Abstract

We present metamaterial-enhanced terahertz vibrational spectroscopy to solve the low sensitivity problem of the THz ray absorption detection in molecular and biomolecular thin film. In a proof-of-principle experiment, we demonstrate the system in split ring resonators (SRRs) metamaterial that is strongly coupled to L-tartaric acid molecular under a low-temperature condition. The experimental results show that the extinction ratio of the detected signal can be significantly improved from 1.75 dB to 4.5 dB. The numerical calculations confirm and explain the experimental observations. By detuning the resonance of metamaterial, the behavior of the spectral signal is modified. When the SRRs and molecular vibrational resonance frequencies are closely aligned, a clear mode splitting is observed resulting in a transparency transmission with enhanced extinction ratio. This method shows great potential for application in thin film sensing by detecting molecular vibrations in the lower-energy terahertz region.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Surface-enhanced terahertz spectroscopy using gold rod structures resonant with terahertz waves

Kosei Ueno, Sho Nozawa, and Hiroaki Misawa
Opt. Express 23(22) 28584-28592 (2015)

Optically thin terahertz metamaterials

Ranjan Singh, Evgenya Smirnova, Antoinette J. Taylor, John F. O’Hara, and Weili Zhang
Opt. Express 16(9) 6537-6543 (2008)

Sub-diffraction thin-film sensing with planar terahertz metamaterials

Withawat Withayachumnankul, Hungyen Lin, Kazunori Serita, Charan M. Shah, Sharath Sriram, Madhu Bhaskaran, Masayoshi Tonouchi, Christophe Fumeaux, and Derek Abbott
Opt. Express 20(3) 3345-3352 (2012)

References

  • View by:
  • |
  • |
  • |

  1. B. C. Stipe, M. A. Rezaei, and W. Ho, “Single-molecule vibrational spectroscopy and microscopy,” Science 280(5370), 1732–1735 (1998).
    [Crossref] [PubMed]
  2. K. Liu, M. G. Brown, and R. J. Saykally, “Terahertz laser vibration rotation tunneling spectroscopy and dipole moment of a cage form of the water hexamer,” J. Phys. Chem. A 101(48), 8995–9010 (1997).
    [Crossref]
  3. A. G. Markelz, A. Roitberg, and E. J. Heilweil, “Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz,” Chem. Phys. Lett. 320(1–2), 42–48 (2000).
    [Crossref]
  4. K. L. Nguyen, T. Friščić, G. M. Day, L. F. Gladden, and W. Jones, “Terahertz time-domain spectroscopy and the quantitative monitoring of mechanochemical cocrystal formation,” Nat. Mater. 6(3), 206–209 (2007).
    [Crossref] [PubMed]
  5. T. Globus, D. Woolard, T. W. Crowe, T. Khromova, B. Gelmont, and J. Hesler, “Terahertz Fourier transform characterization of biological materials in a liquid phase,” J. Phys. D Appl. Phys. 39(15), 3405–3413 (2006).
    [Crossref]
  6. R. Balu, H. Zhang, E. Zukowski, J. Y. Chen, A. G. Markelz, and S. K. Gregurick, “Terahertz spectroscopy of bacteriorhodopsin and rhodopsin: similarities and differences,” Biophys. J. 94(8), 3217–3226 (2008).
    [Crossref] [PubMed]
  7. Z. Jiang, M. Li, and X. Zhang, “Dielectric constant measurement of thin films by differential time-domain spectroscopy,” Appl. Phys. Lett. 76(22), 3221–3223 (2000).
    [Crossref]
  8. S. P. Mickan, K. S. Lee, T. M. Lu, J. Munch, D. Abbott, and X. Zhang, “Double modulated differential THz-TDS for thin film dielectric characterization,” Microelectronics J. 33(12), 1033–1042 (2002).
    [Crossref]
  9. C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91(18), 184102 (2007).
    [Crossref]
  10. G. Ramakrishnan, N. Kumar, P. C. M. Planken, D. Tanaka, and K. Kajikawa, “Surface plasmon-enhanced terahertz emission from a hemicyanine self-assembled monolayer,” Opt. Express 20(4), 4067–4073 (2012).
    [Crossref] [PubMed]
  11. C. Feuillet-Palma, Y. Todorov, A. Vasanelli, and C. Sirtori, “Strong near field enhancement in THz nano-antenna arrays,” Sci. Rep. 3(1), 1361 (2013).
    [Crossref] [PubMed]
  12. Y. M. Bahk, G. Ramakrishnan, J. Choi, H. Song, G. Choi, Y. H. Kim, K. J. Ahn, D. S. Kim, and P. C. Planken, “Plasmon enhanced terahertz emission from single layer graphene,” ACS Nano 8(9), 9089–9096 (2014).
    [Crossref] [PubMed]
  13. S. Bagiante, F. Enderli, J. Fabiańska, H. Sigg, and T. Feurer, “Giant electric field enhancement in split ring resonators featuring nanometer-sized gaps,” Sci. Rep. 5(1), 8051 (2015).
    [Crossref] [PubMed]
  14. L. Xie, W. Gao, J. Shu, Y. Ying, and J. Kono, “Extraordinary sensitivity enhancement by metasurfaces in terahertz detection of antibiotics,” Sci. Rep. 5(1), 8671 (2015).
    [Crossref] [PubMed]
  15. Z. Han, Y. Zhang, and S. I. Bozhevolnyi, “Spoof surface plasmon-based stripe antennas with extreme field enhancement in the terahertz regime,” Opt. Lett. 40(11), 2533–2536 (2015).
    [Crossref] [PubMed]
  16. B. Reinhard, K. M. Schmitt, V. Wollrab, J. Neu, R. Beigang, and M. Rahm, “Metamaterial near-field sensor for deep-subwavelength thickness measurements and sensitive refractometry in the terahertz frequency range,” Appl. Phys. Lett. 100(22), 221101 (2012).
    [Crossref]
  17. X. Wang, C. Luo, G. Hong, and X. Zhao, “Metamaterial optical refractive index sensor detected by the naked eye,” Appl. Phys. Lett. 102(9), 091902 (2013).
    [Crossref]
  18. X. Wu, X. Pan, B. Quan, X. Xu, C. Gu, and L. Wang, “Self-referenced sensing based on terahertz metamaterial for aqueous solutions,” Appl. Phys. Lett. 102(15), 151109 (2013).
    [Crossref]
  19. L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect-induced Fano resonances in corrugated plasmonic metamaterials,” Adv. Opt. Mater. 5(8), 1600960 (2017).
    [Crossref]
  20. L. Chen, Y. Wei, X. Zang, Y. Zhu, and S. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Rep. 6(1), 22027 (2016).
    [Crossref] [PubMed]
  21. H. J. Lee, S. Choi, I. S. Jang, J. S. Choi, and H. I. Jung, “Asymmetric split-ring resonator-based biosensor for detection of label-free stress biomarkers,” Appl. Phys. Lett. 103(5), 053702 (2013).
    [Crossref]
  22. H. J. Lee and J. G. Yook, “Biosensing using split-ring resonators at microwave regime,” Appl. Phys. Lett. 92(25), 254103 (2008).
    [Crossref]
  23. H. Tao, A. C. Strikwerda, M. Liu, J. P. Mondia, E. Ekmekci, K. Fan, D. L. Kaplan, W. J. Padilla, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications,” Appl. Phys. Lett. 97(26), 4184 (2010).
    [Crossref]
  24. L. Xie, W. Gao, J. Shu, Y. Ying, and J. Kono, “Extraordinary sensitivity enhancement by metasurfaces in terahertz detection of antibiotics,” Sci. Rep. 5(1), 8671 (2015).
    [Crossref] [PubMed]
  25. Z. Chen, R. Mohsen, Y. Gong, T. Chong, and M. Hong, “Realization of Variable Three‐Dimensional Terahertz Metamaterial Tubes for Passive Resonance Tunability,” Adv. Mater. 24(23), 143–147 (2012).
    [PubMed]
  26. R. Singh, W. Cao, L. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
    [Crossref]
  27. W. Withayachumnankul, J. F. O’Hara, W. Cao, I. Al-Naib, and W. Zhang, “Limitation in thin-film sensing with transmission-mode terahertz time-domain spectroscopy,” Opt. Express 22(1), 972–986 (2014).
    [Crossref] [PubMed]
  28. S. G. Rodrigo, F. J. Garcia-Vidal, and L. Martin-Moreno, “Theory of absorption-induced transparency,” Phys. Rev. B 9162(88), 155126 (2013).
    [Crossref]
  29. J. A. Hutchison, D. M. O’Carroll, T. Schwartz, C. Genet, and T. W. Ebbesen, “Absorption-induced transparency,” Angew. Chem. Int. Ed. Engl. 50(9), 2085–2089 (2011).
    [Crossref] [PubMed]
  30. R. Adato, A. Artar, S. Erramilli, and H. Altug, “Engineered Absorption Enhancement and Induced Transparency in Coupled Molecular and Plasmonic Resonator Systems,” Nano Lett. 13(6), 2584–2591 (2013).
    [Crossref] [PubMed]
  31. J. Xie, X. Zhu, X. Zang, Q. Cheng, Y. Ye, and Y. Zhu, “High extinction ratio electromagnetically induced transparency analogue based on the radiation suppression of dark modes,” Sci. Rep. 7(1), 11291 (2017).
    [Crossref] [PubMed]
  32. R. Nishikiori, M. Yamaguchi, K. Takano, T. Enatsu, M. Tani, U. C. de Silva, N. Kawashita, T. Takagi, S. Morimoto, M. Hangyo, and M. Kawase, “Application of Partial Least Square on Quantitative Analysis of L-, D-, and DL-Tartaric Acid by Terahertz Absorption Spectra,” Chem. Pharm. Bull. (Tokyo) 56(3), 305–307 (2008).
    [Crossref] [PubMed]
  33. Z. Chen, M. Hong, C. Lim, N. Han, L. Shi, and T. Chong, “Parallel laser microfabrication of large-area asymmetric split ring resonator metamaterials and its structural tuning for terahertz resonance,” Appl. Phys. Lett. 96(18), 181101 (2010).
    [Crossref]
  34. K. Chen, R. Adato, and H. Altug, “Dual-Band Perfect Absorber for Multispectral Plasmon-Enhanced Infrared Spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
    [Crossref] [PubMed]
  35. G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular Plasmonics with Tunable Exciton-Plasmon Coupling Strength in J-Aggregate Hybridized Au Nanorod Assemblies,” Nano Lett. 7(5), 1297–1303 (2007).
    [Crossref] [PubMed]
  36. N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic Nanoparticles: Plasmon-Exciton Coupling in Nanoshell-J-Aggregate Complexes,” Nano Lett. 8(10), 3481–3487 (2008).
    [Crossref] [PubMed]

