Abstract

The transformation from Y3Al5O12 to perovskite YAlO3 crystal phase was observed during ultrafast laser writing in the bulk of a Y3Al5O12 single crystal. The control of the phase transformation was demonstrated by tuning parameters of laser writing. The phenomenon is interpreted in terms of structural changes in the overheated garnet melt under laser heating followed by rapid solidification, and at least 1-ms dwell time of overheated melt is required to start spontaneous crystallization. The appearance of the perovskite phase was confirmed by Raman spectroscopy, quantitative phase and polarization microscopies.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Stress-induced optical waveguides written by an ultrafast laser in Nd3+, Y3+ co-doped SrF2 crystals

B. Hari Babu, Chengkun Lyu, Thomas Billotte, D. Pallares-Aldeiturriaga, Bertrand Poumellec, J. M. Lopez-Higuera, Xiao-Tao Hao, and Matthieu Lancry
Appl. Opt. 58(4) 984-990 (2019)

Study of femtosecond laser writing in the bulk of Nd3+, Y3+ co-doped CaF2 crystals

B. Hari Babu, Thomas Billotte, Chengkun Lyu, Bertrand Poumellec, Matthieu Lancry, and Xiao-Tao Hao
OSA Continuum 2(1) 151-161 (2019)

Unexpected influence of focal depth on nucleation during femtosecond laser crystallization of glass

Adam Stone, Masaaki Sakakura, Yasuhiko Shimotsuma, Kiyotaka Miura, Kazuyuki Hirao, Volkmar Dierolf, and Himanshu Jain
Opt. Mater. Express 1(5) 990-995 (2011)

References

  • View by:
  • |
  • |
  • |

  1. V. Koubassov, F. J. Laprise, F. Thereberge, E. Forster, R. Sauerbrey, B. Muller, U. Glatzel, and S. L. Chin, “Ultrafast laser-induced melting of glass,” Appl. Phys., A Mater. Sci. Process. 79(3), 499–505 (2004).
    [Crossref]
  2. B. Yu, B. Chen, X. Yang, J. Qiu, X. Jiang, C. Zhu, and K. Hirao, “Study of crystal formation in borate, niobate, and titanate glasses irradiated by femtosecond laser pulses,” J. Opt. Soc. Am. B 21(1), 83 (2004).
    [Crossref]
  3. B. Lu, B. Yu, B. Chen, X. Yan, J. Qiu, X. Jiang, and C. Zhu, “Study of crystal formation in titanate glass irradiated by 800 nm femtosecond laser pulse,” J. Cryst. Growth 285(1-2), 76–80 (2005).
    [Crossref]
  4. X. Du, H. Zhang, C. Cheng, S. Zhou, F. Zhang, Y. Yu, G. Dong, and J. Qiu, “Space-selective precipitation of ZnO crystals in glass by using high repetition rate femtosecond laser irradiation,” Opt. Express 22(15), 17908–17914 (2014).
    [Crossref] [PubMed]
  5. M. Zhong, Y. Du, H. Ma, Y. Han, B. Lu, Y. Dai, and X. Zeng, “Crystalline phase distribution of Dy2(MoO4)3 in glass induced by 250 kHz femtosecond laser irradiation,” Opt. Mater. Express 2(8), 1156 (2012).
    [Crossref]
  6. J. Cao, B. Poumellec, L. Mazerolles, F. Brisset, A.-L. Helbert, S. Surble, X. He, and M. Lancry, “Nanoscale Phase Separation in Lithium Niobium Silicate Glass by Femtosecond Laser Irradiation,” J. Am. Ceram. Soc. 8, 1–8 (2016).
  7. A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. V. Rode, and S. Juodkazis, “Evidence of superdense aluminium synthesized by ultrafast microexplosion,” Nat. Commun. 2, 445 (2011).
    [Crossref] [PubMed]
  8. A. G. Okhrimchuk, V. K. Mezentsev, H. Schmitz, M. Dubov, and I. Bennion, “Cascaded nonlinear absorption of femtosecond laser pulses in dielectrics,” Laser Phys. 19(7), 1415–1422 (2009).
    [Crossref]
  9. A. Okhrimchuk, “Femtosecond Fabrication of Waveguides in Ion-Doped Laser Crystals,” in Coherence and Ultrashort Pulse Laser Emission, F. J. Duarte, ed. (InTech, 2010).
  10. J. P. Hurrell, S. P. S. Porto, I. F. Chang, S. S. Mitra, and R. P. Bauman, “Optical Phonons of Yttrium Aluminum Garnet,” Phys. Rev. 173(3), 851–856 (1968).
    [Crossref]
  11. A. Chopelas, “Single-crystal Raman spectra of YAlO3 and GdAlO3: comparison to several orthorhombic ABO3 perovskites,” Phys. Chem. Miner. 38(9), 709–726 (2011).
    [Crossref]
  12. S. P. S. Porto and R. S. Krishnan, “Raman Effect of Corundum,” J. Chem. Phys. 47, 1009(1967).
    [Crossref]
  13. A. Mortensen, D. H. Christensen, O. F. Nielsen, and E. Pedersen, “Raman Spectra of Amorphous Al2O3 and Al2O3/MoO3 Obtained by Visible and Infrared Excitation,” J. Raman Specroscopy 22(1), 47–49 (1991).
    [Crossref]
  14. C. J. Bellair, C. L. Curl, B. E. Allman, P. J. Harris, A. Roberts, L. M. D. Delbridge, and K. A. Nugent, “Quantitative Phase Amplitude Microscopy IV: Imaging Thick Specimens,” J. Microsc. 214(1), 62–69 (2004).
    [Crossref] [PubMed]
  15. M. Gervais, S. Le Floch, J. C. Riffiet, J. Coutures, and J. P. Coutures, “Effect of the Melt Temperature on the Solidification Process of Liquid Garnets Ln3Al5O12 (Ln = Dy, Y, and Lu),” J. Amer. Am. Ceram. Soc. 75(11), 3166–3168 (1992).
    [Crossref]
  16. J. L. Caslavsky and D. J. Viechnicki, “Melting behaviour and metastability of yttrium aluminium garnet (YAG) and YAIO3 determined by optical differential thermal analysis,” J. Mater. Sci. 15(7), 1709–1718 (1980).
    [Crossref]
  17. B. Cockayne and B. Lent, “Complexity in The Solidification Behaviour of Molten Y3Al5012,” J. Cryst. Growth 46(3), 371–378 (1979).
    [Crossref]
  18. N. Padture and P. Klemens, “Low thermal conductivity in garnets,” J. Am. Ceram. Soc. 80(4), 1018–1020 (1997).
    [Crossref]
  19. P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, ““Quill” writing with ultrashort light pulses in transparent optical materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
    [Crossref]
  20. K. W. Martin and L. G. Deshazer, “Indices of Refraction of the Biaxial Crystal YAIO3.,” Appl. Opt. 12(5), 941–943 (1973).
    [Crossref] [PubMed]
  21. R. W. Dixon, “Photoelastic Properties of Selected Materials and Their Relevance for Applications to Acoustic Light Modulators and Scanners,” J. Appl. Phys. 38(13), 5149–5153 (1967).
    [Crossref]
  22. M. Bass, ed., Handbook of Optics, Vol. 2. (McGraw_Hill, 1995).
  23. P. Nayar, X. Y. Zhu, F. Yang, M. Lu, G. Lakshminarayana, X. P. Liu, Y. F. Chen, and I. V. Kityk, “Fabrication and characterization of highly luminescent Er3+:Al2O3 thin films with optimized growth parameters,” Opt. Mater. (Amst) 60, 57–61 (2016).
    [Crossref]

