Abstract

An expanded study has been completed of the pulsed and continuous wave (CW) laser induced damage threshold (LiDT) of surface relief anti-reflection (AR) microstructures (ARMs) etched in zinc selenide (ZnSe) crystals and chromium-ion-doped (Cr:ZnSe) laser gain media. In multiple-sample per variant testing at wavelengths of 2095 and 2940nm, the pulsed laser damage resistance of ARMs textured ZnSe crystals was found to be equivalent to untreated, as-polished crystals, with an LiDT as much as 5 times that of thin-film AR coated ZnSe crystals. Similar results were found for Cr:ZnSe crystals tested at 2940nm, but mixed results were found for pulse testing at 2095nm. In accumulated power CW damage testing at a wavelength of 1908nm, neither untreated nor ARMs treated ZnSe crystals could be damaged after long duration exposures at a maximum system intensity of 28.6 MW/cm2, a value many times higher than typically found with thin-film AR coated ZnSe. For Cr:ZnSe gain media, the CW LiDT was observed to be dependent on the focused beam size at the sample surface, with thresholds for untreated and ARMs-treated Cr:ZnSe being nearly equivalent, ranging from 0.6 MW/cm2 for the largest spot size, to 2.1 MW/cm2 for a spot area 4 times smaller. An operational laser test was performed where an ARMs textured Cr:ZnSe crystal operated with higher slope efficiency and 1.5 times the output of a thin-film AR coated crystal in an identical resonator configuration.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Cr:ZnSe laser incorporating anti-reflection microstructures exhibiting low-loss, damage-resistant lasing at near quantum limit efficiency

Sean McDaniel, Douglas Hobbs, Bruce MacLeod, Ernest Sabatino, Patrick Berry, Kenneth Schepler, William Mitchell, and Gary Cook
Opt. Mater. Express 4(11) 2225-2232 (2014)

Laser-induced damage in optical materials: thirteenth ASTM symposium

Harold E. Bennett, Arthur H. Guenther, David Milam, and Brian E. Newnam
Appl. Opt. 22(20) 3276-3296 (1983)

Laser-induced damage in optical materials: fifteenth ASTM symposium

Harold E. Bennett, Arthur H. Guenther, David Milam, and Brian E. Newnam
Appl. Opt. 25(2) 258-275 (1986)

References

  • View by:
  • |
  • |
  • |

  1. I. Moskalev, S. Mirov, M. Mirov, S. Vasilyev, V. Smolski, A. Zakrevskiy, and V. Gapontsev, “140 W Cr:ZnSe laser system,” Opt. Express 24(18), 21090–21104 (2016).
    [Crossref] [PubMed]
  2. S. B. Mirov, V. V. Fedorov, D. V. Martyshkin, I. S. Moskalev, M. Mirov, and S. Vasilyev, “Progress in Mid-IR Lasers Based on Cr and Fe-Doped II–VI Chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 292–310 (2015).
    [Crossref]
  3. H. Krol, C. Grezes-Besset, L. Gallais, J. Natoli, and M. Commandre, “Study of laser-induced damage at 2 microns on coated and uncoated ZnSe substrates,” Proc. SPIE 6403, 640316 (2006).
    [Crossref]
  4. S. McDaniel, D. S. Hobbs, B. D. MacLeod, E. Sabatino, P. A. Berry, K. L. Schepler, W. Mitchell, and G. Cook, “Cr:ZnSe laser incorporating anti-reflection microstructures exhibiting low-loss, damage-resistant lasing at near quantum limit efficiency,” Opt. Mater. Express 4(11), 2225–2230 (2014).
    [Crossref]
  5. D. S. Hobbs, B. D. MacLeod, E. Sabatino, S. B. Mirov, and D. V. Martyshkin, “Laser damage resistant anti-reflection microstructures for mid-infrared metal-ion doped ZnSe gain media,” Proc. SPIE 8530, 85300P (2012).
    [Crossref]
  6. D. S. Hobbs and B. D. MacLeod, “Design, Fabrication and Measured Performance of Anti-Reflecting Surface Textures in Infrared Transmitting Materials,” Proc. SPIE 5786, 349 (2005).
    [Crossref]
  7. D. H. Raguin and G. M. Morris, “Antireflection structured surfaces for the infrared spectral region,” Appl. Opt. 32(7), 1154–1167 (1993).
    [Crossref] [PubMed]
  8. F. Reversat, T. Berthou, S. Tisserand, L. Dupuy, S. Gautier, P. Muys, D. Delbeke, D. Grojo, M. Laraichi, and P. Delaporte, “Development of diffractive antireflection structures on ZnSe for high power CO2 laser applications,” Proc. SPIE 6992, 699201 (2008).
    [Crossref]
  9. D. S. Hobbs, B. D. MacLeod, E. Sabatino, J. A. Britten, and C. J. Stolz, “Contamination resistant antireflection nano-textures in fused silica for laser optics,” Proc. SPIE 8885, 88850J (2013).
    [Crossref]
  10. B. D. MacLeod, D. S. Hobbs, and E. Sabatino, “Moldable AR microstructures for improved laser transmission and damage resistance in CIRCM fiber optic beam delivery systems,” Proc. SPIE 8016, 80160Q (2011).
    [Crossref]
  11. L. E. Busse, C. Florea, B. Shaw, V. Nguyen, J. S. Sanghera, I. Aggarwal, and F. Kung, “Antireflective surface structures on IR fibers for high power transmission,” in Advanced Solid-State Lasers Congress, G. Huber and P. Moulton, eds. OSA Technical Digest (online) (Optical Society of America, 2013), paper AM2A.5.
    [Crossref]

