Abstract

We demonstrate the formation of laser-induced periodic surface structures (LIPSS) in boron-doped diamond (BDD) by irradiation with femtosecond near-IR laser pulses. The results show that the obtained LIPSS are perpendicular to the laser polarization, and the ripple periodicity is on the order of half of the irradiation wavelength. The surface structures and their electrochemical properties were characterized using Raman micro-spectroscopy, in combination with scanning electron and atomic force microscopies. The textured BDD surface showed a dense and large surface area with no change in its structural characteristics. The effective surface area of the textured BDD electrode was approximately 50% larger than that of a planar substrate, while wetting tests showed that the irradiated area becomes highly hydrophilic. Our results indicate that LIPSS texturing of BDD is a straightforward and simple technique for enhancing the surface area and wettability properties of the BDD electrodes, which could enable higher current efficiency and lower energy consumption in the electrochemical oxidation of toxic organics.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Photonic structures in diamond based on femtosecond UV laser induced periodic surface structuring (LIPSS)

Eduardo Granados, Miguel Martinez-Calderon, Mikel Gomez, Ainara Rodriguez, and Santiago M. Olaizola
Opt. Express 25(13) 15330-15335 (2017)

Laser-induced periodic surface structures on bismuth thin films with ns laser pulses below ablation threshold

A. Reyes-Contreras, M. Camacho-López, S. Camacho-López, O. Olea-Mejía, A. Esparza-García, J. G. Bañuelos-Muñetón, and M. A. Camacho-López
Opt. Mater. Express 7(6) 1777-1786 (2017)

Femtosecond laser induced periodic surface structures for the enhancement of field emission properties of tungsten

Mahreen Akram, Shazia Bashir, Sohail Abdul Jalil, Mohamed ElKabbash, Friedrich Aumayr, Ali Ajami, Wolfgang Husinsky, Khaliq Mahmood, Muhammad Shahid Rafique, and Chunlei Guo
Opt. Mater. Express 9(7) 3183-3192 (2019)

References

  • View by:
  • |
  • |
  • |

  1. R. Mildren and J. Rabeau, Optical Engineering of Diamond (Wiley, 2013).
  2. K. E. Bennet, K. H. Lee, J. N. Kruchowski, S.-Y. Chang, M. P. Marsh, A. A. Van Orsow, A. Paez, and F. S. Manciu, “Development of Conductive Boron-Doped Diamond Electrode: A microscopic, Spectroscopic, and Voltammetric Study,” Materials (Basel) 6(12), 5726–5741 (2013).
  3. B. Massarani, J. C. Bourgoin, and R. M. Chrenko, “Hopping conduction in semiconducting diamond,” Phys. Rev. 17(4), 1758–1769 (1978).
  4. P. N. Volpe, J. Pernot, P. Muret, and F. Omnès, “High hole mobility in boron doped diamond for power device applications,” Appl. Phys. Lett. 94(9), 092102 (2009).
  5. J. V. Macpherson, “A practical guide to using boron doped diamond in electrochemical research,” Phys. Chem. Chem. Phys. 17(5), 2935–2949 (2015).
  6. M. Panizza and G. Cerisola, “Application of Diamond Electrodes to Electrochemical Processes,” Electrochim. Acta 51(2), 191–199 (2005).
  7. N. Roy, Y. Hirano, H. Kuriyama, P. Sudhagar, N. Suzuki, K. I. Katsumata, K. Nakata, T. Kondo, M. Yuasa, I. Serizawa, T. Takayama, A. Kudo, A. Fujishima, and C. Terashima, “Boron-doped diamond semiconductor electrodes: Efficient photoelectrochemical CO2 reduction through surface modification,” Sci. Rep. 6(1), 38010 (2016).
  8. N. Yang, H. Uetsuka, and C. E. Nebel, “Biofunctionalization of Vertically Aligned Diamond Nanowires,” Adv. Funct. Mater. 19(6), 887–893 (2009).
  9. D. Luo, L. Wu, and J. Zhi, “Fabrication of Boron-Doped Diamond Nanorod Forest Electrodes and Their Application in Nonenzymatic Amperometric Glucose Biosensing,” ACS Nano 3(8), 2121–2128 (2009).
  10. Y. S. Zou, T. Yang, W. J. Zhang, Y. M. Chong, B. He, I. Bello, and S. T. Lee, “Fabrication of Diamond Nanopillar and Their Arrays,” Appl. Phys. Lett. 92(5), 053105 (2008).
  11. H. Masuda, M. Watanabe, K. Yasui, D. Tryk, T. Rao, and A. Fujishima, “Fabrication of a Nanostructured Diamond Honeycomb Film,” Adv. Mater. 12(6), 444–447 (2000).
  12. C.-H. Lee, E.-S. Lee, Y.-K. Lim, K.-H. Park, H.-D. Park, and D.-S. Lim, “Enhanced electrochemical oxidation of phenol by boron-doped diamond nanowire electrode,” RSC Advances 7(11), 6229–6235 (2017).
  13. A. Ay, V. M. Swope, and G. M. Swain, “The physicochemical and electrochemical properties of 100 and 500 nm diameter diamond powders coated with boron-doped nanocrystalline diamond,” J. Electrochem. Soc. 155(10), B1013–B1022 (2008).
  14. D. Luo, L. Wu, and J. Zhi, “Fabrication of boron-doped diamond nanorod forest electrodes and their application in nonenzymatic amperometric glucose biosensing,” ACS Nano 3(8), 2121–2128 (2009).
  15. P. W. May, M. Clegg, T. A. Silva, H. Zanin, O. Fatibello-Filho, V. Celorrio, D. J. Fermin, C. C. Welch, G. Hazell, L. Fisher, A. Nobbs, and B. Su, “Diamond-coated ‘black silicon’ as a promising material for high-surface-area electrochemical electrodes and antibacterial surfaces,” J. Mater. Chem. 4(34), 5737–5746 (2016).
  16. M. Lv, M. Wei, F. Rong, C. Terashima, A. Fujishima, and Z. Z. Gu, “Electrochemical detection of catechol based on as-grown and nanograss array boron-doped diamond electrodes,” Electroanalysis 22(2), 199–203 (2010).
  17. B. C. Lourencaoa, R. A. Pinheirob, T. A. Silvaa, E. J. Coratb, and O. Fatibello-Filhoa, “Porous boron-doped diamond/CNT electrode as electrochemical sensor for flow-injection analysis applications,” Diamond Related Materials 74, 182–190 (2017).
  18. N. J. Yang, J. S. Foord, and X. Jiang, “Diamond electrochemistry at the nanoscale: a review,” Carbon 99, 90–110 (2016).
  19. M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys. 36(11), 3688–3689 (1965).
  20. J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 042006 (2012).
  21. X. He, A. Datta, W. Nam, L. M. Traverso, and X. Xu, “Sub-Diffraction Limited Writing based on Laser Induced Periodic Surface Structures (LIPSS),” Sci. Rep. 6(1), 35035 (2016).
  22. K. Lange, M. Schulz-Ruhtenberg, and J. Caro, “Platinum electrodes for oxygen reduction catalysis designed by ultrashort pulse laser structuring,” Chem. Electro Chem. 4(3), 570–576 (2017).
  23. A. R. Neale, Y. Jin, J. Ouyang, S. Hughes, D. Hesp, V. Dhanak, G. Dearden, S. Edwardson, and L. J. Hardwick, “Electrochemical Performance of Laser Microstructured Nickel Oxyhydroxide Cathodes,” J. Power Sources 271, 42–47 (2014).
  24. J. Bonse, S. Hohm, S. V. Kirner, A. Rosenfeld, and J. Kruger, “Laser-Induced Periodic Surface Structures— A Scientific Evergreen,” IEEE J. Sel. Top. Quantum Electron. 23(3), 109–123 (2017).
  25. A. E. Siegman and P. M. Fauchet, “Stimulated Wood’s anomalies on laser-illuminated surfaces,” IEEE J. Quantum Electron. 22(8), 1384–1403 (1986).
  26. J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
  27. P. Nürnberger, H. Reinhardt, H.-C. Kim, F. Yang, K. Peppler, J. Janek, and N. Hampp, “Influence of substrate microcrystallinity on the orientation of laser-induced periodic surface structures,” J. Appl. Phys. 118(13), 134306 (2015).
  28. M. Ficek, M. Sobaszek, M. Gnyba, J. Ryl, Ł. Gołuński, M. Smietana, J. Jasiński, P. Caban, and R. Bogdanowicz, “Optical and electrical properties of boron doped diamond thin conductive films deposited on fused silica glass substrates,” Appl. Surf. Sci. 387, 846–856 (2016).
  29. E. Granados, M. Martinez-Calderon, M. Gomez, A. Rodriguez, and S. M. Olaizola, “Photonic structures in diamond based on femtosecond UV laser induced periodic surface structuring (LIPSS),” Opt. Express 25(13), 15330–15335 (2017).
  30. P. Calvani, A. Bellucci, M. Girolami, S. Orlando, V. Valentini, A. Lettino, and D. M. Trucchi, “Optical properties of femtosecond laser-treated diamond,” Appl. Phys., A Mater. Sci. Process. 117(1), 25–29 (2014).
  31. C. S. R. Nathala, A. Ajami, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, T. Ganz, A. Assion, and W. Husinsky, “Experimental study of fs-laser induced sub-100-nm periodic surface structures on titanium,” Opt. Express 23(5), 5915–5929 (2015).
  32. M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B 79(12), 125436 (2009).
  33. D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150(1–4), 101–106 (1999).
  34. P. Ashcheulov, J. Šebera, A. Kovalenko, V. Petrák, F. Fendrych, M. Nesládek, A. Taylor, Z. Vlčková Živcová, O. Frank, L. Kavan, M. Dračínský, P. Hubík, J. Vacík, I. Kraus, and I. Kratochvílová, “Conductivity of boron-doped polycrystalline diamond films: influence of specific boron defects,” Eur. Phys. J. B 86(10), 443 (2013).
  35. M. Martínez-Calderon, A. Rodríguez, A. Dias-Ponte, M. C. Morant-Miñana, M. Gómez-Aranzadi, and S. M. Olaizola, “Femtosecond laser fabrication of highly hydrophobic stainless steel surface with hierarchical structures fabricated by combining ordered microstructures and LIPSS,” Appl. Surf. Sci. 374, 81–89 (2016).
  36. J. Long, P. Fan, D. Gong, D. Jiang, H. Zhang, L. Li, and M. Zhong, “Superhydrophobic Surfaces Fabricated by Femtosecond Laser with Tunable Water Adhesion: From Lotus Leaf to Rose Petal,” ACS Appl. Mater. Interfaces 7(18), 9858–9865 (2015).
  37. D. Zhang, F. Chen, Q. Yang, J. Yong, H. Bian, Y. Ou, J. Si, X. Meng, and X. Hou, “A simple way to achieve pattern-dependent tunable adhesion in superhydrophobic surfaces by a femtosecond laser,” ACS Appl. Mater. Interfaces 4(9), 4905–4912 (2012).
  38. P. Bizi-Bandoki, S. Benayoun, S. Valette, B. Beaugiraud, and E. Audouard, “Modifications of roughness and wettability properties of metals induced by femtosecond laser treatment,” Appl. Surf. Sci. 257(12), 5213–5218 (2011).

2017 (5)

C.-H. Lee, E.-S. Lee, Y.-K. Lim, K.-H. Park, H.-D. Park, and D.-S. Lim, “Enhanced electrochemical oxidation of phenol by boron-doped diamond nanowire electrode,” RSC Advances 7(11), 6229–6235 (2017).

