphene oxide saturable absorber,” J. Opt. Soc. Am. B 31(4), 716–722 (2014).
[Crossref]

P. Tang, Z. Zhang, Y. Wang, H. Zhang, D. Shen, S. Wen, D. Tang, and D. Fan, “Topological insulator: Bi2Te3 saturable absorber for the passive Q-switching operation of an in-band pumped 1645-nm Er:YAG ceramic laser,” IEEE Photonics J. 5(2), 1500707 (2013).
[Crossref]

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene,” Opt. Express 17(20), 17630–17635 (2009).
[Crossref] [PubMed]

H. Zhang, Q. Bao, D. Tang, L. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95(14), 141103 (2009).
[Crossref]

Zhang, X. L.

X. Zhao, Z. B. Liu, Y. Wu, X. L. Zhang, Y. Chen, and J. G. Tian, “Ultrafast carrier dynamics and saturable absorption of solution-processable few-layered graphene oxide,” Appl. Phys. Lett. 98(12), 121905 (2011).
[Crossref]

Zhang, Z.

P. Tang, Z. Zhang, Y. Wang, H. Zhang, D. Shen, S. Wen, D. Tang, and D. Fan, “Topological insulator: Bi2Te3 saturable absorber for the passive Q-switching operation of an in-band pumped 1645-nm Er:YAG ceramic laser,” IEEE Photonics J. 5(2), 1500707 (2013).
[Crossref]

Zhao, C. J.

Zhao, H.

B. A. Ruzicka, L. K. Werake, H. Zhao, S. Wang, and K. P. Loh, “Femtosecond pump-probe studies of reduced graphene oxide thin films,” Appl. Phys. Lett. 96(17), 10–13 (2010).
[Crossref]

Zhao, J.

Zhao, L.

H. Zhang, Q. Bao, D. Tang, L. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95(14), 141103 (2009).
[Crossref]

Zhao, L. M.

Zhao, X.

X. He, Z. B. Liu, D. Wang, M. Yang, C. R. Liao, and X. Zhao, “Passively Mode-Locked Fiber Laser Based on Reduced Graphene Oxide on Micro fiber for Ultra-Wide-Band Doublet Pulse Generation,” J. Lightwave Technol. 30(7), 984–989 (2012).
[Crossref]

X. Zhao, Z. B. Liu, Y. Wu, X. L. Zhang, Y. Chen, and J. G. Tian, “Ultrafast carrier dynamics and saturable absorption of solution-processable few-layered graphene oxide,” Appl. Phys. Lett. 98(12), 121905 (2011).
[Crossref]

Zheng, J.

Zhou, Y.

Zhu, T.

L. Gao, T. Zhu, Y. J. Li, W. Huang, and M. Liu, “Watt-Level Ultrafast Fiber Laser Based on Weak Evanescent Interaction with Reduced Graphene Oxide,” IEEE Photonics Technol. Lett. 28(11), 1245–1248 (2016).
[Crossref]

Zhu, X.

Zybala, R.

2D Materials (1)

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” 2D Materials 2(3), 031001 (2010).

ACS Nano (1)

I. N. Kholmanov, S. H. Domingues, H. Chou, X. Wang, C. Tan, J. Y. Kim, H. Li, R. Piner, A. J. G. Zarbin, and R. S. Ruoff, “Reduced Graphene Oxide/Copper Nanowire Hybrid Films as High-Performance Transparent Electrodes,” ACS Nano 7(2), 1811–1816 (2013).
[Crossref] [PubMed]

Adv. Mater. (1)

G. Eda and M. Chhowalla, “Chemically derived graphene oxide: Towards large-area thin-film electronics and optoelectronics,” Adv. Mater. 22(22), 2392–2415 (2010).
[Crossref] [PubMed]

Advanced Optical Materials (1)

R. Trusovas, G. Raciukaitis, G. Niaura, J. Barkauskas, G. Valušis, and R. Pauliukaite, “Recent Advances in Laser Utilization in the Chemical Modification of Graphene Oxide and Its Applications,” Advanced Optical Materials 4(1), 37–65 (2016).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (2)

R. Grande, M. Haiml, R. Paschotta, G. J. Spuhler, L. Krainer, M. Golling, O. Ostinelli, and U. Keller, “New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers,” Appl. Phys. B 80(2), 151–158 (2005).
[Crossref]