2016 (2)

J. Cao, B. Poumellec, L. Mazerolles, F. Brisset, A.-L. Helbert, S. Surble, X. He, and M. Lancry, “Nanoscale Phase Separation in Lithium Niobium Silicate Glass by Femtosecond Laser Irradiation,” J. Am. Ceram. Soc. 8, 1–8 (2016).

P. Nayar, X. Y. Zhu, F. Yang, M. Lu, G. Lakshminarayana, X. P. Liu, Y. F. Chen, and I. V. Kityk, “Fabrication and characterization of highly luminescent Er3+:Al2O3 thin films with optimized growth parameters,” Opt. Mater. (Amst) 60, 57–61 (2016).
[Crossref]

2014 (1)

2012 (1)

2011 (2)

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. V. Rode, and S. Juodkazis, “Evidence of superdense aluminium synthesized by ultrafast microexplosion,” Nat. Commun. 2, 445 (2011).
[Crossref] [PubMed]

A. Chopelas, “Single-crystal Raman spectra of YAlO3 and GdAlO3: comparison to several orthorhombic ABO3 perovskites,” Phys. Chem. Miner. 38(9), 709–726 (2011).
[Crossref]

2009 (1)

A. G. Okhrimchuk, V. K. Mezentsev, H. Schmitz, M. Dubov, and I. Bennion, “Cascaded nonlinear absorption of femtosecond laser pulses in dielectrics,” Laser Phys. 19(7), 1415–1422 (2009).
[Crossref]

2007 (1)

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, ““Quill” writing with ultrashort light pulses in transparent optical materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
[Crossref]

2005 (1)

B. Lu, B. Yu, B. Chen, X. Yan, J. Qiu, X. Jiang, and C. Zhu, “Study of crystal formation in titanate glass irradiated by 800 nm femtosecond laser pulse,” J. Cryst. Growth 285(1-2), 76–80 (2005).
[Crossref]

2004 (3)

V. Koubassov, F. J. Laprise, F. Thereberge, E. Forster, R. Sauerbrey, B. Muller, U. Glatzel, and S. L. Chin, “Ultrafast laser-induced melting of glass,” Appl. Phys., A Mater. Sci. Process. 79(3), 499–505 (2004).
[Crossref]

C. J. Bellair, C. L. Curl, B. E. Allman, P. J. Harris, A. Roberts, L. M. D. Delbridge, and K. A. Nugent, “Quantitative Phase Amplitude Microscopy IV: Imaging Thick Specimens,” J. Microsc. 214(1), 62–69 (2004).
[Crossref] [PubMed]

B. Yu, B. Chen, X. Yang, J. Qiu, X. Jiang, C. Zhu, and K. Hirao, “Study of crystal formation in borate, niobate, and titanate glasses irradiated by femtosecond laser pulses,” J. Opt. Soc. Am. B 21(1), 83 (2004).
[Crossref]

1997 (1)

N. Padture and P. Klemens, “Low thermal conductivity in garnets,” J. Am. Ceram. Soc. 80(4), 1018–1020 (1997).
[Crossref]

1992 (1)

M. Gervais, S. Le Floch, J. C. Riffiet, J. Coutures, and J. P. Coutures, “Effect of the Melt Temperature on the Solidification Process of Liquid Garnets Ln3Al5O12 (Ln = Dy, Y, and Lu),” J. Amer. Am. Ceram. Soc. 75(11), 3166–3168 (1992).
[Crossref]

1991 (1)

A. Mortensen, D. H. Christensen, O. F. Nielsen, and E. Pedersen, “Raman Spectra of Amorphous Al2O3 and Al2O3/MoO3 Obtained by Visible and Infrared Excitation,” J. Raman Specroscopy 22(1), 47–49 (1991).
[Crossref]

1980 (1)

J. L. Caslavsky and D. J. Viechnicki, “Melting behaviour and metastability of yttrium aluminium garnet (YAG) and YAIO3 determined by optical differential thermal analysis,” J. Mater. Sci. 15(7), 1709–1718 (1980).
[Crossref]

1979 (1)

B. Cockayne and B. Lent, “Complexity in The Solidification Behaviour of Molten Y3Al5012,” J. Cryst. Growth 46(3), 371–378 (1979).
[Crossref]

1973 (1)

1968 (1)

J. P. Hurrell, S. P. S. Porto, I. F. Chang, S. S. Mitra, and R. P. Bauman, “Optical Phonons of Yttrium Aluminum Garnet,” Phys. Rev. 173(3), 851–856 (1968).
[Crossref]

1967 (2)

S. P. S. Porto and R. S. Krishnan, “Raman Effect of Corundum,” J. Chem. Phys. 47, 1009(1967).
[Crossref]

R. W. Dixon, “Photoelastic Properties of Selected Materials and Their Relevance for Applications to Acoustic Light Modulators and Scanners,” J. Appl. Phys. 38(13), 5149–5153 (1967).
[Crossref]

Allman, B. E.