2016 (1)

2015 (1)

S. B. Mirov, V. V. Fedorov, D. V. Martyshkin, I. S. Moskalev, M. Mirov, and S. Vasilyev, “Progress in Mid-IR Lasers Based on Cr and Fe-Doped II–VI Chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 292–310 (2015).
[Crossref]

2014 (1)

2013 (1)

D. S. Hobbs, B. D. MacLeod, E. Sabatino, J. A. Britten, and C. J. Stolz, “Contamination resistant antireflection nano-textures in fused silica for laser optics,” Proc. SPIE 8885, 88850J (2013).
[Crossref]

2012 (1)

D. S. Hobbs, B. D. MacLeod, E. Sabatino, S. B. Mirov, and D. V. Martyshkin, “Laser damage resistant anti-reflection microstructures for mid-infrared metal-ion doped ZnSe gain media,” Proc. SPIE 8530, 85300P (2012).
[Crossref]

2011 (1)

B. D. MacLeod, D. S. Hobbs, and E. Sabatino, “Moldable AR microstructures for improved laser transmission and damage resistance in CIRCM fiber optic beam delivery systems,” Proc. SPIE 8016, 80160Q (2011).
[Crossref]

2008 (1)

F. Reversat, T. Berthou, S. Tisserand, L. Dupuy, S. Gautier, P. Muys, D. Delbeke, D. Grojo, M. Laraichi, and P. Delaporte, “Development of diffractive antireflection structures on ZnSe for high power CO2 laser applications,” Proc. SPIE 6992, 699201 (2008).
[Crossref]

2006 (1)

H. Krol, C. Grezes-Besset, L. Gallais, J. Natoli, and M. Commandre, “Study of laser-induced damage at 2 microns on coated and uncoated ZnSe substrates,” Proc. SPIE 6403, 640316 (2006).
[Crossref]

2005 (1)

D. S. Hobbs and B. D. MacLeod, “Design, Fabrication and Measured Performance of Anti-Reflecting Surface Textures in Infrared Transmitting Materials,” Proc. SPIE 5786, 349 (2005).
[Crossref]

1993 (1)

Berry, P. A.

Berthou, T.

F. Reversat, T. Berthou, S. Tisserand, L. Dupuy, S. Gautier, P. Muys, D. Delbeke, D. Grojo, M. Laraichi, and P. Delaporte, “Development of diffractive antireflection structures on ZnSe for high power CO2 laser applications,” Proc. SPIE 6992, 699201 (2008).
[Crossref]

Britten, J. A.