2017 (2)

L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect-induced Fano resonances in corrugated plasmonic metamaterials,” Adv. Opt. Mater. 5(8), 1600960 (2017).
[Crossref]

J. Xie, X. Zhu, X. Zang, Q. Cheng, Y. Ye, and Y. Zhu, “High extinction ratio electromagnetically induced transparency analogue based on the radiation suppression of dark modes,” Sci. Rep. 7(1), 11291 (2017).
[Crossref] [PubMed]

2016 (1)

L. Chen, Y. Wei, X. Zang, Y. Zhu, and S. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Rep. 6(1), 22027 (2016).
[Crossref] [PubMed]

2015 (4)

L. Xie, W. Gao, J. Shu, Y. Ying, and J. Kono, “Extraordinary sensitivity enhancement by metasurfaces in terahertz detection of antibiotics,” Sci. Rep. 5(1), 8671 (2015).
[Crossref] [PubMed]

S. Bagiante, F. Enderli, J. Fabiańska, H. Sigg, and T. Feurer, “Giant electric field enhancement in split ring resonators featuring nanometer-sized gaps,” Sci. Rep. 5(1), 8051 (2015).
[Crossref] [PubMed]

L. Xie, W. Gao, J. Shu, Y. Ying, and J. Kono, “Extraordinary sensitivity enhancement by metasurfaces in terahertz detection of antibiotics,” Sci. Rep. 5(1), 8671 (2015).
[Crossref] [PubMed]

Z. Han, Y. Zhang, and S. I. Bozhevolnyi, “Spoof surface plasmon-based stripe antennas with extreme field enhancement in the terahertz regime,” Opt. Lett. 40(11), 2533–2536 (2015).
[Crossref] [PubMed]

2014 (3)

Y. M. Bahk, G. Ramakrishnan, J. Choi, H. Song, G. Choi, Y. H. Kim, K. J. Ahn, D. S. Kim, and P. C. Planken, “Plasmon enhanced terahertz emission from single layer graphene,” ACS Nano 8(9), 9089–9096 (2014).
[Crossref] [PubMed]

R. Singh, W. Cao, L. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

W. Withayachumnankul, J. F. O’Hara, W. Cao, I. Al-Naib, and W. Zhang, “Limitation in thin-film sensing with transmission-mode terahertz time-domain spectroscopy,” Opt. Express 22(1), 972–986 (2014).
[Crossref] [PubMed]

2013 (6)

S. G. Rodrigo, F. J. Garcia-Vidal, and L. Martin-Moreno, “Theory of absorption-induced transparency,” Phys. Rev. B 9162(88), 155126 (2013).
[Crossref]

R. Adato, A. Artar, S. Erramilli, and H. Altug, “Engineered Absorption Enhancement and Induced Transparency in Coupled Molecular and Plasmonic Resonator Systems,” Nano Lett. 13(6), 2584–2591 (2013).
[Crossref] [PubMed]

X. Wang, C. Luo, G. Hong, and X. Zhao, “Metamaterial optical refractive index sensor detected by the naked eye,” Appl. Phys. Lett. 102(9), 091902 (2013).
[Crossref]

X. Wu, X. Pan, B. Quan, X. Xu, C. Gu, and L. Wang, “Self-referenced sensing based on terahertz metamaterial for aqueous solutions,” Appl. Phys. Lett. 102(15), 151109 (2013).
[Crossref]

H. J. Lee, S. Choi, I. S. Jang, J. S. Choi, and H. I. Jung, “Asymmetric split-ring resonator-based biosensor for detection of label-free stress biomarkers,” Appl. Phys. Lett. 103(5), 053702 (2013).
[Crossref]

C. Feuillet-Palma, Y. Todorov, A. Vasanelli, and C. Sirtori, “Strong near field enhancement in THz nano-antenna arrays,” Sci. Rep. 3(1), 1361 (2013).
[Crossref] [PubMed]

2012 (4)

G. Ramakrishnan, N. Kumar, P. C. M. Planken, D. Tanaka, and K. Kajikawa, “Surface plasmon-enhanced terahertz emission from a hemicyanine self-assembled monolayer,” Opt. Express 20(4), 4067–4073 (2012).
[Crossref] [PubMed]

B. Reinhard, K. M. Schmitt, V. Wollrab, J. Neu, R. Beigang, and M. Rahm, “Metamaterial near-field sensor for deep-subwavelength thickness measurements and sensitive refractometry in the terahertz frequency range,” Appl. Phys. Lett. 100(22), 221101 (2012).
[Crossref]

Z. Chen, R. Mohsen, Y. Gong, T. Chong, and M. Hong, “Realization of Variable Three‐Dimensional Terahertz Metamaterial Tubes for Passive Resonance Tunability,” Adv. Mater. 24(23), 143–147 (2012).
[PubMed]

K. Chen, R. Adato, and H. Altug, “Dual-Band Perfect Absorber for Multispectral Plasmon-Enhanced Infrared Spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
[Crossref] [PubMed]

2011 (1)

J. A. Hutchison, D. M. O’Carroll, T. Schwartz, C. Genet, and T. W. Ebbesen, “Absorption-induced transparency,” Angew. Chem. Int. Ed. Engl. 50(9), 2085–2089 (2011).
[Crossref] [PubMed]

2010 (2)

H. Tao, A. C. Strikwerda, M. Liu, J. P. Mondia, E. Ekmekci, K. Fan, D. L. Kaplan, W. J. Padilla, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications,” Appl. Phys. Lett. 97(26), 4184 (2010).
[Crossref]

Z. Chen, M. Hong, C. Lim, N. Han, L. Shi, and T. Chong, “Parallel laser microfabrication of large-area asymmetric split ring resonator metamaterials and its structural tuning for terahertz resonance,” Appl. Phys. Lett. 96(18), 181101 (2010).
[Crossref]

2008 (4)

N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic Nanoparticles: Plasmon-Exciton Coupling in Nanoshell-J-Aggregate Complexes,” Nano Lett. 8(10), 3481–3487 (2008).
[Crossref] [PubMed]

R. Nishikiori, M. Yamaguchi, K. Takano, T. Enatsu, M. Tani, U. C. de Silva, N. Kawashita, T. Takagi, S. Morimoto, M. Hangyo, and M. Kawase, “Application of Partial Least Square on Quantitative Analysis of L-, D-, and DL-Tartaric Acid by Terahertz Absorption Spectra,” Chem. Pharm. Bull. (Tokyo) 56(3), 305–307 (2008).
[Crossref] [PubMed]

H. J. Lee and J. G. Yook, “Biosensing using split-ring resonators at microwave regime,” Appl. Phys. Lett. 92(25), 254103 (2008).
[Crossref]

R. Balu, H. Zhang, E. Zukowski, J. Y. Chen, A. G. Markelz, and S. K. Gregurick, “Terahertz spectroscopy of bacteriorhodopsin and rhodopsin: similarities and differences,” Biophys. J. 94(8), 3217–3226 (2008).
[Crossref] [PubMed]

2007 (3)

K. L. Nguyen, T. Friščić, G. M. Day, L. F. Gladden, and W. Jones, “Terahertz time-domain spectroscopy and the quantitative monitoring of mechanochemical cocrystal formation,” Nat. Mater. 6(3), 206–209 (2007).
[Crossref] [PubMed]

C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91(18), 184102 (2007).
[Crossref]

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular Plasmonics with Tunable Exciton-Plasmon Coupling Strength in J-Aggregate Hybridized Au Nanorod Assemblies,” Nano Lett. 7(5), 1297–1303 (2007).
[Crossref] [PubMed]

2006 (1)

T. Globus, D. Woolard, T. W. Crowe, T. Khromova, B. Gelmont, and J. Hesler, “Terahertz Fourier transform characterization of biological materials in a liquid phase,” J. Phys. D Appl. Phys. 39(15), 3405–3413 (2006).
[Crossref]

2002 (1)

S. P. Mickan, K. S. Lee, T. M. Lu, J. Munch, D. Abbott, and X. Zhang, “Double modulated differential THz-TDS for thin film dielectric characterization,” Microelectronics J. 33(12), 1033–1042 (2002).
[Crossref]

2000 (2)

A. G. Markelz, A. Roitberg, and E. J. Heilweil, “Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz,” Chem. Phys. Lett. 320(1–2), 42–48 (2000).
[Crossref]

Z. Jiang, M. Li, and X. Zhang, “Dielectric constant measurement of thin films by differential time-domain spectroscopy,” Appl. Phys. Lett. 76(22), 3221–3223 (2000).
[Crossref]

1998 (1)

B. C. Stipe, M. A. Rezaei, and W. Ho, “Single-molecule vibrational spectroscopy and microscopy,” Science 280(5370), 1732–1735 (1998).
[Crossref] [PubMed]

1997 (1)

K. Liu, M. G. Brown, and R. J. Saykally, “Terahertz laser vibration rotation tunneling spectroscopy and dipole moment of a cage form of the water hexamer,” J. Phys. Chem. A 101(48), 8995–9010 (1997).
[Crossref]

Abbott, D.