C. J. Bellair, C. L. Curl, B. E. Allman, P. J. Harris, A. Roberts, L. M. D. Delbridge, and K. A. Nugent, “Quantitative Phase Amplitude Microscopy IV: Imaging Thick Specimens,” J. Microsc. 214(1), 62–69 (2004).
[Crossref] [PubMed]

Arai, A.

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, ““Quill” writing with ultrashort light pulses in transparent optical materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
[Crossref]

Bauman, R. P.

J. P. Hurrell, S. P. S. Porto, I. F. Chang, S. S. Mitra, and R. P. Bauman, “Optical Phonons of Yttrium Aluminum Garnet,” Phys. Rev. 173(3), 851–856 (1968).
[Crossref]

Bellair, C. J.

C. J. Bellair, C. L. Curl, B. E. Allman, P. J. Harris, A. Roberts, L. M. D. Delbridge, and K. A. Nugent, “Quantitative Phase Amplitude Microscopy IV: Imaging Thick Specimens,” J. Microsc. 214(1), 62–69 (2004).
[Crossref] [PubMed]

Bennion, I.

A. G. Okhrimchuk, V. K. Mezentsev, H. Schmitz, M. Dubov, and I. Bennion, “Cascaded nonlinear absorption of femtosecond laser pulses in dielectrics,” Laser Phys. 19(7), 1415–1422 (2009).
[Crossref]

Bovatsek, J.

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, ““Quill” writing with ultrashort light pulses in transparent optical materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
[Crossref]

Bricchi, E.

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, ““Quill” writing with ultrashort light pulses in transparent optical materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
[Crossref]

Brisset, F.

J. Cao, B. Poumellec, L. Mazerolles, F. Brisset, A.-L. Helbert, S. Surble, X. He, and M. Lancry, “Nanoscale Phase Separation in Lithium Niobium Silicate Glass by Femtosecond Laser Irradiation,” J. Am. Ceram. Soc. 8, 1–8 (2016).

Cao, J.

J. Cao, B. Poumellec, L. Mazerolles, F. Brisset, A.-L. Helbert, S. Surble, X. He, and M. Lancry, “Nanoscale Phase Separation in Lithium Niobium Silicate Glass by Femtosecond Laser Irradiation,” J. Am. Ceram. Soc. 8, 1–8 (2016).

Caslavsky, J. L.

J. L. Caslavsky and D. J. Viechnicki, “Melting behaviour and metastability of yttrium aluminium garnet (YAG) and YAIO3 determined by optical differential thermal analysis,” J. Mater. Sci. 15(7), 1709–1718 (1980).
[Crossref]

Chang, I. F.

J. P. Hurrell, S. P. S. Porto, I. F. Chang, S. S. Mitra, and R. P. Bauman, “Optical Phonons of Yttrium Aluminum Garnet,” Phys. Rev. 173(3), 851–856 (1968).
[Crossref]

Chen, B.

B. Lu, B. Yu, B. Chen, X. Yan, J. Qiu, X. Jiang, and C. Zhu, “Study of crystal formation in titanate glass irradiated by 800 nm femtosecond laser pulse,” J. Cryst. Growth 285(1-2), 76–80 (2005).
[Crossref]

B. Yu, B. Chen, X. Yang, J. Qiu, X. Jiang, C. Zhu, and K. Hirao, “Study of crystal formation in borate, niobate, and titanate glasses irradiated by femtosecond laser pulses,” J. Opt. Soc. Am. B 21(1), 83 (2004).
[Crossref]

Chen, Y. F.

P. Nayar, X. Y. Zhu, F. Yang, M. Lu, G. Lakshminarayana, X. P. Liu, Y. F. Chen, and I. V. Kityk, “Fabrication and characterization of highly luminescent Er3+:Al2O3 thin films with optimized growth parameters,” Opt. Mater. (Amst) 60, 57–61 (2016).
[Crossref]

Cheng, C.

Chin, S. L.

V. Koubassov, F. J. Laprise, F. Thereberge, E. Forster, R. Sauerbrey, B. Muller, U. Glatzel, and S. L. Chin, “Ultrafast laser-induced melting of glass,” Appl. Phys., A Mater. Sci. Process. 79(3), 499–505 (2004).
[Crossref]

Chopelas, A.

A. Chopelas, “Single-crystal Raman spectra of YAlO3 and GdAlO3: comparison to several orthorhombic ABO3 perovskites,” Phys. Chem. Miner. 38(9), 709–726 (2011).
[Crossref]

Christensen, D. H.

A. Mortensen, D. H. Christensen, O. F. Nielsen, and E. Pedersen, “Raman Spectra of Amorphous Al2O3 and Al2O3/MoO3 Obtained by Visible and Infrared Excitation,” J. Raman Specroscopy 22(1), 47–49 (1991).
[Crossref]

Cockayne, B.

B. Cockayne and B. Lent, “Complexity in The Solidification Behaviour of Molten Y3Al5012,” J. Cryst. Growth 46(3), 371–378 (1979).
[Crossref]

Coutures, J.