D. S. Hobbs, B. D. MacLeod, E. Sabatino, J. A. Britten, and C. J. Stolz, “Contamination resistant antireflection nano-textures in fused silica for laser optics,” Proc. SPIE 8885, 88850J (2013).
[Crossref]

Commandre, M.

H. Krol, C. Grezes-Besset, L. Gallais, J. Natoli, and M. Commandre, “Study of laser-induced damage at 2 microns on coated and uncoated ZnSe substrates,” Proc. SPIE 6403, 640316 (2006).
[Crossref]

Cook, G.

Delaporte, P.

F. Reversat, T. Berthou, S. Tisserand, L. Dupuy, S. Gautier, P. Muys, D. Delbeke, D. Grojo, M. Laraichi, and P. Delaporte, “Development of diffractive antireflection structures on ZnSe for high power CO2 laser applications,” Proc. SPIE 6992, 699201 (2008).
[Crossref]

Delbeke, D.

F. Reversat, T. Berthou, S. Tisserand, L. Dupuy, S. Gautier, P. Muys, D. Delbeke, D. Grojo, M. Laraichi, and P. Delaporte, “Development of diffractive antireflection structures on ZnSe for high power CO2 laser applications,” Proc. SPIE 6992, 699201 (2008).
[Crossref]

Dupuy, L.

F. Reversat, T. Berthou, S. Tisserand, L. Dupuy, S. Gautier, P. Muys, D. Delbeke, D. Grojo, M. Laraichi, and P. Delaporte, “Development of diffractive antireflection structures on ZnSe for high power CO2 laser applications,” Proc. SPIE 6992, 699201 (2008).
[Crossref]

Fedorov, V. V.

S. B. Mirov, V. V. Fedorov, D. V. Martyshkin, I. S. Moskalev, M. Mirov, and S. Vasilyev, “Progress in Mid-IR Lasers Based on Cr and Fe-Doped II–VI Chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 292–310 (2015).
[Crossref]

Gallais, L.

H. Krol, C. Grezes-Besset, L. Gallais, J. Natoli, and M. Commandre, “Study of laser-induced damage at 2 microns on coated and uncoated ZnSe substrates,” Proc. SPIE 6403, 640316 (2006).
[Crossref]

Gapontsev, V.

Gautier, S.

F. Reversat, T. Berthou, S. Tisserand, L. Dupuy, S. Gautier, P. Muys, D. Delbeke, D. Grojo, M. Laraichi, and P. Delaporte, “Development of diffractive antireflection structures on ZnSe for high power CO2 laser applications,” Proc. SPIE 6992, 699201 (2008).
[Crossref]

Grezes-Besset, C.

H. Krol, C. Grezes-Besset, L. Gallais, J. Natoli, and M. Commandre, “Study of laser-induced damage at 2 microns on coated and uncoated ZnSe substrates,” Proc. SPIE 6403, 640316 (2006).
[Crossref]

Grojo, D.

F. Reversat, T. Berthou, S. Tisserand, L. Dupuy, S. Gautier, P. Muys, D. Delbeke, D. Grojo, M. Laraichi, and P. Delaporte, “Development of diffractive antireflection structures on ZnSe for high power CO2 laser applications,” Proc. SPIE 6992, 699201 (2008).
[Crossref]

Hobbs, D. S.

S. McDaniel, D. S. Hobbs, B. D. MacLeod, E. Sabatino, P. A. Berry, K. L. Schepler, W. Mitchell, and G. Cook, “Cr:ZnSe laser incorporating anti-reflection microstructures exhibiting low-loss, damage-resistant lasing at near quantum limit efficiency,” Opt. Mater. Express 4(11), 2225–2230 (2014).
[Crossref]

D. S. Hobbs, B. D. MacLeod, E. Sabatino, J. A. Britten, and C. J. Stolz, “Contamination resistant antireflection nano-textures in fused silica for laser optics,” Proc. SPIE 8885, 88850J (2013).
[Crossref]