T. R. Schibli, E. R. Thoen, F. X. Kärtner, and E. P. Ippen, “Suppression of Q-switched mode locking and break-up into multiple pulses by inverse saturable absorption,” Appl. Phys. B 70(S1), S41–S49 (2000).
[Crossref]

Appl. Phys. Express (1)

H. Ahmad, M. J. Faruki, M. Z. A. Razak, Z. C. Tiu, and M. F. Ismail, “A Mode-Locked 1.91 μm Fiber Laser Based on Interaction between Graphene Oxide and Evanescent Field,” Appl. Phys. Express 5(11), 112702 (2012).
[Crossref]

Appl. Phys. Lett. (5)

G. Sobon, J. Sotor, J. Jagiello, R. Kozinski, K. Librant, M. Zdrojek, L. Lipinska, and K. M. Abramski, “Linearly polarized, Q-switched Er-doped fiber laser based on reduced graphene oxide saturable absorber,” Appl. Phys. Lett. 101(24), 241106 (2012).
[Crossref]

K. Tamura, L. E. Nelson, H. A. Haus, and E. P. Ippen, “Soliton versus nonsoliton operation of fiber ring lasers,” Appl. Phys. Lett. 64(2), 149–151 (1994).
[Crossref]

H. Zhang, Q. Bao, D. Tang, L. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95(14), 141103 (2009).
[Crossref]

B. A. Ruzicka, L. K. Werake, H. Zhao, S. Wang, and K. P. Loh, “Femtosecond pump-probe studies of reduced graphene oxide thin films,” Appl. Phys. Lett. 96(17), 10–13 (2010).
[Crossref]

X. Zhao, Z. B. Liu, Y. Wu, X. L. Zhang, Y. Chen, and J. G. Tian, “Ultrafast carrier dynamics and saturable absorption of solution-processable few-layered graphene oxide,” Appl. Phys. Lett. 98(12), 121905 (2011).
[Crossref]

Applied Sciences (1)

R. Woodward, I. Kelleher, and J. R. Edmund, “2D Saturable Absorbers for Fibre Lasers,” Applied Sciences 5(4), 1440–1456 (2015).
[Crossref]

Carbon (2)

S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruof, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon 45(7), 1558–1565 (2007).
[Crossref]

S. H. Domingues, I. N. Kholmanov, T. Y. Kim, J. Y. Kim, C. Tan, H. Chou, Z. A. Alieva, R. Piner, A. J. G. Zarbin, and R. S. Ruoff, “Reduction of graphene oxide films on Al foil for hybrid transparent conductive film applications,” Carbon 63, 454–459 (2013).
[Crossref]

Chem. Phys. (1)

G. Muruganandi, M. Saravanan, G. Vinitha, M. B. J. Raj, and T. C. S. Girisun, “Effect of reducing agents in tuning the third-order optical nonlinearity and optical limiting behavior of reduced graphene oxide,” Chem. Phys. 488–489, 55–61 (2017).
[Crossref]

Chin. Phys. B (1)

L. Z. Chao, X. W. Chen, S. C. Xing, L. A. Ping, and C. W. Cheng, “Pulse-train no uniformity in an all-fiber ring laser passively mode-locked by nonlinear polarization rotation,” Chin. Phys. B 18(6), 2328–2333 (2009).
[Crossref]

Chin. Phys. Lett. (1)

Y. K. Yap, N. M. Huang, S. W. Harun, and H. Ahmad, “Graphene Oxide-Based Q-Switched Erbium-Doped Fiber Laser,” Chin. Phys. Lett. 30(2), 024208 (2013).
[Crossref]

Curr. Nanosci. (1)

G. Sobon and S. Jaroslaw, “Recent Advances in Ultrafast Fiber Lasers Mode-locked with Graphene-based Saturable Absorbers,” Curr. Nanosci. 12(3), 291–298 (2016).
[Crossref]

Electron. Lett. (1)

S. M. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28(8), 806–807 (1992).
[Crossref]

IEEE J. Quantum Electron. (1)

M. L. Dennis and I. N. Duling, “Experimental study of sideband generation in femtosecond fiber lasers,” IEEE J. Quantum Electron. 30(6), 1469–1477 (1994).
[Crossref]

IEEE Phot. Lett. (1)

R. M. Gerosa, D. Steinberg, H. G. Rosa, C. Barros, C. J. S. de Matos, and E. A. Thoroh de Souza, “CNT Film Fabrication for Mode-Locked Er-Doped Fiber Lasers: The Droplet Method,” IEEE Phot. Lett. 25(11), 1007–1010 (2013).