M. Gervais, S. Le Floch, J. C. Riffiet, J. Coutures, and J. P. Coutures, “Effect of the Melt Temperature on the Solidification Process of Liquid Garnets Ln3Al5O12 (Ln = Dy, Y, and Lu),” J. Amer. Am. Ceram. Soc. 75(11), 3166–3168 (1992).
[Crossref]

Coutures, J. P.

M. Gervais, S. Le Floch, J. C. Riffiet, J. Coutures, and J. P. Coutures, “Effect of the Melt Temperature on the Solidification Process of Liquid Garnets Ln3Al5O12 (Ln = Dy, Y, and Lu),” J. Amer. Am. Ceram. Soc. 75(11), 3166–3168 (1992).
[Crossref]

Curl, C. L.

C. J. Bellair, C. L. Curl, B. E. Allman, P. J. Harris, A. Roberts, L. M. D. Delbridge, and K. A. Nugent, “Quantitative Phase Amplitude Microscopy IV: Imaging Thick Specimens,” J. Microsc. 214(1), 62–69 (2004).
[Crossref] [PubMed]

Dai, Y.

Delbridge, L. M. D.

C. J. Bellair, C. L. Curl, B. E. Allman, P. J. Harris, A. Roberts, L. M. D. Delbridge, and K. A. Nugent, “Quantitative Phase Amplitude Microscopy IV: Imaging Thick Specimens,” J. Microsc. 214(1), 62–69 (2004).
[Crossref] [PubMed]

Deshazer, L. G.

Dixon, R. W.

R. W. Dixon, “Photoelastic Properties of Selected Materials and Their Relevance for Applications to Acoustic Light Modulators and Scanners,” J. Appl. Phys. 38(13), 5149–5153 (1967).
[Crossref]

Dong, G.

Du, X.

Du, Y.

Dubov, M.

A. G. Okhrimchuk, V. K. Mezentsev, H. Schmitz, M. Dubov, and I. Bennion, “Cascaded nonlinear absorption of femtosecond laser pulses in dielectrics,” Laser Phys. 19(7), 1415–1422 (2009).
[Crossref]

Forster, E.

V. Koubassov, F. J. Laprise, F. Thereberge, E. Forster, R. Sauerbrey, B. Muller, U. Glatzel, and S. L. Chin, “Ultrafast laser-induced melting of glass,” Appl. Phys., A Mater. Sci. Process. 79(3), 499–505 (2004).
[Crossref]

Gamaly, E. G.

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. V. Rode, and S. Juodkazis, “Evidence of superdense aluminium synthesized by ultrafast microexplosion,” Nat. Commun. 2, 445 (2011).
[Crossref] [PubMed]

Gervais, M.

M. Gervais, S. Le Floch, J. C. Riffiet, J. Coutures, and J. P. Coutures, “Effect of the Melt Temperature on the Solidification Process of Liquid Garnets Ln3Al5O12 (Ln = Dy, Y, and Lu),” J. Amer. Am. Ceram. Soc. 75(11), 3166–3168 (1992).
[Crossref]

Glatzel, U.

V. Koubassov, F. J. Laprise, F. Thereberge, E. Forster, R. Sauerbrey, B. Muller, U. Glatzel, and S. L. Chin, “Ultrafast laser-induced melting of glass,” Appl. Phys., A Mater. Sci. Process. 79(3), 499–505 (2004).
[Crossref]

Han, Y.

Harris, P. J.

C. J. Bellair, C. L. Curl, B. E. Allman, P. J. Harris, A. Roberts, L. M. D. Delbridge, and K. A. Nugent, “Quantitative Phase Amplitude Microscopy IV: Imaging Thick Specimens,” J. Microsc. 214(1), 62–69 (2004).
[Crossref] [PubMed]

He, X.

J. Cao, B. Poumellec, L. Mazerolles, F. Brisset, A.-L. Helbert, S. Surble, X. He, and M. Lancry, “Nanoscale Phase Separation in Lithium Niobium Silicate Glass by Femtosecond Laser Irradiation,” J. Am. Ceram. Soc. 8, 1–8 (2016).

Helbert, A.-L.

J. Cao, B. Poumellec, L. Mazerolles, F. Brisset, A.-L. Helbert, S. Surble, X. He, and M. Lancry, “Nanoscale Phase Separation in Lithium Niobium Silicate Glass by Femtosecond Laser Irradiation,” J. Am. Ceram. Soc. 8, 1–8 (2016).

Hirao, K.

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, ““Quill” writing with ultrashort light pulses in transparent optical materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
[Crossref]

B. Yu, B. Chen, X. Yang, J. Qiu, X. Jiang, C. Zhu, and K. Hirao, “Study of crystal formation in borate, niobate, and titanate glasses irradiated by femtosecond laser pulses,” J. Opt. Soc. Am. B 21(1), 83 (2004).
[Crossref]

Hurrell, J. P.

J. P. Hurrell, S. P. S. Porto, I. F. Chang, S. S. Mitra, and R. P. Bauman, “Optical Phonons of Yttrium Aluminum Garnet,” Phys. Rev. 173(3), 851–856 (1968).
[Crossref]

Jiang, X.

B. Lu, B. Yu, B. Chen, X. Yan, J. Qiu, X. Jiang, and C. Zhu, “Study of crystal formation in titanate glass irradiated by 800 nm femtosecond laser pulse,” J. Cryst. Growth 285(1-2), 76–80 (2005).
[Crossref]

B. Yu, B. Chen, X. Yang, J. Qiu, X. Jiang, C. Zhu, and K. Hirao, “Study of crystal formation in borate, niobate, and titanate glasses irradiated by femtosecond laser pulses,” J. Opt. Soc. Am. B 21(1), 83 (2004).
[Crossref]

Juodkazis, S.

