Abstract

In this paper, we report the detailed study of photobleaching and recovery in bismuth-doped fibers that proved to be a unique laser media for the near IR spectral regions unreachable for rare-earth-doped lasers. The laser-induced bleaching and recovery dynamics of the characteristic absorption and emission bands assigned to different types of the bismuth-related active centers were obtained. By analyzing the Raman-scattering spectra of the bleached bismuth-doped fibers, the intensity-dependence of the photobleaching rate and the experimentally determined activation energy of the recovery process and underlying mechanisms of these phenomena are discussed. Furthermore, a bleaching–recovery cycling and “memory effect” are demonstrated.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Photobleaching effect in bismuth-doped germanosilicate fibers

Sergei Firstov, Sergey Alyshev, Vladimir Khopin, Mikhail Melkumov, Alexey Guryanov, and Evgeny Dianov
Opt. Express 23(15) 19226-19233 (2015)

Analysis of thermally activated processes in bismuth-doped GeO2-SiO2 glass fibers using the demarcation energy concept

Alexandr Kharakhordin, Sergey Alyshev, Elena Firstova, Aleksandr Khegai, Mikhail Melkumov, Vladimir Khopin, Aleksey Lobanov, Aleksey Guryanov, and Sergei Firstov
Opt. Mater. Express 9(11) 4239-4246 (2019)

Formation of laser-active centers in bismuth-doped high-germania silica fibers by thermal treatment

Sergei Firstov, Alexander Kharakhordin, Sergey Alyshev, Konstantin Riumkin, Elena Firstova, Mikhail Melkumov, Vladimir Khopin, Alexey Guryanov, and Evgeny Dianov
Opt. Express 26(10) 12363-12371 (2018)

References

  • View by:
  • |
  • |
  • |

  1. I. L. Mador, R. F. Wallis, M. C. Williams, and R. C. Herman, “Production and Bleaching of Color Centers in X-Rayed Alkali Halide Crystals,” Phys. Rev. 96(3), 617–628 (1954).
    [Crossref]
  2. M. Gu, X. Li, and Y. Cao, “Optical storage arrays: a perspective for future big data storage,” Light Sci. Appl. 3(5), e177 (2014).
    [Crossref]
  3. L. Gao, A. Garcia-Uribe, Y. Liu, C. Li, and L. V. Wang, “Photobleaching imprinting microscopy: seeing clearer and deeper,” J. Cell Sci. 127(2), 288–294 (2014).
    [Crossref] [PubMed]
  4. T. Allsop, R. Arif, R. Neal, K. Kalli, V. Kundrát, A. Rozhin, P. Culverhouse, and D. J. Webb, “Photonic gas sensors exploiting directly the optical properties of hybrid carbon nanotube localized surface plasmon structures,” Light Sci. Appl. 5(2), e16036 (2016).
    [Crossref]
  5. S. Firstov, S. Alyshev, V. Khopin, M. Melkumov, A. Guryanov, and E. Dianov, “Photobleaching effect in bismuth-doped germanosilicate fibers,” Opt. Express 23(15), 19226–19233 (2015).
    [Crossref] [PubMed]
  6. E. M. Dianov, “Amplification in Extended Transmission Bands Using Bismuth-Doped Optical Fibers,” J. Lightwave Technol. 31(4), 681–688 (2013).
    [Crossref]
  7. J. K. Sahu, N. K. Thipparapu, A. A. Umnikov, P. Barua, and M. Nunez Velazquez, in 13th International Conference on Fiber Optics and Photonics, 2016 OSA Technical Digest (Optical Society of America, 2016), paper Tu2A.2.
  8. I. Razdobreev, L. Bigot, V. Pureur, G. Bouwmans, and M. Douay, “Efficient all-fiber bismuth-doped laser,” Appl. Phys. Lett. 90(3), 031103 (2007).
    [Crossref]
  9. S. Yoo, M. P. Kalita, J. K. Sahu, J. Nilsson, and D. N. Payne, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, 2008 OSA Technical Digest (Optical Society of America, 2008), paper CFL4.
  10. S. V. Firstov, S. V. Alyshev, K. E. Riumkin, V. F. Khopin, A. N. Guryanov, M. A. Melkumov, and E. M. Dianov, “A 23-dB bismuth-doped optical fiber amplifier for a 1700-nm band,” Sci. Rep. 6(1), 28939 (2016).
    [Crossref] [PubMed]
  11. E. M. Dianov, “Bismuth-doped optical fibers: a challenging active medium for near-IR lasers and optical amplifiers,” Light Sci. Appl. 1(5), e12 (2012).
    [Crossref]
  12. S. Firstov, S. Alyshev, M. Melkumov, K. Riumkin, A. Shubin, and E. Dianov, “Bismuth-doped optical fibers and fiber lasers for a spectral region of 1600-1800 nm,” Opt. Lett. 39(24), 6927–6930 (2014).
    [Crossref] [PubMed]
  13. A. S. Zlenko, V. M. Mashinsky, L. D. Iskhakova, S. L. Semjonov, V. V. Koltashev, N. M. Karatun, and E. M. Dianov, “Mechanisms of optical losses in Bi:SiO2 glass fibers,” Opt. Express 20(21), 23186–23200 (2012).
    [Crossref] [PubMed]
  14. M. Ding, S. Wei, Y. Luo, and G.-D. Peng, “Reversible photo-bleaching effect in a bismuth/erbium co-doped optical fiber under 830 nm irradiation,” Opt. Lett. 41(20), 4688–4691 (2016).
    [Crossref] [PubMed]
  15. S. V. Firstov, S. V. Alyshev, E. G. Firstova, M. A. Melkumov, A. M. Khegay, V. F. Khopin, A. N. Guryanov, and E. M. Dianov, “Dependence of the photobleaching on laser radiation wavelength in bismuth-doped germanosilicate fibers,” J. Lumin. 182, 87–90 (2017).
    [Crossref]
  16. S. V. Firstov, E. G. Firstova, S. V. Alyshev, V. F. Khopin, K. E. Riumkin, M. A. Melkumov, A. N. Guryanov, and E. M. Dianov, “Recovery of IR luminescence in photobleached bismuth-doped fibers by thermal annealing,” Laser Phys. 26(8), 084007 (2016).
    [Crossref]
  17. S. V. Firstov, V. F. Khopin, I. A. Bufetov, E. G. Firstova, A. N. Guryanov, and E. M. Dianov, “Combined excitation-emission spectroscopy of bismuth active centers in optical fibers,” Opt. Express 19(20), 19551–19561 (2011).
    [Crossref] [PubMed]
  18. E. G. Firstova, I. A. Bufetov, V. F. Khopin, V. V. Vel’miskin, S. V. Firstov, G. A. Bufetova, K. N. Nishchev, A. N. Gur’yanov, and E. M. Dianov, “Luminescence properties of IR-emitting bismuth centres in SiO2-based glasses in the UV to near-IR spectral region,” Quantum Electron. 45(1), 59–65 (2015).
    [Crossref]
  19. F. L. Galeener and A. E. Geissberger, “Vibrational dynamics in 30Si-substituted vitreous SiO2,” Phys. Rev. B 27(10), 6199–6204 (1983).
    [Crossref]
  20. S. K. Sharma, D. W. Matson, J. A. Philpotts, and T. L. Roush, “Raman study of the structure of glasses along the join SiO2-GeO2,” J. Non-Cryst. Solids 68(1), 99–114 (1984).
    [Crossref]
  21. F. L. Galeener, “Planar rings in glasses,” Solid State Commun. 44(7), 1037–1040 (1982).
    [Crossref]
  22. L. Giacomazzi, P. Umari, and A. Pasquarello, “Medium-range structural properties of vitreous germania obtained through first-principles analysis of vibrational spectra,” Phys. Rev. Lett. 95(7), 075505 (2005).
    [Crossref] [PubMed]
  23. S. A. Vasil’ev, E. M. Dianov, V. V. Koltashev, V. M. Marchenko, V. M. Mashinsky, O. I. Medvedkov, V. G. Plotnichenko, Yu. N. Pyrkov, O. D. Sazhin, and A. A. Frolov, “Photoinduced changes in the Raman spectra of germanosilicate optical fibres,” Quantum Electron. 28(4), 330–333 (1998).
    [Crossref]
  24. H.-T. Sun, J. Zhou, and J. Qiu, “Recent advances in bismuth activated photonic materials,” Prog. Mater. Sci. 64, 1–72 (2014).
    [Crossref]
  25. E. M. Dianov, “On the nature of near-IR emitting Bi centres in glass,” Quantum Electron. 40(4), 283–285 (2010).
    [Crossref]
  26. L. Nuccio, S. Agnello, and R. Boscaino, “Annealing of radiation induced oxygen deficient point defects in amorphous silicon dioxide: evidence for a distribution of the reaction activation energies,” J. Phys. Condens. Matter 20(38), 385215 (2008).
    [Crossref] [PubMed]
  27. S. LaRochell, F. Ouellette, and J. Lauzon, “Two-photon excitation and bleaching of the 400 nm luminescence band and germanium-doped-silica optical fibres,” Can. J. Phys. 71(1–2), 79–84 (1993).
    [Crossref]
  28. S. Jain, J. B. Duchez, Y. Mebrouk, M. M. A. N. Velazquez, F. Mady, B. Dussardier, M. Benabdesselam, and J. K. Sahu, “Thermally-stimulated emission analysis of bismuth-doped silica fibers,” Opt. Mater. Express 4(7), 1361–1366 (2014).
    [Crossref]
  29. V. B. Neustruev, “Colour centres in germanosilicate glass and optical fibres,” J. Phys: Cond. Mat. 6(35), 6901 (1994).
  30. I. Razdobreev and L. Bigot, “On the multiplicity of Bismuth active centers in germano-aluminosilicate preform,” Opt. Mater. 33(6), 973–977 (2011).
    [Crossref]
  31. G. Pacchioni and G. Ierano, “Ab initio formation energies of point defects in pure and Ge-doped SiO2,” Phys. Rev. B 56(12), 7304–7312 (1997).
    [Crossref]
  32. K. Vollmayr-Lee and A. Zippelius, “Temperature-dependent defect dynamics in the network glass SiO2.,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 88(5), 052145 (2013).
    [Crossref] [PubMed]
  33. D. L. Griscom, “On the natures of radiation-induced point defects in GeO2-SiO2 glasses: reevaluation of a 26-year-old ESR and optical data set,” Opt. Mater. Express 1(3), 400–412 (2011).
    [Crossref]
  34. A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).
  35. D. L. Griscom, E. J. Friebele, K. J. Long, and J. W. Fleming, “Fundamental defect centers in glass: Electron spin resonance and optical absorption studies of irradiated phosphorus doped silica glass and optical fibers,” J. Appl. Phys. 54(7), 3743–3762 (1983).
    [Crossref]