IEEE Photonics J. (1)

P. Tang, Z. Zhang, Y. Wang, H. Zhang, D. Shen, S. Wen, D. Tang, and D. Fan, “Topological insulator: Bi2Te3 saturable absorber for the passive Q-switching operation of an in-band pumped 1645-nm Er:YAG ceramic laser,” IEEE Photonics J. 5(2), 1500707 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (1)

L. Gao, T. Zhu, Y. J. Li, W. Huang, and M. Liu, “Watt-Level Ultrafast Fiber Laser Based on Weak Evanescent Interaction with Reduced Graphene Oxide,” IEEE Photonics Technol. Lett. 28(11), 1245–1248 (2016).
[Crossref]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. B (1)

J. Phys. Chem. Lett. (1)

X. F. Jiang, L. Polavarapu, S. T. Neo, T. Venkatesan, and Q. H. Xu, “Graphene oxides as tunable broadband nonlinear optical materials for femtosecond laser pulses,” J. Phys. Chem. Lett. 3(6), 785–790 (2012).
[Crossref] [PubMed]

Laser Phys. Lett. (3)

J. Lee, J. Koo, P. Debnath, Y. W. Song, and J. H. Lee, “A Q-switched, mode-locked fiber laser using a graphene oxide-based polarization sensitive saturable absorber,” Laser Phys. Lett. 10(3), 035103 (2013).
[Crossref]

H. Ahmad, R. Safaei, M. Rezayi, and I. S. Amiri, “Novel D-shaped fiber fabrication method for saturable absorber application in the generation of ultra-short pulses,” Laser Phys. Lett. 14(8), 085001 (2017).
[Crossref]

K. Krzempek, G. Sobon, P. Kaczmarek, and K. M. Abramski, “A sub-100 fs stretched-pulse 205 MHz repetition rate passively mode-locked Er-doped all-fiber laser,” Laser Phys. Lett. 10(10), 105103 (2013).
[Crossref]

Nanotechnology (2)

Y. G. Wang, H. R. Chen, X. M. Wen, W. F. Hsieh, and J. Tang, “A highly efficient graphene oxide absorber for Q-switched Nd:GdVO4 lasers,” Nanotechnology 22(45), 455203 (2011).
[Crossref] [PubMed]

D. Lee, K. Park, P. C. Debnath, I. Kim, and Y.-W. Song, “Thermal damage suppression of a black phosphorus saturable absorber for high-power operation of pulsed fiber lasers,” Nanotechnology 27(36), 365203 (2016).
[Crossref] [PubMed]

Nat. Photonics (2)

H. G. Rosa, J. C. V. Gomes, and E. A. T. de Souza, “Transfer of an exfoliated monolayer graphene flake onto an optical fiber end face for erbium-doped fiber laser mode-locking,” Nat. Photonics 4, 611–622 (2015).

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Nature (1)

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
[Crossref] [PubMed]

Opt. Commun. (1)

K. Tamura, E. P. Ippen, and H. A. Haus, “Pulse dynamics in stretched-pulse fiber lasers,” Opt. Commun. 67(2), 157–160 (1995).

Opt. Express (13)

G. Sobon, J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “260 fs and 1 nJ pulse generation from a compact, mode-locked Tm-doped fiber laser,” Opt. Express 23(24), 31446–31451 (2015).
[Crossref] [PubMed]

C. A. Zaugg, Z. Sun, V. J. Wittwer, D. Popa, S. Milana, T. S. Kulmala, R. S. Sundaram, M. Mangold, O. D. Sieber, M. Golling, Y. Lee, J. H. Ahn, A. C. Ferrari, and U. Keller, “Ultrafast and widely tuneable vertical-external-cavity surface-emitting laser, mode-locked by a graphene-integrated distributed Bragg reflector,” Opt. Express 21(25), 31548–31559 (2013).
[Crossref] [PubMed]

H. R. Chen, C. Y. Tsai, H. M. Cheng, K. H. Lin, and W. F. Hsieh, “Passive mode locking of ytterbium- and erbium-doped all-fiber lasers using graphene oxide saturable absorbers,” Opt. Express 22(11), 12880–12889 (2014).
[Crossref] [PubMed]

