Abstract

In order to replace an uncontrollable gaseous oxygen source and obtain the required computer-controlled evaporation flow, two types of solid oxygen dispensers composed of silver oxide powder and barium peroxide powder are employed to prepare GaAs photocathodes. The experimental results show that the barium peroxide-based dispenser can release oxygen more effectively and deliver better photoemission performance than the silver oxide-based one. For the silver oxide-based dispenser with a long first warm-up time, an improved activation technique is proposed to avoid the Cs over-saturation and achieve the desired symmetry of photocurrent curve shape. This effective activation technique based on current-driven cesium and oxygen sources can facilitate the realization of automatic activation technology.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Comparison of degradation and recaesiation between GaAs and AlGaAs photocathodes in an unbaked vacuum system

Cheng Feng, Yijun Zhang, Feng Shi, Yunsheng Qian, Hongchang Cheng, Junju Zhang, Xinxin Liu, and Xiang Zhang
Appl. Opt. 56(9) 2568-2573 (2017)

Negative electron affinity GaAs wire-array photocathodes

Jijun Zou, Xiaowan Ge, Yijun Zhang, Wenjuan Deng, Zhifu Zhu, Weilu Wang, Xincun Peng, Zhaoping Chen, and Benkang Chang
Opt. Express 24(5) 4632-4639 (2016)

Comparative research on GaAs photocathodes before and after activation

Liang Chen, Yunsheng Qian, and Benkang Chang
Appl. Opt. 50(22) 4457-4462 (2011)

References

  • View by:
  • |
  • |
  • |

  1. K. Chrzanowski, “Review of night vision technology,” Opto-Electron. Rev. 21(2), 153–181 (2013).
    [Crossref]
  2. W. Liu, Y. Chen, W. Lu, A. Moy, M. Poelker, M. Stutzman, and S. Zhang, “Record-level quantum efficiency from a high polarization strained GaAs GaAsP superlattice photocathode with distributed Bragg reflector,” Appl. Phys. Lett. 109(25), 252104 (2016).
    [Crossref]
  3. X. Jin, S. Ohki, T. Ishikawa, A. Tackeuchi, and Y. Honda, “Analysis of quantum efficiency improvement in spin-polarized photocathode,” J. Appl. Phys. 120(16), 164501 (2016).
    [Crossref]
  4. L. B. Jones, S. A. Rozhkov, V. V. Bakin, S. N. Kosolobov, B. L. Militsyn, H. E. Scheibler, S. L. Smith, A. S. Terekhov, D. G. Crabb, Y. Prok, M. Poelker, S. Liuti, D. B. Day, and X. Zheng, “Cooled transmission-mode NEA-photocathode with a band-graded active layer for high brightness electron source,” AIP Conf. Proc. 1149(1), 1057–1061 (2009).
    [Crossref]
  5. S. Karkare, L. Boulet, L. Cultrera, B. Dunham, X. Liu, W. Schaff, and I. Bazarov, “Ultrabright and ultrafast III-V semiconductor photocathodes,” Phys. Rev. Lett. 112(9), 097601 (2014).
    [Crossref] [PubMed]
  6. M. Kuwahara, S. Kusunoki, Y. Nambo, K. Saitoh, X. Jin, T. Ujihara, H. Asano, Y. Takeda, and N. Tanaka, “Coherence of a spin-polarized electron beam emitted from a semiconductor photocathode in a transmission electron microscope,” Appl. Phys. Lett. 105(19), 193101 (2014).
    [Crossref]
  7. K. Mitsuno, T. Masuzawa, Y. Hatanaka, Y. Neo, and H. Mimura, “Activation process of GaAs NEA photocathode and its spectral sensitivity,” in 3rd International Conference on Nanotechnologies and Biomedical Engineering (Springer, 2016) pp. 163–166.
    [Crossref]
  8. X. Jin, A. A. C. Cotta, G. Chen, A. T. N’Diaye, A. K. Schmid, and N. Yamamoto, “Low energy electron microscopy and Auger electron spectroscopy studies of Cs-O activation layer on p-type GaAs photocathode,” J. Appl. Phys. 116(17), 174509 (2014).
    [Crossref]
  9. S. Moré, S. Tanaka, S. Tanaka, Y. Fujii, and M. Kamada, “Interaction of Cs and O with GaAs (100) at the overlayer–substrate interface during negative electron affinity type activations,” Surf. Sci. 527(1–3), 41–50 (2003).
    [Crossref]
  10. D. T. Pierce, R. J. Celotta, G. C. Wang, W. N. Unertl, A. Galejs, C. E. Kuyatt, and S. R. Mielczarek, “The GaAs spin polarized electron source,” Rev. Sci. Instrum. 51(4), 478–499 (1980).
    [Crossref]
  11. W. E. Spicer, “Negative affinity 3-5 photocathodes: Their physics and technology,” Appl. Phys. (Berl.) 12(2), 115–130 (1977).
    [Crossref]
  12. N. Chanlek, J. D. Herbert, R. M. Jones, L. B. Jones, K. J. Middleman, and B. L. Militsyn, “High stability of negative electron affinity gallium arsenide photocathodes activated with Cs and NF3,” J. Phys. D Appl. Phys. 48(37), 375102 (2015).
    [Crossref]
  13. Z. Liu, Y. Sun, S. Peterson, and P. Pianetta, “Photoemission study of Cs-NF3 activated GaAs (100) negative electron affinity photocathodes,” Appl. Phys. Lett. 92(24), 241107 (2008).
    [Crossref]
  14. S. Pastuszka, A. S. Terekhov, and A. Wolf, “‘Stable to unstable’ transition in the (Cs, O) activation layer on GaAs (100) surfaces with negative electron affinity in extremely high vacuum,” Appl. Surf. Sci. 99(4), 361–365 (1996).
    [Crossref]
  15. F. Ciccacci and G. Chiaia, “Comparative study of the preparation of negative electron affinity GaAs photocathodes with O2 and with NF3,” J. Vac. Sci. Technol. A 9(6), 2991–2995 (1991).
    [Crossref]
  16. W. T. Tsai, “Environmental and health risk analysis of nitrogen trifluoride (NF3), a toxic and potent greenhouse gas,” J. Hazard. Mater. 159(2-3), 257–263 (2008).
    [Crossref] [PubMed]
  17. F. C. Tang, M. S. Lubell, K. Rubin, A. Vasilakis, M. Eminyan, and J. Slevin, “Operating experience with a GaAs photoemission electron source,” Rev. Sci. Instrum. 57(12), 3004–3011 (1986).
    [Crossref]
  18. M. Kuriki, C. Shonaka, H. Iijima, D. Kubo, H. Okamoto, H. Higaki, K. Ito, M. Yamamoto, T. Konomi, S. Okumi, M. Kuwahara, and T. Nakanishi, “Dark-lifetime degradation of GaAs photo-cathode at higher temperature,” Nucl. Instrum. Methodes Phys. Res., Sect. A 637(1), S87–S90 (2011).
  19. T. Guo and H. R. Gao, “Photoemission stability of negative-electron-affinity GaAs photocathodes,” Proc. SPIE 1982, 127–132 (1993).
    [Crossref]
  20. L. I. Antonova and V. P. Denissov, “High-efficiency photocathodes on the NEA-GaAs basis,” Appl. Surf. Sci. 111, 237–240 (1997).
    [Crossref]
  21. V. L. Alperovich, A. G. Paulish, and A. S. Terekhov, “Unpinned behavior of the electronic properties of a p-GaAs (Cs,O) surface at room temperature,” Surf. Sci. 331–333, 1250–1255 (1995).
    [Crossref]
  22. M. Succi, R. Canino, and B. Ferrario, “Atomic absorption evaporation flow rate measurements of alkali metal dispensers,” Vacuum 35(12), 579–582 (1985).
    [Crossref]
  23. See https://www.saesgetters.com/products-functions/products/dispensers/oxygen-dispensers
  24. C. Y. Su, W. E. Spicer, and I. Lindau, “Photoelectron spectroscopic determination of the structure of (Cs,O) activated GaAs(110) surfaces,” J. Appl. Phys. 54(3), 1413–1422 (1983).
    [Crossref]
  25. J. Zou, B. Chang, Z. Yang, Y. Zhang, and J. Qiao, “Evolution of surface potential barrier for negative-electron-affinity GaAs photocathodes,” J. Appl. Phys. 105(1), 013714 (2009).
    [Crossref]
  26. V. V. Bakin, K. V. Toropetsky, H. E. Scheibler, A. S. Terekhov, L. B. Jones, B. L. Militsyn, and T. C. Q. Noakes, “p-GaAs(Cs,O)-photocathodes: Demarcation of domains of validity for practical models of the activation layer,” Appl. Phys. Lett. 106(18), 183501 (2015).
    [Crossref]