S. P. Mickan, K. S. Lee, T. M. Lu, J. Munch, D. Abbott, and X. Zhang, “Double modulated differential THz-TDS for thin film dielectric characterization,” Microelectronics J. 33(12), 1033–1042 (2002).
[Crossref]

Adato, R.

R. Adato, A. Artar, S. Erramilli, and H. Altug, “Engineered Absorption Enhancement and Induced Transparency in Coupled Molecular and Plasmonic Resonator Systems,” Nano Lett. 13(6), 2584–2591 (2013).
[Crossref] [PubMed]

K. Chen, R. Adato, and H. Altug, “Dual-Band Perfect Absorber for Multispectral Plasmon-Enhanced Infrared Spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
[Crossref] [PubMed]

Ahn, K. J.

Y. M. Bahk, G. Ramakrishnan, J. Choi, H. Song, G. Choi, Y. H. Kim, K. J. Ahn, D. S. Kim, and P. C. Planken, “Plasmon enhanced terahertz emission from single layer graphene,” ACS Nano 8(9), 9089–9096 (2014).
[Crossref] [PubMed]

Al-Naib, I.

Al-Naib, L.

R. Singh, W. Cao, L. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

Altug, H.

R. Adato, A. Artar, S. Erramilli, and H. Altug, “Engineered Absorption Enhancement and Induced Transparency in Coupled Molecular and Plasmonic Resonator Systems,” Nano Lett. 13(6), 2584–2591 (2013).
[Crossref] [PubMed]

K. Chen, R. Adato, and H. Altug, “Dual-Band Perfect Absorber for Multispectral Plasmon-Enhanced Infrared Spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
[Crossref] [PubMed]

Artar, A.

R. Adato, A. Artar, S. Erramilli, and H. Altug, “Engineered Absorption Enhancement and Induced Transparency in Coupled Molecular and Plasmonic Resonator Systems,” Nano Lett. 13(6), 2584–2591 (2013).
[Crossref] [PubMed]

Atkinson, R.

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular Plasmonics with Tunable Exciton-Plasmon Coupling Strength in J-Aggregate Hybridized Au Nanorod Assemblies,” Nano Lett. 7(5), 1297–1303 (2007).
[Crossref] [PubMed]

Averitt, R. D.

H. Tao, A. C. Strikwerda, M. Liu, J. P. Mondia, E. Ekmekci, K. Fan, D. L. Kaplan, W. J. Padilla, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications,” Appl. Phys. Lett. 97(26), 4184 (2010).
[Crossref]

Bagiante, S.

S. Bagiante, F. Enderli, J. Fabiańska, H. Sigg, and T. Feurer, “Giant electric field enhancement in split ring resonators featuring nanometer-sized gaps,” Sci. Rep. 5(1), 8051 (2015).
[Crossref] [PubMed]

Bahk, Y. M.

Y. M. Bahk, G. Ramakrishnan, J. Choi, H. Song, G. Choi, Y. H. Kim, K. J. Ahn, D. S. Kim, and P. C. Planken, “Plasmon enhanced terahertz emission from single layer graphene,” ACS Nano 8(9), 9089–9096 (2014).
[Crossref] [PubMed]

Balu, R.

R. Balu, H. Zhang, E. Zukowski, J. Y. Chen, A. G. Markelz, and S. K. Gregurick, “Terahertz spectroscopy of bacteriorhodopsin and rhodopsin: similarities and differences,” Biophys. J. 94(8), 3217–3226 (2008).
[Crossref] [PubMed]

Beigang, R.

B. Reinhard, K. M. Schmitt, V. Wollrab, J. Neu, R. Beigang, and M. Rahm, “Metamaterial near-field sensor for deep-subwavelength thickness measurements and sensitive refractometry in the terahertz frequency range,” Appl. Phys. Lett. 100(22), 221101 (2012).
[Crossref]

Bolivar, P. H.

C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91(18), 184102 (2007).
[Crossref]

Bower, C.

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular Plasmonics with Tunable Exciton-Plasmon Coupling Strength in J-Aggregate Hybridized Au Nanorod Assemblies,” Nano Lett. 7(5), 1297–1303 (2007).
[Crossref] [PubMed]

Bozhevolnyi, S. I.

Brown, M. G.

K. Liu, M. G. Brown, and R. J. Saykally, “Terahertz laser vibration rotation tunneling spectroscopy and dipole moment of a cage form of the water hexamer,” J. Phys. Chem. A 101(48), 8995–9010 (1997).
[Crossref]

Cao, W.

R. Singh, W. Cao, L. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

W. Withayachumnankul, J. F. O’Hara, W. Cao, I. Al-Naib, and W. Zhang, “Limitation in thin-film sensing with transmission-mode terahertz time-domain spectroscopy,” Opt. Express 22(1), 972–986 (2014).
[Crossref] [PubMed]

Chen, J. Y.

R. Balu, H. Zhang, E. Zukowski, J. Y. Chen, A. G. Markelz, and S. K. Gregurick, “Terahertz spectroscopy of bacteriorhodopsin and rhodopsin: similarities and differences,” Biophys. J. 94(8), 3217–3226 (2008).
[Crossref] [PubMed]

Chen, K.

K. Chen, R. Adato, and H. Altug, “Dual-Band Perfect Absorber for Multispectral Plasmon-Enhanced Infrared Spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
[Crossref] [PubMed]

Chen, L.

L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect-induced Fano resonances in corrugated plasmonic metamaterials,” Adv. Opt. Mater. 5(8), 1600960 (2017).
[Crossref]

L. Chen, Y. Wei, X. Zang, Y. Zhu, and S. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Rep. 6(1), 22027 (2016).
[Crossref] [PubMed]

Chen, Z.

Z. Chen, R. Mohsen, Y. Gong, T. Chong, and M. Hong, “Realization of Variable Three‐Dimensional Terahertz Metamaterial Tubes for Passive Resonance Tunability,” Adv. Mater. 24(23), 143–147 (2012).
[PubMed]

Z. Chen, M. Hong, C. Lim, N. Han, L. Shi, and T. Chong, “Parallel laser microfabrication of large-area asymmetric split ring resonator metamaterials and its structural tuning for terahertz resonance,” Appl. Phys. Lett. 96(18), 181101 (2010).
[Crossref]

Cheng, Q.

J. Xie, X. Zhu, X. Zang, Q. Cheng, Y. Ye, and Y. Zhu, “High extinction ratio electromagnetically induced transparency analogue based on the radiation suppression of dark modes,” Sci. Rep. 7(1), 11291 (2017).
[Crossref] [PubMed]

Choi, G.

Y. M. Bahk, G. Ramakrishnan, J. Choi, H. Song, G. Choi, Y. H. Kim, K. J. Ahn, D. S. Kim, and P. C. Planken, “Plasmon enhanced terahertz emission from single layer graphene,” ACS Nano 8(9), 9089–9096 (2014).
[Crossref] [PubMed]

Choi, J.

Y. M. Bahk, G. Ramakrishnan, J. Choi, H. Song, G. Choi, Y. H. Kim, K. J. Ahn, D. S. Kim, and P. C. Planken, “Plasmon enhanced terahertz emission from single layer graphene,” ACS Nano 8(9), 9089–9096 (2014).
[Crossref] [PubMed]

Choi, J. S.

H. J. Lee, S. Choi, I. S. Jang, J. S. Choi, and H. I. Jung, “Asymmetric split-ring resonator-based biosensor for detection of label-free stress biomarkers,” Appl. Phys. Lett. 103(5), 053702 (2013).
[Crossref]

Choi, S.

H. J. Lee, S. Choi, I. S. Jang, J. S. Choi, and H. I. Jung, “Asymmetric split-ring resonator-based biosensor for detection of label-free stress biomarkers,” Appl. Phys. Lett. 103(5), 053702 (2013).
[Crossref]

Chong, T.

Z. Chen, R. Mohsen, Y. Gong, T. Chong, and M. Hong, “Realization of Variable Three‐Dimensional Terahertz Metamaterial Tubes for Passive Resonance Tunability,” Adv. Mater. 24(23), 143–147 (2012).
[PubMed]

Z. Chen, M. Hong, C. Lim, N. Han, L. Shi, and T. Chong, “Parallel laser microfabrication of large-area asymmetric split ring resonator metamaterials and its structural tuning for terahertz resonance,” Appl. Phys. Lett. 96(18), 181101 (2010).
[Crossref]

Cong, L.

R. Singh, W. Cao, L. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

Crowe, T. W.

T. Globus, D. Woolard, T. W. Crowe, T. Khromova, B. Gelmont, and J. Hesler, “Terahertz Fourier transform characterization of biological materials in a liquid phase,” J. Phys. D Appl. Phys. 39(15), 3405–3413 (2006).
[Crossref]

Cui, T.

L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect-induced Fano resonances in corrugated plasmonic metamaterials,” Adv. Opt. Mater. 5(8), 1600960 (2017).
[Crossref]

Day, G. M.

K. L. Nguyen, T. Friščić, G. M. Day, L. F. Gladden, and W. Jones, “Terahertz time-domain spectroscopy and the quantitative monitoring of mechanochemical cocrystal formation,” Nat. Mater. 6(3), 206–209 (2007).
[Crossref] [PubMed]

de Silva, U. C.

R. Nishikiori, M. Yamaguchi, K. Takano, T. Enatsu, M. Tani, U. C. de Silva, N. Kawashita, T. Takagi, S. Morimoto, M. Hangyo, and M. Kawase, “Application of Partial Least Square on Quantitative Analysis of L-, D-, and DL-Tartaric Acid by Terahertz Absorption Spectra,” Chem. Pharm. Bull. (Tokyo) 56(3), 305–307 (2008).
[Crossref] [PubMed]

Debus, C.