2017 (1)

S. V. Firstov, S. V. Alyshev, E. G. Firstova, M. A. Melkumov, A. M. Khegay, V. F. Khopin, A. N. Guryanov, and E. M. Dianov, “Dependence of the photobleaching on laser radiation wavelength in bismuth-doped germanosilicate fibers,” J. Lumin. 182, 87–90 (2017).
[Crossref]

2016 (4)

S. V. Firstov, E. G. Firstova, S. V. Alyshev, V. F. Khopin, K. E. Riumkin, M. A. Melkumov, A. N. Guryanov, and E. M. Dianov, “Recovery of IR luminescence in photobleached bismuth-doped fibers by thermal annealing,” Laser Phys. 26(8), 084007 (2016).
[Crossref]

M. Ding, S. Wei, Y. Luo, and G.-D. Peng, “Reversible photo-bleaching effect in a bismuth/erbium co-doped optical fiber under 830 nm irradiation,” Opt. Lett. 41(20), 4688–4691 (2016).
[Crossref] [PubMed]

T. Allsop, R. Arif, R. Neal, K. Kalli, V. Kundrát, A. Rozhin, P. Culverhouse, and D. J. Webb, “Photonic gas sensors exploiting directly the optical properties of hybrid carbon nanotube localized surface plasmon structures,” Light Sci. Appl. 5(2), e16036 (2016).
[Crossref]

S. V. Firstov, S. V. Alyshev, K. E. Riumkin, V. F. Khopin, A. N. Guryanov, M. A. Melkumov, and E. M. Dianov, “A 23-dB bismuth-doped optical fiber amplifier for a 1700-nm band,” Sci. Rep. 6(1), 28939 (2016).
[Crossref] [PubMed]

2015 (2)

E. G. Firstova, I. A. Bufetov, V. F. Khopin, V. V. Vel’miskin, S. V. Firstov, G. A. Bufetova, K. N. Nishchev, A. N. Gur’yanov, and E. M. Dianov, “Luminescence properties of IR-emitting bismuth centres in SiO2-based glasses in the UV to near-IR spectral region,” Quantum Electron. 45(1), 59–65 (2015).
[Crossref]

S. Firstov, S. Alyshev, V. Khopin, M. Melkumov, A. Guryanov, and E. Dianov, “Photobleaching effect in bismuth-doped germanosilicate fibers,” Opt. Express 23(15), 19226–19233 (2015).
[Crossref] [PubMed]

2014 (5)

S. Jain, J. B. Duchez, Y. Mebrouk, M. M. A. N. Velazquez, F. Mady, B. Dussardier, M. Benabdesselam, and J. K. Sahu, “Thermally-stimulated emission analysis of bismuth-doped silica fibers,” Opt. Mater. Express 4(7), 1361–1366 (2014).
[Crossref]

S. Firstov, S. Alyshev, M. Melkumov, K. Riumkin, A. Shubin, and E. Dianov, “Bismuth-doped optical fibers and fiber lasers for a spectral region of 1600-1800 nm,” Opt. Lett. 39(24), 6927–6930 (2014).
[Crossref] [PubMed]

M. Gu, X. Li, and Y. Cao, “Optical storage arrays: a perspective for future big data storage,” Light Sci. Appl. 3(5), e177 (2014).
[Crossref]

L. Gao, A. Garcia-Uribe, Y. Liu, C. Li, and L. V. Wang, “Photobleaching imprinting microscopy: seeing clearer and deeper,” J. Cell Sci. 127(2), 288–294 (2014).
[Crossref] [PubMed]

H.-T. Sun, J. Zhou, and J. Qiu, “Recent advances in bismuth activated photonic materials,” Prog. Mater. Sci. 64, 1–72 (2014).
[Crossref]

2013 (2)

E. M. Dianov, “Amplification in Extended Transmission Bands Using Bismuth-Doped Optical Fibers,” J. Lightwave Technol. 31(4), 681–688 (2013).
[Crossref]

K. Vollmayr-Lee and A. Zippelius, “Temperature-dependent defect dynamics in the network glass SiO2.,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 88(5), 052145 (2013).
[Crossref] [PubMed]

2012 (2)

2011 (3)

2010 (1)

E. M. Dianov, “On the nature of near-IR emitting Bi centres in glass,” Quantum Electron. 40(4), 283–285 (2010).
[Crossref]

2008 (1)

L. Nuccio, S. Agnello, and R. Boscaino, “Annealing of radiation induced oxygen deficient point defects in amorphous silicon dioxide: evidence for a distribution of the reaction activation energies,” J. Phys. Condens. Matter 20(38), 385215 (2008).
[Crossref] [PubMed]

2007 (1)

I. Razdobreev, L. Bigot, V. Pureur, G. Bouwmans, and M. Douay, “Efficient all-fiber bismuth-doped laser,” Appl. Phys. Lett. 90(3), 031103 (2007).
[Crossref]

2005 (1)