2016 (2)

W. Liu, Y. Chen, W. Lu, A. Moy, M. Poelker, M. Stutzman, and S. Zhang, “Record-level quantum efficiency from a high polarization strained GaAs GaAsP superlattice photocathode with distributed Bragg reflector,” Appl. Phys. Lett. 109(25), 252104 (2016).
[Crossref]

X. Jin, S. Ohki, T. Ishikawa, A. Tackeuchi, and Y. Honda, “Analysis of quantum efficiency improvement in spin-polarized photocathode,” J. Appl. Phys. 120(16), 164501 (2016).
[Crossref]

2015 (2)

N. Chanlek, J. D. Herbert, R. M. Jones, L. B. Jones, K. J. Middleman, and B. L. Militsyn, “High stability of negative electron affinity gallium arsenide photocathodes activated with Cs and NF3,” J. Phys. D Appl. Phys. 48(37), 375102 (2015).
[Crossref]

V. V. Bakin, K. V. Toropetsky, H. E. Scheibler, A. S. Terekhov, L. B. Jones, B. L. Militsyn, and T. C. Q. Noakes, “p-GaAs(Cs,O)-photocathodes: Demarcation of domains of validity for practical models of the activation layer,” Appl. Phys. Lett. 106(18), 183501 (2015).
[Crossref]

2014 (3)

S. Karkare, L. Boulet, L. Cultrera, B. Dunham, X. Liu, W. Schaff, and I. Bazarov, “Ultrabright and ultrafast III-V semiconductor photocathodes,” Phys. Rev. Lett. 112(9), 097601 (2014).
[Crossref] [PubMed]

M. Kuwahara, S. Kusunoki, Y. Nambo, K. Saitoh, X. Jin, T. Ujihara, H. Asano, Y. Takeda, and N. Tanaka, “Coherence of a spin-polarized electron beam emitted from a semiconductor photocathode in a transmission electron microscope,” Appl. Phys. Lett. 105(19), 193101 (2014).
[Crossref]

X. Jin, A. A. C. Cotta, G. Chen, A. T. N’Diaye, A. K. Schmid, and N. Yamamoto, “Low energy electron microscopy and Auger electron spectroscopy studies of Cs-O activation layer on p-type GaAs photocathode,” J. Appl. Phys. 116(17), 174509 (2014).
[Crossref]

2013 (1)

K. Chrzanowski, “Review of night vision technology,” Opto-Electron. Rev. 21(2), 153–181 (2013).
[Crossref]

2011 (1)

M. Kuriki, C. Shonaka, H. Iijima, D. Kubo, H. Okamoto, H. Higaki, K. Ito, M. Yamamoto, T. Konomi, S. Okumi, M. Kuwahara, and T. Nakanishi, “Dark-lifetime degradation of GaAs photo-cathode at higher temperature,” Nucl. Instrum. Methodes Phys. Res., Sect. A 637(1), S87–S90 (2011).

2009 (2)

J. Zou, B. Chang, Z. Yang, Y. Zhang, and J. Qiao, “Evolution of surface potential barrier for negative-electron-affinity GaAs photocathodes,” J. Appl. Phys. 105(1), 013714 (2009).
[Crossref]

L. B. Jones, S. A. Rozhkov, V. V. Bakin, S. N. Kosolobov, B. L. Militsyn, H. E. Scheibler, S. L. Smith, A. S. Terekhov, D. G. Crabb, Y. Prok, M. Poelker, S. Liuti, D. B. Day, and X. Zheng, “Cooled transmission-mode NEA-photocathode with a band-graded active layer for high brightness electron source,” AIP Conf. Proc. 1149(1), 1057–1061 (2009).
[Crossref]

2008 (2)

W. T. Tsai, “Environmental and health risk analysis of nitrogen trifluoride (NF3), a toxic and potent greenhouse gas,” J. Hazard. Mater. 159(2-3), 257–263 (2008).
[Crossref] [PubMed]

Z. Liu, Y. Sun, S. Peterson, and P. Pianetta, “Photoemission study of Cs-NF3 activated GaAs (100) negative electron affinity photocathodes,” Appl. Phys. Lett. 92(24), 241107 (2008).
[Crossref]

2003 (1)

S. Moré, S. Tanaka, S. Tanaka, Y. Fujii, and M. Kamada, “Interaction of Cs and O with GaAs (100) at the overlayer–substrate interface during negative electron affinity type activations,” Surf. Sci. 527(1–3), 41–50 (2003).
[Crossref]

1997 (1)

L. I. Antonova and V. P. Denissov, “High-efficiency photocathodes on the NEA-GaAs basis,” Appl. Surf. Sci. 111, 237–240 (1997).
[Crossref]

1996 (1)

S. Pastuszka, A. S. Terekhov, and A. Wolf, “‘Stable to unstable’ transition in the (Cs, O) activation layer on GaAs (100) surfaces with negative electron affinity in extremely high vacuum,” Appl. Surf. Sci. 99(4), 361–365 (1996).
[Crossref]

1995 (1)

V. L. Alperovich, A. G. Paulish, and A. S. Terekhov, “Unpinned behavior of the electronic properties of a p-GaAs (Cs,O) surface at room temperature,” Surf. Sci. 331–333, 1250–1255 (1995).
[Crossref]

1993 (1)

T. Guo and H. R. Gao, “Photoemission stability of negative-electron-affinity GaAs photocathodes,” Proc. SPIE 1982, 127–132 (1993).
[Crossref]

1991 (1)

F. Ciccacci and G. Chiaia, “Comparative study of the preparation of negative electron affinity GaAs photocathodes with O2 and with NF3,” J. Vac. Sci. Technol. A 9(6), 2991–2995 (1991).
[Crossref]

1986 (1)

F. C. Tang, M. S. Lubell, K. Rubin, A. Vasilakis, M. Eminyan, and J. Slevin, “Operating experience with a GaAs photoemission electron source,” Rev. Sci. Instrum. 57(12), 3004–3011 (1986).
[Crossref]

1985 (1)

M. Succi, R. Canino, and B. Ferrario, “Atomic absorption evaporation flow rate measurements of alkali metal dispensers,” Vacuum 35(12), 579–582 (1985).
[Crossref]

1983 (1)

C. Y. Su, W. E. Spicer, and I. Lindau, “Photoelectron spectroscopic determination of the structure of (Cs,O) activated GaAs(110) surfaces,” J. Appl. Phys. 54(3), 1413–1422 (1983).
[Crossref]

1980 (1)

D. T. Pierce, R. J. Celotta, G. C. Wang, W. N. Unertl, A. Galejs, C. E. Kuyatt, and S. R. Mielczarek, “The GaAs spin polarized electron source,” Rev. Sci. Instrum. 51(4), 478–499 (1980).
[Crossref]

1977 (1)

W. E. Spicer, “Negative affinity 3-5 photocathodes: Their physics and technology,” Appl. Phys. (Berl.) 12(2), 115–130 (1977).
[Crossref]

Alperovich, V. L.

V. L. Alperovich, A. G. Paulish, and A. S. Terekhov, “Unpinned behavior of the electronic properties of a p-GaAs (Cs,O) surface at room temperature,” Surf. Sci. 331–333, 1250–1255 (1995).
[Crossref]

Antonova, L. I.

L. I. Antonova and V. P. Denissov, “High-efficiency photocathodes on the NEA-GaAs basis,” Appl. Surf. Sci. 111, 237–240 (1997).
[Crossref]

Asano, H.

M. Kuwahara, S. Kusunoki, Y. Nambo, K. Saitoh, X. Jin, T. Ujihara, H. Asano, Y. Takeda, and N. Tanaka, “Coherence of a spin-polarized electron beam emitted from a semiconductor photocathode in a transmission electron microscope,” Appl. Phys. Lett. 105(19), 193101 (2014).
[Crossref]

Bakin, V. V.