B. C. Lourencaoa, R. A. Pinheirob, T. A. Silvaa, E. J. Coratb, and O. Fatibello-Filhoa, “Porous boron-doped diamond/CNT electrode as electrochemical sensor for flow-injection analysis applications,” Diamond Related Materials 74, 182–190 (2017).

K. Lange, M. Schulz-Ruhtenberg, and J. Caro, “Platinum electrodes for oxygen reduction catalysis designed by ultrashort pulse laser structuring,” Chem. Electro Chem. 4(3), 570–576 (2017).

J. Bonse, S. Hohm, S. V. Kirner, A. Rosenfeld, and J. Kruger, “Laser-Induced Periodic Surface Structures— A Scientific Evergreen,” IEEE J. Sel. Top. Quantum Electron. 23(3), 109–123 (2017).

E. Granados, M. Martinez-Calderon, M. Gomez, A. Rodriguez, and S. M. Olaizola, “Photonic structures in diamond based on femtosecond UV laser induced periodic surface structuring (LIPSS),” Opt. Express 25(13), 15330–15335 (2017).

2016 (6)

M. Ficek, M. Sobaszek, M. Gnyba, J. Ryl, Ł. Gołuński, M. Smietana, J. Jasiński, P. Caban, and R. Bogdanowicz, “Optical and electrical properties of boron doped diamond thin conductive films deposited on fused silica glass substrates,” Appl. Surf. Sci. 387, 846–856 (2016).

X. He, A. Datta, W. Nam, L. M. Traverso, and X. Xu, “Sub-Diffraction Limited Writing based on Laser Induced Periodic Surface Structures (LIPSS),” Sci. Rep. 6(1), 35035 (2016).

M. Martínez-Calderon, A. Rodríguez, A. Dias-Ponte, M. C. Morant-Miñana, M. Gómez-Aranzadi, and S. M. Olaizola, “Femtosecond laser fabrication of highly hydrophobic stainless steel surface with hierarchical structures fabricated by combining ordered microstructures and LIPSS,” Appl. Surf. Sci. 374, 81–89 (2016).

N. J. Yang, J. S. Foord, and X. Jiang, “Diamond electrochemistry at the nanoscale: a review,” Carbon 99, 90–110 (2016).

P. W. May, M. Clegg, T. A. Silva, H. Zanin, O. Fatibello-Filho, V. Celorrio, D. J. Fermin, C. C. Welch, G. Hazell, L. Fisher, A. Nobbs, and B. Su, “Diamond-coated ‘black silicon’ as a promising material for high-surface-area electrochemical electrodes and antibacterial surfaces,” J. Mater. Chem. 4(34), 5737–5746 (2016).

N. Roy, Y. Hirano, H. Kuriyama, P. Sudhagar, N. Suzuki, K. I. Katsumata, K. Nakata, T. Kondo, M. Yuasa, I. Serizawa, T. Takayama, A. Kudo, A. Fujishima, and C. Terashima, “Boron-doped diamond semiconductor electrodes: Efficient photoelectrochemical CO2 reduction through surface modification,” Sci. Rep. 6(1), 38010 (2016).

2015 (4)

J. V. Macpherson, “A practical guide to using boron doped diamond in electrochemical research,” Phys. Chem. Chem. Phys. 17(5), 2935–2949 (2015).

J. Long, P. Fan, D. Gong, D. Jiang, H. Zhang, L. Li, and M. Zhong, “Superhydrophobic Surfaces Fabricated by Femtosecond Laser with Tunable Water Adhesion: From Lotus Leaf to Rose Petal,” ACS Appl. Mater. Interfaces 7(18), 9858–9865 (2015).

P. Nürnberger, H. Reinhardt, H.-C. Kim, F. Yang, K. Peppler, J. Janek, and N. Hampp, “Influence of substrate microcrystallinity on the orientation of laser-induced periodic surface structures,” J. Appl. Phys. 118(13), 134306 (2015).

C. S. R. Nathala, A. Ajami, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, T. Ganz, A. Assion, and W. Husinsky, “Experimental study of fs-laser induced sub-100-nm periodic surface structures on titanium,” Opt. Express 23(5), 5915–5929 (2015).

2014 (2)

P. Calvani, A. Bellucci, M. Girolami, S. Orlando, V. Valentini, A. Lettino, and D. M. Trucchi, “Optical properties of femtosecond laser-treated diamond,” Appl. Phys., A Mater. Sci. Process. 117(1), 25–29 (2014).

A. R. Neale, Y. Jin, J. Ouyang, S. Hughes, D. Hesp, V. Dhanak, G. Dearden, S. Edwardson, and L. J. Hardwick, “Electrochemical Performance of Laser Microstructured Nickel Oxyhydroxide Cathodes,” J. Power Sources 271, 42–47 (2014).

2013 (2)

P. Ashcheulov, J. Šebera, A. Kovalenko, V. Petrák, F. Fendrych, M. Nesládek, A. Taylor, Z. Vlčková Živcová, O. Frank, L. Kavan, M. Dračínský, P. Hubík, J. Vacík, I. Kraus, and I. Kratochvílová, “Conductivity of boron-doped polycrystalline diamond films: influence of specific boron defects,” Eur. Phys. J. B 86(10), 443 (2013).

K. E. Bennet, K. H. Lee, J. N. Kruchowski, S.-Y. Chang, M. P. Marsh, A. A. Van Orsow, A. Paez, and F. S. Manciu, “Development of Conductive Boron-Doped Diamond Electrode: A microscopic, Spectroscopic, and Voltammetric Study,” Materials (Basel) 6(12), 5726–5741 (2013).

2012 (2)

D. Zhang, F. Chen, Q. Yang, J. Yong, H. Bian, Y. Ou, J. Si, X. Meng, and X. Hou, “A simple way to achieve pattern-dependent tunable adhesion in superhydrophobic surfaces by a femtosecond laser,” ACS Appl. Mater. Interfaces 4(9), 4905–4912 (2012).

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 042006 (2012).

2011 (1)

P. Bizi-Bandoki, S. Benayoun, S. Valette, B. Beaugiraud, and E. Audouard, “Modifications of roughness and wettability properties of metals induced by femtosecond laser treatment,” Appl. Surf. Sci. 257(12), 5213–5218 (2011).

2010 (1)

M. Lv, M. Wei, F. Rong, C. Terashima, A. Fujishima, and Z. Z. Gu, “Electrochemical detection of catechol based on as-grown and nanograss array boron-doped diamond electrodes,” Electroanalysis 22(2), 199–203 (2010).

2009 (5)

P. N. Volpe, J. Pernot, P. Muret, and F. Omnès, “High hole mobility in boron doped diamond for power device applications,” Appl. Phys. Lett. 94(9), 092102 (2009).

D. Luo, L. Wu, and J. Zhi, “Fabrication of boron-doped diamond nanorod forest electrodes and their application in nonenzymatic amperometric glucose biosensing,” ACS Nano 3(8), 2121–2128 (2009).

N. Yang, H. Uetsuka, and C. E. Nebel, “Biofunctionalization of Vertically Aligned Diamond Nanowires,” Adv. Funct. Mater. 19(6), 887–893 (2009).

D. Luo, L. Wu, and J. Zhi, “Fabrication of Boron-Doped Diamond Nanorod Forest Electrodes and Their Application in Nonenzymatic Amperometric Glucose Biosensing,” ACS Nano 3(8), 2121–2128 (2009).

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B 79(12), 125436 (2009).

2008 (2)

Y. S. Zou, T. Yang, W. J. Zhang, Y. M. Chong, B. He, I. Bello, and S. T. Lee, “Fabrication of Diamond Nanopillar and Their Arrays,” Appl. Phys. Lett. 92(5), 053105 (2008).

A. Ay, V. M. Swope, and G. M. Swain, “The physicochemical and electrochemical properties of 100 and 500 nm diameter diamond powders coated with boron-doped nanocrystalline diamond,” J. Electrochem. Soc. 155(10), B1013–B1022 (2008).

2005 (1)

M. Panizza and G. Cerisola, “Application of Diamond Electrodes to Electrochemical Processes,” Electrochim. Acta 51(2), 191–199 (2005).

2000 (1)

H. Masuda, M. Watanabe, K. Yasui, D. Tryk, T. Rao, and A. Fujishima, “Fabrication of a Nanostructured Diamond Honeycomb Film,” Adv. Mater. 12(6), 444–447 (2000).

1999 (1)

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150(1–4), 101–106 (1999).

1986 (1)

A. E. Siegman and P. M. Fauchet, “Stimulated Wood’s anomalies on laser-illuminated surfaces,” IEEE J. Quantum Electron. 22(8), 1384–1403 (1986).

1983 (1)

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).

1978 (1)

B. Massarani, J. C. Bourgoin, and R. M. Chrenko, “Hopping conduction in semiconducting diamond,” Phys. Rev. 17(4), 1758–1769 (1978).

1965 (1)

M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys. 36(11), 3688–3689 (1965).

Ajami, A.

Ashcheulov, P.

P. Ashcheulov, J. Šebera, A. Kovalenko, V. Petrák, F. Fendrych, M. Nesládek, A. Taylor, Z. Vlčková Živcová, O. Frank, L. Kavan, M. Dračínský, P. Hubík, J. Vacík, I. Kraus, and I. Kratochvílová, “Conductivity of boron-doped polycrystalline diamond films: influence of specific boron defects,” Eur. Phys. J. B 86(10), 443 (2013).

Ashkenasi, D.

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150(1–4), 101–106 (1999).

Assion, A.

Audouard, E.

P. Bizi-Bandoki, S. Benayoun, S. Valette, B. Beaugiraud, and E. Audouard, “Modifications of roughness and wettability properties of metals induced by femtosecond laser treatment,” Appl. Surf. Sci. 257(12), 5213–5218 (2011).

Ay, A.

A. Ay, V. M. Swope, and G. M. Swain, “The physicochemical and electrochemical properties of 100 and 500 nm diameter diamond powders coated with boron-doped nanocrystalline diamond,” J. Electrochem. Soc. 155(10), B1013–B1022 (2008).

Beaugiraud, B.

P. Bizi-Bandoki, S. Benayoun, S. Valette, B. Beaugiraud, and E. Audouard, “Modifications of roughness and wettability properties of metals induced by femtosecond laser treatment,” Appl. Surf. Sci. 257(12), 5213–5218 (2011).

Bello, I.

Y. S. Zou, T. Yang, W. J. Zhang, Y. M. Chong, B. He, I. Bello, and S. T. Lee, “Fabrication of Diamond Nanopillar and Their Arrays,” Appl. Phys. Lett. 92(5), 053105 (2008).

Bellucci, A.

P. Calvani, A. Bellucci, M. Girolami, S. Orlando, V. Valentini, A. Lettino, and D. M. Trucchi, “Optical properties of femtosecond laser-treated diamond,” Appl. Phys., A Mater. Sci. Process. 117(1), 25–29 (2014).

Benayoun, S.

P. Bizi-Bandoki, S. Benayoun, S. Valette, B. Beaugiraud, and E. Audouard, “Modifications of roughness and wettability properties of metals induced by femtosecond laser treatment,” Appl. Surf. Sci. 257(12), 5213–5218 (2011).

Bennet, K. E.

K. E. Bennet, K. H. Lee, J. N. Kruchowski, S.-Y. Chang, M. P. Marsh, A. A. Van Orsow, A. Paez, and F. S. Manciu, “Development of Conductive Boron-Doped Diamond Electrode: A microscopic, Spectroscopic, and Voltammetric Study,” Materials (Basel) 6(12), 5726–5741 (2013).