C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91(18), 184102 (2007).
[Crossref]

Dickson, W.

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular Plasmonics with Tunable Exciton-Plasmon Coupling Strength in J-Aggregate Hybridized Au Nanorod Assemblies,” Nano Lett. 7(5), 1297–1303 (2007).
[Crossref] [PubMed]

Ebbesen, T. W.

J. A. Hutchison, D. M. O’Carroll, T. Schwartz, C. Genet, and T. W. Ebbesen, “Absorption-induced transparency,” Angew. Chem. Int. Ed. Engl. 50(9), 2085–2089 (2011).
[Crossref] [PubMed]

Ekmekci, E.

H. Tao, A. C. Strikwerda, M. Liu, J. P. Mondia, E. Ekmekci, K. Fan, D. L. Kaplan, W. J. Padilla, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications,” Appl. Phys. Lett. 97(26), 4184 (2010).
[Crossref]

Enatsu, T.

R. Nishikiori, M. Yamaguchi, K. Takano, T. Enatsu, M. Tani, U. C. de Silva, N. Kawashita, T. Takagi, S. Morimoto, M. Hangyo, and M. Kawase, “Application of Partial Least Square on Quantitative Analysis of L-, D-, and DL-Tartaric Acid by Terahertz Absorption Spectra,” Chem. Pharm. Bull. (Tokyo) 56(3), 305–307 (2008).
[Crossref] [PubMed]

Enderli, F.

S. Bagiante, F. Enderli, J. Fabiańska, H. Sigg, and T. Feurer, “Giant electric field enhancement in split ring resonators featuring nanometer-sized gaps,” Sci. Rep. 5(1), 8051 (2015).
[Crossref] [PubMed]

Erramilli, S.

R. Adato, A. Artar, S. Erramilli, and H. Altug, “Engineered Absorption Enhancement and Induced Transparency in Coupled Molecular and Plasmonic Resonator Systems,” Nano Lett. 13(6), 2584–2591 (2013).
[Crossref] [PubMed]

Evans, P. R.

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular Plasmonics with Tunable Exciton-Plasmon Coupling Strength in J-Aggregate Hybridized Au Nanorod Assemblies,” Nano Lett. 7(5), 1297–1303 (2007).
[Crossref] [PubMed]

Fabianska, J.

S. Bagiante, F. Enderli, J. Fabiańska, H. Sigg, and T. Feurer, “Giant electric field enhancement in split ring resonators featuring nanometer-sized gaps,” Sci. Rep. 5(1), 8051 (2015).
[Crossref] [PubMed]

Fan, K.

H. Tao, A. C. Strikwerda, M. Liu, J. P. Mondia, E. Ekmekci, K. Fan, D. L. Kaplan, W. J. Padilla, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications,” Appl. Phys. Lett. 97(26), 4184 (2010).
[Crossref]

Feuillet-Palma, C.

C. Feuillet-Palma, Y. Todorov, A. Vasanelli, and C. Sirtori, “Strong near field enhancement in THz nano-antenna arrays,” Sci. Rep. 3(1), 1361 (2013).
[Crossref] [PubMed]

Feurer, T.

S. Bagiante, F. Enderli, J. Fabiańska, H. Sigg, and T. Feurer, “Giant electric field enhancement in split ring resonators featuring nanometer-sized gaps,” Sci. Rep. 5(1), 8051 (2015).
[Crossref] [PubMed]

Fofang, N. T.

N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic Nanoparticles: Plasmon-Exciton Coupling in Nanoshell-J-Aggregate Complexes,” Nano Lett. 8(10), 3481–3487 (2008).
[Crossref] [PubMed]

Frišcic, T.

K. L. Nguyen, T. Friščić, G. M. Day, L. F. Gladden, and W. Jones, “Terahertz time-domain spectroscopy and the quantitative monitoring of mechanochemical cocrystal formation,” Nat. Mater. 6(3), 206–209 (2007).
[Crossref] [PubMed]

Gao, W.

L. Xie, W. Gao, J. Shu, Y. Ying, and J. Kono, “Extraordinary sensitivity enhancement by metasurfaces in terahertz detection of antibiotics,” Sci. Rep. 5(1), 8671 (2015).
[Crossref] [PubMed]

L. Xie, W. Gao, J. Shu, Y. Ying, and J. Kono, “Extraordinary sensitivity enhancement by metasurfaces in terahertz detection of antibiotics,” Sci. Rep. 5(1), 8671 (2015).
[Crossref] [PubMed]

Garcia-Vidal, F. J.

S. G. Rodrigo, F. J. Garcia-Vidal, and L. Martin-Moreno, “Theory of absorption-induced transparency,” Phys. Rev. B 9162(88), 155126 (2013).
[Crossref]

Gelmont, B.

T. Globus, D. Woolard, T. W. Crowe, T. Khromova, B. Gelmont, and J. Hesler, “Terahertz Fourier transform characterization of biological materials in a liquid phase,” J. Phys. D Appl. Phys. 39(15), 3405–3413 (2006).
[Crossref]

Genet, C.

J. A. Hutchison, D. M. O’Carroll, T. Schwartz, C. Genet, and T. W. Ebbesen, “Absorption-induced transparency,” Angew. Chem. Int. Ed. Engl. 50(9), 2085–2089 (2011).
[Crossref] [PubMed]

Gladden, L. F.

K. L. Nguyen, T. Friščić, G. M. Day, L. F. Gladden, and W. Jones, “Terahertz time-domain spectroscopy and the quantitative monitoring of mechanochemical cocrystal formation,” Nat. Mater. 6(3), 206–209 (2007).
[Crossref] [PubMed]

Globus, T.

T. Globus, D. Woolard, T. W. Crowe, T. Khromova, B. Gelmont, and J. Hesler, “Terahertz Fourier transform characterization of biological materials in a liquid phase,” J. Phys. D Appl. Phys. 39(15), 3405–3413 (2006).
[Crossref]

Gong, Y.

Z. Chen, R. Mohsen, Y. Gong, T. Chong, and M. Hong, “Realization of Variable Three‐Dimensional Terahertz Metamaterial Tubes for Passive Resonance Tunability,” Adv. Mater. 24(23), 143–147 (2012).
[PubMed]

Gregurick, S. K.

R. Balu, H. Zhang, E. Zukowski, J. Y. Chen, A. G. Markelz, and S. K. Gregurick, “Terahertz spectroscopy of bacteriorhodopsin and rhodopsin: similarities and differences,” Biophys. J. 94(8), 3217–3226 (2008).
[Crossref] [PubMed]

Gu, C.

X. Wu, X. Pan, B. Quan, X. Xu, C. Gu, and L. Wang, “Self-referenced sensing based on terahertz metamaterial for aqueous solutions,” Appl. Phys. Lett. 102(15), 151109 (2013).
[Crossref]

Halas, N. J.

N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic Nanoparticles: Plasmon-Exciton Coupling in Nanoshell-J-Aggregate Complexes,” Nano Lett. 8(10), 3481–3487 (2008).
[Crossref] [PubMed]

Han, N.

Z. Chen, M. Hong, C. Lim, N. Han, L. Shi, and T. Chong, “Parallel laser microfabrication of large-area asymmetric split ring resonator metamaterials and its structural tuning for terahertz resonance,” Appl. Phys. Lett. 96(18), 181101 (2010).
[Crossref]

Han, Z.

Hangyo, M.

R. Nishikiori, M. Yamaguchi, K. Takano, T. Enatsu, M. Tani, U. C. de Silva, N. Kawashita, T. Takagi, S. Morimoto, M. Hangyo, and M. Kawase, “Application of Partial Least Square on Quantitative Analysis of L-, D-, and DL-Tartaric Acid by Terahertz Absorption Spectra,” Chem. Pharm. Bull. (Tokyo) 56(3), 305–307 (2008).
[Crossref] [PubMed]

Harrison, W.

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular Plasmonics with Tunable Exciton-Plasmon Coupling Strength in J-Aggregate Hybridized Au Nanorod Assemblies,” Nano Lett. 7(5), 1297–1303 (2007).
[Crossref] [PubMed]

Heilweil, E. J.

A. G. Markelz, A. Roitberg, and E. J. Heilweil, “Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz,” Chem. Phys. Lett. 320(1–2), 42–48 (2000).
[Crossref]

Hendren, W.

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular Plasmonics with Tunable Exciton-Plasmon Coupling Strength in J-Aggregate Hybridized Au Nanorod Assemblies,” Nano Lett. 7(5), 1297–1303 (2007).
[Crossref] [PubMed]

Hesler, J.

T. Globus, D. Woolard, T. W. Crowe, T. Khromova, B. Gelmont, and J. Hesler, “Terahertz Fourier transform characterization of biological materials in a liquid phase,” J. Phys. D Appl. Phys. 39(15), 3405–3413 (2006).
[Crossref]

Ho, W.

B. C. Stipe, M. A. Rezaei, and W. Ho, “Single-molecule vibrational spectroscopy and microscopy,” Science 280(5370), 1732–1735 (1998).
[Crossref] [PubMed]

Hong, G.

X. Wang, C. Luo, G. Hong, and X. Zhao, “Metamaterial optical refractive index sensor detected by the naked eye,” Appl. Phys. Lett. 102(9), 091902 (2013).
[Crossref]

Hong, M.

Z. Chen, R. Mohsen, Y. Gong, T. Chong, and M. Hong, “Realization of Variable Three‐Dimensional Terahertz Metamaterial Tubes for Passive Resonance Tunability,” Adv. Mater. 24(23), 143–147 (2012).
[PubMed]

Z. Chen, M. Hong, C. Lim, N. Han, L. Shi, and T. Chong, “Parallel laser microfabrication of large-area asymmetric split ring resonator metamaterials and its structural tuning for terahertz resonance,” Appl. Phys. Lett. 96(18), 181101 (2010).
[Crossref]

Hutchison, J. A.