L. Giacomazzi, P. Umari, and A. Pasquarello, “Medium-range structural properties of vitreous germania obtained through first-principles analysis of vibrational spectra,” Phys. Rev. Lett. 95(7), 075505 (2005).
[Crossref] [PubMed]

1998 (1)

S. A. Vasil’ev, E. M. Dianov, V. V. Koltashev, V. M. Marchenko, V. M. Mashinsky, O. I. Medvedkov, V. G. Plotnichenko, Yu. N. Pyrkov, O. D. Sazhin, and A. A. Frolov, “Photoinduced changes in the Raman spectra of germanosilicate optical fibres,” Quantum Electron. 28(4), 330–333 (1998).
[Crossref]

1997 (1)

G. Pacchioni and G. Ierano, “Ab initio formation energies of point defects in pure and Ge-doped SiO2,” Phys. Rev. B 56(12), 7304–7312 (1997).
[Crossref]

1994 (1)

V. B. Neustruev, “Colour centres in germanosilicate glass and optical fibres,” J. Phys: Cond. Mat. 6(35), 6901 (1994).

1993 (1)

S. LaRochell, F. Ouellette, and J. Lauzon, “Two-photon excitation and bleaching of the 400 nm luminescence band and germanium-doped-silica optical fibres,” Can. J. Phys. 71(1–2), 79–84 (1993).
[Crossref]

1984 (1)

S. K. Sharma, D. W. Matson, J. A. Philpotts, and T. L. Roush, “Raman study of the structure of glasses along the join SiO2-GeO2,” J. Non-Cryst. Solids 68(1), 99–114 (1984).
[Crossref]

1983 (2)

F. L. Galeener and A. E. Geissberger, “Vibrational dynamics in 30Si-substituted vitreous SiO2,” Phys. Rev. B 27(10), 6199–6204 (1983).
[Crossref]

D. L. Griscom, E. J. Friebele, K. J. Long, and J. W. Fleming, “Fundamental defect centers in glass: Electron spin resonance and optical absorption studies of irradiated phosphorus doped silica glass and optical fibers,” J. Appl. Phys. 54(7), 3743–3762 (1983).
[Crossref]

1982 (1)

F. L. Galeener, “Planar rings in glasses,” Solid State Commun. 44(7), 1037–1040 (1982).
[Crossref]

1954 (1)

I. L. Mador, R. F. Wallis, M. C. Williams, and R. C. Herman, “Production and Bleaching of Color Centers in X-Rayed Alkali Halide Crystals,” Phys. Rev. 96(3), 617–628 (1954).
[Crossref]

Agnello, S.

L. Nuccio, S. Agnello, and R. Boscaino, “Annealing of radiation induced oxygen deficient point defects in amorphous silicon dioxide: evidence for a distribution of the reaction activation energies,” J. Phys. Condens. Matter 20(38), 385215 (2008).
[Crossref] [PubMed]

Allsop, T.

T. Allsop, R. Arif, R. Neal, K. Kalli, V. Kundrát, A. Rozhin, P. Culverhouse, and D. J. Webb, “Photonic gas sensors exploiting directly the optical properties of hybrid carbon nanotube localized surface plasmon structures,” Light Sci. Appl. 5(2), e16036 (2016).
[Crossref]

Alyshev, S.

Alyshev, S. V.

S. V. Firstov, S. V. Alyshev, E. G. Firstova, M. A. Melkumov, A. M. Khegay, V. F. Khopin, A. N. Guryanov, and E. M. Dianov, “Dependence of the photobleaching on laser radiation wavelength in bismuth-doped germanosilicate fibers,” J. Lumin. 182, 87–90 (2017).
[Crossref]

S. V. Firstov, E. G. Firstova, S. V. Alyshev, V. F. Khopin, K. E. Riumkin, M. A. Melkumov, A. N. Guryanov, and E. M. Dianov, “Recovery of IR luminescence in photobleached bismuth-doped fibers by thermal annealing,” Laser Phys. 26(8), 084007 (2016).
[Crossref]

S. V. Firstov, S. V. Alyshev, K. E. Riumkin, V. F. Khopin, A. N. Guryanov, M. A. Melkumov, and E. M. Dianov, “A 23-dB bismuth-doped optical fiber amplifier for a 1700-nm band,” Sci. Rep. 6(1), 28939 (2016).
[Crossref] [PubMed]

Arif, R.

T. Allsop, R. Arif, R. Neal, K. Kalli, V. Kundrát, A. Rozhin, P. Culverhouse, and D. J. Webb, “Photonic gas sensors exploiting directly the optical properties of hybrid carbon nanotube localized surface plasmon structures,” Light Sci. Appl. 5(2), e16036 (2016).
[Crossref]

Benabdesselam, M.

Bigot, L.

I. Razdobreev and L. Bigot, “On the multiplicity of Bismuth active centers in germano-aluminosilicate preform,” Opt. Mater. 33(6), 973–977 (2011).
[Crossref]

I. Razdobreev, L. Bigot, V. Pureur, G. Bouwmans, and M. Douay, “Efficient all-fiber bismuth-doped laser,” Appl. Phys. Lett. 90(3), 031103 (2007).
[Crossref]

Boscaino, R.

L. Nuccio, S. Agnello, and R. Boscaino, “Annealing of radiation induced oxygen deficient point defects in amorphous silicon dioxide: evidence for a distribution of the reaction activation energies,” J. Phys. Condens. Matter 20(38), 385215 (2008).
[Crossref] [PubMed]

Bouwmans, G.

I. Razdobreev, L. Bigot, V. Pureur, G. Bouwmans, and M. Douay, “Efficient all-fiber bismuth-doped laser,” Appl. Phys. Lett. 90(3), 031103 (2007).
[Crossref]

Bufetov, I. A.

E. G. Firstova, I. A. Bufetov, V. F. Khopin, V. V. Vel’miskin, S. V. Firstov, G. A. Bufetova, K. N. Nishchev, A. N. Gur’yanov, and E. M. Dianov, “Luminescence properties of IR-emitting bismuth centres in SiO2-based glasses in the UV to near-IR spectral region,” Quantum Electron. 45(1), 59–65 (2015).
[Crossref]

S. V. Firstov, V. F. Khopin, I. A. Bufetov, E. G. Firstova, A. N. Guryanov, and E. M. Dianov, “Combined excitation-emission spectroscopy of bismuth active centers in optical fibers,” Opt. Express 19(20), 19551–19561 (2011).
[Crossref] [PubMed]

Bufetova, G. A.

E. G. Firstova, I. A. Bufetov, V. F. Khopin, V. V. Vel’miskin, S. V. Firstov, G. A. Bufetova, K. N. Nishchev, A. N. Gur’yanov, and E. M. Dianov, “Luminescence properties of IR-emitting bismuth centres in SiO2-based glasses in the UV to near-IR spectral region,” Quantum Electron. 45(1), 59–65 (2015).
[Crossref]

Cao, Y.

M. Gu, X. Li, and Y. Cao, “Optical storage arrays: a perspective for future big data storage,” Light Sci. Appl. 3(5), e177 (2014).
[Crossref]

Culverhouse, P.

T. Allsop, R. Arif, R. Neal, K. Kalli, V. Kundrát, A. Rozhin, P. Culverhouse, and D. J. Webb, “Photonic gas sensors exploiting directly the optical properties of hybrid carbon nanotube localized surface plasmon structures,” Light Sci. Appl. 5(2), e16036 (2016).
[Crossref]

Dianov, E.

Dianov, E. M.