V. V. Bakin, K. V. Toropetsky, H. E. Scheibler, A. S. Terekhov, L. B. Jones, B. L. Militsyn, and T. C. Q. Noakes, “p-GaAs(Cs,O)-photocathodes: Demarcation of domains of validity for practical models of the activation layer,” Appl. Phys. Lett. 106(18), 183501 (2015).
[Crossref]

L. B. Jones, S. A. Rozhkov, V. V. Bakin, S. N. Kosolobov, B. L. Militsyn, H. E. Scheibler, S. L. Smith, A. S. Terekhov, D. G. Crabb, Y. Prok, M. Poelker, S. Liuti, D. B. Day, and X. Zheng, “Cooled transmission-mode NEA-photocathode with a band-graded active layer for high brightness electron source,” AIP Conf. Proc. 1149(1), 1057–1061 (2009).
[Crossref]

Bazarov, I.

S. Karkare, L. Boulet, L. Cultrera, B. Dunham, X. Liu, W. Schaff, and I. Bazarov, “Ultrabright and ultrafast III-V semiconductor photocathodes,” Phys. Rev. Lett. 112(9), 097601 (2014).
[Crossref] [PubMed]

Boulet, L.

S. Karkare, L. Boulet, L. Cultrera, B. Dunham, X. Liu, W. Schaff, and I. Bazarov, “Ultrabright and ultrafast III-V semiconductor photocathodes,” Phys. Rev. Lett. 112(9), 097601 (2014).
[Crossref] [PubMed]

Canino, R.

M. Succi, R. Canino, and B. Ferrario, “Atomic absorption evaporation flow rate measurements of alkali metal dispensers,” Vacuum 35(12), 579–582 (1985).
[Crossref]

Celotta, R. J.

D. T. Pierce, R. J. Celotta, G. C. Wang, W. N. Unertl, A. Galejs, C. E. Kuyatt, and S. R. Mielczarek, “The GaAs spin polarized electron source,” Rev. Sci. Instrum. 51(4), 478–499 (1980).
[Crossref]

Chang, B.

J. Zou, B. Chang, Z. Yang, Y. Zhang, and J. Qiao, “Evolution of surface potential barrier for negative-electron-affinity GaAs photocathodes,” J. Appl. Phys. 105(1), 013714 (2009).
[Crossref]

Chanlek, N.

N. Chanlek, J. D. Herbert, R. M. Jones, L. B. Jones, K. J. Middleman, and B. L. Militsyn, “High stability of negative electron affinity gallium arsenide photocathodes activated with Cs and NF3,” J. Phys. D Appl. Phys. 48(37), 375102 (2015).
[Crossref]

Chen, G.

X. Jin, A. A. C. Cotta, G. Chen, A. T. N’Diaye, A. K. Schmid, and N. Yamamoto, “Low energy electron microscopy and Auger electron spectroscopy studies of Cs-O activation layer on p-type GaAs photocathode,” J. Appl. Phys. 116(17), 174509 (2014).
[Crossref]

Chen, Y.

W. Liu, Y. Chen, W. Lu, A. Moy, M. Poelker, M. Stutzman, and S. Zhang, “Record-level quantum efficiency from a high polarization strained GaAs GaAsP superlattice photocathode with distributed Bragg reflector,” Appl. Phys. Lett. 109(25), 252104 (2016).
[Crossref]

Chiaia, G.

F. Ciccacci and G. Chiaia, “Comparative study of the preparation of negative electron affinity GaAs photocathodes with O2 and with NF3,” J. Vac. Sci. Technol. A 9(6), 2991–2995 (1991).
[Crossref]

Chrzanowski, K.

K. Chrzanowski, “Review of night vision technology,” Opto-Electron. Rev. 21(2), 153–181 (2013).
[Crossref]

Ciccacci, F.

F. Ciccacci and G. Chiaia, “Comparative study of the preparation of negative electron affinity GaAs photocathodes with O2 and with NF3,” J. Vac. Sci. Technol. A 9(6), 2991–2995 (1991).
[Crossref]

Cotta, A. A. C.

X. Jin, A. A. C. Cotta, G. Chen, A. T. N’Diaye, A. K. Schmid, and N. Yamamoto, “Low energy electron microscopy and Auger electron spectroscopy studies of Cs-O activation layer on p-type GaAs photocathode,” J. Appl. Phys. 116(17), 174509 (2014).
[Crossref]

Crabb, D. G.

L. B. Jones, S. A. Rozhkov, V. V. Bakin, S. N. Kosolobov, B. L. Militsyn, H. E. Scheibler, S. L. Smith, A. S. Terekhov, D. G. Crabb, Y. Prok, M. Poelker, S. Liuti, D. B. Day, and X. Zheng, “Cooled transmission-mode NEA-photocathode with a band-graded active layer for high brightness electron source,” AIP Conf. Proc. 1149(1), 1057–1061 (2009).
[Crossref]

Cultrera, L.

S. Karkare, L. Boulet, L. Cultrera, B. Dunham, X. Liu, W. Schaff, and I. Bazarov, “Ultrabright and ultrafast III-V semiconductor photocathodes,” Phys. Rev. Lett. 112(9), 097601 (2014).
[Crossref] [PubMed]

Day, D. B.

L. B. Jones, S. A. Rozhkov, V. V. Bakin, S. N. Kosolobov, B. L. Militsyn, H. E. Scheibler, S. L. Smith, A. S. Terekhov, D. G. Crabb, Y. Prok, M. Poelker, S. Liuti, D. B. Day, and X. Zheng, “Cooled transmission-mode NEA-photocathode with a band-graded active layer for high brightness electron source,” AIP Conf. Proc. 1149(1), 1057–1061 (2009).
[Crossref]

Denissov, V. P.

L. I. Antonova and V. P. Denissov, “High-efficiency photocathodes on the NEA-GaAs basis,” Appl. Surf. Sci. 111, 237–240 (1997).
[Crossref]

Dunham, B.

S. Karkare, L. Boulet, L. Cultrera, B. Dunham, X. Liu, W. Schaff, and I. Bazarov, “Ultrabright and ultrafast III-V semiconductor photocathodes,” Phys. Rev. Lett. 112(9), 097601 (2014).
[Crossref] [PubMed]

Eminyan, M.

F. C. Tang, M. S. Lubell, K. Rubin, A. Vasilakis, M. Eminyan, and J. Slevin, “Operating experience with a GaAs photoemission electron source,” Rev. Sci. Instrum. 57(12), 3004–3011 (1986).
[Crossref]

Ferrario, B.

M. Succi, R. Canino, and B. Ferrario, “Atomic absorption evaporation flow rate measurements of alkali metal dispensers,” Vacuum 35(12), 579–582 (1985).
[Crossref]

Fujii, Y.

S. Moré, S. Tanaka, S. Tanaka, Y. Fujii, and M. Kamada, “Interaction of Cs and O with GaAs (100) at the overlayer–substrate interface during negative electron affinity type activations,” Surf. Sci. 527(1–3), 41–50 (2003).
[Crossref]

Galejs, A.

D. T. Pierce, R. J. Celotta, G. C. Wang, W. N. Unertl, A. Galejs, C. E. Kuyatt, and S. R. Mielczarek, “The GaAs spin polarized electron source,” Rev. Sci. Instrum. 51(4), 478–499 (1980).
[Crossref]

Gao, H. R.

T. Guo and H. R. Gao, “Photoemission stability of negative-electron-affinity GaAs photocathodes,” Proc. SPIE 1982, 127–132 (1993).
[Crossref]

Guo, T.

T. Guo and H. R. Gao, “Photoemission stability of negative-electron-affinity GaAs photocathodes,” Proc. SPIE 1982, 127–132 (1993).
[Crossref]

Hatanaka, Y.

K. Mitsuno, T. Masuzawa, Y. Hatanaka, Y. Neo, and H. Mimura, “Activation process of GaAs NEA photocathode and its spectral sensitivity,” in 3rd International Conference on Nanotechnologies and Biomedical Engineering (Springer, 2016) pp. 163–166.
[Crossref]

Herbert, J. D.

N. Chanlek, J. D. Herbert, R. M. Jones, L. B. Jones, K. J. Middleman, and B. L. Militsyn, “High stability of negative electron affinity gallium arsenide photocathodes activated with Cs and NF3,” J. Phys. D Appl. Phys. 48(37), 375102 (2015).
[Crossref]

Higaki, H.

M. Kuriki, C. Shonaka, H. Iijima, D. Kubo, H. Okamoto, H. Higaki, K. Ito, M. Yamamoto, T. Konomi, S. Okumi, M. Kuwahara, and T. Nakanishi, “Dark-lifetime degradation of GaAs photo-cathode at higher temperature,” Nucl. Instrum. Methodes Phys. Res., Sect. A 637(1), S87–S90 (2011).