J. A. Hutchison, D. M. O’Carroll, T. Schwartz, C. Genet, and T. W. Ebbesen, “Absorption-induced transparency,” Angew. Chem. Int. Ed. Engl. 50(9), 2085–2089 (2011).
[Crossref] [PubMed]

Jang, I. S.

H. J. Lee, S. Choi, I. S. Jang, J. S. Choi, and H. I. Jung, “Asymmetric split-ring resonator-based biosensor for detection of label-free stress biomarkers,” Appl. Phys. Lett. 103(5), 053702 (2013).
[Crossref]

Jiang, Z.

Z. Jiang, M. Li, and X. Zhang, “Dielectric constant measurement of thin films by differential time-domain spectroscopy,” Appl. Phys. Lett. 76(22), 3221–3223 (2000).
[Crossref]

Jones, W.

K. L. Nguyen, T. Friščić, G. M. Day, L. F. Gladden, and W. Jones, “Terahertz time-domain spectroscopy and the quantitative monitoring of mechanochemical cocrystal formation,” Nat. Mater. 6(3), 206–209 (2007).
[Crossref] [PubMed]

Jung, H. I.

H. J. Lee, S. Choi, I. S. Jang, J. S. Choi, and H. I. Jung, “Asymmetric split-ring resonator-based biosensor for detection of label-free stress biomarkers,” Appl. Phys. Lett. 103(5), 053702 (2013).
[Crossref]

Kajikawa, K.

Kaplan, D. L.

H. Tao, A. C. Strikwerda, M. Liu, J. P. Mondia, E. Ekmekci, K. Fan, D. L. Kaplan, W. J. Padilla, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications,” Appl. Phys. Lett. 97(26), 4184 (2010).
[Crossref]

Kawase, M.

R. Nishikiori, M. Yamaguchi, K. Takano, T. Enatsu, M. Tani, U. C. de Silva, N. Kawashita, T. Takagi, S. Morimoto, M. Hangyo, and M. Kawase, “Application of Partial Least Square on Quantitative Analysis of L-, D-, and DL-Tartaric Acid by Terahertz Absorption Spectra,” Chem. Pharm. Bull. (Tokyo) 56(3), 305–307 (2008).
[Crossref] [PubMed]

Kawashita, N.

R. Nishikiori, M. Yamaguchi, K. Takano, T. Enatsu, M. Tani, U. C. de Silva, N. Kawashita, T. Takagi, S. Morimoto, M. Hangyo, and M. Kawase, “Application of Partial Least Square on Quantitative Analysis of L-, D-, and DL-Tartaric Acid by Terahertz Absorption Spectra,” Chem. Pharm. Bull. (Tokyo) 56(3), 305–307 (2008).
[Crossref] [PubMed]

Khromova, T.

T. Globus, D. Woolard, T. W. Crowe, T. Khromova, B. Gelmont, and J. Hesler, “Terahertz Fourier transform characterization of biological materials in a liquid phase,” J. Phys. D Appl. Phys. 39(15), 3405–3413 (2006).
[Crossref]

Kim, D. S.

Y. M. Bahk, G. Ramakrishnan, J. Choi, H. Song, G. Choi, Y. H. Kim, K. J. Ahn, D. S. Kim, and P. C. Planken, “Plasmon enhanced terahertz emission from single layer graphene,” ACS Nano 8(9), 9089–9096 (2014).
[Crossref] [PubMed]

Kim, Y. H.

Y. M. Bahk, G. Ramakrishnan, J. Choi, H. Song, G. Choi, Y. H. Kim, K. J. Ahn, D. S. Kim, and P. C. Planken, “Plasmon enhanced terahertz emission from single layer graphene,” ACS Nano 8(9), 9089–9096 (2014).
[Crossref] [PubMed]

Kono, J.

L. Xie, W. Gao, J. Shu, Y. Ying, and J. Kono, “Extraordinary sensitivity enhancement by metasurfaces in terahertz detection of antibiotics,” Sci. Rep. 5(1), 8671 (2015).
[Crossref] [PubMed]

L. Xie, W. Gao, J. Shu, Y. Ying, and J. Kono, “Extraordinary sensitivity enhancement by metasurfaces in terahertz detection of antibiotics,” Sci. Rep. 5(1), 8671 (2015).
[Crossref] [PubMed]

Kumar, N.

Lee, H. J.

H. J. Lee, S. Choi, I. S. Jang, J. S. Choi, and H. I. Jung, “Asymmetric split-ring resonator-based biosensor for detection of label-free stress biomarkers,” Appl. Phys. Lett. 103(5), 053702 (2013).
[Crossref]

H. J. Lee and J. G. Yook, “Biosensing using split-ring resonators at microwave regime,” Appl. Phys. Lett. 92(25), 254103 (2008).
[Crossref]

Lee, K. S.

S. P. Mickan, K. S. Lee, T. M. Lu, J. Munch, D. Abbott, and X. Zhang, “Double modulated differential THz-TDS for thin film dielectric characterization,” Microelectronics J. 33(12), 1033–1042 (2002).
[Crossref]

Li, M.

Z. Jiang, M. Li, and X. Zhang, “Dielectric constant measurement of thin films by differential time-domain spectroscopy,” Appl. Phys. Lett. 76(22), 3221–3223 (2000).
[Crossref]

Lim, C.

Z. Chen, M. Hong, C. Lim, N. Han, L. Shi, and T. Chong, “Parallel laser microfabrication of large-area asymmetric split ring resonator metamaterials and its structural tuning for terahertz resonance,” Appl. Phys. Lett. 96(18), 181101 (2010).
[Crossref]

Liu, K.

K. Liu, M. G. Brown, and R. J. Saykally, “Terahertz laser vibration rotation tunneling spectroscopy and dipole moment of a cage form of the water hexamer,” J. Phys. Chem. A 101(48), 8995–9010 (1997).
[Crossref]

Liu, M.

H. Tao, A. C. Strikwerda, M. Liu, J. P. Mondia, E. Ekmekci, K. Fan, D. L. Kaplan, W. J. Padilla, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications,” Appl. Phys. Lett. 97(26), 4184 (2010).
[Crossref]

Lu, T. M.

S. P. Mickan, K. S. Lee, T. M. Lu, J. Munch, D. Abbott, and X. Zhang, “Double modulated differential THz-TDS for thin film dielectric characterization,” Microelectronics J. 33(12), 1033–1042 (2002).
[Crossref]

Luo, C.

X. Wang, C. Luo, G. Hong, and X. Zhao, “Metamaterial optical refractive index sensor detected by the naked eye,” Appl. Phys. Lett. 102(9), 091902 (2013).
[Crossref]

Markelz, A. G.

R. Balu, H. Zhang, E. Zukowski, J. Y. Chen, A. G. Markelz, and S. K. Gregurick, “Terahertz spectroscopy of bacteriorhodopsin and rhodopsin: similarities and differences,” Biophys. J. 94(8), 3217–3226 (2008).
[Crossref] [PubMed]

A. G. Markelz, A. Roitberg, and E. J. Heilweil, “Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz,” Chem. Phys. Lett. 320(1–2), 42–48 (2000).
[Crossref]

Martin-Moreno, L.

S. G. Rodrigo, F. J. Garcia-Vidal, and L. Martin-Moreno, “Theory of absorption-induced transparency,” Phys. Rev. B 9162(88), 155126 (2013).
[Crossref]

Mickan, S. P.

S. P. Mickan, K. S. Lee, T. M. Lu, J. Munch, D. Abbott, and X. Zhang, “Double modulated differential THz-TDS for thin film dielectric characterization,” Microelectronics J. 33(12), 1033–1042 (2002).
[Crossref]

Mirin, N. A.

N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic Nanoparticles: Plasmon-Exciton Coupling in Nanoshell-J-Aggregate Complexes,” Nano Lett. 8(10), 3481–3487 (2008).
[Crossref] [PubMed]

Mohsen, R.

Z. Chen, R. Mohsen, Y. Gong, T. Chong, and M. Hong, “Realization of Variable Three‐Dimensional Terahertz Metamaterial Tubes for Passive Resonance Tunability,” Adv. Mater. 24(23), 143–147 (2012).
[PubMed]

Mondia, J. P.

H. Tao, A. C. Strikwerda, M. Liu, J. P. Mondia, E. Ekmekci, K. Fan, D. L. Kaplan, W. J. Padilla, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications,” Appl. Phys. Lett. 97(26), 4184 (2010).
[Crossref]

Morimoto, S.

R. Nishikiori, M. Yamaguchi, K. Takano, T. Enatsu, M. Tani, U. C. de Silva, N. Kawashita, T. Takagi, S. Morimoto, M. Hangyo, and M. Kawase, “Application of Partial Least Square on Quantitative Analysis of L-, D-, and DL-Tartaric Acid by Terahertz Absorption Spectra,” Chem. Pharm. Bull. (Tokyo) 56(3), 305–307 (2008).
[Crossref] [PubMed]

Munch, J.

S. P. Mickan, K. S. Lee, T. M. Lu, J. Munch, D. Abbott, and X. Zhang, “Double modulated differential THz-TDS for thin film dielectric characterization,” Microelectronics J. 33(12), 1033–1042 (2002).
[Crossref]

Neu, J.

B. Reinhard, K. M. Schmitt, V. Wollrab, J. Neu, R. Beigang, and M. Rahm, “Metamaterial near-field sensor for deep-subwavelength thickness measurements and sensitive refractometry in the terahertz frequency range,” Appl. Phys. Lett. 100(22), 221101 (2012).
[Crossref]

Neumann, O.

N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic Nanoparticles: Plasmon-Exciton Coupling in Nanoshell-J-Aggregate Complexes,” Nano Lett. 8(10), 3481–3487 (2008).
[Crossref] [PubMed]

Nguyen, K. L.