Bian, H.

D. Zhang, F. Chen, Q. Yang, J. Yong, H. Bian, Y. Ou, J. Si, X. Meng, and X. Hou, “A simple way to achieve pattern-dependent tunable adhesion in superhydrophobic surfaces by a femtosecond laser,” ACS Appl. Mater. Interfaces 4(9), 4905–4912 (2012).

Birnbaum, M.

M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys. 36(11), 3688–3689 (1965).

Bizi-Bandoki, P.

P. Bizi-Bandoki, S. Benayoun, S. Valette, B. Beaugiraud, and E. Audouard, “Modifications of roughness and wettability properties of metals induced by femtosecond laser treatment,” Appl. Surf. Sci. 257(12), 5213–5218 (2011).

Bogdanowicz, R.

M. Ficek, M. Sobaszek, M. Gnyba, J. Ryl, Ł. Gołuński, M. Smietana, J. Jasiński, P. Caban, and R. Bogdanowicz, “Optical and electrical properties of boron doped diamond thin conductive films deposited on fused silica glass substrates,” Appl. Surf. Sci. 387, 846–856 (2016).

Bonse, J.

J. Bonse, S. Hohm, S. V. Kirner, A. Rosenfeld, and J. Kruger, “Laser-Induced Periodic Surface Structures— A Scientific Evergreen,” IEEE J. Sel. Top. Quantum Electron. 23(3), 109–123 (2017).

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 042006 (2012).

Bourgoin, J. C.

B. Massarani, J. C. Bourgoin, and R. M. Chrenko, “Hopping conduction in semiconducting diamond,” Phys. Rev. 17(4), 1758–1769 (1978).

Caban, P.

M. Ficek, M. Sobaszek, M. Gnyba, J. Ryl, Ł. Gołuński, M. Smietana, J. Jasiński, P. Caban, and R. Bogdanowicz, “Optical and electrical properties of boron doped diamond thin conductive films deposited on fused silica glass substrates,” Appl. Surf. Sci. 387, 846–856 (2016).

Calvani, P.

P. Calvani, A. Bellucci, M. Girolami, S. Orlando, V. Valentini, A. Lettino, and D. M. Trucchi, “Optical properties of femtosecond laser-treated diamond,” Appl. Phys., A Mater. Sci. Process. 117(1), 25–29 (2014).

Caro, J.

K. Lange, M. Schulz-Ruhtenberg, and J. Caro, “Platinum electrodes for oxygen reduction catalysis designed by ultrashort pulse laser structuring,” Chem. Electro Chem. 4(3), 570–576 (2017).

Celorrio, V.

P. W. May, M. Clegg, T. A. Silva, H. Zanin, O. Fatibello-Filho, V. Celorrio, D. J. Fermin, C. C. Welch, G. Hazell, L. Fisher, A. Nobbs, and B. Su, “Diamond-coated ‘black silicon’ as a promising material for high-surface-area electrochemical electrodes and antibacterial surfaces,” J. Mater. Chem. 4(34), 5737–5746 (2016).

Cerisola, G.

M. Panizza and G. Cerisola, “Application of Diamond Electrodes to Electrochemical Processes,” Electrochim. Acta 51(2), 191–199 (2005).

Chang, S.-Y.

K. E. Bennet, K. H. Lee, J. N. Kruchowski, S.-Y. Chang, M. P. Marsh, A. A. Van Orsow, A. Paez, and F. S. Manciu, “Development of Conductive Boron-Doped Diamond Electrode: A microscopic, Spectroscopic, and Voltammetric Study,” Materials (Basel) 6(12), 5726–5741 (2013).

Chen, F.

D. Zhang, F. Chen, Q. Yang, J. Yong, H. Bian, Y. Ou, J. Si, X. Meng, and X. Hou, “A simple way to achieve pattern-dependent tunable adhesion in superhydrophobic surfaces by a femtosecond laser,” ACS Appl. Mater. Interfaces 4(9), 4905–4912 (2012).

Cheng, Y.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B 79(12), 125436 (2009).

Chong, Y. M.

Y. S. Zou, T. Yang, W. J. Zhang, Y. M. Chong, B. He, I. Bello, and S. T. Lee, “Fabrication of Diamond Nanopillar and Their Arrays,” Appl. Phys. Lett. 92(5), 053105 (2008).

Chrenko, R. M.

B. Massarani, J. C. Bourgoin, and R. M. Chrenko, “Hopping conduction in semiconducting diamond,” Phys. Rev. 17(4), 1758–1769 (1978).

Clegg, M.

P. W. May, M. Clegg, T. A. Silva, H. Zanin, O. Fatibello-Filho, V. Celorrio, D. J. Fermin, C. C. Welch, G. Hazell, L. Fisher, A. Nobbs, and B. Su, “Diamond-coated ‘black silicon’ as a promising material for high-surface-area electrochemical electrodes and antibacterial surfaces,” J. Mater. Chem. 4(34), 5737–5746 (2016).

Coratb, E. J.

B. C. Lourencaoa, R. A. Pinheirob, T. A. Silvaa, E. J. Coratb, and O. Fatibello-Filhoa, “Porous boron-doped diamond/CNT electrode as electrochemical sensor for flow-injection analysis applications,” Diamond Related Materials 74, 182–190 (2017).

Datta, A.

X. He, A. Datta, W. Nam, L. M. Traverso, and X. Xu, “Sub-Diffraction Limited Writing based on Laser Induced Periodic Surface Structures (LIPSS),” Sci. Rep. 6(1), 35035 (2016).

Dearden, G.

A. R. Neale, Y. Jin, J. Ouyang, S. Hughes, D. Hesp, V. Dhanak, G. Dearden, S. Edwardson, and L. J. Hardwick, “Electrochemical Performance of Laser Microstructured Nickel Oxyhydroxide Cathodes,” J. Power Sources 271, 42–47 (2014).

Dhanak, V.

A. R. Neale, Y. Jin, J. Ouyang, S. Hughes, D. Hesp, V. Dhanak, G. Dearden, S. Edwardson, and L. J. Hardwick, “Electrochemical Performance of Laser Microstructured Nickel Oxyhydroxide Cathodes,” J. Power Sources 271, 42–47 (2014).

Dias-Ponte, A.

M. Martínez-Calderon, A. Rodríguez, A. Dias-Ponte, M. C. Morant-Miñana, M. Gómez-Aranzadi, and S. M. Olaizola, “Femtosecond laser fabrication of highly hydrophobic stainless steel surface with hierarchical structures fabricated by combining ordered microstructures and LIPSS,” Appl. Surf. Sci. 374, 81–89 (2016).

Dracínský, M.

P. Ashcheulov, J. Šebera, A. Kovalenko, V. Petrák, F. Fendrych, M. Nesládek, A. Taylor, Z. Vlčková Živcová, O. Frank, L. Kavan, M. Dračínský, P. Hubík, J. Vacík, I. Kraus, and I. Kratochvílová, “Conductivity of boron-doped polycrystalline diamond films: influence of specific boron defects,” Eur. Phys. J. B 86(10), 443 (2013).

Edwardson, S.

A. R. Neale, Y. Jin, J. Ouyang, S. Hughes, D. Hesp, V. Dhanak, G. Dearden, S. Edwardson, and L. J. Hardwick, “Electrochemical Performance of Laser Microstructured Nickel Oxyhydroxide Cathodes,” J. Power Sources 271, 42–47 (2014).

Fan, P.

J. Long, P. Fan, D. Gong, D. Jiang, H. Zhang, L. Li, and M. Zhong, “Superhydrophobic Surfaces Fabricated by Femtosecond Laser with Tunable Water Adhesion: From Lotus Leaf to Rose Petal,” ACS Appl. Mater. Interfaces 7(18), 9858–9865 (2015).

Fatibello-Filho, O.

P. W. May, M. Clegg, T. A. Silva, H. Zanin, O. Fatibello-Filho, V. Celorrio, D. J. Fermin, C. C. Welch, G. Hazell, L. Fisher, A. Nobbs, and B. Su, “Diamond-coated ‘black silicon’ as a promising material for high-surface-area electrochemical electrodes and antibacterial surfaces,” J. Mater. Chem. 4(34), 5737–5746 (2016).

Fatibello-Filhoa, O.

B. C. Lourencaoa, R. A. Pinheirob, T. A. Silvaa, E. J. Coratb, and O. Fatibello-Filhoa, “Porous boron-doped diamond/CNT electrode as electrochemical sensor for flow-injection analysis applications,” Diamond Related Materials 74, 182–190 (2017).

Fauchet, P. M.

A. E. Siegman and P. M. Fauchet, “Stimulated Wood’s anomalies on laser-illuminated surfaces,” IEEE J. Quantum Electron. 22(8), 1384–1403 (1986).

Fendrych, F.

P. Ashcheulov, J. Šebera, A. Kovalenko, V. Petrák, F. Fendrych, M. Nesládek, A. Taylor, Z. Vlčková Živcová, O. Frank, L. Kavan, M. Dračínský, P. Hubík, J. Vacík, I. Kraus, and I. Kratochvílová, “Conductivity of boron-doped polycrystalline diamond films: influence of specific boron defects,” Eur. Phys. J. B 86(10), 443 (2013).

Fermin, D. J.

P. W. May, M. Clegg, T. A. Silva, H. Zanin, O. Fatibello-Filho, V. Celorrio, D. J. Fermin, C. C. Welch, G. Hazell, L. Fisher, A. Nobbs, and B. Su, “Diamond-coated ‘black silicon’ as a promising material for high-surface-area electrochemical electrodes and antibacterial surfaces,” J. Mater. Chem. 4(34), 5737–5746 (2016).

Ficek, M.

M. Ficek, M. Sobaszek, M. Gnyba, J. Ryl, Ł. Gołuński, M. Smietana, J. Jasiński, P. Caban, and R. Bogdanowicz, “Optical and electrical properties of boron doped diamond thin conductive films deposited on fused silica glass substrates,” Appl. Surf. Sci. 387, 846–856 (2016).

Fisher, L.

P. W. May, M. Clegg, T. A. Silva, H. Zanin, O. Fatibello-Filho, V. Celorrio, D. J. Fermin, C. C. Welch, G. Hazell, L. Fisher, A. Nobbs, and B. Su, “Diamond-coated ‘black silicon’ as a promising material for high-surface-area electrochemical electrodes and antibacterial surfaces,” J. Mater. Chem. 4(34), 5737–5746 (2016).

Foord, J. S.

N. J. Yang, J. S. Foord, and X. Jiang, “Diamond electrochemistry at the nanoscale: a review,” Carbon 99, 90–110 (2016).

Frank, O.

P. Ashcheulov, J. Šebera, A. Kovalenko, V. Petrák, F. Fendrych, M. Nesládek, A. Taylor, Z. Vlčková Živcová, O. Frank, L. Kavan, M. Dračínský, P. Hubík, J. Vacík, I. Kraus, and I. Kratochvílová, “Conductivity of boron-doped polycrystalline diamond films: influence of specific boron defects,” Eur. Phys. J. B 86(10), 443 (2013).

Fujishima, A.

N. Roy, Y. Hirano, H. Kuriyama, P. Sudhagar, N. Suzuki, K. I. Katsumata, K. Nakata, T. Kondo, M. Yuasa, I. Serizawa, T. Takayama, A. Kudo, A. Fujishima, and C. Terashima, “Boron-doped diamond semiconductor electrodes: Efficient photoelectrochemical CO2 reduction through surface modification,” Sci. Rep. 6(1), 38010 (2016).