Honda, Y.

X. Jin, S. Ohki, T. Ishikawa, A. Tackeuchi, and Y. Honda, “Analysis of quantum efficiency improvement in spin-polarized photocathode,” J. Appl. Phys. 120(16), 164501 (2016).
[Crossref]

Iijima, H.

M. Kuriki, C. Shonaka, H. Iijima, D. Kubo, H. Okamoto, H. Higaki, K. Ito, M. Yamamoto, T. Konomi, S. Okumi, M. Kuwahara, and T. Nakanishi, “Dark-lifetime degradation of GaAs photo-cathode at higher temperature,” Nucl. Instrum. Methodes Phys. Res., Sect. A 637(1), S87–S90 (2011).

Ishikawa, T.

X. Jin, S. Ohki, T. Ishikawa, A. Tackeuchi, and Y. Honda, “Analysis of quantum efficiency improvement in spin-polarized photocathode,” J. Appl. Phys. 120(16), 164501 (2016).
[Crossref]

Ito, K.

M. Kuriki, C. Shonaka, H. Iijima, D. Kubo, H. Okamoto, H. Higaki, K. Ito, M. Yamamoto, T. Konomi, S. Okumi, M. Kuwahara, and T. Nakanishi, “Dark-lifetime degradation of GaAs photo-cathode at higher temperature,” Nucl. Instrum. Methodes Phys. Res., Sect. A 637(1), S87–S90 (2011).

Jin, X.

X. Jin, S. Ohki, T. Ishikawa, A. Tackeuchi, and Y. Honda, “Analysis of quantum efficiency improvement in spin-polarized photocathode,” J. Appl. Phys. 120(16), 164501 (2016).
[Crossref]

M. Kuwahara, S. Kusunoki, Y. Nambo, K. Saitoh, X. Jin, T. Ujihara, H. Asano, Y. Takeda, and N. Tanaka, “Coherence of a spin-polarized electron beam emitted from a semiconductor photocathode in a transmission electron microscope,” Appl. Phys. Lett. 105(19), 193101 (2014).
[Crossref]

X. Jin, A. A. C. Cotta, G. Chen, A. T. N’Diaye, A. K. Schmid, and N. Yamamoto, “Low energy electron microscopy and Auger electron spectroscopy studies of Cs-O activation layer on p-type GaAs photocathode,” J. Appl. Phys. 116(17), 174509 (2014).
[Crossref]

Jones, L. B.

N. Chanlek, J. D. Herbert, R. M. Jones, L. B. Jones, K. J. Middleman, and B. L. Militsyn, “High stability of negative electron affinity gallium arsenide photocathodes activated with Cs and NF3,” J. Phys. D Appl. Phys. 48(37), 375102 (2015).
[Crossref]

V. V. Bakin, K. V. Toropetsky, H. E. Scheibler, A. S. Terekhov, L. B. Jones, B. L. Militsyn, and T. C. Q. Noakes, “p-GaAs(Cs,O)-photocathodes: Demarcation of domains of validity for practical models of the activation layer,” Appl. Phys. Lett. 106(18), 183501 (2015).
[Crossref]

L. B. Jones, S. A. Rozhkov, V. V. Bakin, S. N. Kosolobov, B. L. Militsyn, H. E. Scheibler, S. L. Smith, A. S. Terekhov, D. G. Crabb, Y. Prok, M. Poelker, S. Liuti, D. B. Day, and X. Zheng, “Cooled transmission-mode NEA-photocathode with a band-graded active layer for high brightness electron source,” AIP Conf. Proc. 1149(1), 1057–1061 (2009).
[Crossref]

Jones, R. M.

N. Chanlek, J. D. Herbert, R. M. Jones, L. B. Jones, K. J. Middleman, and B. L. Militsyn, “High stability of negative electron affinity gallium arsenide photocathodes activated with Cs and NF3,” J. Phys. D Appl. Phys. 48(37), 375102 (2015).
[Crossref]

Kamada, M.

S. Moré, S. Tanaka, S. Tanaka, Y. Fujii, and M. Kamada, “Interaction of Cs and O with GaAs (100) at the overlayer–substrate interface during negative electron affinity type activations,” Surf. Sci. 527(1–3), 41–50 (2003).
[Crossref]

Karkare, S.

S. Karkare, L. Boulet, L. Cultrera, B. Dunham, X. Liu, W. Schaff, and I. Bazarov, “Ultrabright and ultrafast III-V semiconductor photocathodes,” Phys. Rev. Lett. 112(9), 097601 (2014).
[Crossref] [PubMed]

Konomi, T.

M. Kuriki, C. Shonaka, H. Iijima, D. Kubo, H. Okamoto, H. Higaki, K. Ito, M. Yamamoto, T. Konomi, S. Okumi, M. Kuwahara, and T. Nakanishi, “Dark-lifetime degradation of GaAs photo-cathode at higher temperature,” Nucl. Instrum. Methodes Phys. Res., Sect. A 637(1), S87–S90 (2011).

Kosolobov, S. N.

L. B. Jones, S. A. Rozhkov, V. V. Bakin, S. N. Kosolobov, B. L. Militsyn, H. E. Scheibler, S. L. Smith, A. S. Terekhov, D. G. Crabb, Y. Prok, M. Poelker, S. Liuti, D. B. Day, and X. Zheng, “Cooled transmission-mode NEA-photocathode with a band-graded active layer for high brightness electron source,” AIP Conf. Proc. 1149(1), 1057–1061 (2009).
[Crossref]

Kubo, D.

M. Kuriki, C. Shonaka, H. Iijima, D. Kubo, H. Okamoto, H. Higaki, K. Ito, M. Yamamoto, T. Konomi, S. Okumi, M. Kuwahara, and T. Nakanishi, “Dark-lifetime degradation of GaAs photo-cathode at higher temperature,” Nucl. Instrum. Methodes Phys. Res., Sect. A 637(1), S87–S90 (2011).

Kuriki, M.

M. Kuriki, C. Shonaka, H. Iijima, D. Kubo, H. Okamoto, H. Higaki, K. Ito, M. Yamamoto, T. Konomi, S. Okumi, M. Kuwahara, and T. Nakanishi, “Dark-lifetime degradation of GaAs photo-cathode at higher temperature,” Nucl. Instrum. Methodes Phys. Res., Sect. A 637(1), S87–S90 (2011).

Kusunoki, S.

M. Kuwahara, S. Kusunoki, Y. Nambo, K. Saitoh, X. Jin, T. Ujihara, H. Asano, Y. Takeda, and N. Tanaka, “Coherence of a spin-polarized electron beam emitted from a semiconductor photocathode in a transmission electron microscope,” Appl. Phys. Lett. 105(19), 193101 (2014).
[Crossref]

Kuwahara, M.

M. Kuwahara, S. Kusunoki, Y. Nambo, K. Saitoh, X. Jin, T. Ujihara, H. Asano, Y. Takeda, and N. Tanaka, “Coherence of a spin-polarized electron beam emitted from a semiconductor photocathode in a transmission electron microscope,” Appl. Phys. Lett. 105(19), 193101 (2014).
[Crossref]

M. Kuriki, C. Shonaka, H. Iijima, D. Kubo, H. Okamoto, H. Higaki, K. Ito, M. Yamamoto, T. Konomi, S. Okumi, M. Kuwahara, and T. Nakanishi, “Dark-lifetime degradation of GaAs photo-cathode at higher temperature,” Nucl. Instrum. Methodes Phys. Res., Sect. A 637(1), S87–S90 (2011).

Kuyatt, C. E.

D. T. Pierce, R. J. Celotta, G. C. Wang, W. N. Unertl, A. Galejs, C. E. Kuyatt, and S. R. Mielczarek, “The GaAs spin polarized electron source,” Rev. Sci. Instrum. 51(4), 478–499 (1980).
[Crossref]

Lindau, I.

C. Y. Su, W. E. Spicer, and I. Lindau, “Photoelectron spectroscopic determination of the structure of (Cs,O) activated GaAs(110) surfaces,” J. Appl. Phys. 54(3), 1413–1422 (1983).
[Crossref]

Liu, W.

W. Liu, Y. Chen, W. Lu, A. Moy, M. Poelker, M. Stutzman, and S. Zhang, “Record-level quantum efficiency from a high polarization strained GaAs GaAsP superlattice photocathode with distributed Bragg reflector,” Appl. Phys. Lett. 109(25), 252104 (2016).
[Crossref]

Liu, X.