K. L. Nguyen, T. Friščić, G. M. Day, L. F. Gladden, and W. Jones, “Terahertz time-domain spectroscopy and the quantitative monitoring of mechanochemical cocrystal formation,” Nat. Mater. 6(3), 206–209 (2007).
[Crossref] [PubMed]

Nishikiori, R.

R. Nishikiori, M. Yamaguchi, K. Takano, T. Enatsu, M. Tani, U. C. de Silva, N. Kawashita, T. Takagi, S. Morimoto, M. Hangyo, and M. Kawase, “Application of Partial Least Square on Quantitative Analysis of L-, D-, and DL-Tartaric Acid by Terahertz Absorption Spectra,” Chem. Pharm. Bull. (Tokyo) 56(3), 305–307 (2008).
[Crossref] [PubMed]

Nordlander, P.

N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic Nanoparticles: Plasmon-Exciton Coupling in Nanoshell-J-Aggregate Complexes,” Nano Lett. 8(10), 3481–3487 (2008).
[Crossref] [PubMed]

O’Carroll, D. M.

J. A. Hutchison, D. M. O’Carroll, T. Schwartz, C. Genet, and T. W. Ebbesen, “Absorption-induced transparency,” Angew. Chem. Int. Ed. Engl. 50(9), 2085–2089 (2011).
[Crossref] [PubMed]

O’Hara, J. F.

Omenetto, F. G.

H. Tao, A. C. Strikwerda, M. Liu, J. P. Mondia, E. Ekmekci, K. Fan, D. L. Kaplan, W. J. Padilla, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications,” Appl. Phys. Lett. 97(26), 4184 (2010).
[Crossref]

Padilla, W. J.

H. Tao, A. C. Strikwerda, M. Liu, J. P. Mondia, E. Ekmekci, K. Fan, D. L. Kaplan, W. J. Padilla, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications,” Appl. Phys. Lett. 97(26), 4184 (2010).
[Crossref]

Pan, X.

X. Wu, X. Pan, B. Quan, X. Xu, C. Gu, and L. Wang, “Self-referenced sensing based on terahertz metamaterial for aqueous solutions,” Appl. Phys. Lett. 102(15), 151109 (2013).
[Crossref]

Park, T. H.

N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic Nanoparticles: Plasmon-Exciton Coupling in Nanoshell-J-Aggregate Complexes,” Nano Lett. 8(10), 3481–3487 (2008).
[Crossref] [PubMed]

Planken, P. C.

Y. M. Bahk, G. Ramakrishnan, J. Choi, H. Song, G. Choi, Y. H. Kim, K. J. Ahn, D. S. Kim, and P. C. Planken, “Plasmon enhanced terahertz emission from single layer graphene,” ACS Nano 8(9), 9089–9096 (2014).
[Crossref] [PubMed]

Planken, P. C. M.

Pollard, R. J.

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular Plasmonics with Tunable Exciton-Plasmon Coupling Strength in J-Aggregate Hybridized Au Nanorod Assemblies,” Nano Lett. 7(5), 1297–1303 (2007).
[Crossref] [PubMed]

Quan, B.

X. Wu, X. Pan, B. Quan, X. Xu, C. Gu, and L. Wang, “Self-referenced sensing based on terahertz metamaterial for aqueous solutions,” Appl. Phys. Lett. 102(15), 151109 (2013).
[Crossref]

Rahm, M.

B. Reinhard, K. M. Schmitt, V. Wollrab, J. Neu, R. Beigang, and M. Rahm, “Metamaterial near-field sensor for deep-subwavelength thickness measurements and sensitive refractometry in the terahertz frequency range,” Appl. Phys. Lett. 100(22), 221101 (2012).
[Crossref]

Ramakrishnan, G.

Y. M. Bahk, G. Ramakrishnan, J. Choi, H. Song, G. Choi, Y. H. Kim, K. J. Ahn, D. S. Kim, and P. C. Planken, “Plasmon enhanced terahertz emission from single layer graphene,” ACS Nano 8(9), 9089–9096 (2014).
[Crossref] [PubMed]

G. Ramakrishnan, N. Kumar, P. C. M. Planken, D. Tanaka, and K. Kajikawa, “Surface plasmon-enhanced terahertz emission from a hemicyanine self-assembled monolayer,” Opt. Express 20(4), 4067–4073 (2012).
[Crossref] [PubMed]

Reinhard, B.

B. Reinhard, K. M. Schmitt, V. Wollrab, J. Neu, R. Beigang, and M. Rahm, “Metamaterial near-field sensor for deep-subwavelength thickness measurements and sensitive refractometry in the terahertz frequency range,” Appl. Phys. Lett. 100(22), 221101 (2012).
[Crossref]

Rezaei, M. A.

B. C. Stipe, M. A. Rezaei, and W. Ho, “Single-molecule vibrational spectroscopy and microscopy,” Science 280(5370), 1732–1735 (1998).
[Crossref] [PubMed]

Rodrigo, S. G.

S. G. Rodrigo, F. J. Garcia-Vidal, and L. Martin-Moreno, “Theory of absorption-induced transparency,” Phys. Rev. B 9162(88), 155126 (2013).
[Crossref]

Roitberg, A.

A. G. Markelz, A. Roitberg, and E. J. Heilweil, “Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz,” Chem. Phys. Lett. 320(1–2), 42–48 (2000).
[Crossref]

Saykally, R. J.

K. Liu, M. G. Brown, and R. J. Saykally, “Terahertz laser vibration rotation tunneling spectroscopy and dipole moment of a cage form of the water hexamer,” J. Phys. Chem. A 101(48), 8995–9010 (1997).
[Crossref]

Schmitt, K. M.

B. Reinhard, K. M. Schmitt, V. Wollrab, J. Neu, R. Beigang, and M. Rahm, “Metamaterial near-field sensor for deep-subwavelength thickness measurements and sensitive refractometry in the terahertz frequency range,” Appl. Phys. Lett. 100(22), 221101 (2012).
[Crossref]

Schwartz, T.

J. A. Hutchison, D. M. O’Carroll, T. Schwartz, C. Genet, and T. W. Ebbesen, “Absorption-induced transparency,” Angew. Chem. Int. Ed. Engl. 50(9), 2085–2089 (2011).
[Crossref] [PubMed]

Shi, L.

Z. Chen, M. Hong, C. Lim, N. Han, L. Shi, and T. Chong, “Parallel laser microfabrication of large-area asymmetric split ring resonator metamaterials and its structural tuning for terahertz resonance,” Appl. Phys. Lett. 96(18), 181101 (2010).
[Crossref]

Shu, J.

L. Xie, W. Gao, J. Shu, Y. Ying, and J. Kono, “Extraordinary sensitivity enhancement by metasurfaces in terahertz detection of antibiotics,” Sci. Rep. 5(1), 8671 (2015).
[Crossref] [PubMed]

L. Xie, W. Gao, J. Shu, Y. Ying, and J. Kono, “Extraordinary sensitivity enhancement by metasurfaces in terahertz detection of antibiotics,” Sci. Rep. 5(1), 8671 (2015).
[Crossref] [PubMed]

Sigg, H.

S. Bagiante, F. Enderli, J. Fabiańska, H. Sigg, and T. Feurer, “Giant electric field enhancement in split ring resonators featuring nanometer-sized gaps,” Sci. Rep. 5(1), 8051 (2015).
[Crossref] [PubMed]

Singh, L.

L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect-induced Fano resonances in corrugated plasmonic metamaterials,” Adv. Opt. Mater. 5(8), 1600960 (2017).
[Crossref]

Singh, R.

L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect-induced Fano resonances in corrugated plasmonic metamaterials,” Adv. Opt. Mater. 5(8), 1600960 (2017).
[Crossref]

R. Singh, W. Cao, L. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

Sirtori, C.

C. Feuillet-Palma, Y. Todorov, A. Vasanelli, and C. Sirtori, “Strong near field enhancement in THz nano-antenna arrays,” Sci. Rep. 3(1), 1361 (2013).
[Crossref] [PubMed]

Song, H.

Y. M. Bahk, G. Ramakrishnan, J. Choi, H. Song, G. Choi, Y. H. Kim, K. J. Ahn, D. S. Kim, and P. C. Planken, “Plasmon enhanced terahertz emission from single layer graphene,” ACS Nano 8(9), 9089–9096 (2014).
[Crossref] [PubMed]

Stipe, B. C.

B. C. Stipe, M. A. Rezaei, and W. Ho, “Single-molecule vibrational spectroscopy and microscopy,” Science 280(5370), 1732–1735 (1998).
[Crossref] [PubMed]

Strikwerda, A. C.

H. Tao, A. C. Strikwerda, M. Liu, J. P. Mondia, E. Ekmekci, K. Fan, D. L. Kaplan, W. J. Padilla, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications,” Appl. Phys. Lett. 97(26), 4184 (2010).
[Crossref]

Takagi, T.

R. Nishikiori, M. Yamaguchi, K. Takano, T. Enatsu, M. Tani, U. C. de Silva, N. Kawashita, T. Takagi, S. Morimoto, M. Hangyo, and M. Kawase, “Application of Partial Least Square on Quantitative Analysis of L-, D-, and DL-Tartaric Acid by Terahertz Absorption Spectra,” Chem. Pharm. Bull. (Tokyo) 56(3), 305–307 (2008).
[Crossref] [PubMed]

Takano, K.

R. Nishikiori, M. Yamaguchi, K. Takano, T. Enatsu, M. Tani, U. C. de Silva, N. Kawashita, T. Takagi, S. Morimoto, M. Hangyo, and M. Kawase, “Application of Partial Least Square on Quantitative Analysis of L-, D-, and DL-Tartaric Acid by Terahertz Absorption Spectra,” Chem. Pharm. Bull. (Tokyo) 56(3), 305–307 (2008).
[Crossref] [PubMed]

Tanaka, D.