S. V. Firstov, S. V. Alyshev, E. G. Firstova, M. A. Melkumov, A. M. Khegay, V. F. Khopin, A. N. Guryanov, and E. M. Dianov, “Dependence of the photobleaching on laser radiation wavelength in bismuth-doped germanosilicate fibers,” J. Lumin. 182, 87–90 (2017).
[Crossref]

S. V. Firstov, E. G. Firstova, S. V. Alyshev, V. F. Khopin, K. E. Riumkin, M. A. Melkumov, A. N. Guryanov, and E. M. Dianov, “Recovery of IR luminescence in photobleached bismuth-doped fibers by thermal annealing,” Laser Phys. 26(8), 084007 (2016).
[Crossref]

S. V. Firstov, S. V. Alyshev, K. E. Riumkin, V. F. Khopin, A. N. Guryanov, M. A. Melkumov, and E. M. Dianov, “A 23-dB bismuth-doped optical fiber amplifier for a 1700-nm band,” Sci. Rep. 6(1), 28939 (2016).
[Crossref] [PubMed]

E. G. Firstova, I. A. Bufetov, V. F. Khopin, V. V. Vel’miskin, S. V. Firstov, G. A. Bufetova, K. N. Nishchev, A. N. Gur’yanov, and E. M. Dianov, “Luminescence properties of IR-emitting bismuth centres in SiO2-based glasses in the UV to near-IR spectral region,” Quantum Electron. 45(1), 59–65 (2015).
[Crossref]

E. M. Dianov, “Amplification in Extended Transmission Bands Using Bismuth-Doped Optical Fibers,” J. Lightwave Technol. 31(4), 681–688 (2013).
[Crossref]

A. S. Zlenko, V. M. Mashinsky, L. D. Iskhakova, S. L. Semjonov, V. V. Koltashev, N. M. Karatun, and E. M. Dianov, “Mechanisms of optical losses in Bi:SiO2 glass fibers,” Opt. Express 20(21), 23186–23200 (2012).
[Crossref] [PubMed]

E. M. Dianov, “Bismuth-doped optical fibers: a challenging active medium for near-IR lasers and optical amplifiers,” Light Sci. Appl. 1(5), e12 (2012).
[Crossref]

S. V. Firstov, V. F. Khopin, I. A. Bufetov, E. G. Firstova, A. N. Guryanov, and E. M. Dianov, “Combined excitation-emission spectroscopy of bismuth active centers in optical fibers,” Opt. Express 19(20), 19551–19561 (2011).
[Crossref] [PubMed]

E. M. Dianov, “On the nature of near-IR emitting Bi centres in glass,” Quantum Electron. 40(4), 283–285 (2010).
[Crossref]

S. A. Vasil’ev, E. M. Dianov, V. V. Koltashev, V. M. Marchenko, V. M. Mashinsky, O. I. Medvedkov, V. G. Plotnichenko, Yu. N. Pyrkov, O. D. Sazhin, and A. A. Frolov, “Photoinduced changes in the Raman spectra of germanosilicate optical fibres,” Quantum Electron. 28(4), 330–333 (1998).
[Crossref]

Ding, M.

Douay, M.

I. Razdobreev, L. Bigot, V. Pureur, G. Bouwmans, and M. Douay, “Efficient all-fiber bismuth-doped laser,” Appl. Phys. Lett. 90(3), 031103 (2007).
[Crossref]

Duchez, J. B.

Dussardier, B.

Firstov, S.

Firstov, S. V.

S. V. Firstov, S. V. Alyshev, E. G. Firstova, M. A. Melkumov, A. M. Khegay, V. F. Khopin, A. N. Guryanov, and E. M. Dianov, “Dependence of the photobleaching on laser radiation wavelength in bismuth-doped germanosilicate fibers,” J. Lumin. 182, 87–90 (2017).
[Crossref]

S. V. Firstov, S. V. Alyshev, K. E. Riumkin, V. F. Khopin, A. N. Guryanov, M. A. Melkumov, and E. M. Dianov, “A 23-dB bismuth-doped optical fiber amplifier for a 1700-nm band,” Sci. Rep. 6(1), 28939 (2016).
[Crossref] [PubMed]

S. V. Firstov, E. G. Firstova, S. V. Alyshev, V. F. Khopin, K. E. Riumkin, M. A. Melkumov, A. N. Guryanov, and E. M. Dianov, “Recovery of IR luminescence in photobleached bismuth-doped fibers by thermal annealing,” Laser Phys. 26(8), 084007 (2016).
[Crossref]

E. G. Firstova, I. A. Bufetov, V. F. Khopin, V. V. Vel’miskin, S. V. Firstov, G. A. Bufetova, K. N. Nishchev, A. N. Gur’yanov, and E. M. Dianov, “Luminescence properties of IR-emitting bismuth centres in SiO2-based glasses in the UV to near-IR spectral region,” Quantum Electron. 45(1), 59–65 (2015).
[Crossref]

S. V. Firstov, V. F. Khopin, I. A. Bufetov, E. G. Firstova, A. N. Guryanov, and E. M. Dianov, “Combined excitation-emission spectroscopy of bismuth active centers in optical fibers,” Opt. Express 19(20), 19551–19561 (2011).
[Crossref] [PubMed]

Firstova, E. G.

S. V. Firstov, S. V. Alyshev, E. G. Firstova, M. A. Melkumov, A. M. Khegay, V. F. Khopin, A. N. Guryanov, and E. M. Dianov, “Dependence of the photobleaching on laser radiation wavelength in bismuth-doped germanosilicate fibers,” J. Lumin. 182, 87–90 (2017).
[Crossref]

S. V. Firstov, E. G. Firstova, S. V. Alyshev, V. F. Khopin, K. E. Riumkin, M. A. Melkumov, A. N. Guryanov, and E. M. Dianov, “Recovery of IR luminescence in photobleached bismuth-doped fibers by thermal annealing,” Laser Phys. 26(8), 084007 (2016).
[Crossref]

E. G. Firstova, I. A. Bufetov, V. F. Khopin, V. V. Vel’miskin, S. V. Firstov, G. A. Bufetova, K. N. Nishchev, A. N. Gur’yanov, and E. M. Dianov, “Luminescence properties of IR-emitting bismuth centres in SiO2-based glasses in the UV to near-IR spectral region,” Quantum Electron. 45(1), 59–65 (2015).
[Crossref]

S. V. Firstov, V. F. Khopin, I. A. Bufetov, E. G. Firstova, A. N. Guryanov, and E. M. Dianov, “Combined excitation-emission spectroscopy of bismuth active centers in optical fibers,” Opt. Express 19(20), 19551–19561 (2011).
[Crossref] [PubMed]

Fleming, J. W.

D. L. Griscom, E. J. Friebele, K. J. Long, and J. W. Fleming, “Fundamental defect centers in glass: Electron spin resonance and optical absorption studies of irradiated phosphorus doped silica glass and optical fibers,” J. Appl. Phys. 54(7), 3743–3762 (1983).
[Crossref]

Friebele, E. J.

D. L. Griscom, E. J. Friebele, K. J. Long, and J. W. Fleming, “Fundamental defect centers in glass: Electron spin resonance and optical absorption studies of irradiated phosphorus doped silica glass and optical fibers,” J. Appl. Phys. 54(7), 3743–3762 (1983).
[Crossref]

Frolov, A. A.

S. A. Vasil’ev, E. M. Dianov, V. V. Koltashev, V. M. Marchenko, V. M. Mashinsky, O. I. Medvedkov, V. G. Plotnichenko, Yu. N. Pyrkov, O. D. Sazhin, and A. A. Frolov, “Photoinduced changes in the Raman spectra of germanosilicate optical fibres,” Quantum Electron. 28(4), 330–333 (1998).
[Crossref]

Galeener, F. L.

F. L. Galeener and A. E. Geissberger, “Vibrational dynamics in 30Si-substituted vitreous SiO2,” Phys. Rev. B 27(10), 6199–6204 (1983).
[Crossref]

F. L. Galeener, “Planar rings in glasses,” Solid State Commun. 44(7), 1037–1040 (1982).
[Crossref]

Gao, L.

L. Gao, A. Garcia-Uribe, Y. Liu, C. Li, and L. V. Wang, “Photobleaching imprinting microscopy: seeing clearer and deeper,” J. Cell Sci. 127(2), 288–294 (2014).
[Crossref] [PubMed]

Garcia-Uribe, A.