M. Lv, M. Wei, F. Rong, C. Terashima, A. Fujishima, and Z. Z. Gu, “Electrochemical detection of catechol based on as-grown and nanograss array boron-doped diamond electrodes,” Electroanalysis 22(2), 199–203 (2010).

H. Masuda, M. Watanabe, K. Yasui, D. Tryk, T. Rao, and A. Fujishima, “Fabrication of a Nanostructured Diamond Honeycomb Film,” Adv. Mater. 12(6), 444–447 (2000).

Ganz, T.

Girolami, M.

P. Calvani, A. Bellucci, M. Girolami, S. Orlando, V. Valentini, A. Lettino, and D. M. Trucchi, “Optical properties of femtosecond laser-treated diamond,” Appl. Phys., A Mater. Sci. Process. 117(1), 25–29 (2014).

Gnyba, M.

M. Ficek, M. Sobaszek, M. Gnyba, J. Ryl, Ł. Gołuński, M. Smietana, J. Jasiński, P. Caban, and R. Bogdanowicz, “Optical and electrical properties of boron doped diamond thin conductive films deposited on fused silica glass substrates,” Appl. Surf. Sci. 387, 846–856 (2016).

Golunski, L.

M. Ficek, M. Sobaszek, M. Gnyba, J. Ryl, Ł. Gołuński, M. Smietana, J. Jasiński, P. Caban, and R. Bogdanowicz, “Optical and electrical properties of boron doped diamond thin conductive films deposited on fused silica glass substrates,” Appl. Surf. Sci. 387, 846–856 (2016).

Gomez, M.

Gómez-Aranzadi, M.

M. Martínez-Calderon, A. Rodríguez, A. Dias-Ponte, M. C. Morant-Miñana, M. Gómez-Aranzadi, and S. M. Olaizola, “Femtosecond laser fabrication of highly hydrophobic stainless steel surface with hierarchical structures fabricated by combining ordered microstructures and LIPSS,” Appl. Surf. Sci. 374, 81–89 (2016).

Gong, D.

J. Long, P. Fan, D. Gong, D. Jiang, H. Zhang, L. Li, and M. Zhong, “Superhydrophobic Surfaces Fabricated by Femtosecond Laser with Tunable Water Adhesion: From Lotus Leaf to Rose Petal,” ACS Appl. Mater. Interfaces 7(18), 9858–9865 (2015).

Granados, E.

Gu, Z. Z.

M. Lv, M. Wei, F. Rong, C. Terashima, A. Fujishima, and Z. Z. Gu, “Electrochemical detection of catechol based on as-grown and nanograss array boron-doped diamond electrodes,” Electroanalysis 22(2), 199–203 (2010).

Hampp, N.

P. Nürnberger, H. Reinhardt, H.-C. Kim, F. Yang, K. Peppler, J. Janek, and N. Hampp, “Influence of substrate microcrystallinity on the orientation of laser-induced periodic surface structures,” J. Appl. Phys. 118(13), 134306 (2015).

Hardwick, L. J.

A. R. Neale, Y. Jin, J. Ouyang, S. Hughes, D. Hesp, V. Dhanak, G. Dearden, S. Edwardson, and L. J. Hardwick, “Electrochemical Performance of Laser Microstructured Nickel Oxyhydroxide Cathodes,” J. Power Sources 271, 42–47 (2014).

Hazell, G.

P. W. May, M. Clegg, T. A. Silva, H. Zanin, O. Fatibello-Filho, V. Celorrio, D. J. Fermin, C. C. Welch, G. Hazell, L. Fisher, A. Nobbs, and B. Su, “Diamond-coated ‘black silicon’ as a promising material for high-surface-area electrochemical electrodes and antibacterial surfaces,” J. Mater. Chem. 4(34), 5737–5746 (2016).

He, B.

Y. S. Zou, T. Yang, W. J. Zhang, Y. M. Chong, B. He, I. Bello, and S. T. Lee, “Fabrication of Diamond Nanopillar and Their Arrays,” Appl. Phys. Lett. 92(5), 053105 (2008).

He, X.

X. He, A. Datta, W. Nam, L. M. Traverso, and X. Xu, “Sub-Diffraction Limited Writing based on Laser Induced Periodic Surface Structures (LIPSS),” Sci. Rep. 6(1), 35035 (2016).

Hesp, D.

A. R. Neale, Y. Jin, J. Ouyang, S. Hughes, D. Hesp, V. Dhanak, G. Dearden, S. Edwardson, and L. J. Hardwick, “Electrochemical Performance of Laser Microstructured Nickel Oxyhydroxide Cathodes,” J. Power Sources 271, 42–47 (2014).

Hirano, Y.

N. Roy, Y. Hirano, H. Kuriyama, P. Sudhagar, N. Suzuki, K. I. Katsumata, K. Nakata, T. Kondo, M. Yuasa, I. Serizawa, T. Takayama, A. Kudo, A. Fujishima, and C. Terashima, “Boron-doped diamond semiconductor electrodes: Efficient photoelectrochemical CO2 reduction through surface modification,” Sci. Rep. 6(1), 38010 (2016).

Hohm, S.

J. Bonse, S. Hohm, S. V. Kirner, A. Rosenfeld, and J. Kruger, “Laser-Induced Periodic Surface Structures— A Scientific Evergreen,” IEEE J. Sel. Top. Quantum Electron. 23(3), 109–123 (2017).

Höhm, S.

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 042006 (2012).

Hou, X.

D. Zhang, F. Chen, Q. Yang, J. Yong, H. Bian, Y. Ou, J. Si, X. Meng, and X. Hou, “A simple way to achieve pattern-dependent tunable adhesion in superhydrophobic surfaces by a femtosecond laser,” ACS Appl. Mater. Interfaces 4(9), 4905–4912 (2012).

Huang, M.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B 79(12), 125436 (2009).

Hubík, P.

P. Ashcheulov, J. Šebera, A. Kovalenko, V. Petrák, F. Fendrych, M. Nesládek, A. Taylor, Z. Vlčková Živcová, O. Frank, L. Kavan, M. Dračínský, P. Hubík, J. Vacík, I. Kraus, and I. Kratochvílová, “Conductivity of boron-doped polycrystalline diamond films: influence of specific boron defects,” Eur. Phys. J. B 86(10), 443 (2013).

Hughes, S.

A. R. Neale, Y. Jin, J. Ouyang, S. Hughes, D. Hesp, V. Dhanak, G. Dearden, S. Edwardson, and L. J. Hardwick, “Electrochemical Performance of Laser Microstructured Nickel Oxyhydroxide Cathodes,” J. Power Sources 271, 42–47 (2014).

Husinsky, W.

Ionin, A. A.

Janek, J.

P. Nürnberger, H. Reinhardt, H.-C. Kim, F. Yang, K. Peppler, J. Janek, and N. Hampp, “Influence of substrate microcrystallinity on the orientation of laser-induced periodic surface structures,” J. Appl. Phys. 118(13), 134306 (2015).

Jasinski, J.

M. Ficek, M. Sobaszek, M. Gnyba, J. Ryl, Ł. Gołuński, M. Smietana, J. Jasiński, P. Caban, and R. Bogdanowicz, “Optical and electrical properties of boron doped diamond thin conductive films deposited on fused silica glass substrates,” Appl. Surf. Sci. 387, 846–856 (2016).

Jiang, D.

J. Long, P. Fan, D. Gong, D. Jiang, H. Zhang, L. Li, and M. Zhong, “Superhydrophobic Surfaces Fabricated by Femtosecond Laser with Tunable Water Adhesion: From Lotus Leaf to Rose Petal,” ACS Appl. Mater. Interfaces 7(18), 9858–9865 (2015).

Jiang, X.

N. J. Yang, J. S. Foord, and X. Jiang, “Diamond electrochemistry at the nanoscale: a review,” Carbon 99, 90–110 (2016).

Jin, Y.

A. R. Neale, Y. Jin, J. Ouyang, S. Hughes, D. Hesp, V. Dhanak, G. Dearden, S. Edwardson, and L. J. Hardwick, “Electrochemical Performance of Laser Microstructured Nickel Oxyhydroxide Cathodes,” J. Power Sources 271, 42–47 (2014).

Katsumata, K. I.

N. Roy, Y. Hirano, H. Kuriyama, P. Sudhagar, N. Suzuki, K. I. Katsumata, K. Nakata, T. Kondo, M. Yuasa, I. Serizawa, T. Takayama, A. Kudo, A. Fujishima, and C. Terashima, “Boron-doped diamond semiconductor electrodes: Efficient photoelectrochemical CO2 reduction through surface modification,” Sci. Rep. 6(1), 38010 (2016).

Kavan, L.

P. Ashcheulov, J. Šebera, A. Kovalenko, V. Petrák, F. Fendrych, M. Nesládek, A. Taylor, Z. Vlčková Živcová, O. Frank, L. Kavan, M. Dračínský, P. Hubík, J. Vacík, I. Kraus, and I. Kratochvílová, “Conductivity of boron-doped polycrystalline diamond films: influence of specific boron defects,” Eur. Phys. J. B 86(10), 443 (2013).

Kim, H.-C.

P. Nürnberger, H. Reinhardt, H.-C. Kim, F. Yang, K. Peppler, J. Janek, and N. Hampp, “Influence of substrate microcrystallinity on the orientation of laser-induced periodic surface structures,” J. Appl. Phys. 118(13), 134306 (2015).

Kirner, S. V.

J. Bonse, S. Hohm, S. V. Kirner, A. Rosenfeld, and J. Kruger, “Laser-Induced Periodic Surface Structures— A Scientific Evergreen,” IEEE J. Sel. Top. Quantum Electron. 23(3), 109–123 (2017).

Kondo, T.

N. Roy, Y. Hirano, H. Kuriyama, P. Sudhagar, N. Suzuki, K. I. Katsumata, K. Nakata, T. Kondo, M. Yuasa, I. Serizawa, T. Takayama, A. Kudo, A. Fujishima, and C. Terashima, “Boron-doped diamond semiconductor electrodes: Efficient photoelectrochemical CO2 reduction through surface modification,” Sci. Rep. 6(1), 38010 (2016).

Kovalenko, A.

P. Ashcheulov, J. Šebera, A. Kovalenko, V. Petrák, F. Fendrych, M. Nesládek, A. Taylor, Z. Vlčková Živcová, O. Frank, L. Kavan, M. Dračínský, P. Hubík, J. Vacík, I. Kraus, and I. Kratochvílová, “Conductivity of boron-doped polycrystalline diamond films: influence of specific boron defects,” Eur. Phys. J. B 86(10), 443 (2013).

Kratochvílová, I.

P. Ashcheulov, J. Šebera, A. Kovalenko, V. Petrák, F. Fendrych, M. Nesládek, A. Taylor, Z. Vlčková Živcová, O. Frank, L. Kavan, M. Dračínský, P. Hubík, J. Vacík, I. Kraus, and I. Kratochvílová, “Conductivity of boron-doped polycrystalline diamond films: influence of specific boron defects,” Eur. Phys. J. B 86(10), 443 (2013).

Kraus, I.

P. Ashcheulov, J. Šebera, A. Kovalenko, V. Petrák, F. Fendrych, M. Nesládek, A. Taylor, Z. Vlčková Živcová, O. Frank, L. Kavan, M. Dračínský, P. Hubík, J. Vacík, I. Kraus, and I. Kratochvílová, “Conductivity of boron-doped polycrystalline diamond films: influence of specific boron defects,” Eur. Phys. J. B 86(10), 443 (2013).

Kruchowski, J. N.