S. Karkare, L. Boulet, L. Cultrera, B. Dunham, X. Liu, W. Schaff, and I. Bazarov, “Ultrabright and ultrafast III-V semiconductor photocathodes,” Phys. Rev. Lett. 112(9), 097601 (2014).
[Crossref] [PubMed]

Liu, Z.

Z. Liu, Y. Sun, S. Peterson, and P. Pianetta, “Photoemission study of Cs-NF3 activated GaAs (100) negative electron affinity photocathodes,” Appl. Phys. Lett. 92(24), 241107 (2008).
[Crossref]

Liuti, S.

L. B. Jones, S. A. Rozhkov, V. V. Bakin, S. N. Kosolobov, B. L. Militsyn, H. E. Scheibler, S. L. Smith, A. S. Terekhov, D. G. Crabb, Y. Prok, M. Poelker, S. Liuti, D. B. Day, and X. Zheng, “Cooled transmission-mode NEA-photocathode with a band-graded active layer for high brightness electron source,” AIP Conf. Proc. 1149(1), 1057–1061 (2009).
[Crossref]

Lu, W.

W. Liu, Y. Chen, W. Lu, A. Moy, M. Poelker, M. Stutzman, and S. Zhang, “Record-level quantum efficiency from a high polarization strained GaAs GaAsP superlattice photocathode with distributed Bragg reflector,” Appl. Phys. Lett. 109(25), 252104 (2016).
[Crossref]

Lubell, M. S.

F. C. Tang, M. S. Lubell, K. Rubin, A. Vasilakis, M. Eminyan, and J. Slevin, “Operating experience with a GaAs photoemission electron source,” Rev. Sci. Instrum. 57(12), 3004–3011 (1986).
[Crossref]

Masuzawa, T.

K. Mitsuno, T. Masuzawa, Y. Hatanaka, Y. Neo, and H. Mimura, “Activation process of GaAs NEA photocathode and its spectral sensitivity,” in 3rd International Conference on Nanotechnologies and Biomedical Engineering (Springer, 2016) pp. 163–166.
[Crossref]

Middleman, K. J.

N. Chanlek, J. D. Herbert, R. M. Jones, L. B. Jones, K. J. Middleman, and B. L. Militsyn, “High stability of negative electron affinity gallium arsenide photocathodes activated with Cs and NF3,” J. Phys. D Appl. Phys. 48(37), 375102 (2015).
[Crossref]

Mielczarek, S. R.

D. T. Pierce, R. J. Celotta, G. C. Wang, W. N. Unertl, A. Galejs, C. E. Kuyatt, and S. R. Mielczarek, “The GaAs spin polarized electron source,” Rev. Sci. Instrum. 51(4), 478–499 (1980).
[Crossref]

Militsyn, B. L.

N. Chanlek, J. D. Herbert, R. M. Jones, L. B. Jones, K. J. Middleman, and B. L. Militsyn, “High stability of negative electron affinity gallium arsenide photocathodes activated with Cs and NF3,” J. Phys. D Appl. Phys. 48(37), 375102 (2015).
[Crossref]

V. V. Bakin, K. V. Toropetsky, H. E. Scheibler, A. S. Terekhov, L. B. Jones, B. L. Militsyn, and T. C. Q. Noakes, “p-GaAs(Cs,O)-photocathodes: Demarcation of domains of validity for practical models of the activation layer,” Appl. Phys. Lett. 106(18), 183501 (2015).
[Crossref]

L. B. Jones, S. A. Rozhkov, V. V. Bakin, S. N. Kosolobov, B. L. Militsyn, H. E. Scheibler, S. L. Smith, A. S. Terekhov, D. G. Crabb, Y. Prok, M. Poelker, S. Liuti, D. B. Day, and X. Zheng, “Cooled transmission-mode NEA-photocathode with a band-graded active layer for high brightness electron source,” AIP Conf. Proc. 1149(1), 1057–1061 (2009).
[Crossref]

Mimura, H.

K. Mitsuno, T. Masuzawa, Y. Hatanaka, Y. Neo, and H. Mimura, “Activation process of GaAs NEA photocathode and its spectral sensitivity,” in 3rd International Conference on Nanotechnologies and Biomedical Engineering (Springer, 2016) pp. 163–166.
[Crossref]

Mitsuno, K.

K. Mitsuno, T. Masuzawa, Y. Hatanaka, Y. Neo, and H. Mimura, “Activation process of GaAs NEA photocathode and its spectral sensitivity,” in 3rd International Conference on Nanotechnologies and Biomedical Engineering (Springer, 2016) pp. 163–166.
[Crossref]

Moré, S.

S. Moré, S. Tanaka, S. Tanaka, Y. Fujii, and M. Kamada, “Interaction of Cs and O with GaAs (100) at the overlayer–substrate interface during negative electron affinity type activations,” Surf. Sci. 527(1–3), 41–50 (2003).
[Crossref]

Moy, A.

W. Liu, Y. Chen, W. Lu, A. Moy, M. Poelker, M. Stutzman, and S. Zhang, “Record-level quantum efficiency from a high polarization strained GaAs GaAsP superlattice photocathode with distributed Bragg reflector,” Appl. Phys. Lett. 109(25), 252104 (2016).
[Crossref]

N’Diaye, A. T.

X. Jin, A. A. C. Cotta, G. Chen, A. T. N’Diaye, A. K. Schmid, and N. Yamamoto, “Low energy electron microscopy and Auger electron spectroscopy studies of Cs-O activation layer on p-type GaAs photocathode,” J. Appl. Phys. 116(17), 174509 (2014).
[Crossref]

Nakanishi, T.

M. Kuriki, C. Shonaka, H. Iijima, D. Kubo, H. Okamoto, H. Higaki, K. Ito, M. Yamamoto, T. Konomi, S. Okumi, M. Kuwahara, and T. Nakanishi, “Dark-lifetime degradation of GaAs photo-cathode at higher temperature,” Nucl. Instrum. Methodes Phys. Res., Sect. A 637(1), S87–S90 (2011).

Nambo, Y.

M. Kuwahara, S. Kusunoki, Y. Nambo, K. Saitoh, X. Jin, T. Ujihara, H. Asano, Y. Takeda, and N. Tanaka, “Coherence of a spin-polarized electron beam emitted from a semiconductor photocathode in a transmission electron microscope,” Appl. Phys. Lett. 105(19), 193101 (2014).
[Crossref]

Neo, Y.

K. Mitsuno, T. Masuzawa, Y. Hatanaka, Y. Neo, and H. Mimura, “Activation process of GaAs NEA photocathode and its spectral sensitivity,” in 3rd International Conference on Nanotechnologies and Biomedical Engineering (Springer, 2016) pp. 163–166.
[Crossref]

Noakes, T. C. Q.

V. V. Bakin, K. V. Toropetsky, H. E. Scheibler, A. S. Terekhov, L. B. Jones, B. L. Militsyn, and T. C. Q. Noakes, “p-GaAs(Cs,O)-photocathodes: Demarcation of domains of validity for practical models of the activation layer,” Appl. Phys. Lett. 106(18), 183501 (2015).
[Crossref]

Ohki, S.

X. Jin, S. Ohki, T. Ishikawa, A. Tackeuchi, and Y. Honda, “Analysis of quantum efficiency improvement in spin-polarized photocathode,” J. Appl. Phys. 120(16), 164501 (2016).
[Crossref]

Okamoto, H.

M. Kuriki, C. Shonaka, H. Iijima, D. Kubo, H. Okamoto, H. Higaki, K. Ito, M. Yamamoto, T. Konomi, S. Okumi, M. Kuwahara, and T. Nakanishi, “Dark-lifetime degradation of GaAs photo-cathode at higher temperature,” Nucl. Instrum. Methodes Phys. Res., Sect. A 637(1), S87–S90 (2011).

Okumi, S.

M. Kuriki, C. Shonaka, H. Iijima, D. Kubo, H. Okamoto, H. Higaki, K. Ito, M. Yamamoto, T. Konomi, S. Okumi, M. Kuwahara, and T. Nakanishi, “Dark-lifetime degradation of GaAs photo-cathode at higher temperature,” Nucl. Instrum. Methodes Phys. Res., Sect. A 637(1), S87–S90 (2011).

Pastuszka, S.