L. Gao, A. Garcia-Uribe, Y. Liu, C. Li, and L. V. Wang, “Photobleaching imprinting microscopy: seeing clearer and deeper,” J. Cell Sci. 127(2), 288–294 (2014).
[Crossref] [PubMed]

Geissberger, A. E.

F. L. Galeener and A. E. Geissberger, “Vibrational dynamics in 30Si-substituted vitreous SiO2,” Phys. Rev. B 27(10), 6199–6204 (1983).
[Crossref]

Giacomazzi, L.

L. Giacomazzi, P. Umari, and A. Pasquarello, “Medium-range structural properties of vitreous germania obtained through first-principles analysis of vibrational spectra,” Phys. Rev. Lett. 95(7), 075505 (2005).
[Crossref] [PubMed]

Griscom, D. L.

D. L. Griscom, “On the natures of radiation-induced point defects in GeO2-SiO2 glasses: reevaluation of a 26-year-old ESR and optical data set,” Opt. Mater. Express 1(3), 400–412 (2011).
[Crossref]

D. L. Griscom, E. J. Friebele, K. J. Long, and J. W. Fleming, “Fundamental defect centers in glass: Electron spin resonance and optical absorption studies of irradiated phosphorus doped silica glass and optical fibers,” J. Appl. Phys. 54(7), 3743–3762 (1983).
[Crossref]

Gu, M.

M. Gu, X. Li, and Y. Cao, “Optical storage arrays: a perspective for future big data storage,” Light Sci. Appl. 3(5), e177 (2014).
[Crossref]

Gur’yanov, A. N.

E. G. Firstova, I. A. Bufetov, V. F. Khopin, V. V. Vel’miskin, S. V. Firstov, G. A. Bufetova, K. N. Nishchev, A. N. Gur’yanov, and E. M. Dianov, “Luminescence properties of IR-emitting bismuth centres in SiO2-based glasses in the UV to near-IR spectral region,” Quantum Electron. 45(1), 59–65 (2015).
[Crossref]

Guryanov, A.

Guryanov, A. N.

S. V. Firstov, S. V. Alyshev, E. G. Firstova, M. A. Melkumov, A. M. Khegay, V. F. Khopin, A. N. Guryanov, and E. M. Dianov, “Dependence of the photobleaching on laser radiation wavelength in bismuth-doped germanosilicate fibers,” J. Lumin. 182, 87–90 (2017).
[Crossref]

S. V. Firstov, E. G. Firstova, S. V. Alyshev, V. F. Khopin, K. E. Riumkin, M. A. Melkumov, A. N. Guryanov, and E. M. Dianov, “Recovery of IR luminescence in photobleached bismuth-doped fibers by thermal annealing,” Laser Phys. 26(8), 084007 (2016).
[Crossref]

S. V. Firstov, S. V. Alyshev, K. E. Riumkin, V. F. Khopin, A. N. Guryanov, M. A. Melkumov, and E. M. Dianov, “A 23-dB bismuth-doped optical fiber amplifier for a 1700-nm band,” Sci. Rep. 6(1), 28939 (2016).
[Crossref] [PubMed]

S. V. Firstov, V. F. Khopin, I. A. Bufetov, E. G. Firstova, A. N. Guryanov, and E. M. Dianov, “Combined excitation-emission spectroscopy of bismuth active centers in optical fibers,” Opt. Express 19(20), 19551–19561 (2011).
[Crossref] [PubMed]

Herman, R. C.

I. L. Mador, R. F. Wallis, M. C. Williams, and R. C. Herman, “Production and Bleaching of Color Centers in X-Rayed Alkali Halide Crystals,” Phys. Rev. 96(3), 617–628 (1954).
[Crossref]

Ierano, G.

G. Pacchioni and G. Ierano, “Ab initio formation energies of point defects in pure and Ge-doped SiO2,” Phys. Rev. B 56(12), 7304–7312 (1997).
[Crossref]

Iskhakova, L. D.

Jain, S.

Kalli, K.

T. Allsop, R. Arif, R. Neal, K. Kalli, V. Kundrát, A. Rozhin, P. Culverhouse, and D. J. Webb, “Photonic gas sensors exploiting directly the optical properties of hybrid carbon nanotube localized surface plasmon structures,” Light Sci. Appl. 5(2), e16036 (2016).
[Crossref]

Karatun, N. M.

Khegay, A. M.

S. V. Firstov, S. V. Alyshev, E. G. Firstova, M. A. Melkumov, A. M. Khegay, V. F. Khopin, A. N. Guryanov, and E. M. Dianov, “Dependence of the photobleaching on laser radiation wavelength in bismuth-doped germanosilicate fibers,” J. Lumin. 182, 87–90 (2017).
[Crossref]

Khopin, V.

Khopin, V. F.

S. V. Firstov, S. V. Alyshev, E. G. Firstova, M. A. Melkumov, A. M. Khegay, V. F. Khopin, A. N. Guryanov, and E. M. Dianov, “Dependence of the photobleaching on laser radiation wavelength in bismuth-doped germanosilicate fibers,” J. Lumin. 182, 87–90 (2017).
[Crossref]

S. V. Firstov, E. G. Firstova, S. V. Alyshev, V. F. Khopin, K. E. Riumkin, M. A. Melkumov, A. N. Guryanov, and E. M. Dianov, “Recovery of IR luminescence in photobleached bismuth-doped fibers by thermal annealing,” Laser Phys. 26(8), 084007 (2016).
[Crossref]

S. V. Firstov, S. V. Alyshev, K. E. Riumkin, V. F. Khopin, A. N. Guryanov, M. A. Melkumov, and E. M. Dianov, “A 23-dB bismuth-doped optical fiber amplifier for a 1700-nm band,” Sci. Rep. 6(1), 28939 (2016).
[Crossref] [PubMed]

E. G. Firstova, I. A. Bufetov, V. F. Khopin, V. V. Vel’miskin, S. V. Firstov, G. A. Bufetova, K. N. Nishchev, A. N. Gur’yanov, and E. M. Dianov, “Luminescence properties of IR-emitting bismuth centres in SiO2-based glasses in the UV to near-IR spectral region,” Quantum Electron. 45(1), 59–65 (2015).
[Crossref]

S. V. Firstov, V. F. Khopin, I. A. Bufetov, E. G. Firstova, A. N. Guryanov, and E. M. Dianov, “Combined excitation-emission spectroscopy of bismuth active centers in optical fibers,” Opt. Express 19(20), 19551–19561 (2011).
[Crossref] [PubMed]

Koltashev, V. V.

A. S. Zlenko, V. M. Mashinsky, L. D. Iskhakova, S. L. Semjonov, V. V. Koltashev, N. M. Karatun, and E. M. Dianov, “Mechanisms of optical losses in Bi:SiO2 glass fibers,” Opt. Express 20(21), 23186–23200 (2012).
[Crossref] [PubMed]

S. A. Vasil’ev, E. M. Dianov, V. V. Koltashev, V. M. Marchenko, V. M. Mashinsky, O. I. Medvedkov, V. G. Plotnichenko, Yu. N. Pyrkov, O. D. Sazhin, and A. A. Frolov, “Photoinduced changes in the Raman spectra of germanosilicate optical fibres,” Quantum Electron. 28(4), 330–333 (1998).
[Crossref]

Kundrát, V.

T. Allsop, R. Arif, R. Neal, K. Kalli, V. Kundrát, A. Rozhin, P. Culverhouse, and D. J. Webb, “Photonic gas sensors exploiting directly the optical properties of hybrid carbon nanotube localized surface plasmon structures,” Light Sci. Appl. 5(2), e16036 (2016).
[Crossref]

LaRochell, S.

S. LaRochell, F. Ouellette, and J. Lauzon, “Two-photon excitation and bleaching of the 400 nm luminescence band and germanium-doped-silica optical fibres,” Can. J. Phys. 71(1–2), 79–84 (1993).
[Crossref]

Lauzon, J.