K. E. Bennet, K. H. Lee, J. N. Kruchowski, S.-Y. Chang, M. P. Marsh, A. A. Van Orsow, A. Paez, and F. S. Manciu, “Development of Conductive Boron-Doped Diamond Electrode: A microscopic, Spectroscopic, and Voltammetric Study,” Materials (Basel) 6(12), 5726–5741 (2013).

Kruger, J.

J. Bonse, S. Hohm, S. V. Kirner, A. Rosenfeld, and J. Kruger, “Laser-Induced Periodic Surface Structures— A Scientific Evergreen,” IEEE J. Sel. Top. Quantum Electron. 23(3), 109–123 (2017).

Krüger, J.

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 042006 (2012).

Kudo, A.

N. Roy, Y. Hirano, H. Kuriyama, P. Sudhagar, N. Suzuki, K. I. Katsumata, K. Nakata, T. Kondo, M. Yuasa, I. Serizawa, T. Takayama, A. Kudo, A. Fujishima, and C. Terashima, “Boron-doped diamond semiconductor electrodes: Efficient photoelectrochemical CO2 reduction through surface modification,” Sci. Rep. 6(1), 38010 (2016).

Kudryashov, S. I.

Kuriyama, H.

N. Roy, Y. Hirano, H. Kuriyama, P. Sudhagar, N. Suzuki, K. I. Katsumata, K. Nakata, T. Kondo, M. Yuasa, I. Serizawa, T. Takayama, A. Kudo, A. Fujishima, and C. Terashima, “Boron-doped diamond semiconductor electrodes: Efficient photoelectrochemical CO2 reduction through surface modification,” Sci. Rep. 6(1), 38010 (2016).

Lange, K.

K. Lange, M. Schulz-Ruhtenberg, and J. Caro, “Platinum electrodes for oxygen reduction catalysis designed by ultrashort pulse laser structuring,” Chem. Electro Chem. 4(3), 570–576 (2017).

Lee, C.-H.

C.-H. Lee, E.-S. Lee, Y.-K. Lim, K.-H. Park, H.-D. Park, and D.-S. Lim, “Enhanced electrochemical oxidation of phenol by boron-doped diamond nanowire electrode,” RSC Advances 7(11), 6229–6235 (2017).

Lee, E.-S.

C.-H. Lee, E.-S. Lee, Y.-K. Lim, K.-H. Park, H.-D. Park, and D.-S. Lim, “Enhanced electrochemical oxidation of phenol by boron-doped diamond nanowire electrode,” RSC Advances 7(11), 6229–6235 (2017).

Lee, K. H.

K. E. Bennet, K. H. Lee, J. N. Kruchowski, S.-Y. Chang, M. P. Marsh, A. A. Van Orsow, A. Paez, and F. S. Manciu, “Development of Conductive Boron-Doped Diamond Electrode: A microscopic, Spectroscopic, and Voltammetric Study,” Materials (Basel) 6(12), 5726–5741 (2013).

Lee, S. T.

Y. S. Zou, T. Yang, W. J. Zhang, Y. M. Chong, B. He, I. Bello, and S. T. Lee, “Fabrication of Diamond Nanopillar and Their Arrays,” Appl. Phys. Lett. 92(5), 053105 (2008).

Lettino, A.

P. Calvani, A. Bellucci, M. Girolami, S. Orlando, V. Valentini, A. Lettino, and D. M. Trucchi, “Optical properties of femtosecond laser-treated diamond,” Appl. Phys., A Mater. Sci. Process. 117(1), 25–29 (2014).

Li, L.

J. Long, P. Fan, D. Gong, D. Jiang, H. Zhang, L. Li, and M. Zhong, “Superhydrophobic Surfaces Fabricated by Femtosecond Laser with Tunable Water Adhesion: From Lotus Leaf to Rose Petal,” ACS Appl. Mater. Interfaces 7(18), 9858–9865 (2015).

Lim, D.-S.

C.-H. Lee, E.-S. Lee, Y.-K. Lim, K.-H. Park, H.-D. Park, and D.-S. Lim, “Enhanced electrochemical oxidation of phenol by boron-doped diamond nanowire electrode,” RSC Advances 7(11), 6229–6235 (2017).

Lim, Y.-K.

C.-H. Lee, E.-S. Lee, Y.-K. Lim, K.-H. Park, H.-D. Park, and D.-S. Lim, “Enhanced electrochemical oxidation of phenol by boron-doped diamond nanowire electrode,” RSC Advances 7(11), 6229–6235 (2017).

Long, J.

J. Long, P. Fan, D. Gong, D. Jiang, H. Zhang, L. Li, and M. Zhong, “Superhydrophobic Surfaces Fabricated by Femtosecond Laser with Tunable Water Adhesion: From Lotus Leaf to Rose Petal,” ACS Appl. Mater. Interfaces 7(18), 9858–9865 (2015).

Lorenz, M.

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150(1–4), 101–106 (1999).

Lourencaoa, B. C.

B. C. Lourencaoa, R. A. Pinheirob, T. A. Silvaa, E. J. Coratb, and O. Fatibello-Filhoa, “Porous boron-doped diamond/CNT electrode as electrochemical sensor for flow-injection analysis applications,” Diamond Related Materials 74, 182–190 (2017).

Luo, D.

D. Luo, L. Wu, and J. Zhi, “Fabrication of boron-doped diamond nanorod forest electrodes and their application in nonenzymatic amperometric glucose biosensing,” ACS Nano 3(8), 2121–2128 (2009).

D. Luo, L. Wu, and J. Zhi, “Fabrication of Boron-Doped Diamond Nanorod Forest Electrodes and Their Application in Nonenzymatic Amperometric Glucose Biosensing,” ACS Nano 3(8), 2121–2128 (2009).

Lv, M.

M. Lv, M. Wei, F. Rong, C. Terashima, A. Fujishima, and Z. Z. Gu, “Electrochemical detection of catechol based on as-grown and nanograss array boron-doped diamond electrodes,” Electroanalysis 22(2), 199–203 (2010).

Macpherson, J. V.

J. V. Macpherson, “A practical guide to using boron doped diamond in electrochemical research,” Phys. Chem. Chem. Phys. 17(5), 2935–2949 (2015).

Makarov, S. V.

Manciu, F. S.

K. E. Bennet, K. H. Lee, J. N. Kruchowski, S.-Y. Chang, M. P. Marsh, A. A. Van Orsow, A. Paez, and F. S. Manciu, “Development of Conductive Boron-Doped Diamond Electrode: A microscopic, Spectroscopic, and Voltammetric Study,” Materials (Basel) 6(12), 5726–5741 (2013).

Marsh, M. P.

K. E. Bennet, K. H. Lee, J. N. Kruchowski, S.-Y. Chang, M. P. Marsh, A. A. Van Orsow, A. Paez, and F. S. Manciu, “Development of Conductive Boron-Doped Diamond Electrode: A microscopic, Spectroscopic, and Voltammetric Study,” Materials (Basel) 6(12), 5726–5741 (2013).

Martinez-Calderon, M.

Martínez-Calderon, M.

M. Martínez-Calderon, A. Rodríguez, A. Dias-Ponte, M. C. Morant-Miñana, M. Gómez-Aranzadi, and S. M. Olaizola, “Femtosecond laser fabrication of highly hydrophobic stainless steel surface with hierarchical structures fabricated by combining ordered microstructures and LIPSS,” Appl. Surf. Sci. 374, 81–89 (2016).

Massarani, B.

B. Massarani, J. C. Bourgoin, and R. M. Chrenko, “Hopping conduction in semiconducting diamond,” Phys. Rev. 17(4), 1758–1769 (1978).

Masuda, H.

H. Masuda, M. Watanabe, K. Yasui, D. Tryk, T. Rao, and A. Fujishima, “Fabrication of a Nanostructured Diamond Honeycomb Film,” Adv. Mater. 12(6), 444–447 (2000).

May, P. W.

P. W. May, M. Clegg, T. A. Silva, H. Zanin, O. Fatibello-Filho, V. Celorrio, D. J. Fermin, C. C. Welch, G. Hazell, L. Fisher, A. Nobbs, and B. Su, “Diamond-coated ‘black silicon’ as a promising material for high-surface-area electrochemical electrodes and antibacterial surfaces,” J. Mater. Chem. 4(34), 5737–5746 (2016).

Meng, X.

D. Zhang, F. Chen, Q. Yang, J. Yong, H. Bian, Y. Ou, J. Si, X. Meng, and X. Hou, “A simple way to achieve pattern-dependent tunable adhesion in superhydrophobic surfaces by a femtosecond laser,” ACS Appl. Mater. Interfaces 4(9), 4905–4912 (2012).

Morant-Miñana, M. C.

M. Martínez-Calderon, A. Rodríguez, A. Dias-Ponte, M. C. Morant-Miñana, M. Gómez-Aranzadi, and S. M. Olaizola, “Femtosecond laser fabrication of highly hydrophobic stainless steel surface with hierarchical structures fabricated by combining ordered microstructures and LIPSS,” Appl. Surf. Sci. 374, 81–89 (2016).

Muret, P.

P. N. Volpe, J. Pernot, P. Muret, and F. Omnès, “High hole mobility in boron doped diamond for power device applications,” Appl. Phys. Lett. 94(9), 092102 (2009).

Nakata, K.

N. Roy, Y. Hirano, H. Kuriyama, P. Sudhagar, N. Suzuki, K. I. Katsumata, K. Nakata, T. Kondo, M. Yuasa, I. Serizawa, T. Takayama, A. Kudo, A. Fujishima, and C. Terashima, “Boron-doped diamond semiconductor electrodes: Efficient photoelectrochemical CO2 reduction through surface modification,” Sci. Rep. 6(1), 38010 (2016).

Nam, W.

X. He, A. Datta, W. Nam, L. M. Traverso, and X. Xu, “Sub-Diffraction Limited Writing based on Laser Induced Periodic Surface Structures (LIPSS),” Sci. Rep. 6(1), 35035 (2016).

Nathala, C. S. R.

Neale, A. R.

A. R. Neale, Y. Jin, J. Ouyang, S. Hughes, D. Hesp, V. Dhanak, G. Dearden, S. Edwardson, and L. J. Hardwick, “Electrochemical Performance of Laser Microstructured Nickel Oxyhydroxide Cathodes,” J. Power Sources 271, 42–47 (2014).

Nebel, C. E.

N. Yang, H. Uetsuka, and C. E. Nebel, “Biofunctionalization of Vertically Aligned Diamond Nanowires,” Adv. Funct. Mater. 19(6), 887–893 (2009).

Nesládek, M.

P. Ashcheulov, J. Šebera, A. Kovalenko, V. Petrák, F. Fendrych, M. Nesládek, A. Taylor, Z. Vlčková Živcová, O. Frank, L. Kavan, M. Dračínský, P. Hubík, J. Vacík, I. Kraus, and I. Kratochvílová, “Conductivity of boron-doped polycrystalline diamond films: influence of specific boron defects,” Eur. Phys. J. B 86(10), 443 (2013).

Nobbs, A.

P. W. May, M. Clegg, T. A. Silva, H. Zanin, O. Fatibello-Filho, V. Celorrio, D. J. Fermin, C. C. Welch, G. Hazell, L. Fisher, A. Nobbs, and B. Su, “Diamond-coated ‘black silicon’ as a promising material for high-surface-area electrochemical electrodes and antibacterial surfaces,” J. Mater. Chem. 4(34), 5737–5746 (2016).

Nürnberger, P.