S. Pastuszka, A. S. Terekhov, and A. Wolf, “‘Stable to unstable’ transition in the (Cs, O) activation layer on GaAs (100) surfaces with negative electron affinity in extremely high vacuum,” Appl. Surf. Sci. 99(4), 361–365 (1996).
[Crossref]

Paulish, A. G.

V. L. Alperovich, A. G. Paulish, and A. S. Terekhov, “Unpinned behavior of the electronic properties of a p-GaAs (Cs,O) surface at room temperature,” Surf. Sci. 331–333, 1250–1255 (1995).
[Crossref]

Peterson, S.

Z. Liu, Y. Sun, S. Peterson, and P. Pianetta, “Photoemission study of Cs-NF3 activated GaAs (100) negative electron affinity photocathodes,” Appl. Phys. Lett. 92(24), 241107 (2008).
[Crossref]

Pianetta, P.

Z. Liu, Y. Sun, S. Peterson, and P. Pianetta, “Photoemission study of Cs-NF3 activated GaAs (100) negative electron affinity photocathodes,” Appl. Phys. Lett. 92(24), 241107 (2008).
[Crossref]

Pierce, D. T.

D. T. Pierce, R. J. Celotta, G. C. Wang, W. N. Unertl, A. Galejs, C. E. Kuyatt, and S. R. Mielczarek, “The GaAs spin polarized electron source,” Rev. Sci. Instrum. 51(4), 478–499 (1980).
[Crossref]

Poelker, M.

W. Liu, Y. Chen, W. Lu, A. Moy, M. Poelker, M. Stutzman, and S. Zhang, “Record-level quantum efficiency from a high polarization strained GaAs GaAsP superlattice photocathode with distributed Bragg reflector,” Appl. Phys. Lett. 109(25), 252104 (2016).
[Crossref]

L. B. Jones, S. A. Rozhkov, V. V. Bakin, S. N. Kosolobov, B. L. Militsyn, H. E. Scheibler, S. L. Smith, A. S. Terekhov, D. G. Crabb, Y. Prok, M. Poelker, S. Liuti, D. B. Day, and X. Zheng, “Cooled transmission-mode NEA-photocathode with a band-graded active layer for high brightness electron source,” AIP Conf. Proc. 1149(1), 1057–1061 (2009).
[Crossref]

Prok, Y.

L. B. Jones, S. A. Rozhkov, V. V. Bakin, S. N. Kosolobov, B. L. Militsyn, H. E. Scheibler, S. L. Smith, A. S. Terekhov, D. G. Crabb, Y. Prok, M. Poelker, S. Liuti, D. B. Day, and X. Zheng, “Cooled transmission-mode NEA-photocathode with a band-graded active layer for high brightness electron source,” AIP Conf. Proc. 1149(1), 1057–1061 (2009).
[Crossref]

Qiao, J.

J. Zou, B. Chang, Z. Yang, Y. Zhang, and J. Qiao, “Evolution of surface potential barrier for negative-electron-affinity GaAs photocathodes,” J. Appl. Phys. 105(1), 013714 (2009).
[Crossref]

Rozhkov, S. A.

L. B. Jones, S. A. Rozhkov, V. V. Bakin, S. N. Kosolobov, B. L. Militsyn, H. E. Scheibler, S. L. Smith, A. S. Terekhov, D. G. Crabb, Y. Prok, M. Poelker, S. Liuti, D. B. Day, and X. Zheng, “Cooled transmission-mode NEA-photocathode with a band-graded active layer for high brightness electron source,” AIP Conf. Proc. 1149(1), 1057–1061 (2009).
[Crossref]

Rubin, K.

F. C. Tang, M. S. Lubell, K. Rubin, A. Vasilakis, M. Eminyan, and J. Slevin, “Operating experience with a GaAs photoemission electron source,” Rev. Sci. Instrum. 57(12), 3004–3011 (1986).
[Crossref]

Saitoh, K.

M. Kuwahara, S. Kusunoki, Y. Nambo, K. Saitoh, X. Jin, T. Ujihara, H. Asano, Y. Takeda, and N. Tanaka, “Coherence of a spin-polarized electron beam emitted from a semiconductor photocathode in a transmission electron microscope,” Appl. Phys. Lett. 105(19), 193101 (2014).
[Crossref]

Schaff, W.

S. Karkare, L. Boulet, L. Cultrera, B. Dunham, X. Liu, W. Schaff, and I. Bazarov, “Ultrabright and ultrafast III-V semiconductor photocathodes,” Phys. Rev. Lett. 112(9), 097601 (2014).
[Crossref] [PubMed]

Scheibler, H. E.

V. V. Bakin, K. V. Toropetsky, H. E. Scheibler, A. S. Terekhov, L. B. Jones, B. L. Militsyn, and T. C. Q. Noakes, “p-GaAs(Cs,O)-photocathodes: Demarcation of domains of validity for practical models of the activation layer,” Appl. Phys. Lett. 106(18), 183501 (2015).
[Crossref]

L. B. Jones, S. A. Rozhkov, V. V. Bakin, S. N. Kosolobov, B. L. Militsyn, H. E. Scheibler, S. L. Smith, A. S. Terekhov, D. G. Crabb, Y. Prok, M. Poelker, S. Liuti, D. B. Day, and X. Zheng, “Cooled transmission-mode NEA-photocathode with a band-graded active layer for high brightness electron source,” AIP Conf. Proc. 1149(1), 1057–1061 (2009).
[Crossref]

Schmid, A. K.

X. Jin, A. A. C. Cotta, G. Chen, A. T. N’Diaye, A. K. Schmid, and N. Yamamoto, “Low energy electron microscopy and Auger electron spectroscopy studies of Cs-O activation layer on p-type GaAs photocathode,” J. Appl. Phys. 116(17), 174509 (2014).
[Crossref]

Shonaka, C.

M. Kuriki, C. Shonaka, H. Iijima, D. Kubo, H. Okamoto, H. Higaki, K. Ito, M. Yamamoto, T. Konomi, S. Okumi, M. Kuwahara, and T. Nakanishi, “Dark-lifetime degradation of GaAs photo-cathode at higher temperature,” Nucl. Instrum. Methodes Phys. Res., Sect. A 637(1), S87–S90 (2011).

Slevin, J.

F. C. Tang, M. S. Lubell, K. Rubin, A. Vasilakis, M. Eminyan, and J. Slevin, “Operating experience with a GaAs photoemission electron source,” Rev. Sci. Instrum. 57(12), 3004–3011 (1986).
[Crossref]

Smith, S. L.

L. B. Jones, S. A. Rozhkov, V. V. Bakin, S. N. Kosolobov, B. L. Militsyn, H. E. Scheibler, S. L. Smith, A. S. Terekhov, D. G. Crabb, Y. Prok, M. Poelker, S. Liuti, D. B. Day, and X. Zheng, “Cooled transmission-mode NEA-photocathode with a band-graded active layer for high brightness electron source,” AIP Conf. Proc. 1149(1), 1057–1061 (2009).
[Crossref]

Spicer, W. E.

C. Y. Su, W. E. Spicer, and I. Lindau, “Photoelectron spectroscopic determination of the structure of (Cs,O) activated GaAs(110) surfaces,” J. Appl. Phys. 54(3), 1413–1422 (1983).
[Crossref]

W. E. Spicer, “Negative affinity 3-5 photocathodes: Their physics and technology,” Appl. Phys. (Berl.) 12(2), 115–130 (1977).
[Crossref]

Stutzman, M.

W. Liu, Y. Chen, W. Lu, A. Moy, M. Poelker, M. Stutzman, and S. Zhang, “Record-level quantum efficiency from a high polarization strained GaAs GaAsP superlattice photocathode with distributed Bragg reflector,” Appl. Phys. Lett. 109(25), 252104 (2016).
[Crossref]

Su, C. Y.

C. Y. Su, W. E. Spicer, and I. Lindau, “Photoelectron spectroscopic determination of the structure of (Cs,O) activated GaAs(110) surfaces,” J. Appl. Phys. 54(3), 1413–1422 (1983).
[Crossref]

Succi, M.

M. Succi, R. Canino, and B. Ferrario, “Atomic absorption evaporation flow rate measurements of alkali metal dispensers,” Vacuum 35(12), 579–582 (1985).
[Crossref]

Sun, Y.

Z. Liu, Y. Sun, S. Peterson, and P. Pianetta, “Photoemission study of Cs-NF3 activated GaAs (100) negative electron affinity photocathodes,” Appl. Phys. Lett. 92(24), 241107 (2008).
[Crossref]

Tackeuchi, A.