S. LaRochell, F. Ouellette, and J. Lauzon, “Two-photon excitation and bleaching of the 400 nm luminescence band and germanium-doped-silica optical fibres,” Can. J. Phys. 71(1–2), 79–84 (1993).
[Crossref]

Li, C.

L. Gao, A. Garcia-Uribe, Y. Liu, C. Li, and L. V. Wang, “Photobleaching imprinting microscopy: seeing clearer and deeper,” J. Cell Sci. 127(2), 288–294 (2014).
[Crossref] [PubMed]

Li, X.

M. Gu, X. Li, and Y. Cao, “Optical storage arrays: a perspective for future big data storage,” Light Sci. Appl. 3(5), e177 (2014).
[Crossref]

Liu, Y.

L. Gao, A. Garcia-Uribe, Y. Liu, C. Li, and L. V. Wang, “Photobleaching imprinting microscopy: seeing clearer and deeper,” J. Cell Sci. 127(2), 288–294 (2014).
[Crossref] [PubMed]

Long, K. J.

D. L. Griscom, E. J. Friebele, K. J. Long, and J. W. Fleming, “Fundamental defect centers in glass: Electron spin resonance and optical absorption studies of irradiated phosphorus doped silica glass and optical fibers,” J. Appl. Phys. 54(7), 3743–3762 (1983).
[Crossref]

Luo, Y.

Mador, I. L.

I. L. Mador, R. F. Wallis, M. C. Williams, and R. C. Herman, “Production and Bleaching of Color Centers in X-Rayed Alkali Halide Crystals,” Phys. Rev. 96(3), 617–628 (1954).
[Crossref]

Mady, F.

Marchenko, V. M.

S. A. Vasil’ev, E. M. Dianov, V. V. Koltashev, V. M. Marchenko, V. M. Mashinsky, O. I. Medvedkov, V. G. Plotnichenko, Yu. N. Pyrkov, O. D. Sazhin, and A. A. Frolov, “Photoinduced changes in the Raman spectra of germanosilicate optical fibres,” Quantum Electron. 28(4), 330–333 (1998).
[Crossref]

Mashinsky, V. M.

A. S. Zlenko, V. M. Mashinsky, L. D. Iskhakova, S. L. Semjonov, V. V. Koltashev, N. M. Karatun, and E. M. Dianov, “Mechanisms of optical losses in Bi:SiO2 glass fibers,” Opt. Express 20(21), 23186–23200 (2012).
[Crossref] [PubMed]

S. A. Vasil’ev, E. M. Dianov, V. V. Koltashev, V. M. Marchenko, V. M. Mashinsky, O. I. Medvedkov, V. G. Plotnichenko, Yu. N. Pyrkov, O. D. Sazhin, and A. A. Frolov, “Photoinduced changes in the Raman spectra of germanosilicate optical fibres,” Quantum Electron. 28(4), 330–333 (1998).
[Crossref]

Matson, D. W.

S. K. Sharma, D. W. Matson, J. A. Philpotts, and T. L. Roush, “Raman study of the structure of glasses along the join SiO2-GeO2,” J. Non-Cryst. Solids 68(1), 99–114 (1984).
[Crossref]

Mebrouk, Y.

Medvedkov, O. I.

S. A. Vasil’ev, E. M. Dianov, V. V. Koltashev, V. M. Marchenko, V. M. Mashinsky, O. I. Medvedkov, V. G. Plotnichenko, Yu. N. Pyrkov, O. D. Sazhin, and A. A. Frolov, “Photoinduced changes in the Raman spectra of germanosilicate optical fibres,” Quantum Electron. 28(4), 330–333 (1998).
[Crossref]

Melkumov, M.

Melkumov, M. A.

S. V. Firstov, S. V. Alyshev, E. G. Firstova, M. A. Melkumov, A. M. Khegay, V. F. Khopin, A. N. Guryanov, and E. M. Dianov, “Dependence of the photobleaching on laser radiation wavelength in bismuth-doped germanosilicate fibers,” J. Lumin. 182, 87–90 (2017).
[Crossref]

S. V. Firstov, E. G. Firstova, S. V. Alyshev, V. F. Khopin, K. E. Riumkin, M. A. Melkumov, A. N. Guryanov, and E. M. Dianov, “Recovery of IR luminescence in photobleached bismuth-doped fibers by thermal annealing,” Laser Phys. 26(8), 084007 (2016).
[Crossref]

S. V. Firstov, S. V. Alyshev, K. E. Riumkin, V. F. Khopin, A. N. Guryanov, M. A. Melkumov, and E. M. Dianov, “A 23-dB bismuth-doped optical fiber amplifier for a 1700-nm band,” Sci. Rep. 6(1), 28939 (2016).
[Crossref] [PubMed]

Neal, R.

T. Allsop, R. Arif, R. Neal, K. Kalli, V. Kundrát, A. Rozhin, P. Culverhouse, and D. J. Webb, “Photonic gas sensors exploiting directly the optical properties of hybrid carbon nanotube localized surface plasmon structures,” Light Sci. Appl. 5(2), e16036 (2016).
[Crossref]

Neustruev, V. B.

V. B. Neustruev, “Colour centres in germanosilicate glass and optical fibres,” J. Phys: Cond. Mat. 6(35), 6901 (1994).

Nishchev, K. N.

E. G. Firstova, I. A. Bufetov, V. F. Khopin, V. V. Vel’miskin, S. V. Firstov, G. A. Bufetova, K. N. Nishchev, A. N. Gur’yanov, and E. M. Dianov, “Luminescence properties of IR-emitting bismuth centres in SiO2-based glasses in the UV to near-IR spectral region,” Quantum Electron. 45(1), 59–65 (2015).
[Crossref]

Nuccio, L.

L. Nuccio, S. Agnello, and R. Boscaino, “Annealing of radiation induced oxygen deficient point defects in amorphous silicon dioxide: evidence for a distribution of the reaction activation energies,” J. Phys. Condens. Matter 20(38), 385215 (2008).
[Crossref] [PubMed]

Ouellette, F.

S. LaRochell, F. Ouellette, and J. Lauzon, “Two-photon excitation and bleaching of the 400 nm luminescence band and germanium-doped-silica optical fibres,” Can. J. Phys. 71(1–2), 79–84 (1993).
[Crossref]

Pacchioni, G.

G. Pacchioni and G. Ierano, “Ab initio formation energies of point defects in pure and Ge-doped SiO2,” Phys. Rev. B 56(12), 7304–7312 (1997).
[Crossref]

Pasquarello, A.

L. Giacomazzi, P. Umari, and A. Pasquarello, “Medium-range structural properties of vitreous germania obtained through first-principles analysis of vibrational spectra,” Phys. Rev. Lett. 95(7), 075505 (2005).
[Crossref] [PubMed]

Peng, G.-D.

Philpotts, J. A.

S. K. Sharma, D. W. Matson, J. A. Philpotts, and T. L. Roush, “Raman study of the structure of glasses along the join SiO2-GeO2,” J. Non-Cryst. Solids 68(1), 99–114 (1984).
[Crossref]

Plotnichenko, V. G.

S. A. Vasil’ev, E. M. Dianov, V. V. Koltashev, V. M. Marchenko, V. M. Mashinsky, O. I. Medvedkov, V. G. Plotnichenko, Yu. N. Pyrkov, O. D. Sazhin, and A. A. Frolov, “Photoinduced changes in the Raman spectra of germanosilicate optical fibres,” Quantum Electron. 28(4), 330–333 (1998).
[Crossref]

Pureur, V.

I. Razdobreev, L. Bigot, V. Pureur, G. Bouwmans, and M. Douay, “Efficient all-fiber bismuth-doped laser,” Appl. Phys. Lett. 90(3), 031103 (2007).
[Crossref]

Pyrkov, Yu. N.