J. Xu, S. Wu, H. Li, J. Liu, R. Sun, F. Tan, Q. H. Yang, and P. Wang, “Dissipative soliton generation from a graphene oxide mode-locked Er-doped fiber laser,” Opt. Express 20(21), 23653–23658 (2012).
[Crossref] [PubMed]

G. Sobon, J. Sotor, J. Jagiello, R. Kozinski, M. Zdrojek, M. Holdynski, P. Paletko, J. Boguslawski, L. Lipinska, and K. M. Abramski, “Graphene Oxide vs. reduced graphene oxide as saturable absorbers for Er-doped passively mode-locked fiber laser,” Opt. Express 20(17), 19463–19473 (2012).
[Crossref] [PubMed]

J. Xu, S. Wu, J. Liu, Y. Li, J. Ren, Q. H. Yang, and P. Wang, “All-Polarization-Maintaining Femtosecond Fiber lasers using Graphene Oxide Saturable Absorber,” Opt. Express 26(4), 346–348 (2014).

J. Xu, J. Liu, S. Wu, Q. H. Yang, and P. Wang, “Graphene oxide mode-locked femtosecond erbium-doped fiber lasers,” Opt. Express 20(14), 15474–15480 (2012).
[Crossref] [PubMed]

H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide MoS2 as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22(6), 7249–7260 (2014).
[Crossref] [PubMed]

E. J. Aiub, D. Steinberg, E. A. Thoroh de Souza, and L. A. M. Saito, “200-fs mode-locked Erbium-doped fiber laser by using mechanically exfoliated MoS2 saturable absorber onto D-shaped optical fiber,” Opt. Express 25(9), 10546–10552 (2017).
[Crossref] [PubMed]

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene,” Opt. Express 17(20), 17630–17635 (2009).
[Crossref] [PubMed]

Z. C. Luo, M. Liu, Z. N. Guo, X. F. Jiang, A. P. Luo, C. J. Zhao, X. F. Yu, W. C. Xu, and H. Zhang, “Microfiber-based few-layer black phosphorus saturable absorber for ultra-fast fiber laser,” Opt. Express 23(15), 20030–20039 (2015).
[Crossref] [PubMed]

J. Bogusławski, G. Soboń, R. Zybała, K. Mars, A. Mikuła, K. M. Abramski, and J. Sotor, “Investigation on pulse shaping in fiber laser hybrid mode-locked by Sb2Te3 saturable absorber,” Opt. Express 23(22), 29014–29023 (2015).
[Crossref] [PubMed]

H. Shi, C. Wang, Z. Sun, Y. Zhou, K. Jin, S. A. Redfern, and G. Yang, “Tuning the nonlinear optical absorption of reduced graphene oxide by chemical reduction,” Opt. Express 22(16), 19375–19385 (2014).
[Crossref] [PubMed]

Opt. Laser Technol. (1)

H. Ahmad, M. J. Faruki, M. Z. A. Razak, Z. C. Tiu, and M. F. Ismail, “Evanescent field interaction of tapered fiber with graphene oxide in generation of wide-bandwidth mode-locked pulses,” Opt. Laser Technol. 88, 166–171 (2017).
[Crossref]

Opt. Lett. (1)

Opt. Mater. (1)

J. Mohanraj, V. Velmurugan, and S. Sivabalan, “Transition metal dichalcogenides based saturable absorbers for pulsed laser technology,” Opt. Mater. 60, 601–617 (2016).
[Crossref]

Opt. Mater. Express (1)

Photon. Res. (1)

Phys. Lett. (1)

S. Bhattachraya, R. Maiti, A. C. Das, S. Saha, S. Mondal, S. K. Ray, S. N. B. Bhaktha, and P. K. Datta, “Efficient control of ultrafast optical nonlinearity of reduced graphene oxide by infrared reduction,” Phys. Lett. 120(1), 013101 (2016).

Phys. Rev. Lett. (1)

M. Breusing, C. Ropers, and T. Elsaesser, “Ultrafast carrier dynamics in graphite,” Phys. Rev. Lett. 102(8), 086809 (2009).
[Crossref] [PubMed]

Physica E (1)

Z. Sun, T. Hasan, and A. C. Ferrari, “Ultrafast lasers mode-locked by nanotubes and graphene,” Physica E 44(6), 1082–1091 (2012).
[Crossref]

Sci. Rep. (4)

J. D. Zapata, D. Steinberg, L. A. M. Saito, R. E. de Oliveira, A. M. Cárdenas, and E. A. de Souza, “Efficient graphene saturable absorbers on D-shaped optical fiber for ultrashort pulse generation,” Sci. Rep. 6(1), 20644 (2016).
[Crossref] [PubMed]