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. V. Rode, and S. Juodkazis, “Evidence of superdense aluminium synthesized by ultrafast microexplosion,” Nat. Commun. 2, 445 (2011).
[Crossref] [PubMed]

Kazansky, P. G.

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, ““Quill” writing with ultrashort light pulses in transparent optical materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
[Crossref]

Kityk, I. V.

P. Nayar, X. Y. Zhu, F. Yang, M. Lu, G. Lakshminarayana, X. P. Liu, Y. F. Chen, and I. V. Kityk, “Fabrication and characterization of highly luminescent Er3+:Al2O3 thin films with optimized growth parameters,” Opt. Mater. (Amst) 60, 57–61 (2016).
[Crossref]

Klemens, P.

N. Padture and P. Klemens, “Low thermal conductivity in garnets,” J. Am. Ceram. Soc. 80(4), 1018–1020 (1997).
[Crossref]

Koubassov, V.

V. Koubassov, F. J. Laprise, F. Thereberge, E. Forster, R. Sauerbrey, B. Muller, U. Glatzel, and S. L. Chin, “Ultrafast laser-induced melting of glass,” Appl. Phys., A Mater. Sci. Process. 79(3), 499–505 (2004).
[Crossref]

Krishnan, R. S.

S. P. S. Porto and R. S. Krishnan, “Raman Effect of Corundum,” J. Chem. Phys. 47, 1009(1967).
[Crossref]

Lakshminarayana, G.

P. Nayar, X. Y. Zhu, F. Yang, M. Lu, G. Lakshminarayana, X. P. Liu, Y. F. Chen, and I. V. Kityk, “Fabrication and characterization of highly luminescent Er3+:Al2O3 thin films with optimized growth parameters,” Opt. Mater. (Amst) 60, 57–61 (2016).
[Crossref]

Lancry, M.

J. Cao, B. Poumellec, L. Mazerolles, F. Brisset, A.-L. Helbert, S. Surble, X. He, and M. Lancry, “Nanoscale Phase Separation in Lithium Niobium Silicate Glass by Femtosecond Laser Irradiation,” J. Am. Ceram. Soc. 8, 1–8 (2016).

Laprise, F. J.

V. Koubassov, F. J. Laprise, F. Thereberge, E. Forster, R. Sauerbrey, B. Muller, U. Glatzel, and S. L. Chin, “Ultrafast laser-induced melting of glass,” Appl. Phys., A Mater. Sci. Process. 79(3), 499–505 (2004).
[Crossref]

Le Floch, S.

M. Gervais, S. Le Floch, J. C. Riffiet, J. Coutures, and J. P. Coutures, “Effect of the Melt Temperature on the Solidification Process of Liquid Garnets Ln3Al5O12 (Ln = Dy, Y, and Lu),” J. Amer. Am. Ceram. Soc. 75(11), 3166–3168 (1992).
[Crossref]

Lent, B.

B. Cockayne and B. Lent, “Complexity in The Solidification Behaviour of Molten Y3Al5012,” J. Cryst. Growth 46(3), 371–378 (1979).
[Crossref]

Liu, X. P.

P. Nayar, X. Y. Zhu, F. Yang, M. Lu, G. Lakshminarayana, X. P. Liu, Y. F. Chen, and I. V. Kityk, “Fabrication and characterization of highly luminescent Er3+:Al2O3 thin films with optimized growth parameters,” Opt. Mater. (Amst) 60, 57–61 (2016).
[Crossref]

Lu, B.

M. Zhong, Y. Du, H. Ma, Y. Han, B. Lu, Y. Dai, and X. Zeng, “Crystalline phase distribution of Dy2(MoO4)3 in glass induced by 250 kHz femtosecond laser irradiation,” Opt. Mater. Express 2(8), 1156 (2012).
[Crossref]

B. Lu, B. Yu, B. Chen, X. Yan, J. Qiu, X. Jiang, and C. Zhu, “Study of crystal formation in titanate glass irradiated by 800 nm femtosecond laser pulse,” J. Cryst. Growth 285(1-2), 76–80 (2005).
[Crossref]

Lu, M.

P. Nayar, X. Y. Zhu, F. Yang, M. Lu, G. Lakshminarayana, X. P. Liu, Y. F. Chen, and I. V. Kityk, “Fabrication and characterization of highly luminescent Er3+:Al2O3 thin films with optimized growth parameters,” Opt. Mater. (Amst) 60, 57–61 (2016).
[Crossref]

Ma, H.

Martin, K. W.

Mazerolles, L.

J. Cao, B. Poumellec, L. Mazerolles, F. Brisset, A.-L. Helbert, S. Surble, X. He, and M. Lancry, “Nanoscale Phase Separation in Lithium Niobium Silicate Glass by Femtosecond Laser Irradiation,” J. Am. Ceram. Soc. 8, 1–8 (2016).

Mezentsev, V. K.

A. G. Okhrimchuk, V. K. Mezentsev, H. Schmitz, M. Dubov, and I. Bennion, “Cascaded nonlinear absorption of femtosecond laser pulses in dielectrics,” Laser Phys. 19(7), 1415–1422 (2009).
[Crossref]

Mitra, S. S.

J. P. Hurrell, S. P. S. Porto, I. F. Chang, S. S. Mitra, and R. P. Bauman, “Optical Phonons of Yttrium Aluminum Garnet,” Phys. Rev. 173(3), 851–856 (1968).
[Crossref]

Miura, K.

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, ““Quill” writing with ultrashort light pulses in transparent optical materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
[Crossref]

Mizeikis, V.

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. V. Rode, and S. Juodkazis, “Evidence of superdense aluminium synthesized by ultrafast microexplosion,” Nat. Commun. 2, 445 (2011).
[Crossref] [PubMed]

Mortensen, A.

A. Mortensen, D. H. Christensen, O. F. Nielsen, and E. Pedersen, “Raman Spectra of Amorphous Al2O3 and Al2O3/MoO3 Obtained by Visible and Infrared Excitation,” J. Raman Specroscopy 22(1), 47–49 (1991).
[Crossref]

Muller, B.