S. A. Vasil’ev, E. M. Dianov, V. V. Koltashev, V. M. Marchenko, V. M. Mashinsky, O. I. Medvedkov, V. G. Plotnichenko, Yu. N. Pyrkov, O. D. Sazhin, and A. A. Frolov, “Photoinduced changes in the Raman spectra of germanosilicate optical fibres,” Quantum Electron. 28(4), 330–333 (1998).
[Crossref]

Qiu, J.

H.-T. Sun, J. Zhou, and J. Qiu, “Recent advances in bismuth activated photonic materials,” Prog. Mater. Sci. 64, 1–72 (2014).
[Crossref]

Razdobreev, I.

I. Razdobreev and L. Bigot, “On the multiplicity of Bismuth active centers in germano-aluminosilicate preform,” Opt. Mater. 33(6), 973–977 (2011).
[Crossref]

I. Razdobreev, L. Bigot, V. Pureur, G. Bouwmans, and M. Douay, “Efficient all-fiber bismuth-doped laser,” Appl. Phys. Lett. 90(3), 031103 (2007).
[Crossref]

Riumkin, K.

Riumkin, K. E.

S. V. Firstov, E. G. Firstova, S. V. Alyshev, V. F. Khopin, K. E. Riumkin, M. A. Melkumov, A. N. Guryanov, and E. M. Dianov, “Recovery of IR luminescence in photobleached bismuth-doped fibers by thermal annealing,” Laser Phys. 26(8), 084007 (2016).
[Crossref]

S. V. Firstov, S. V. Alyshev, K. E. Riumkin, V. F. Khopin, A. N. Guryanov, M. A. Melkumov, and E. M. Dianov, “A 23-dB bismuth-doped optical fiber amplifier for a 1700-nm band,” Sci. Rep. 6(1), 28939 (2016).
[Crossref] [PubMed]

Roush, T. L.

S. K. Sharma, D. W. Matson, J. A. Philpotts, and T. L. Roush, “Raman study of the structure of glasses along the join SiO2-GeO2,” J. Non-Cryst. Solids 68(1), 99–114 (1984).
[Crossref]

Rozhin, A.

T. Allsop, R. Arif, R. Neal, K. Kalli, V. Kundrát, A. Rozhin, P. Culverhouse, and D. J. Webb, “Photonic gas sensors exploiting directly the optical properties of hybrid carbon nanotube localized surface plasmon structures,” Light Sci. Appl. 5(2), e16036 (2016).
[Crossref]

Sahu, J. K.

Sazhin, O. D.

S. A. Vasil’ev, E. M. Dianov, V. V. Koltashev, V. M. Marchenko, V. M. Mashinsky, O. I. Medvedkov, V. G. Plotnichenko, Yu. N. Pyrkov, O. D. Sazhin, and A. A. Frolov, “Photoinduced changes in the Raman spectra of germanosilicate optical fibres,” Quantum Electron. 28(4), 330–333 (1998).
[Crossref]

Semjonov, S. L.

Sharma, S. K.

S. K. Sharma, D. W. Matson, J. A. Philpotts, and T. L. Roush, “Raman study of the structure of glasses along the join SiO2-GeO2,” J. Non-Cryst. Solids 68(1), 99–114 (1984).
[Crossref]

Shubin, A.

Sun, H.-T.

H.-T. Sun, J. Zhou, and J. Qiu, “Recent advances in bismuth activated photonic materials,” Prog. Mater. Sci. 64, 1–72 (2014).
[Crossref]

Umari, P.

L. Giacomazzi, P. Umari, and A. Pasquarello, “Medium-range structural properties of vitreous germania obtained through first-principles analysis of vibrational spectra,” Phys. Rev. Lett. 95(7), 075505 (2005).
[Crossref] [PubMed]

Vasil’ev, S. A.

S. A. Vasil’ev, E. M. Dianov, V. V. Koltashev, V. M. Marchenko, V. M. Mashinsky, O. I. Medvedkov, V. G. Plotnichenko, Yu. N. Pyrkov, O. D. Sazhin, and A. A. Frolov, “Photoinduced changes in the Raman spectra of germanosilicate optical fibres,” Quantum Electron. 28(4), 330–333 (1998).
[Crossref]

Vel’miskin, V. V.

E. G. Firstova, I. A. Bufetov, V. F. Khopin, V. V. Vel’miskin, S. V. Firstov, G. A. Bufetova, K. N. Nishchev, A. N. Gur’yanov, and E. M. Dianov, “Luminescence properties of IR-emitting bismuth centres in SiO2-based glasses in the UV to near-IR spectral region,” Quantum Electron. 45(1), 59–65 (2015).
[Crossref]

Velazquez, M. M. A. N.

Vollmayr-Lee, K.

K. Vollmayr-Lee and A. Zippelius, “Temperature-dependent defect dynamics in the network glass SiO2.,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 88(5), 052145 (2013).
[Crossref] [PubMed]

Wallis, R. F.

I. L. Mador, R. F. Wallis, M. C. Williams, and R. C. Herman, “Production and Bleaching of Color Centers in X-Rayed Alkali Halide Crystals,” Phys. Rev. 96(3), 617–628 (1954).
[Crossref]

Wang, L. V.

L. Gao, A. Garcia-Uribe, Y. Liu, C. Li, and L. V. Wang, “Photobleaching imprinting microscopy: seeing clearer and deeper,” J. Cell Sci. 127(2), 288–294 (2014).
[Crossref] [PubMed]

Webb, D. J.

T. Allsop, R. Arif, R. Neal, K. Kalli, V. Kundrát, A. Rozhin, P. Culverhouse, and D. J. Webb, “Photonic gas sensors exploiting directly the optical properties of hybrid carbon nanotube localized surface plasmon structures,” Light Sci. Appl. 5(2), e16036 (2016).
[Crossref]

Wei, S.

Williams, M. C.

I. L. Mador, R. F. Wallis, M. C. Williams, and R. C. Herman, “Production and Bleaching of Color Centers in X-Rayed Alkali Halide Crystals,” Phys. Rev. 96(3), 617–628 (1954).
[Crossref]

Zhou, J.

H.-T. Sun, J. Zhou, and J. Qiu, “Recent advances in bismuth activated photonic materials,” Prog. Mater. Sci. 64, 1–72 (2014).
[Crossref]

Zippelius, A.

K. Vollmayr-Lee and A. Zippelius, “Temperature-dependent defect dynamics in the network glass SiO2.,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 88(5), 052145 (2013).
[Crossref] [PubMed]

Zlenko, A. S.

Appl. Phys. Lett. (1)

I. Razdobreev, L. Bigot, V. Pureur, G. Bouwmans, and M. Douay, “Efficient all-fiber bismuth-doped laser,” Appl. Phys. Lett. 90(3), 031103 (2007).
[Crossref]

Can. J. Phys. (1)

S. LaRochell, F. Ouellette, and J. Lauzon, “Two-photon excitation and bleaching of the 400 nm luminescence band and germanium-doped-silica optical fibres,” Can. J. Phys. 71(1–2), 79–84 (1993).
[Crossref]

J. Appl. Phys. (1)

D. L. Griscom, E. J. Friebele, K. J. Long, and J. W. Fleming, “Fundamental defect centers in glass: Electron spin resonance and optical absorption studies of irradiated phosphorus doped silica glass and optical fibers,” J. Appl. Phys. 54(7), 3743–3762 (1983).
[Crossref]

J. Cell Sci. (1)

L. Gao, A. Garcia-Uribe, Y. Liu, C. Li, and L. V. Wang, “Photobleaching imprinting microscopy: seeing clearer and deeper,” J. Cell Sci. 127(2), 288–294 (2014).
[Crossref] [PubMed]

J. Lightwave Technol. (1)

J. Lumin. (1)

S. V. Firstov, S. V. Alyshev, E. G. Firstova, M. A. Melkumov, A. M. Khegay, V. F. Khopin, A. N. Guryanov, and E. M. Dianov, “Dependence of the photobleaching on laser radiation wavelength in bismuth-doped germanosilicate fibers,” J. Lumin. 182, 87–90 (2017).
[Crossref]