W. Liu, L. Pang, H. Han, W. Tian, H. Chen, M. Lei, P. Yan, and Z. Wei, “70-fs Mode-Locked Erbium-Doped Fiber Laser with Topological Insulator,” Sci. Rep. 6(1), 19997 (2016).
[Crossref] [PubMed]

D. Li, H. Jussila, L. Karvonen, G. Ye, H. Lipsanen, X. Chen, and Z. Sun, “Polarization and Thickness Dependent Absorption Properties of Black Phosphorus: New Saturable Absorber for Ultrafast Pulse Generation,” Sci. Rep. 5(1), 15899 (2015).
[Crossref] [PubMed]

R. E. P. de Oliveira and C. J. S. de Matos, “Graphene Based Waveguide Polarizers: In-Depth Physical Analysis and Relevant Parameters,” Sci. Rep. 5(1), 16949 (2015).
[Crossref] [PubMed]

Small (1)

O. C. Compton and S. T. Nguyen, “Graphene oxide, highly reduced graphene oxide, and graphene: Versatile building blocks for carbon-based materials,” Small 6(6), 711–723 (2010).
[Crossref] [PubMed]

Other (3)

J. D. Zapata, L. A. M. Saito, A. M. Cárdenas and E. A. Thoroh de Souza, “Sub-150 fs mode-locked Erbium doped fiber laser based on monolayer graphene on a D-shaped optical fiber” in Conference of Lasers and Optoelectronics (CLEO), OSA Technical Digest Series (Optical Society of America, 2016), paper JTu5A.71.

R. M. Gerosa, D. Steinberg, F. N. Pellicer, S. H. Domingues, E. A. Thoroh de Souza and L. A. M. Saito, “300-fs mode-locked Erbium doped fiber laser using evanescent field interaction through graphene oxide saturable absorber in D-shaped fibers”in Latin America Optics & Photonics Conference America (LAOP), OSA Technical Digest Series (Optical Society of America, 2016) paper LTh2A.5.

G. P. Agrawal, Nonlinear Fiber Optics, 5th edition (Academic Press, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 GO and r-GO samples fabrication steps.
Fig. 2
Fig. 2 Optical image of polished surface of the D-shaped optical fiber with r-GO film with (a) 10X and (b) 20X objective lens and (c) its Raman spectrum obtained from 532 nm laser excitation.
Fig. 3
Fig. 3 (a) Polarization experimental setup. (b) Transmitted power as function of the beam polarization angles through the D-shaped optical fiber without (black line) and with GO (blue curve)/r-GO (green curve) films.
Fig. 4
Fig. 4 Output power measurements from GO (r-GO) samples after the polarizer at vertical (blue curve) and horizontal (red curve) polarization configurations.
Fig. 5
Fig. 5 Transmission characteristics as a function of fluence of (a) GO and (b) r-GO films at 1550 nm.
Fig. 6
Fig. 6 EDFL experimental setup.
Fig. 7
Fig. 7 (a,c) Laser spectrum bandwidth (inset – log scale spectrum) and (b,d) pulse autocorrelation trace (inset – pulse train) obtained with the GO (blue curves) and r-GO (green curves).
Fig. 8
Fig. 8 Output RF spectrum measured around the fundamental cavity repetition rate at 15.73 MHz with 1 Hz resolution (inset – wideband RF spectrum with 2 kHz resolution) obtained with (a) GO and (b) r-GO samples.
Fig. 9
Fig. 9 Monitoring of spectral bandwidth and repetition rate of the laser mode-locking regime over time obtained with (a, b) GO and (c, d) r-GO samples.

Tables (4)

Tables Icon

Table 1 Polarization parameters from GO/r-GO onto D-shaped optical fiber.

Tables Icon

Table 2 Mode-locked EDFL performances with GO SA.

Tables Icon

Table 3 Mode-locked EDFL performances with r-GO SA

Tables Icon

Table 4 Comparison with other nanomaterials SA based on evanescent-field onto D-shaped optical fiber

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

PE R ( 1 ) ( dB )= α TE α TM
PE R ( 2 ) ( % )=1(1/ 10 (PE R ( 1 ) /10) )*100
T( F )= α sat F F sat + ( F F sat ) 2 a tanh( F F sat +F )+(1 α NS )

Metrics