V. Koubassov, F. J. Laprise, F. Thereberge, E. Forster, R. Sauerbrey, B. Muller, U. Glatzel, and S. L. Chin, “Ultrafast laser-induced melting of glass,” Appl. Phys., A Mater. Sci. Process. 79(3), 499–505 (2004).
[Crossref]

Nayar, P.

P. Nayar, X. Y. Zhu, F. Yang, M. Lu, G. Lakshminarayana, X. P. Liu, Y. F. Chen, and I. V. Kityk, “Fabrication and characterization of highly luminescent Er3+:Al2O3 thin films with optimized growth parameters,” Opt. Mater. (Amst) 60, 57–61 (2016).
[Crossref]

Nielsen, O. F.

A. Mortensen, D. H. Christensen, O. F. Nielsen, and E. Pedersen, “Raman Spectra of Amorphous Al2O3 and Al2O3/MoO3 Obtained by Visible and Infrared Excitation,” J. Raman Specroscopy 22(1), 47–49 (1991).
[Crossref]

Nugent, K. A.

C. J. Bellair, C. L. Curl, B. E. Allman, P. J. Harris, A. Roberts, L. M. D. Delbridge, and K. A. Nugent, “Quantitative Phase Amplitude Microscopy IV: Imaging Thick Specimens,” J. Microsc. 214(1), 62–69 (2004).
[Crossref] [PubMed]

Okhrimchuk, A. G.

A. G. Okhrimchuk, V. K. Mezentsev, H. Schmitz, M. Dubov, and I. Bennion, “Cascaded nonlinear absorption of femtosecond laser pulses in dielectrics,” Laser Phys. 19(7), 1415–1422 (2009).
[Crossref]

Padture, N.

N. Padture and P. Klemens, “Low thermal conductivity in garnets,” J. Am. Ceram. Soc. 80(4), 1018–1020 (1997).
[Crossref]

Pedersen, E.

A. Mortensen, D. H. Christensen, O. F. Nielsen, and E. Pedersen, “Raman Spectra of Amorphous Al2O3 and Al2O3/MoO3 Obtained by Visible and Infrared Excitation,” J. Raman Specroscopy 22(1), 47–49 (1991).
[Crossref]

Porto, S. P. S.

J. P. Hurrell, S. P. S. Porto, I. F. Chang, S. S. Mitra, and R. P. Bauman, “Optical Phonons of Yttrium Aluminum Garnet,” Phys. Rev. 173(3), 851–856 (1968).
[Crossref]

S. P. S. Porto and R. S. Krishnan, “Raman Effect of Corundum,” J. Chem. Phys. 47, 1009(1967).
[Crossref]

Poumellec, B.

J. Cao, B. Poumellec, L. Mazerolles, F. Brisset, A.-L. Helbert, S. Surble, X. He, and M. Lancry, “Nanoscale Phase Separation in Lithium Niobium Silicate Glass by Femtosecond Laser Irradiation,” J. Am. Ceram. Soc. 8, 1–8 (2016).

Qiu, J.

Riffiet, J. C.

M. Gervais, S. Le Floch, J. C. Riffiet, J. Coutures, and J. P. Coutures, “Effect of the Melt Temperature on the Solidification Process of Liquid Garnets Ln3Al5O12 (Ln = Dy, Y, and Lu),” J. Amer. Am. Ceram. Soc. 75(11), 3166–3168 (1992).
[Crossref]

Roberts, A.

C. J. Bellair, C. L. Curl, B. E. Allman, P. J. Harris, A. Roberts, L. M. D. Delbridge, and K. A. Nugent, “Quantitative Phase Amplitude Microscopy IV: Imaging Thick Specimens,” J. Microsc. 214(1), 62–69 (2004).
[Crossref] [PubMed]

Rode, A. V.

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. V. Rode, and S. Juodkazis, “Evidence of superdense aluminium synthesized by ultrafast microexplosion,” Nat. Commun. 2, 445 (2011).
[Crossref] [PubMed]

Sauerbrey, R.

V. Koubassov, F. J. Laprise, F. Thereberge, E. Forster, R. Sauerbrey, B. Muller, U. Glatzel, and S. L. Chin, “Ultrafast laser-induced melting of glass,” Appl. Phys., A Mater. Sci. Process. 79(3), 499–505 (2004).
[Crossref]

Schmitz, H.

A. G. Okhrimchuk, V. K. Mezentsev, H. Schmitz, M. Dubov, and I. Bennion, “Cascaded nonlinear absorption of femtosecond laser pulses in dielectrics,” Laser Phys. 19(7), 1415–1422 (2009).
[Crossref]

Shimotsuma, Y.

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, ““Quill” writing with ultrashort light pulses in transparent optical materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
[Crossref]

Surble, S.

J. Cao, B. Poumellec, L. Mazerolles, F. Brisset, A.-L. Helbert, S. Surble, X. He, and M. Lancry, “Nanoscale Phase Separation in Lithium Niobium Silicate Glass by Femtosecond Laser Irradiation,” J. Am. Ceram. Soc. 8, 1–8 (2016).

Thereberge, F.

V. Koubassov, F. J. Laprise, F. Thereberge, E. Forster, R. Sauerbrey, B. Muller, U. Glatzel, and S. L. Chin, “Ultrafast laser-induced melting of glass,” Appl. Phys., A Mater. Sci. Process. 79(3), 499–505 (2004).
[Crossref]

Vailionis, A.

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. V. Rode, and S. Juodkazis, “Evidence of superdense aluminium synthesized by ultrafast microexplosion,” Nat. Commun. 2, 445 (2011).
[Crossref] [PubMed]

Viechnicki, D. J.