P. Nürnberger, H. Reinhardt, H.-C. Kim, F. Yang, K. Peppler, J. Janek, and N. Hampp, “Influence of substrate microcrystallinity on the orientation of laser-induced periodic surface structures,” J. Appl. Phys. 118(13), 134306 (2015).

Olaizola, S. M.

E. Granados, M. Martinez-Calderon, M. Gomez, A. Rodriguez, and S. M. Olaizola, “Photonic structures in diamond based on femtosecond UV laser induced periodic surface structuring (LIPSS),” Opt. Express 25(13), 15330–15335 (2017).

M. Martínez-Calderon, A. Rodríguez, A. Dias-Ponte, M. C. Morant-Miñana, M. Gómez-Aranzadi, and S. M. Olaizola, “Femtosecond laser fabrication of highly hydrophobic stainless steel surface with hierarchical structures fabricated by combining ordered microstructures and LIPSS,” Appl. Surf. Sci. 374, 81–89 (2016).

Omnès, F.

P. N. Volpe, J. Pernot, P. Muret, and F. Omnès, “High hole mobility in boron doped diamond for power device applications,” Appl. Phys. Lett. 94(9), 092102 (2009).

Orlando, S.

P. Calvani, A. Bellucci, M. Girolami, S. Orlando, V. Valentini, A. Lettino, and D. M. Trucchi, “Optical properties of femtosecond laser-treated diamond,” Appl. Phys., A Mater. Sci. Process. 117(1), 25–29 (2014).

Ou, Y.

D. Zhang, F. Chen, Q. Yang, J. Yong, H. Bian, Y. Ou, J. Si, X. Meng, and X. Hou, “A simple way to achieve pattern-dependent tunable adhesion in superhydrophobic surfaces by a femtosecond laser,” ACS Appl. Mater. Interfaces 4(9), 4905–4912 (2012).

Ouyang, J.

A. R. Neale, Y. Jin, J. Ouyang, S. Hughes, D. Hesp, V. Dhanak, G. Dearden, S. Edwardson, and L. J. Hardwick, “Electrochemical Performance of Laser Microstructured Nickel Oxyhydroxide Cathodes,” J. Power Sources 271, 42–47 (2014).

Paez, A.

K. E. Bennet, K. H. Lee, J. N. Kruchowski, S.-Y. Chang, M. P. Marsh, A. A. Van Orsow, A. Paez, and F. S. Manciu, “Development of Conductive Boron-Doped Diamond Electrode: A microscopic, Spectroscopic, and Voltammetric Study,” Materials (Basel) 6(12), 5726–5741 (2013).

Panizza, M.

M. Panizza and G. Cerisola, “Application of Diamond Electrodes to Electrochemical Processes,” Electrochim. Acta 51(2), 191–199 (2005).

Park, H.-D.

C.-H. Lee, E.-S. Lee, Y.-K. Lim, K.-H. Park, H.-D. Park, and D.-S. Lim, “Enhanced electrochemical oxidation of phenol by boron-doped diamond nanowire electrode,” RSC Advances 7(11), 6229–6235 (2017).

Park, K.-H.

C.-H. Lee, E.-S. Lee, Y.-K. Lim, K.-H. Park, H.-D. Park, and D.-S. Lim, “Enhanced electrochemical oxidation of phenol by boron-doped diamond nanowire electrode,” RSC Advances 7(11), 6229–6235 (2017).

Peppler, K.

P. Nürnberger, H. Reinhardt, H.-C. Kim, F. Yang, K. Peppler, J. Janek, and N. Hampp, “Influence of substrate microcrystallinity on the orientation of laser-induced periodic surface structures,” J. Appl. Phys. 118(13), 134306 (2015).

Pernot, J.

P. N. Volpe, J. Pernot, P. Muret, and F. Omnès, “High hole mobility in boron doped diamond for power device applications,” Appl. Phys. Lett. 94(9), 092102 (2009).

Petrák, V.

P. Ashcheulov, J. Šebera, A. Kovalenko, V. Petrák, F. Fendrych, M. Nesládek, A. Taylor, Z. Vlčková Živcová, O. Frank, L. Kavan, M. Dračínský, P. Hubík, J. Vacík, I. Kraus, and I. Kratochvílová, “Conductivity of boron-doped polycrystalline diamond films: influence of specific boron defects,” Eur. Phys. J. B 86(10), 443 (2013).

Pinheirob, R. A.

B. C. Lourencaoa, R. A. Pinheirob, T. A. Silvaa, E. J. Coratb, and O. Fatibello-Filhoa, “Porous boron-doped diamond/CNT electrode as electrochemical sensor for flow-injection analysis applications,” Diamond Related Materials 74, 182–190 (2017).

Preston, J. S.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).

Rao, T.

H. Masuda, M. Watanabe, K. Yasui, D. Tryk, T. Rao, and A. Fujishima, “Fabrication of a Nanostructured Diamond Honeycomb Film,” Adv. Mater. 12(6), 444–447 (2000).

Reinhardt, H.

P. Nürnberger, H. Reinhardt, H.-C. Kim, F. Yang, K. Peppler, J. Janek, and N. Hampp, “Influence of substrate microcrystallinity on the orientation of laser-induced periodic surface structures,” J. Appl. Phys. 118(13), 134306 (2015).

Rodriguez, A.

Rodríguez, A.

M. Martínez-Calderon, A. Rodríguez, A. Dias-Ponte, M. C. Morant-Miñana, M. Gómez-Aranzadi, and S. M. Olaizola, “Femtosecond laser fabrication of highly hydrophobic stainless steel surface with hierarchical structures fabricated by combining ordered microstructures and LIPSS,” Appl. Surf. Sci. 374, 81–89 (2016).

Rong, F.

M. Lv, M. Wei, F. Rong, C. Terashima, A. Fujishima, and Z. Z. Gu, “Electrochemical detection of catechol based on as-grown and nanograss array boron-doped diamond electrodes,” Electroanalysis 22(2), 199–203 (2010).

Rosenfeld, A.

J. Bonse, S. Hohm, S. V. Kirner, A. Rosenfeld, and J. Kruger, “Laser-Induced Periodic Surface Structures— A Scientific Evergreen,” IEEE J. Sel. Top. Quantum Electron. 23(3), 109–123 (2017).

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 042006 (2012).

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150(1–4), 101–106 (1999).

Roy, N.

N. Roy, Y. Hirano, H. Kuriyama, P. Sudhagar, N. Suzuki, K. I. Katsumata, K. Nakata, T. Kondo, M. Yuasa, I. Serizawa, T. Takayama, A. Kudo, A. Fujishima, and C. Terashima, “Boron-doped diamond semiconductor electrodes: Efficient photoelectrochemical CO2 reduction through surface modification,” Sci. Rep. 6(1), 38010 (2016).

Ryl, J.

M. Ficek, M. Sobaszek, M. Gnyba, J. Ryl, Ł. Gołuński, M. Smietana, J. Jasiński, P. Caban, and R. Bogdanowicz, “Optical and electrical properties of boron doped diamond thin conductive films deposited on fused silica glass substrates,” Appl. Surf. Sci. 387, 846–856 (2016).

Schulz-Ruhtenberg, M.

K. Lange, M. Schulz-Ruhtenberg, and J. Caro, “Platinum electrodes for oxygen reduction catalysis designed by ultrashort pulse laser structuring,” Chem. Electro Chem. 4(3), 570–576 (2017).

Šebera, J.

P. Ashcheulov, J. Šebera, A. Kovalenko, V. Petrák, F. Fendrych, M. Nesládek, A. Taylor, Z. Vlčková Živcová, O. Frank, L. Kavan, M. Dračínský, P. Hubík, J. Vacík, I. Kraus, and I. Kratochvílová, “Conductivity of boron-doped polycrystalline diamond films: influence of specific boron defects,” Eur. Phys. J. B 86(10), 443 (2013).

Serizawa, I.

N. Roy, Y. Hirano, H. Kuriyama, P. Sudhagar, N. Suzuki, K. I. Katsumata, K. Nakata, T. Kondo, M. Yuasa, I. Serizawa, T. Takayama, A. Kudo, A. Fujishima, and C. Terashima, “Boron-doped diamond semiconductor electrodes: Efficient photoelectrochemical CO2 reduction through surface modification,” Sci. Rep. 6(1), 38010 (2016).

Si, J.

D. Zhang, F. Chen, Q. Yang, J. Yong, H. Bian, Y. Ou, J. Si, X. Meng, and X. Hou, “A simple way to achieve pattern-dependent tunable adhesion in superhydrophobic surfaces by a femtosecond laser,” ACS Appl. Mater. Interfaces 4(9), 4905–4912 (2012).

Siegman, A. E.

A. E. Siegman and P. M. Fauchet, “Stimulated Wood’s anomalies on laser-illuminated surfaces,” IEEE J. Quantum Electron. 22(8), 1384–1403 (1986).

Silva, T. A.

P. W. May, M. Clegg, T. A. Silva, H. Zanin, O. Fatibello-Filho, V. Celorrio, D. J. Fermin, C. C. Welch, G. Hazell, L. Fisher, A. Nobbs, and B. Su, “Diamond-coated ‘black silicon’ as a promising material for high-surface-area electrochemical electrodes and antibacterial surfaces,” J. Mater. Chem. 4(34), 5737–5746 (2016).

Silvaa, T. A.

B. C. Lourencaoa, R. A. Pinheirob, T. A. Silvaa, E. J. Coratb, and O. Fatibello-Filhoa, “Porous boron-doped diamond/CNT electrode as electrochemical sensor for flow-injection analysis applications,” Diamond Related Materials 74, 182–190 (2017).

Sipe, J. E.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).

Smietana, M.

M. Ficek, M. Sobaszek, M. Gnyba, J. Ryl, Ł. Gołuński, M. Smietana, J. Jasiński, P. Caban, and R. Bogdanowicz, “Optical and electrical properties of boron doped diamond thin conductive films deposited on fused silica glass substrates,” Appl. Surf. Sci. 387, 846–856 (2016).

Sobaszek, M.

M. Ficek, M. Sobaszek, M. Gnyba, J. Ryl, Ł. Gołuński, M. Smietana, J. Jasiński, P. Caban, and R. Bogdanowicz, “Optical and electrical properties of boron doped diamond thin conductive films deposited on fused silica glass substrates,” Appl. Surf. Sci. 387, 846–856 (2016).

Stoian, R.

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150(1–4), 101–106 (1999).

Su, B.

P. W. May, M. Clegg, T. A. Silva, H. Zanin, O. Fatibello-Filho, V. Celorrio, D. J. Fermin, C. C. Welch, G. Hazell, L. Fisher, A. Nobbs, and B. Su, “Diamond-coated ‘black silicon’ as a promising material for high-surface-area electrochemical electrodes and antibacterial surfaces,” J. Mater. Chem. 4(34), 5737–5746 (2016).

Sudhagar, P.

N. Roy, Y. Hirano, H. Kuriyama, P. Sudhagar, N. Suzuki, K. I. Katsumata, K. Nakata, T. Kondo, M. Yuasa, I. Serizawa, T. Takayama, A. Kudo, A. Fujishima, and C. Terashima, “Boron-doped diamond semiconductor electrodes: Efficient photoelectrochemical CO2 reduction through surface modification,” Sci. Rep. 6(1), 38010 (2016).

Suzuki, N.

N. Roy, Y. Hirano, H. Kuriyama, P. Sudhagar, N. Suzuki, K. I. Katsumata, K. Nakata, T. Kondo, M. Yuasa, I. Serizawa, T. Takayama, A. Kudo, A. Fujishima, and C. Terashima, “Boron-doped diamond semiconductor electrodes: Efficient photoelectrochemical CO2 reduction through surface modification,” Sci. Rep. 6(1), 38010 (2016).