J. Non-Cryst. Solids (1)

S. K. Sharma, D. W. Matson, J. A. Philpotts, and T. L. Roush, “Raman study of the structure of glasses along the join SiO2-GeO2,” J. Non-Cryst. Solids 68(1), 99–114 (1984).
[Crossref]

J. Phys. Condens. Matter (1)

L. Nuccio, S. Agnello, and R. Boscaino, “Annealing of radiation induced oxygen deficient point defects in amorphous silicon dioxide: evidence for a distribution of the reaction activation energies,” J. Phys. Condens. Matter 20(38), 385215 (2008).
[Crossref] [PubMed]

J. Phys: Cond. Mat. (1)

V. B. Neustruev, “Colour centres in germanosilicate glass and optical fibres,” J. Phys: Cond. Mat. 6(35), 6901 (1994).

Laser Phys. (1)

S. V. Firstov, E. G. Firstova, S. V. Alyshev, V. F. Khopin, K. E. Riumkin, M. A. Melkumov, A. N. Guryanov, and E. M. Dianov, “Recovery of IR luminescence in photobleached bismuth-doped fibers by thermal annealing,” Laser Phys. 26(8), 084007 (2016).
[Crossref]

Light Sci. Appl. (3)

E. M. Dianov, “Bismuth-doped optical fibers: a challenging active medium for near-IR lasers and optical amplifiers,” Light Sci. Appl. 1(5), e12 (2012).
[Crossref]

T. Allsop, R. Arif, R. Neal, K. Kalli, V. Kundrát, A. Rozhin, P. Culverhouse, and D. J. Webb, “Photonic gas sensors exploiting directly the optical properties of hybrid carbon nanotube localized surface plasmon structures,” Light Sci. Appl. 5(2), e16036 (2016).
[Crossref]

M. Gu, X. Li, and Y. Cao, “Optical storage arrays: a perspective for future big data storage,” Light Sci. Appl. 3(5), e177 (2014).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Opt. Mater. (1)

I. Razdobreev and L. Bigot, “On the multiplicity of Bismuth active centers in germano-aluminosilicate preform,” Opt. Mater. 33(6), 973–977 (2011).
[Crossref]

Opt. Mater. Express (2)

Phys. Rev. (1)

I. L. Mador, R. F. Wallis, M. C. Williams, and R. C. Herman, “Production and Bleaching of Color Centers in X-Rayed Alkali Halide Crystals,” Phys. Rev. 96(3), 617–628 (1954).
[Crossref]

Phys. Rev. B (2)

G. Pacchioni and G. Ierano, “Ab initio formation energies of point defects in pure and Ge-doped SiO2,” Phys. Rev. B 56(12), 7304–7312 (1997).
[Crossref]

F. L. Galeener and A. E. Geissberger, “Vibrational dynamics in 30Si-substituted vitreous SiO2,” Phys. Rev. B 27(10), 6199–6204 (1983).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

K. Vollmayr-Lee and A. Zippelius, “Temperature-dependent defect dynamics in the network glass SiO2.,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 88(5), 052145 (2013).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

L. Giacomazzi, P. Umari, and A. Pasquarello, “Medium-range structural properties of vitreous germania obtained through first-principles analysis of vibrational spectra,” Phys. Rev. Lett. 95(7), 075505 (2005).
[Crossref] [PubMed]

Prog. Mater. Sci. (1)

H.-T. Sun, J. Zhou, and J. Qiu, “Recent advances in bismuth activated photonic materials,” Prog. Mater. Sci. 64, 1–72 (2014).
[Crossref]

Quantum Electron. (3)

E. M. Dianov, “On the nature of near-IR emitting Bi centres in glass,” Quantum Electron. 40(4), 283–285 (2010).
[Crossref]

S. A. Vasil’ev, E. M. Dianov, V. V. Koltashev, V. M. Marchenko, V. M. Mashinsky, O. I. Medvedkov, V. G. Plotnichenko, Yu. N. Pyrkov, O. D. Sazhin, and A. A. Frolov, “Photoinduced changes in the Raman spectra of germanosilicate optical fibres,” Quantum Electron. 28(4), 330–333 (1998).
[Crossref]

E. G. Firstova, I. A. Bufetov, V. F. Khopin, V. V. Vel’miskin, S. V. Firstov, G. A. Bufetova, K. N. Nishchev, A. N. Gur’yanov, and E. M. Dianov, “Luminescence properties of IR-emitting bismuth centres in SiO2-based glasses in the UV to near-IR spectral region,” Quantum Electron. 45(1), 59–65 (2015).
[Crossref]

Sci. Rep. (1)

S. V. Firstov, S. V. Alyshev, K. E. Riumkin, V. F. Khopin, A. N. Guryanov, M. A. Melkumov, and E. M. Dianov, “A 23-dB bismuth-doped optical fiber amplifier for a 1700-nm band,” Sci. Rep. 6(1), 28939 (2016).
[Crossref] [PubMed]

Solid State Commun. (1)

F. L. Galeener, “Planar rings in glasses,” Solid State Commun. 44(7), 1037–1040 (1982).
[Crossref]

Other (3)

A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).

J. K. Sahu, N. K. Thipparapu, A. A. Umnikov, P. Barua, and M. Nunez Velazquez, in 13th International Conference on Fiber Optics and Photonics, 2016 OSA Technical Digest (Optical Society of America, 2016), paper Tu2A.2.

S. Yoo, M. P. Kalita, J. K. Sahu, J. Nilsson, and D. N. Payne, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, 2008 OSA Technical Digest (Optical Society of America, 2008), paper CFL4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic low-energy level diagrams of the BACs-Si, BACs-Ge, and BACs-P [18]. Peak luminescence wavelengths are shown for the corresponding transitions indicated by arrows.
Fig. 2
Fig. 2 Absorption (a) and luminescence (b) spectra of Fiber #1 (1 – pristine; 2 – irradiated).The irradiation was provided by the green laser with an intensity of 1.2 MW/cm2 during 1800 s.
Fig. 3
Fig. 3 Raman spectra of the pristine (1) and bleached (2) bismuth-doped fibers (Fiber #1). Laser radiation at 532 nm was used for the bleaching.
Fig. 4
Fig. 4 Dynamics of the 1700-nm luminescence intensity of the BACs-Ge excited at 1550 nm during irradiation with an intensity of 1.5 MW/cm2 (a) and its recovery (b) at room temperature. (squares – experimental data; line – fitting). Iin and Ires are the luminescence intensities before bleaching and when the photobleaching process is saturated, correspondingly; τ is the time constant, β is the fit parameter. Inset: the bleaching rate 1/τ versus the radiation intensity of the laser operating at 532 nm (in log-log scale). The experimental data are indicated by the circles, whereas the straight line shows the linear function with a slope of 2.
Fig. 5
Fig. 5 Luminescence/absorption intensity of the BACs-Si,Ge as a function of time during the bleaching (a, b) and as a function of temperature during the annealing (c, d), respectively. The luminescence at 1700 and 1400 nm was monitored under excitation at 1550 and 1240 nm, respectively. The experimental values were normalized by the ones of the pristine fiber.
Fig. 6
Fig. 6 Logarithmic rate of recovery of BACs-Ge as a function of 1/T.
Fig. 7
Fig. 7 Bleaching–recovery cycles of the BACs-Ge. Luminescence intensity at 1700 nm for bleaching/heating indicated by circles/rhombuses, respectively. The corresponding changes during cooling process are shown by dashed lines.
Fig. 8
Fig. 8 (a) Typical luminescence spectra of the Bi-doped fibers listed in Table 1; (b) Evolution of the intensity of the luminescence band of the corresponding BACs in different bismuth-doped fibers irradiated by laser radiation with a wavelength of 407 nm (~1 MW/cm2).

Tables (1)

Tables Icon

Table 1 Characteristics of the tested fibers

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

BAC( B i +n +ODC ) 2hv B i +n + e +E ' center
ln(R)~const E act kT

Metrics