Tani, M.

R. Nishikiori, M. Yamaguchi, K. Takano, T. Enatsu, M. Tani, U. C. de Silva, N. Kawashita, T. Takagi, S. Morimoto, M. Hangyo, and M. Kawase, “Application of Partial Least Square on Quantitative Analysis of L-, D-, and DL-Tartaric Acid by Terahertz Absorption Spectra,” Chem. Pharm. Bull. (Tokyo) 56(3), 305–307 (2008).
[Crossref] [PubMed]

Tao, H.

H. Tao, A. C. Strikwerda, M. Liu, J. P. Mondia, E. Ekmekci, K. Fan, D. L. Kaplan, W. J. Padilla, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications,” Appl. Phys. Lett. 97(26), 4184 (2010).
[Crossref]

Todorov, Y.

C. Feuillet-Palma, Y. Todorov, A. Vasanelli, and C. Sirtori, “Strong near field enhancement in THz nano-antenna arrays,” Sci. Rep. 3(1), 1361 (2013).
[Crossref] [PubMed]

Vasanelli, A.

C. Feuillet-Palma, Y. Todorov, A. Vasanelli, and C. Sirtori, “Strong near field enhancement in THz nano-antenna arrays,” Sci. Rep. 3(1), 1361 (2013).
[Crossref] [PubMed]

Wang, L.

X. Wu, X. Pan, B. Quan, X. Xu, C. Gu, and L. Wang, “Self-referenced sensing based on terahertz metamaterial for aqueous solutions,” Appl. Phys. Lett. 102(15), 151109 (2013).
[Crossref]

Wang, X.

X. Wang, C. Luo, G. Hong, and X. Zhao, “Metamaterial optical refractive index sensor detected by the naked eye,” Appl. Phys. Lett. 102(9), 091902 (2013).
[Crossref]

Wei, Y.

L. Chen, Y. Wei, X. Zang, Y. Zhu, and S. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Rep. 6(1), 22027 (2016).
[Crossref] [PubMed]

Withayachumnankul, W.

R. Singh, W. Cao, L. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

W. Withayachumnankul, J. F. O’Hara, W. Cao, I. Al-Naib, and W. Zhang, “Limitation in thin-film sensing with transmission-mode terahertz time-domain spectroscopy,” Opt. Express 22(1), 972–986 (2014).
[Crossref] [PubMed]

Wollrab, V.

B. Reinhard, K. M. Schmitt, V. Wollrab, J. Neu, R. Beigang, and M. Rahm, “Metamaterial near-field sensor for deep-subwavelength thickness measurements and sensitive refractometry in the terahertz frequency range,” Appl. Phys. Lett. 100(22), 221101 (2012).
[Crossref]

Woolard, D.

T. Globus, D. Woolard, T. W. Crowe, T. Khromova, B. Gelmont, and J. Hesler, “Terahertz Fourier transform characterization of biological materials in a liquid phase,” J. Phys. D Appl. Phys. 39(15), 3405–3413 (2006).
[Crossref]

Wu, X.

X. Wu, X. Pan, B. Quan, X. Xu, C. Gu, and L. Wang, “Self-referenced sensing based on terahertz metamaterial for aqueous solutions,” Appl. Phys. Lett. 102(15), 151109 (2013).
[Crossref]

Wurtz, G. A.

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular Plasmonics with Tunable Exciton-Plasmon Coupling Strength in J-Aggregate Hybridized Au Nanorod Assemblies,” Nano Lett. 7(5), 1297–1303 (2007).
[Crossref] [PubMed]

Xie, J.

J. Xie, X. Zhu, X. Zang, Q. Cheng, Y. Ye, and Y. Zhu, “High extinction ratio electromagnetically induced transparency analogue based on the radiation suppression of dark modes,” Sci. Rep. 7(1), 11291 (2017).
[Crossref] [PubMed]

Xie, L.

L. Xie, W. Gao, J. Shu, Y. Ying, and J. Kono, “Extraordinary sensitivity enhancement by metasurfaces in terahertz detection of antibiotics,” Sci. Rep. 5(1), 8671 (2015).
[Crossref] [PubMed]

L. Xie, W. Gao, J. Shu, Y. Ying, and J. Kono, “Extraordinary sensitivity enhancement by metasurfaces in terahertz detection of antibiotics,” Sci. Rep. 5(1), 8671 (2015).
[Crossref] [PubMed]

Xu, N.

L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect-induced Fano resonances in corrugated plasmonic metamaterials,” Adv. Opt. Mater. 5(8), 1600960 (2017).
[Crossref]

Xu, X.

X. Wu, X. Pan, B. Quan, X. Xu, C. Gu, and L. Wang, “Self-referenced sensing based on terahertz metamaterial for aqueous solutions,” Appl. Phys. Lett. 102(15), 151109 (2013).
[Crossref]

Yamaguchi, M.

R. Nishikiori, M. Yamaguchi, K. Takano, T. Enatsu, M. Tani, U. C. de Silva, N. Kawashita, T. Takagi, S. Morimoto, M. Hangyo, and M. Kawase, “Application of Partial Least Square on Quantitative Analysis of L-, D-, and DL-Tartaric Acid by Terahertz Absorption Spectra,” Chem. Pharm. Bull. (Tokyo) 56(3), 305–307 (2008).
[Crossref] [PubMed]

Ye, Y.

J. Xie, X. Zhu, X. Zang, Q. Cheng, Y. Ye, and Y. Zhu, “High extinction ratio electromagnetically induced transparency analogue based on the radiation suppression of dark modes,” Sci. Rep. 7(1), 11291 (2017).
[Crossref] [PubMed]

Ying, Y.

L. Xie, W. Gao, J. Shu, Y. Ying, and J. Kono, “Extraordinary sensitivity enhancement by metasurfaces in terahertz detection of antibiotics,” Sci. Rep. 5(1), 8671 (2015).
[Crossref] [PubMed]

L. Xie, W. Gao, J. Shu, Y. Ying, and J. Kono, “Extraordinary sensitivity enhancement by metasurfaces in terahertz detection of antibiotics,” Sci. Rep. 5(1), 8671 (2015).
[Crossref] [PubMed]

Yook, J. G.

H. J. Lee and J. G. Yook, “Biosensing using split-ring resonators at microwave regime,” Appl. Phys. Lett. 92(25), 254103 (2008).
[Crossref]

Zang, X.

J. Xie, X. Zhu, X. Zang, Q. Cheng, Y. Ye, and Y. Zhu, “High extinction ratio electromagnetically induced transparency analogue based on the radiation suppression of dark modes,” Sci. Rep. 7(1), 11291 (2017).
[Crossref] [PubMed]

L. Chen, Y. Wei, X. Zang, Y. Zhu, and S. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Rep. 6(1), 22027 (2016).
[Crossref] [PubMed]

Zayats, A. V.

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular Plasmonics with Tunable Exciton-Plasmon Coupling Strength in J-Aggregate Hybridized Au Nanorod Assemblies,” Nano Lett. 7(5), 1297–1303 (2007).
[Crossref] [PubMed]

Zhang, H.

R. Balu, H. Zhang, E. Zukowski, J. Y. Chen, A. G. Markelz, and S. K. Gregurick, “Terahertz spectroscopy of bacteriorhodopsin and rhodopsin: similarities and differences,” Biophys. J. 94(8), 3217–3226 (2008).
[Crossref] [PubMed]

Zhang, W.

L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect-induced Fano resonances in corrugated plasmonic metamaterials,” Adv. Opt. Mater. 5(8), 1600960 (2017).
[Crossref]

R. Singh, W. Cao, L. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

W. Withayachumnankul, J. F. O’Hara, W. Cao, I. Al-Naib, and W. Zhang, “Limitation in thin-film sensing with transmission-mode terahertz time-domain spectroscopy,” Opt. Express 22(1), 972–986 (2014).
[Crossref] [PubMed]

Zhang, X.

H. Tao, A. C. Strikwerda, M. Liu, J. P. Mondia, E. Ekmekci, K. Fan, D. L. Kaplan, W. J. Padilla, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications,” Appl. Phys. Lett. 97(26), 4184 (2010).
[Crossref]

S. P. Mickan, K. S. Lee, T. M. Lu, J. Munch, D. Abbott, and X. Zhang, “Double modulated differential THz-TDS for thin film dielectric characterization,” Microelectronics J. 33(12), 1033–1042 (2002).
[Crossref]

Z. Jiang, M. Li, and X. Zhang, “Dielectric constant measurement of thin films by differential time-domain spectroscopy,” Appl. Phys. Lett. 76(22), 3221–3223 (2000).
[Crossref]

Zhang, Y.

Zhao, X.

X. Wang, C. Luo, G. Hong, and X. Zhao, “Metamaterial optical refractive index sensor detected by the naked eye,” Appl. Phys. Lett. 102(9), 091902 (2013).
[Crossref]

Zhu, X.

J. Xie, X. Zhu, X. Zang, Q. Cheng, Y. Ye, and Y. Zhu, “High extinction ratio electromagnetically induced transparency analogue based on the radiation suppression of dark modes,” Sci. Rep. 7(1), 11291 (2017).
[Crossref] [PubMed]

Zhu, Y.

J. Xie, X. Zhu, X. Zang, Q. Cheng, Y. Ye, and Y. Zhu, “High extinction ratio electromagnetically induced transparency analogue based on the radiation suppression of dark modes,” Sci. Rep. 7(1), 11291 (2017).
[Crossref] [PubMed]

L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect-induced Fano resonances in corrugated plasmonic metamaterials,” Adv. Opt. Mater. 5(8), 1600960 (2017).
[Crossref]

L. Chen, Y. Wei, X. Zang, Y. Zhu, and S. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Rep. 6(1), 22027 (2016).
[Crossref] [PubMed]

Zhuang, S.