Swain, G. M.

A. Ay, V. M. Swope, and G. M. Swain, “The physicochemical and electrochemical properties of 100 and 500 nm diameter diamond powders coated with boron-doped nanocrystalline diamond,” J. Electrochem. Soc. 155(10), B1013–B1022 (2008).

Swope, V. M.

A. Ay, V. M. Swope, and G. M. Swain, “The physicochemical and electrochemical properties of 100 and 500 nm diameter diamond powders coated with boron-doped nanocrystalline diamond,” J. Electrochem. Soc. 155(10), B1013–B1022 (2008).

Takayama, T.

N. Roy, Y. Hirano, H. Kuriyama, P. Sudhagar, N. Suzuki, K. I. Katsumata, K. Nakata, T. Kondo, M. Yuasa, I. Serizawa, T. Takayama, A. Kudo, A. Fujishima, and C. Terashima, “Boron-doped diamond semiconductor electrodes: Efficient photoelectrochemical CO2 reduction through surface modification,” Sci. Rep. 6(1), 38010 (2016).

Taylor, A.

P. Ashcheulov, J. Šebera, A. Kovalenko, V. Petrák, F. Fendrych, M. Nesládek, A. Taylor, Z. Vlčková Živcová, O. Frank, L. Kavan, M. Dračínský, P. Hubík, J. Vacík, I. Kraus, and I. Kratochvílová, “Conductivity of boron-doped polycrystalline diamond films: influence of specific boron defects,” Eur. Phys. J. B 86(10), 443 (2013).

Terashima, C.

N. Roy, Y. Hirano, H. Kuriyama, P. Sudhagar, N. Suzuki, K. I. Katsumata, K. Nakata, T. Kondo, M. Yuasa, I. Serizawa, T. Takayama, A. Kudo, A. Fujishima, and C. Terashima, “Boron-doped diamond semiconductor electrodes: Efficient photoelectrochemical CO2 reduction through surface modification,” Sci. Rep. 6(1), 38010 (2016).

M. Lv, M. Wei, F. Rong, C. Terashima, A. Fujishima, and Z. Z. Gu, “Electrochemical detection of catechol based on as-grown and nanograss array boron-doped diamond electrodes,” Electroanalysis 22(2), 199–203 (2010).

Traverso, L. M.

X. He, A. Datta, W. Nam, L. M. Traverso, and X. Xu, “Sub-Diffraction Limited Writing based on Laser Induced Periodic Surface Structures (LIPSS),” Sci. Rep. 6(1), 35035 (2016).

Trucchi, D. M.

P. Calvani, A. Bellucci, M. Girolami, S. Orlando, V. Valentini, A. Lettino, and D. M. Trucchi, “Optical properties of femtosecond laser-treated diamond,” Appl. Phys., A Mater. Sci. Process. 117(1), 25–29 (2014).

Tryk, D.

H. Masuda, M. Watanabe, K. Yasui, D. Tryk, T. Rao, and A. Fujishima, “Fabrication of a Nanostructured Diamond Honeycomb Film,” Adv. Mater. 12(6), 444–447 (2000).

Uetsuka, H.

N. Yang, H. Uetsuka, and C. E. Nebel, “Biofunctionalization of Vertically Aligned Diamond Nanowires,” Adv. Funct. Mater. 19(6), 887–893 (2009).

Vacík, J.

P. Ashcheulov, J. Šebera, A. Kovalenko, V. Petrák, F. Fendrych, M. Nesládek, A. Taylor, Z. Vlčková Živcová, O. Frank, L. Kavan, M. Dračínský, P. Hubík, J. Vacík, I. Kraus, and I. Kratochvílová, “Conductivity of boron-doped polycrystalline diamond films: influence of specific boron defects,” Eur. Phys. J. B 86(10), 443 (2013).

Valentini, V.

P. Calvani, A. Bellucci, M. Girolami, S. Orlando, V. Valentini, A. Lettino, and D. M. Trucchi, “Optical properties of femtosecond laser-treated diamond,” Appl. Phys., A Mater. Sci. Process. 117(1), 25–29 (2014).

Valette, S.

P. Bizi-Bandoki, S. Benayoun, S. Valette, B. Beaugiraud, and E. Audouard, “Modifications of roughness and wettability properties of metals induced by femtosecond laser treatment,” Appl. Surf. Sci. 257(12), 5213–5218 (2011).

van Driel, H. M.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).

Van Orsow, A. A.

K. E. Bennet, K. H. Lee, J. N. Kruchowski, S.-Y. Chang, M. P. Marsh, A. A. Van Orsow, A. Paez, and F. S. Manciu, “Development of Conductive Boron-Doped Diamond Electrode: A microscopic, Spectroscopic, and Voltammetric Study,” Materials (Basel) 6(12), 5726–5741 (2013).

Vlcková Živcová, Z.

P. Ashcheulov, J. Šebera, A. Kovalenko, V. Petrák, F. Fendrych, M. Nesládek, A. Taylor, Z. Vlčková Živcová, O. Frank, L. Kavan, M. Dračínský, P. Hubík, J. Vacík, I. Kraus, and I. Kratochvílová, “Conductivity of boron-doped polycrystalline diamond films: influence of specific boron defects,” Eur. Phys. J. B 86(10), 443 (2013).

Volpe, P. N.

P. N. Volpe, J. Pernot, P. Muret, and F. Omnès, “High hole mobility in boron doped diamond for power device applications,” Appl. Phys. Lett. 94(9), 092102 (2009).

Watanabe, M.

H. Masuda, M. Watanabe, K. Yasui, D. Tryk, T. Rao, and A. Fujishima, “Fabrication of a Nanostructured Diamond Honeycomb Film,” Adv. Mater. 12(6), 444–447 (2000).

Wei, M.

M. Lv, M. Wei, F. Rong, C. Terashima, A. Fujishima, and Z. Z. Gu, “Electrochemical detection of catechol based on as-grown and nanograss array boron-doped diamond electrodes,” Electroanalysis 22(2), 199–203 (2010).

Welch, C. C.

P. W. May, M. Clegg, T. A. Silva, H. Zanin, O. Fatibello-Filho, V. Celorrio, D. J. Fermin, C. C. Welch, G. Hazell, L. Fisher, A. Nobbs, and B. Su, “Diamond-coated ‘black silicon’ as a promising material for high-surface-area electrochemical electrodes and antibacterial surfaces,” J. Mater. Chem. 4(34), 5737–5746 (2016).

Wu, L.

D. Luo, L. Wu, and J. Zhi, “Fabrication of Boron-Doped Diamond Nanorod Forest Electrodes and Their Application in Nonenzymatic Amperometric Glucose Biosensing,” ACS Nano 3(8), 2121–2128 (2009).

D. Luo, L. Wu, and J. Zhi, “Fabrication of boron-doped diamond nanorod forest electrodes and their application in nonenzymatic amperometric glucose biosensing,” ACS Nano 3(8), 2121–2128 (2009).

Xu, N.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B 79(12), 125436 (2009).

Xu, X.

X. He, A. Datta, W. Nam, L. M. Traverso, and X. Xu, “Sub-Diffraction Limited Writing based on Laser Induced Periodic Surface Structures (LIPSS),” Sci. Rep. 6(1), 35035 (2016).

Xu, Z.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B 79(12), 125436 (2009).

Yang, F.

P. Nürnberger, H. Reinhardt, H.-C. Kim, F. Yang, K. Peppler, J. Janek, and N. Hampp, “Influence of substrate microcrystallinity on the orientation of laser-induced periodic surface structures,” J. Appl. Phys. 118(13), 134306 (2015).

Yang, N.

N. Yang, H. Uetsuka, and C. E. Nebel, “Biofunctionalization of Vertically Aligned Diamond Nanowires,” Adv. Funct. Mater. 19(6), 887–893 (2009).

Yang, N. J.

N. J. Yang, J. S. Foord, and X. Jiang, “Diamond electrochemistry at the nanoscale: a review,” Carbon 99, 90–110 (2016).

Yang, Q.

D. Zhang, F. Chen, Q. Yang, J. Yong, H. Bian, Y. Ou, J. Si, X. Meng, and X. Hou, “A simple way to achieve pattern-dependent tunable adhesion in superhydrophobic surfaces by a femtosecond laser,” ACS Appl. Mater. Interfaces 4(9), 4905–4912 (2012).

Yang, T.

Y. S. Zou, T. Yang, W. J. Zhang, Y. M. Chong, B. He, I. Bello, and S. T. Lee, “Fabrication of Diamond Nanopillar and Their Arrays,” Appl. Phys. Lett. 92(5), 053105 (2008).

Yasui, K.

H. Masuda, M. Watanabe, K. Yasui, D. Tryk, T. Rao, and A. Fujishima, “Fabrication of a Nanostructured Diamond Honeycomb Film,” Adv. Mater. 12(6), 444–447 (2000).

Yong, J.

D. Zhang, F. Chen, Q. Yang, J. Yong, H. Bian, Y. Ou, J. Si, X. Meng, and X. Hou, “A simple way to achieve pattern-dependent tunable adhesion in superhydrophobic surfaces by a femtosecond laser,” ACS Appl. Mater. Interfaces 4(9), 4905–4912 (2012).

Young, J. F.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).

Yuasa, M.

N. Roy, Y. Hirano, H. Kuriyama, P. Sudhagar, N. Suzuki, K. I. Katsumata, K. Nakata, T. Kondo, M. Yuasa, I. Serizawa, T. Takayama, A. Kudo, A. Fujishima, and C. Terashima, “Boron-doped diamond semiconductor electrodes: Efficient photoelectrochemical CO2 reduction through surface modification,” Sci. Rep. 6(1), 38010 (2016).

Zanin, H.

P. W. May, M. Clegg, T. A. Silva, H. Zanin, O. Fatibello-Filho, V. Celorrio, D. J. Fermin, C. C. Welch, G. Hazell, L. Fisher, A. Nobbs, and B. Su, “Diamond-coated ‘black silicon’ as a promising material for high-surface-area electrochemical electrodes and antibacterial surfaces,” J. Mater. Chem. 4(34), 5737–5746 (2016).

Zhang, D.

D. Zhang, F. Chen, Q. Yang, J. Yong, H. Bian, Y. Ou, J. Si, X. Meng, and X. Hou, “A simple way to achieve pattern-dependent tunable adhesion in superhydrophobic surfaces by a femtosecond laser,” ACS Appl. Mater. Interfaces 4(9), 4905–4912 (2012).

Zhang, H.

J. Long, P. Fan, D. Gong, D. Jiang, H. Zhang, L. Li, and M. Zhong, “Superhydrophobic Surfaces Fabricated by Femtosecond Laser with Tunable Water Adhesion: From Lotus Leaf to Rose Petal,” ACS Appl. Mater. Interfaces 7(18), 9858–9865 (2015).

Zhang, W. J.

Y. S. Zou, T. Yang, W. J. Zhang, Y. M. Chong, B. He, I. Bello, and S. T. Lee, “Fabrication of Diamond Nanopillar and Their Arrays,” Appl. Phys. Lett. 92(5), 053105 (2008).

Zhao, F.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B 79(12), 125436 (2009).

Zhi, J.

D. Luo, L. Wu, and J. Zhi, “Fabrication of boron-doped diamond nanorod forest electrodes and their application in nonenzymatic amperometric glucose biosensing,” ACS Nano 3(8), 2121–2128 (2009).