J. L. Caslavsky and D. J. Viechnicki, “Melting behaviour and metastability of yttrium aluminium garnet (YAG) and YAIO3 determined by optical differential thermal analysis,” J. Mater. Sci. 15(7), 1709–1718 (1980).
[Crossref]

Yan, X.

B. Lu, B. Yu, B. Chen, X. Yan, J. Qiu, X. Jiang, and C. Zhu, “Study of crystal formation in titanate glass irradiated by 800 nm femtosecond laser pulse,” J. Cryst. Growth 285(1-2), 76–80 (2005).
[Crossref]

Yang, F.

P. Nayar, X. Y. Zhu, F. Yang, M. Lu, G. Lakshminarayana, X. P. Liu, Y. F. Chen, and I. V. Kityk, “Fabrication and characterization of highly luminescent Er3+:Al2O3 thin films with optimized growth parameters,” Opt. Mater. (Amst) 60, 57–61 (2016).
[Crossref]

Yang, W.

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. V. Rode, and S. Juodkazis, “Evidence of superdense aluminium synthesized by ultrafast microexplosion,” Nat. Commun. 2, 445 (2011).
[Crossref] [PubMed]

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, ““Quill” writing with ultrashort light pulses in transparent optical materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
[Crossref]

Yang, X.

Yu, B.

B. Lu, B. Yu, B. Chen, X. Yan, J. Qiu, X. Jiang, and C. Zhu, “Study of crystal formation in titanate glass irradiated by 800 nm femtosecond laser pulse,” J. Cryst. Growth 285(1-2), 76–80 (2005).
[Crossref]

B. Yu, B. Chen, X. Yang, J. Qiu, X. Jiang, C. Zhu, and K. Hirao, “Study of crystal formation in borate, niobate, and titanate glasses irradiated by femtosecond laser pulses,” J. Opt. Soc. Am. B 21(1), 83 (2004).
[Crossref]

Yu, Y.

Zeng, X.

Zhang, F.

Zhang, H.

Zhong, M.

Zhou, S.

Zhu, C.

B. Lu, B. Yu, B. Chen, X. Yan, J. Qiu, X. Jiang, and C. Zhu, “Study of crystal formation in titanate glass irradiated by 800 nm femtosecond laser pulse,” J. Cryst. Growth 285(1-2), 76–80 (2005).
[Crossref]

B. Yu, B. Chen, X. Yang, J. Qiu, X. Jiang, C. Zhu, and K. Hirao, “Study of crystal formation in borate, niobate, and titanate glasses irradiated by femtosecond laser pulses,” J. Opt. Soc. Am. B 21(1), 83 (2004).
[Crossref]

Zhu, X. Y.

P. Nayar, X. Y. Zhu, F. Yang, M. Lu, G. Lakshminarayana, X. P. Liu, Y. F. Chen, and I. V. Kityk, “Fabrication and characterization of highly luminescent Er3+:Al2O3 thin films with optimized growth parameters,” Opt. Mater. (Amst) 60, 57–61 (2016).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, ““Quill” writing with ultrashort light pulses in transparent optical materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

V. Koubassov, F. J. Laprise, F. Thereberge, E. Forster, R. Sauerbrey, B. Muller, U. Glatzel, and S. L. Chin, “Ultrafast laser-induced melting of glass,” Appl. Phys., A Mater. Sci. Process. 79(3), 499–505 (2004).
[Crossref]

J. Am. Ceram. Soc. (2)

J. Cao, B. Poumellec, L. Mazerolles, F. Brisset, A.-L. Helbert, S. Surble, X. He, and M. Lancry, “Nanoscale Phase Separation in Lithium Niobium Silicate Glass by Femtosecond Laser Irradiation,” J. Am. Ceram. Soc. 8, 1–8 (2016).

N. Padture and P. Klemens, “Low thermal conductivity in garnets,” J. Am. Ceram. Soc. 80(4), 1018–1020 (1997).
[Crossref]

J. Amer. Am. Ceram. Soc. (1)

M. Gervais, S. Le Floch, J. C. Riffiet, J. Coutures, and J. P. Coutures, “Effect of the Melt Temperature on the Solidification Process of Liquid Garnets Ln3Al5O12 (Ln = Dy, Y, and Lu),” J. Amer. Am. Ceram. Soc. 75(11), 3166–3168 (1992).
[Crossref]

J. Appl. Phys. (1)

R. W. Dixon, “Photoelastic Properties of Selected Materials and Their Relevance for Applications to Acoustic Light Modulators and Scanners,” J. Appl. Phys. 38(13), 5149–5153 (1967).
[Crossref]

J. Chem. Phys. (1)

S. P. S. Porto and R. S. Krishnan, “Raman Effect of Corundum,” J. Chem. Phys. 47, 1009(1967).
[Crossref]

J. Cryst. Growth (2)

B. Cockayne and B. Lent, “Complexity in The Solidification Behaviour of Molten Y3Al5012,” J. Cryst. Growth 46(3), 371–378 (1979).
[Crossref]

B. Lu, B. Yu, B. Chen, X. Yan, J. Qiu, X. Jiang, and C. Zhu, “Study of crystal formation in titanate glass irradiated by 800 nm femtosecond laser pulse,” J. Cryst. Growth 285(1-2), 76–80 (2005).
[Crossref]

J. Mater. Sci. (1)

J. L. Caslavsky and D. J. Viechnicki, “Melting behaviour and metastability of yttrium aluminium garnet (YAG) and YAIO3 determined by optical differential thermal analysis,” J. Mater. Sci. 15(7), 1709–1718 (1980).
[Crossref]

J. Microsc. (1)

C. J. Bellair, C. L. Curl, B. E. Allman, P. J. Harris, A. Roberts, L. M. D. Delbridge, and K. A. Nugent, “Quantitative Phase Amplitude Microscopy IV: Imaging Thick Specimens,” J. Microsc. 214(1), 62–69 (2004).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (1)