X. Jin, S. Ohki, T. Ishikawa, A. Tackeuchi, and Y. Honda, “Analysis of quantum efficiency improvement in spin-polarized photocathode,” J. Appl. Phys. 120(16), 164501 (2016).
[Crossref]

Takeda, Y.

M. Kuwahara, S. Kusunoki, Y. Nambo, K. Saitoh, X. Jin, T. Ujihara, H. Asano, Y. Takeda, and N. Tanaka, “Coherence of a spin-polarized electron beam emitted from a semiconductor photocathode in a transmission electron microscope,” Appl. Phys. Lett. 105(19), 193101 (2014).
[Crossref]

Tanaka, N.

M. Kuwahara, S. Kusunoki, Y. Nambo, K. Saitoh, X. Jin, T. Ujihara, H. Asano, Y. Takeda, and N. Tanaka, “Coherence of a spin-polarized electron beam emitted from a semiconductor photocathode in a transmission electron microscope,” Appl. Phys. Lett. 105(19), 193101 (2014).
[Crossref]

Tanaka, S.

S. Moré, S. Tanaka, S. Tanaka, Y. Fujii, and M. Kamada, “Interaction of Cs and O with GaAs (100) at the overlayer–substrate interface during negative electron affinity type activations,” Surf. Sci. 527(1–3), 41–50 (2003).
[Crossref]

S. Moré, S. Tanaka, S. Tanaka, Y. Fujii, and M. Kamada, “Interaction of Cs and O with GaAs (100) at the overlayer–substrate interface during negative electron affinity type activations,” Surf. Sci. 527(1–3), 41–50 (2003).
[Crossref]

Tang, F. C.

F. C. Tang, M. S. Lubell, K. Rubin, A. Vasilakis, M. Eminyan, and J. Slevin, “Operating experience with a GaAs photoemission electron source,” Rev. Sci. Instrum. 57(12), 3004–3011 (1986).
[Crossref]

Terekhov, A. S.

V. V. Bakin, K. V. Toropetsky, H. E. Scheibler, A. S. Terekhov, L. B. Jones, B. L. Militsyn, and T. C. Q. Noakes, “p-GaAs(Cs,O)-photocathodes: Demarcation of domains of validity for practical models of the activation layer,” Appl. Phys. Lett. 106(18), 183501 (2015).
[Crossref]

L. B. Jones, S. A. Rozhkov, V. V. Bakin, S. N. Kosolobov, B. L. Militsyn, H. E. Scheibler, S. L. Smith, A. S. Terekhov, D. G. Crabb, Y. Prok, M. Poelker, S. Liuti, D. B. Day, and X. Zheng, “Cooled transmission-mode NEA-photocathode with a band-graded active layer for high brightness electron source,” AIP Conf. Proc. 1149(1), 1057–1061 (2009).
[Crossref]

S. Pastuszka, A. S. Terekhov, and A. Wolf, “‘Stable to unstable’ transition in the (Cs, O) activation layer on GaAs (100) surfaces with negative electron affinity in extremely high vacuum,” Appl. Surf. Sci. 99(4), 361–365 (1996).
[Crossref]

V. L. Alperovich, A. G. Paulish, and A. S. Terekhov, “Unpinned behavior of the electronic properties of a p-GaAs (Cs,O) surface at room temperature,” Surf. Sci. 331–333, 1250–1255 (1995).
[Crossref]

Toropetsky, K. V.

V. V. Bakin, K. V. Toropetsky, H. E. Scheibler, A. S. Terekhov, L. B. Jones, B. L. Militsyn, and T. C. Q. Noakes, “p-GaAs(Cs,O)-photocathodes: Demarcation of domains of validity for practical models of the activation layer,” Appl. Phys. Lett. 106(18), 183501 (2015).
[Crossref]

Tsai, W. T.

W. T. Tsai, “Environmental and health risk analysis of nitrogen trifluoride (NF3), a toxic and potent greenhouse gas,” J. Hazard. Mater. 159(2-3), 257–263 (2008).
[Crossref] [PubMed]

Ujihara, T.

M. Kuwahara, S. Kusunoki, Y. Nambo, K. Saitoh, X. Jin, T. Ujihara, H. Asano, Y. Takeda, and N. Tanaka, “Coherence of a spin-polarized electron beam emitted from a semiconductor photocathode in a transmission electron microscope,” Appl. Phys. Lett. 105(19), 193101 (2014).
[Crossref]

Unertl, W. N.

D. T. Pierce, R. J. Celotta, G. C. Wang, W. N. Unertl, A. Galejs, C. E. Kuyatt, and S. R. Mielczarek, “The GaAs spin polarized electron source,” Rev. Sci. Instrum. 51(4), 478–499 (1980).
[Crossref]

Vasilakis, A.

F. C. Tang, M. S. Lubell, K. Rubin, A. Vasilakis, M. Eminyan, and J. Slevin, “Operating experience with a GaAs photoemission electron source,” Rev. Sci. Instrum. 57(12), 3004–3011 (1986).
[Crossref]

Wang, G. C.

D. T. Pierce, R. J. Celotta, G. C. Wang, W. N. Unertl, A. Galejs, C. E. Kuyatt, and S. R. Mielczarek, “The GaAs spin polarized electron source,” Rev. Sci. Instrum. 51(4), 478–499 (1980).
[Crossref]

Wolf, A.

S. Pastuszka, A. S. Terekhov, and A. Wolf, “‘Stable to unstable’ transition in the (Cs, O) activation layer on GaAs (100) surfaces with negative electron affinity in extremely high vacuum,” Appl. Surf. Sci. 99(4), 361–365 (1996).
[Crossref]

Yamamoto, M.

M. Kuriki, C. Shonaka, H. Iijima, D. Kubo, H. Okamoto, H. Higaki, K. Ito, M. Yamamoto, T. Konomi, S. Okumi, M. Kuwahara, and T. Nakanishi, “Dark-lifetime degradation of GaAs photo-cathode at higher temperature,” Nucl. Instrum. Methodes Phys. Res., Sect. A 637(1), S87–S90 (2011).

Yamamoto, N.

X. Jin, A. A. C. Cotta, G. Chen, A. T. N’Diaye, A. K. Schmid, and N. Yamamoto, “Low energy electron microscopy and Auger electron spectroscopy studies of Cs-O activation layer on p-type GaAs photocathode,” J. Appl. Phys. 116(17), 174509 (2014).
[Crossref]

Yang, Z.

J. Zou, B. Chang, Z. Yang, Y. Zhang, and J. Qiao, “Evolution of surface potential barrier for negative-electron-affinity GaAs photocathodes,” J. Appl. Phys. 105(1), 013714 (2009).
[Crossref]

Zhang, S.

W. Liu, Y. Chen, W. Lu, A. Moy, M. Poelker, M. Stutzman, and S. Zhang, “Record-level quantum efficiency from a high polarization strained GaAs GaAsP superlattice photocathode with distributed Bragg reflector,” Appl. Phys. Lett. 109(25), 252104 (2016).
[Crossref]

Zhang, Y.

J. Zou, B. Chang, Z. Yang, Y. Zhang, and J. Qiao, “Evolution of surface potential barrier for negative-electron-affinity GaAs photocathodes,” J. Appl. Phys. 105(1), 013714 (2009).
[Crossref]

Zheng, X.

L. B. Jones, S. A. Rozhkov, V. V. Bakin, S. N. Kosolobov, B. L. Militsyn, H. E. Scheibler, S. L. Smith, A. S. Terekhov, D. G. Crabb, Y. Prok, M. Poelker, S. Liuti, D. B. Day, and X. Zheng, “Cooled transmission-mode NEA-photocathode with a band-graded active layer for high brightness electron source,” AIP Conf. Proc. 1149(1), 1057–1061 (2009).
[Crossref]

Zou, J.