D. Luo, L. Wu, and J. Zhi, “Fabrication of Boron-Doped Diamond Nanorod Forest Electrodes and Their Application in Nonenzymatic Amperometric Glucose Biosensing,” ACS Nano 3(8), 2121–2128 (2009).

Zhong, M.

J. Long, P. Fan, D. Gong, D. Jiang, H. Zhang, L. Li, and M. Zhong, “Superhydrophobic Surfaces Fabricated by Femtosecond Laser with Tunable Water Adhesion: From Lotus Leaf to Rose Petal,” ACS Appl. Mater. Interfaces 7(18), 9858–9865 (2015).

Zou, Y. S.

Y. S. Zou, T. Yang, W. J. Zhang, Y. M. Chong, B. He, I. Bello, and S. T. Lee, “Fabrication of Diamond Nanopillar and Their Arrays,” Appl. Phys. Lett. 92(5), 053105 (2008).

ACS Appl. Mater. Interfaces (2)

J. Long, P. Fan, D. Gong, D. Jiang, H. Zhang, L. Li, and M. Zhong, “Superhydrophobic Surfaces Fabricated by Femtosecond Laser with Tunable Water Adhesion: From Lotus Leaf to Rose Petal,” ACS Appl. Mater. Interfaces 7(18), 9858–9865 (2015).

D. Zhang, F. Chen, Q. Yang, J. Yong, H. Bian, Y. Ou, J. Si, X. Meng, and X. Hou, “A simple way to achieve pattern-dependent tunable adhesion in superhydrophobic surfaces by a femtosecond laser,” ACS Appl. Mater. Interfaces 4(9), 4905–4912 (2012).

ACS Nano (2)

D. Luo, L. Wu, and J. Zhi, “Fabrication of Boron-Doped Diamond Nanorod Forest Electrodes and Their Application in Nonenzymatic Amperometric Glucose Biosensing,” ACS Nano 3(8), 2121–2128 (2009).

D. Luo, L. Wu, and J. Zhi, “Fabrication of boron-doped diamond nanorod forest electrodes and their application in nonenzymatic amperometric glucose biosensing,” ACS Nano 3(8), 2121–2128 (2009).

Adv. Funct. Mater. (1)

N. Yang, H. Uetsuka, and C. E. Nebel, “Biofunctionalization of Vertically Aligned Diamond Nanowires,” Adv. Funct. Mater. 19(6), 887–893 (2009).

Adv. Mater. (1)

H. Masuda, M. Watanabe, K. Yasui, D. Tryk, T. Rao, and A. Fujishima, “Fabrication of a Nanostructured Diamond Honeycomb Film,” Adv. Mater. 12(6), 444–447 (2000).

Appl. Phys. Lett. (2)

Y. S. Zou, T. Yang, W. J. Zhang, Y. M. Chong, B. He, I. Bello, and S. T. Lee, “Fabrication of Diamond Nanopillar and Their Arrays,” Appl. Phys. Lett. 92(5), 053105 (2008).

P. N. Volpe, J. Pernot, P. Muret, and F. Omnès, “High hole mobility in boron doped diamond for power device applications,” Appl. Phys. Lett. 94(9), 092102 (2009).

Appl. Phys., A Mater. Sci. Process. (1)

P. Calvani, A. Bellucci, M. Girolami, S. Orlando, V. Valentini, A. Lettino, and D. M. Trucchi, “Optical properties of femtosecond laser-treated diamond,” Appl. Phys., A Mater. Sci. Process. 117(1), 25–29 (2014).

Appl. Surf. Sci. (4)

P. Bizi-Bandoki, S. Benayoun, S. Valette, B. Beaugiraud, and E. Audouard, “Modifications of roughness and wettability properties of metals induced by femtosecond laser treatment,” Appl. Surf. Sci. 257(12), 5213–5218 (2011).

M. Ficek, M. Sobaszek, M. Gnyba, J. Ryl, Ł. Gołuński, M. Smietana, J. Jasiński, P. Caban, and R. Bogdanowicz, “Optical and electrical properties of boron doped diamond thin conductive films deposited on fused silica glass substrates,” Appl. Surf. Sci. 387, 846–856 (2016).

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150(1–4), 101–106 (1999).

M. Martínez-Calderon, A. Rodríguez, A. Dias-Ponte, M. C. Morant-Miñana, M. Gómez-Aranzadi, and S. M. Olaizola, “Femtosecond laser fabrication of highly hydrophobic stainless steel surface with hierarchical structures fabricated by combining ordered microstructures and LIPSS,” Appl. Surf. Sci. 374, 81–89 (2016).

Carbon (1)

N. J. Yang, J. S. Foord, and X. Jiang, “Diamond electrochemistry at the nanoscale: a review,” Carbon 99, 90–110 (2016).

Chem. Electro Chem. (1)

K. Lange, M. Schulz-Ruhtenberg, and J. Caro, “Platinum electrodes for oxygen reduction catalysis designed by ultrashort pulse laser structuring,” Chem. Electro Chem. 4(3), 570–576 (2017).

Diamond Related Materials (1)

B. C. Lourencaoa, R. A. Pinheirob, T. A. Silvaa, E. J. Coratb, and O. Fatibello-Filhoa, “Porous boron-doped diamond/CNT electrode as electrochemical sensor for flow-injection analysis applications,” Diamond Related Materials 74, 182–190 (2017).

Electroanalysis (1)

M. Lv, M. Wei, F. Rong, C. Terashima, A. Fujishima, and Z. Z. Gu, “Electrochemical detection of catechol based on as-grown and nanograss array boron-doped diamond electrodes,” Electroanalysis 22(2), 199–203 (2010).

Electrochim. Acta (1)

M. Panizza and G. Cerisola, “Application of Diamond Electrodes to Electrochemical Processes,” Electrochim. Acta 51(2), 191–199 (2005).

Eur. Phys. J. B (1)

P. Ashcheulov, J. Šebera, A. Kovalenko, V. Petrák, F. Fendrych, M. Nesládek, A. Taylor, Z. Vlčková Živcová, O. Frank, L. Kavan, M. Dračínský, P. Hubík, J. Vacík, I. Kraus, and I. Kratochvílová, “Conductivity of boron-doped polycrystalline diamond films: influence of specific boron defects,” Eur. Phys. J. B 86(10), 443 (2013).

IEEE J. Quantum Electron. (1)

A. E. Siegman and P. M. Fauchet, “Stimulated Wood’s anomalies on laser-illuminated surfaces,” IEEE J. Quantum Electron. 22(8), 1384–1403 (1986).

IEEE J. Sel. Top. Quantum Electron. (1)

J. Bonse, S. Hohm, S. V. Kirner, A. Rosenfeld, and J. Kruger, “Laser-Induced Periodic Surface Structures— A Scientific Evergreen,” IEEE J. Sel. Top. Quantum Electron. 23(3), 109–123 (2017).

J. Appl. Phys. (2)

M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys. 36(11), 3688–3689 (1965).

P. Nürnberger, H. Reinhardt, H.-C. Kim, F. Yang, K. Peppler, J. Janek, and N. Hampp, “Influence of substrate microcrystallinity on the orientation of laser-induced periodic surface structures,” J. Appl. Phys. 118(13), 134306 (2015).

J. Electrochem. Soc. (1)

A. Ay, V. M. Swope, and G. M. Swain, “The physicochemical and electrochemical properties of 100 and 500 nm diameter diamond powders coated with boron-doped nanocrystalline diamond,” J. Electrochem. Soc. 155(10), B1013–B1022 (2008).

J. Laser Appl. (1)

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 042006 (2012).

J. Mater. Chem. (1)

P. W. May, M. Clegg, T. A. Silva, H. Zanin, O. Fatibello-Filho, V. Celorrio, D. J. Fermin, C. C. Welch, G. Hazell, L. Fisher, A. Nobbs, and B. Su, “Diamond-coated ‘black silicon’ as a promising material for high-surface-area electrochemical electrodes and antibacterial surfaces,” J. Mater. Chem. 4(34), 5737–5746 (2016).

J. Power Sources (1)

A. R. Neale, Y. Jin, J. Ouyang, S. Hughes, D. Hesp, V. Dhanak, G. Dearden, S. Edwardson, and L. J. Hardwick, “Electrochemical Performance of Laser Microstructured Nickel Oxyhydroxide Cathodes,” J. Power Sources 271, 42–47 (2014).

Materials (Basel) (1)

K. E. Bennet, K. H. Lee, J. N. Kruchowski, S.-Y. Chang, M. P. Marsh, A. A. Van Orsow, A. Paez, and F. S. Manciu, “Development of Conductive Boron-Doped Diamond Electrode: A microscopic, Spectroscopic, and Voltammetric Study,” Materials (Basel) 6(12), 5726–5741 (2013).

Opt. Express (2)

Phys. Chem. Chem. Phys. (1)

J. V. Macpherson, “A practical guide to using boron doped diamond in electrochemical research,” Phys. Chem. Chem. Phys. 17(5), 2935–2949 (2015).

Phys. Rev. (1)

B. Massarani, J. C. Bourgoin, and R. M. Chrenko, “Hopping conduction in semiconducting diamond,” Phys. Rev. 17(4), 1758–1769 (1978).

Phys. Rev. B (2)

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B 79(12), 125436 (2009).

RSC Advances (1)

C.-H. Lee, E.-S. Lee, Y.-K. Lim, K.-H. Park, H.-D. Park, and D.-S. Lim, “Enhanced electrochemical oxidation of phenol by boron-doped diamond nanowire electrode,” RSC Advances 7(11), 6229–6235 (2017).

Sci. Rep. (2)

N. Roy, Y. Hirano, H. Kuriyama, P. Sudhagar, N. Suzuki, K. I. Katsumata, K. Nakata, T. Kondo, M. Yuasa, I. Serizawa, T. Takayama, A. Kudo, A. Fujishima, and C. Terashima, “Boron-doped diamond semiconductor electrodes: Efficient photoelectrochemical CO2 reduction through surface modification,” Sci. Rep. 6(1), 38010 (2016).

X. He, A. Datta, W. Nam, L. M. Traverso, and X. Xu, “Sub-Diffraction Limited Writing based on Laser Induced Periodic Surface Structures (LIPSS),” Sci. Rep. 6(1), 35035 (2016).

Other (1)

R. Mildren and J. Rabeau, Optical Engineering of Diamond (Wiley, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic layout of the femtosecond laser machining setup for processing boron doped diamond.
Fig. 2
Fig. 2 (a) LIPSS formation threshold as a function of laser fluence.and number of laser pulses (inset) Periodicity variation of LIPSS as a function of number of impinging pulses for 23 J/cm2. (b) SEM micrographs of LIPSS structures on boron doped diamond. (inset) Micrograph with 25,000x magnification shows typical ripple period about ~420 nm.
Fig. 3
Fig. 3 AFM scan of the irradiated area showing an average depth of ~150 nm. The measured surface area enhancement was approximately ~50%.
Fig. 4
Fig. 4 Raman spectra of BDD before and after fs-laser treatment (23 J/cm2, 1000 pulses), red and blue lines, respectively. In the inset, it is noticeable the left shift of 1330 cm−1 diamond peak, pointing out a slight lattice stress.
Fig. 5
Fig. 5 (a) Wettability test result for an untreated BDD surface yields a contact angle of 75°. (b) LIPSS area enhances the wettability properties by decreasing the contact angle to approximately 46°. (c) Laser treated 16 mm2 squared surface, scale bar = 100 μm (d) Detailed view of the LIPSS produced nano-ripples. Scale bar = 1 μm.

Metrics