J. Raman Specroscopy (1)

A. Mortensen, D. H. Christensen, O. F. Nielsen, and E. Pedersen, “Raman Spectra of Amorphous Al2O3 and Al2O3/MoO3 Obtained by Visible and Infrared Excitation,” J. Raman Specroscopy 22(1), 47–49 (1991).
[Crossref]

Laser Phys. (1)

A. G. Okhrimchuk, V. K. Mezentsev, H. Schmitz, M. Dubov, and I. Bennion, “Cascaded nonlinear absorption of femtosecond laser pulses in dielectrics,” Laser Phys. 19(7), 1415–1422 (2009).
[Crossref]

Nat. Commun. (1)

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. V. Rode, and S. Juodkazis, “Evidence of superdense aluminium synthesized by ultrafast microexplosion,” Nat. Commun. 2, 445 (2011).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Mater. (Amst) (1)

P. Nayar, X. Y. Zhu, F. Yang, M. Lu, G. Lakshminarayana, X. P. Liu, Y. F. Chen, and I. V. Kityk, “Fabrication and characterization of highly luminescent Er3+:Al2O3 thin films with optimized growth parameters,” Opt. Mater. (Amst) 60, 57–61 (2016).
[Crossref]

Opt. Mater. Express (1)

Phys. Chem. Miner. (1)

A. Chopelas, “Single-crystal Raman spectra of YAlO3 and GdAlO3: comparison to several orthorhombic ABO3 perovskites,” Phys. Chem. Miner. 38(9), 709–726 (2011).
[Crossref]

Phys. Rev. (1)

J. P. Hurrell, S. P. S. Porto, I. F. Chang, S. S. Mitra, and R. P. Bauman, “Optical Phonons of Yttrium Aluminum Garnet,” Phys. Rev. 173(3), 851–856 (1968).
[Crossref]

Other (2)

A. Okhrimchuk, “Femtosecond Fabrication of Waveguides in Ion-Doped Laser Crystals,” in Coherence and Ultrashort Pulse Laser Emission, F. J. Duarte, ed. (InTech, 2010).

M. Bass, ed., Handbook of Optics, Vol. 2. (McGraw_Hill, 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Optical scheme of focusing setup for laser writing and transmittance measurement.
Fig. 2
Fig. 2 Bright field microscope picture (on the top) and birefringence mapping (below) of track written in YAG:Cr4+ crystal under laser beam power Pin of 0.51 W. Color codes direction of the slow axis as indicated in the legend at the bottom, brightness codes retardance in relative units. Moving of the beam waist began and finished out of the sample during writing of each track. The yellow arrows indicate directions of writing that are repeated for each track. The digits indicate the writing velocity V [mm/s] for the sections of tracks directed along Y-axis, and it is the same for each group of the tree adjacent tracks. The writing velocity is 0.1 mm/s for all the sections along the X-axis. The blue arrows indicate directions of polarization that are constant within a track. Directions of polarizations are periodically repeated from left to right over 3 tracks. The scale bar length is 20 μm.
Fig. 3
Fig. 3 Dependency of the magnitude of retardance in a track on the scanning velocity for YAG:Cr4+ crystal under laser beam power Pin of 0.51 W (blue points), and in YAG:Yb3+ crystal under laser beam power of 0.52 W (red points). The direction of polarization was either parallel (squares) or perpendicular (circles) to a track. The measurement wavelength is equaled to 543 nm.
Fig. 4
Fig. 4 Dependences of power absorbed in YAG:Cr4+ crystal on the scanning velocity under five different values of the incident powers Pin that are indicated near the dependencies curves. Red points correspond to decelerating moving, and blue points correspond to moving with positive acceleration.
Fig. 5
Fig. 5 Polarized Raman spectra taken under excitation in the center of the track cross-section and in the region of unmodified YAG crystal (a,b), and of YAP single crystal samples (c,d). Polarizations of excitation and registration are shown in brackets. Spectra a) and c) are for parallel polarizations, and b) and d) are for crossed polarizations. The track was inscribed at the scanning velocity of 1.6 mm/s.
Fig. 6
Fig. 6 Left: profiles of refractive index change in the third ”Y“ section of the track inscribed at the translation velocity of 3.2 mm/s. Profiles were captured perpendicular to the track and under focusing at different depth relative the crystal surface. Focus positions are indicated relative a point in the middle of the modification. Right: the end view of the track. The red arrow indicates the direction of writing beam and the viewing direction for QPM. Scale bar is 20 μm.
Fig. 7
Fig. 7 Calculated dependence of the maximum temperature Tmax reached at the center of the beam waist on the absorbed power P 0 under different size of the heat source determined by parameter a: 1.8 μm (solid line), 2.2 μm (dashed line), and 2.6 μm (dotted line) .
Fig. 8
Fig. 8 The diameter of the overheated melt d versus absorbed power P0 for different size of the heat source determined by parameter a: 1.8 μm (solid line), 2.2 μm (dashed line), and 2.6 μm (dotted line).

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

Y 3 A l 5 O 12 = 3 Y A l O 3 + α A l 2 O 3
κ ( T ) = κ 1 + ( κ 0 κ 1 ) exp ( T T T k )
Δ n = 1 2 n 3 p 11 p E
c p ρ T t = κ ( T ) T + p ( r V t , t )
P 0 = V p ( r , t ) d r
c p ρ V T + κ ( T ) T + p ( r ) = 0
P e = c p ρ V d s κ 0.01
p ( r ) = P 0 π 3 / 2 a 3 exp ( r 2 a 2 )
F ( T ) = ( F ( T max ) P 0 2 π 3 / 2 a ) + P 0 4 π a 1 x e r f ( x )
F ( T max ) = F ( T ) + P 0 2 π 3 / 2 a
P c r = 2 π 3 / 2 a ( F ( T c r ) F ( T ) )
F ( T c r ) F ( T ) P 0 4 π r m e r f ( r m a ) = 0

Metrics