L. Chen, Y. Wei, X. Zang, Y. Zhu, and S. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Rep. 6(1), 22027 (2016).
[Crossref] [PubMed]

Zukowski, E.

R. Balu, H. Zhang, E. Zukowski, J. Y. Chen, A. G. Markelz, and S. K. Gregurick, “Terahertz spectroscopy of bacteriorhodopsin and rhodopsin: similarities and differences,” Biophys. J. 94(8), 3217–3226 (2008).
[Crossref] [PubMed]

ACS Nano (2)

Y. M. Bahk, G. Ramakrishnan, J. Choi, H. Song, G. Choi, Y. H. Kim, K. J. Ahn, D. S. Kim, and P. C. Planken, “Plasmon enhanced terahertz emission from single layer graphene,” ACS Nano 8(9), 9089–9096 (2014).
[Crossref] [PubMed]

K. Chen, R. Adato, and H. Altug, “Dual-Band Perfect Absorber for Multispectral Plasmon-Enhanced Infrared Spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
[Crossref] [PubMed]

Adv. Mater. (1)

Z. Chen, R. Mohsen, Y. Gong, T. Chong, and M. Hong, “Realization of Variable Three‐Dimensional Terahertz Metamaterial Tubes for Passive Resonance Tunability,” Adv. Mater. 24(23), 143–147 (2012).
[PubMed]

Adv. Opt. Mater. (1)

L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect-induced Fano resonances in corrugated plasmonic metamaterials,” Adv. Opt. Mater. 5(8), 1600960 (2017).
[Crossref]

Angew. Chem. Int. Ed. Engl. (1)

J. A. Hutchison, D. M. O’Carroll, T. Schwartz, C. Genet, and T. W. Ebbesen, “Absorption-induced transparency,” Angew. Chem. Int. Ed. Engl. 50(9), 2085–2089 (2011).
[Crossref] [PubMed]

Appl. Phys. Lett. (10)

Z. Chen, M. Hong, C. Lim, N. Han, L. Shi, and T. Chong, “Parallel laser microfabrication of large-area asymmetric split ring resonator metamaterials and its structural tuning for terahertz resonance,” Appl. Phys. Lett. 96(18), 181101 (2010).
[Crossref]

R. Singh, W. Cao, L. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

H. J. Lee, S. Choi, I. S. Jang, J. S. Choi, and H. I. Jung, “Asymmetric split-ring resonator-based biosensor for detection of label-free stress biomarkers,” Appl. Phys. Lett. 103(5), 053702 (2013).
[Crossref]

H. J. Lee and J. G. Yook, “Biosensing using split-ring resonators at microwave regime,” Appl. Phys. Lett. 92(25), 254103 (2008).
[Crossref]

H. Tao, A. C. Strikwerda, M. Liu, J. P. Mondia, E. Ekmekci, K. Fan, D. L. Kaplan, W. J. Padilla, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications,” Appl. Phys. Lett. 97(26), 4184 (2010).
[Crossref]

B. Reinhard, K. M. Schmitt, V. Wollrab, J. Neu, R. Beigang, and M. Rahm, “Metamaterial near-field sensor for deep-subwavelength thickness measurements and sensitive refractometry in the terahertz frequency range,” Appl. Phys. Lett. 100(22), 221101 (2012).
[Crossref]

X. Wang, C. Luo, G. Hong, and X. Zhao, “Metamaterial optical refractive index sensor detected by the naked eye,” Appl. Phys. Lett. 102(9), 091902 (2013).
[Crossref]

X. Wu, X. Pan, B. Quan, X. Xu, C. Gu, and L. Wang, “Self-referenced sensing based on terahertz metamaterial for aqueous solutions,” Appl. Phys. Lett. 102(15), 151109 (2013).
[Crossref]

C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91(18), 184102 (2007).
[Crossref]

Z. Jiang, M. Li, and X. Zhang, “Dielectric constant measurement of thin films by differential time-domain spectroscopy,” Appl. Phys. Lett. 76(22), 3221–3223 (2000).
[Crossref]

Biophys. J. (1)

R. Balu, H. Zhang, E. Zukowski, J. Y. Chen, A. G. Markelz, and S. K. Gregurick, “Terahertz spectroscopy of bacteriorhodopsin and rhodopsin: similarities and differences,” Biophys. J. 94(8), 3217–3226 (2008).
[Crossref] [PubMed]

Chem. Pharm. Bull. (Tokyo) (1)

R. Nishikiori, M. Yamaguchi, K. Takano, T. Enatsu, M. Tani, U. C. de Silva, N. Kawashita, T. Takagi, S. Morimoto, M. Hangyo, and M. Kawase, “Application of Partial Least Square on Quantitative Analysis of L-, D-, and DL-Tartaric Acid by Terahertz Absorption Spectra,” Chem. Pharm. Bull. (Tokyo) 56(3), 305–307 (2008).
[Crossref] [PubMed]

Chem. Phys. Lett. (1)

A. G. Markelz, A. Roitberg, and E. J. Heilweil, “Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz,” Chem. Phys. Lett. 320(1–2), 42–48 (2000).
[Crossref]

J. Phys. Chem. A (1)

K. Liu, M. G. Brown, and R. J. Saykally, “Terahertz laser vibration rotation tunneling spectroscopy and dipole moment of a cage form of the water hexamer,” J. Phys. Chem. A 101(48), 8995–9010 (1997).
[Crossref]

J. Phys. D Appl. Phys. (1)

T. Globus, D. Woolard, T. W. Crowe, T. Khromova, B. Gelmont, and J. Hesler, “Terahertz Fourier transform characterization of biological materials in a liquid phase,” J. Phys. D Appl. Phys. 39(15), 3405–3413 (2006).
[Crossref]

Microelectronics J. (1)

S. P. Mickan, K. S. Lee, T. M. Lu, J. Munch, D. Abbott, and X. Zhang, “Double modulated differential THz-TDS for thin film dielectric characterization,” Microelectronics J. 33(12), 1033–1042 (2002).
[Crossref]

Nano Lett. (3)

R. Adato, A. Artar, S. Erramilli, and H. Altug, “Engineered Absorption Enhancement and Induced Transparency in Coupled Molecular and Plasmonic Resonator Systems,” Nano Lett. 13(6), 2584–2591 (2013).
[Crossref] [PubMed]

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular Plasmonics with Tunable Exciton-Plasmon Coupling Strength in J-Aggregate Hybridized Au Nanorod Assemblies,” Nano Lett. 7(5), 1297–1303 (2007).
[Crossref] [PubMed]

N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic Nanoparticles: Plasmon-Exciton Coupling in Nanoshell-J-Aggregate Complexes,” Nano Lett. 8(10), 3481–3487 (2008).
[Crossref] [PubMed]

Nat. Mater. (1)

K. L. Nguyen, T. Friščić, G. M. Day, L. F. Gladden, and W. Jones, “Terahertz time-domain spectroscopy and the quantitative monitoring of mechanochemical cocrystal formation,” Nat. Mater. 6(3), 206–209 (2007).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B (1)

S. G. Rodrigo, F. J. Garcia-Vidal, and L. Martin-Moreno, “Theory of absorption-induced transparency,” Phys. Rev. B 9162(88), 155126 (2013).
[Crossref]

Sci. Rep. (6)

L. Xie, W. Gao, J. Shu, Y. Ying, and J. Kono, “Extraordinary sensitivity enhancement by metasurfaces in terahertz detection of antibiotics,” Sci. Rep. 5(1), 8671 (2015).
[Crossref] [PubMed]

J. Xie, X. Zhu, X. Zang, Q. Cheng, Y. Ye, and Y. Zhu, “High extinction ratio electromagnetically induced transparency analogue based on the radiation suppression of dark modes,” Sci. Rep. 7(1), 11291 (2017).
[Crossref] [PubMed]

C. Feuillet-Palma, Y. Todorov, A. Vasanelli, and C. Sirtori, “Strong near field enhancement in THz nano-antenna arrays,” Sci. Rep. 3(1), 1361 (2013).
[Crossref] [PubMed]

S. Bagiante, F. Enderli, J. Fabiańska, H. Sigg, and T. Feurer, “Giant electric field enhancement in split ring resonators featuring nanometer-sized gaps,” Sci. Rep. 5(1), 8051 (2015).
[Crossref] [PubMed]

L. Xie, W. Gao, J. Shu, Y. Ying, and J. Kono, “Extraordinary sensitivity enhancement by metasurfaces in terahertz detection of antibiotics,” Sci. Rep. 5(1), 8671 (2015).
[Crossref] [PubMed]

L. Chen, Y. Wei, X. Zang, Y. Zhu, and S. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Rep. 6(1), 22027 (2016).
[Crossref] [PubMed]

Science (1)

B. C. Stipe, M. A. Rezaei, and W. Ho, “Single-molecule vibrational spectroscopy and microscopy,” Science 280(5370), 1732–1735 (1998).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic illustration of (a) the experiment setup, (b) optical image of the metamaterial with L-tartaric acid deposited on it, and (c) the SRR unit cell.
Fig. 2
Fig. 2 (a) Simulated transmittance spectra of the SRR metamaterial. (b) Measured transmittance spectra of the fabricated SRR metamaterial.
Fig. 3
Fig. 3 Absorption spectra of L-tartaric acids.
Fig. 4
Fig. 4 (a) Frequency-domain transmission spectra of reference and samples. (b) Normalized transmission spectra of samples.
Fig. 5
Fig. 5 Coupling between SRR and vibrational modes. (a) Normalized transmission spectra of metamaterial sample coated with L-tartaric acid, which is tuned by varying h. (b) Local minima positions extracted from transmission, plotted against the bare SRR sample’s resonant frequencies.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ε eff = ε inf Δε f s 2 f 2 f s 2 +ifΓ

Metrics