J. Zou, B. Chang, Z. Yang, Y. Zhang, and J. Qiao, “Evolution of surface potential barrier for negative-electron-affinity GaAs photocathodes,” J. Appl. Phys. 105(1), 013714 (2009).
[Crossref]

AIP Conf. Proc. (1)

L. B. Jones, S. A. Rozhkov, V. V. Bakin, S. N. Kosolobov, B. L. Militsyn, H. E. Scheibler, S. L. Smith, A. S. Terekhov, D. G. Crabb, Y. Prok, M. Poelker, S. Liuti, D. B. Day, and X. Zheng, “Cooled transmission-mode NEA-photocathode with a band-graded active layer for high brightness electron source,” AIP Conf. Proc. 1149(1), 1057–1061 (2009).
[Crossref]

Appl. Phys. (Berl.) (1)

W. E. Spicer, “Negative affinity 3-5 photocathodes: Their physics and technology,” Appl. Phys. (Berl.) 12(2), 115–130 (1977).
[Crossref]

Appl. Phys. Lett. (4)

Z. Liu, Y. Sun, S. Peterson, and P. Pianetta, “Photoemission study of Cs-NF3 activated GaAs (100) negative electron affinity photocathodes,” Appl. Phys. Lett. 92(24), 241107 (2008).
[Crossref]

W. Liu, Y. Chen, W. Lu, A. Moy, M. Poelker, M. Stutzman, and S. Zhang, “Record-level quantum efficiency from a high polarization strained GaAs GaAsP superlattice photocathode with distributed Bragg reflector,” Appl. Phys. Lett. 109(25), 252104 (2016).
[Crossref]

M. Kuwahara, S. Kusunoki, Y. Nambo, K. Saitoh, X. Jin, T. Ujihara, H. Asano, Y. Takeda, and N. Tanaka, “Coherence of a spin-polarized electron beam emitted from a semiconductor photocathode in a transmission electron microscope,” Appl. Phys. Lett. 105(19), 193101 (2014).
[Crossref]

V. V. Bakin, K. V. Toropetsky, H. E. Scheibler, A. S. Terekhov, L. B. Jones, B. L. Militsyn, and T. C. Q. Noakes, “p-GaAs(Cs,O)-photocathodes: Demarcation of domains of validity for practical models of the activation layer,” Appl. Phys. Lett. 106(18), 183501 (2015).
[Crossref]

Appl. Surf. Sci. (2)

L. I. Antonova and V. P. Denissov, “High-efficiency photocathodes on the NEA-GaAs basis,” Appl. Surf. Sci. 111, 237–240 (1997).
[Crossref]

S. Pastuszka, A. S. Terekhov, and A. Wolf, “‘Stable to unstable’ transition in the (Cs, O) activation layer on GaAs (100) surfaces with negative electron affinity in extremely high vacuum,” Appl. Surf. Sci. 99(4), 361–365 (1996).
[Crossref]

J. Appl. Phys. (4)

X. Jin, A. A. C. Cotta, G. Chen, A. T. N’Diaye, A. K. Schmid, and N. Yamamoto, “Low energy electron microscopy and Auger electron spectroscopy studies of Cs-O activation layer on p-type GaAs photocathode,” J. Appl. Phys. 116(17), 174509 (2014).
[Crossref]

X. Jin, S. Ohki, T. Ishikawa, A. Tackeuchi, and Y. Honda, “Analysis of quantum efficiency improvement in spin-polarized photocathode,” J. Appl. Phys. 120(16), 164501 (2016).
[Crossref]

C. Y. Su, W. E. Spicer, and I. Lindau, “Photoelectron spectroscopic determination of the structure of (Cs,O) activated GaAs(110) surfaces,” J. Appl. Phys. 54(3), 1413–1422 (1983).
[Crossref]

J. Zou, B. Chang, Z. Yang, Y. Zhang, and J. Qiao, “Evolution of surface potential barrier for negative-electron-affinity GaAs photocathodes,” J. Appl. Phys. 105(1), 013714 (2009).
[Crossref]

J. Hazard. Mater. (1)

W. T. Tsai, “Environmental and health risk analysis of nitrogen trifluoride (NF3), a toxic and potent greenhouse gas,” J. Hazard. Mater. 159(2-3), 257–263 (2008).
[Crossref] [PubMed]

J. Phys. D Appl. Phys. (1)

N. Chanlek, J. D. Herbert, R. M. Jones, L. B. Jones, K. J. Middleman, and B. L. Militsyn, “High stability of negative electron affinity gallium arsenide photocathodes activated with Cs and NF3,” J. Phys. D Appl. Phys. 48(37), 375102 (2015).
[Crossref]

J. Vac. Sci. Technol. A (1)

F. Ciccacci and G. Chiaia, “Comparative study of the preparation of negative electron affinity GaAs photocathodes with O2 and with NF3,” J. Vac. Sci. Technol. A 9(6), 2991–2995 (1991).
[Crossref]

Nucl. Instrum. Methodes Phys. Res., Sect. A (1)

M. Kuriki, C. Shonaka, H. Iijima, D. Kubo, H. Okamoto, H. Higaki, K. Ito, M. Yamamoto, T. Konomi, S. Okumi, M. Kuwahara, and T. Nakanishi, “Dark-lifetime degradation of GaAs photo-cathode at higher temperature,” Nucl. Instrum. Methodes Phys. Res., Sect. A 637(1), S87–S90 (2011).

Opto-Electron. Rev. (1)

K. Chrzanowski, “Review of night vision technology,” Opto-Electron. Rev. 21(2), 153–181 (2013).
[Crossref]

Phys. Rev. Lett. (1)

S. Karkare, L. Boulet, L. Cultrera, B. Dunham, X. Liu, W. Schaff, and I. Bazarov, “Ultrabright and ultrafast III-V semiconductor photocathodes,” Phys. Rev. Lett. 112(9), 097601 (2014).
[Crossref] [PubMed]

Proc. SPIE (1)

T. Guo and H. R. Gao, “Photoemission stability of negative-electron-affinity GaAs photocathodes,” Proc. SPIE 1982, 127–132 (1993).
[Crossref]

Rev. Sci. Instrum. (2)

D. T. Pierce, R. J. Celotta, G. C. Wang, W. N. Unertl, A. Galejs, C. E. Kuyatt, and S. R. Mielczarek, “The GaAs spin polarized electron source,” Rev. Sci. Instrum. 51(4), 478–499 (1980).
[Crossref]

F. C. Tang, M. S. Lubell, K. Rubin, A. Vasilakis, M. Eminyan, and J. Slevin, “Operating experience with a GaAs photoemission electron source,” Rev. Sci. Instrum. 57(12), 3004–3011 (1986).
[Crossref]

Surf. Sci. (2)

S. Moré, S. Tanaka, S. Tanaka, Y. Fujii, and M. Kamada, “Interaction of Cs and O with GaAs (100) at the overlayer–substrate interface during negative electron affinity type activations,” Surf. Sci. 527(1–3), 41–50 (2003).
[Crossref]

V. L. Alperovich, A. G. Paulish, and A. S. Terekhov, “Unpinned behavior of the electronic properties of a p-GaAs (Cs,O) surface at room temperature,” Surf. Sci. 331–333, 1250–1255 (1995).
[Crossref]

Vacuum (1)

M. Succi, R. Canino, and B. Ferrario, “Atomic absorption evaporation flow rate measurements of alkali metal dispensers,” Vacuum 35(12), 579–582 (1985).
[Crossref]

Other (2)

See https://www.saesgetters.com/products-functions/products/dispensers/oxygen-dispensers

K. Mitsuno, T. Masuzawa, Y. Hatanaka, Y. Neo, and H. Mimura, “Activation process of GaAs NEA photocathode and its spectral sensitivity,” in 3rd International Conference on Nanotechnologies and Biomedical Engineering (Springer, 2016) pp. 163–166.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Photograph of solid Cs and O dispensers used to activate GaAs cathode samples.

Fig. 2
Fig. 2

Diagram of computer-controlled test system for preparing NEA photocathodes.

Fig. 3
Fig. 3

Variation in O2 pressure with the increase of current passing through (a) Ag2O-based and (b) BaO2-based dispensers.

Fig. 4
Fig. 4

Activation process of GaAs samples activated by (a) usual and (b) improved co-deposition activation technique using Ag2O-based dispenser.

Fig. 5
Fig. 5

Comparison of photocurrent curves of GaAs samples with different Cs/O current ratios using Ag2O-based dispenser.

Fig. 6
Fig. 6

Comparison of photocurrent curves of GaAs samples with different O sources.

Fig. 7
Fig. 7

Experimental quantum efficiency curves of the four GaAs samples.

Fig. 8
Fig. 8

Photocurrent attenuation curves of GaAs samples activated by different O sources.

Tables (3)

Tables Icon

Table 1 Activation process parameters of GaAs samples with different Cs/O current ratios.

Tables Icon

Table 2 Spectral parameters of GaAs samples with different Cs/O current ratios.

Tables Icon

Table 3 Operational lifetime of GaAs cathode samples activated by different O sources.

Metrics