D. S. Hobbs, B. D. MacLeod, E. Sabatino, S. B. Mirov, and D. V. Martyshkin, “Laser damage resistant anti-reflection microstructures for mid-infrared metal-ion doped ZnSe gain media,” Proc. SPIE 8530, 85300P (2012).
[Crossref]

B. D. MacLeod, D. S. Hobbs, and E. Sabatino, “Moldable AR microstructures for improved laser transmission and damage resistance in CIRCM fiber optic beam delivery systems,” Proc. SPIE 8016, 80160Q (2011).
[Crossref]

D. S. Hobbs and B. D. MacLeod, “Design, Fabrication and Measured Performance of Anti-Reflecting Surface Textures in Infrared Transmitting Materials,” Proc. SPIE 5786, 349 (2005).
[Crossref]

Krol, H.

H. Krol, C. Grezes-Besset, L. Gallais, J. Natoli, and M. Commandre, “Study of laser-induced damage at 2 microns on coated and uncoated ZnSe substrates,” Proc. SPIE 6403, 640316 (2006).
[Crossref]

Laraichi, M.

F. Reversat, T. Berthou, S. Tisserand, L. Dupuy, S. Gautier, P. Muys, D. Delbeke, D. Grojo, M. Laraichi, and P. Delaporte, “Development of diffractive antireflection structures on ZnSe for high power CO2 laser applications,” Proc. SPIE 6992, 699201 (2008).
[Crossref]

MacLeod, B. D.

S. McDaniel, D. S. Hobbs, B. D. MacLeod, E. Sabatino, P. A. Berry, K. L. Schepler, W. Mitchell, and G. Cook, “Cr:ZnSe laser incorporating anti-reflection microstructures exhibiting low-loss, damage-resistant lasing at near quantum limit efficiency,” Opt. Mater. Express 4(11), 2225–2230 (2014).
[Crossref]

D. S. Hobbs, B. D. MacLeod, E. Sabatino, J. A. Britten, and C. J. Stolz, “Contamination resistant antireflection nano-textures in fused silica for laser optics,” Proc. SPIE 8885, 88850J (2013).
[Crossref]

D. S. Hobbs, B. D. MacLeod, E. Sabatino, S. B. Mirov, and D. V. Martyshkin, “Laser damage resistant anti-reflection microstructures for mid-infrared metal-ion doped ZnSe gain media,” Proc. SPIE 8530, 85300P (2012).
[Crossref]

B. D. MacLeod, D. S. Hobbs, and E. Sabatino, “Moldable AR microstructures for improved laser transmission and damage resistance in CIRCM fiber optic beam delivery systems,” Proc. SPIE 8016, 80160Q (2011).
[Crossref]

D. S. Hobbs and B. D. MacLeod, “Design, Fabrication and Measured Performance of Anti-Reflecting Surface Textures in Infrared Transmitting Materials,” Proc. SPIE 5786, 349 (2005).
[Crossref]

Martyshkin, D. V.

S. B. Mirov, V. V. Fedorov, D. V. Martyshkin, I. S. Moskalev, M. Mirov, and S. Vasilyev, “Progress in Mid-IR Lasers Based on Cr and Fe-Doped II–VI Chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 292–310 (2015).
[Crossref]

D. S. Hobbs, B. D. MacLeod, E. Sabatino, S. B. Mirov, and D. V. Martyshkin, “Laser damage resistant anti-reflection microstructures for mid-infrared metal-ion doped ZnSe gain media,” Proc. SPIE 8530, 85300P (2012).
[Crossref]

McDaniel, S.

Mirov, M.

I. Moskalev, S. Mirov, M. Mirov, S. Vasilyev, V. Smolski, A. Zakrevskiy, and V. Gapontsev, “140 W Cr:ZnSe laser system,” Opt. Express 24(18), 21090–21104 (2016).
[Crossref] [PubMed]

S. B. Mirov, V. V. Fedorov, D. V. Martyshkin, I. S. Moskalev, M. Mirov, and S. Vasilyev, “Progress in Mid-IR Lasers Based on Cr and Fe-Doped II–VI Chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 292–310 (2015).
[Crossref]

Mirov, S.

Mirov, S. B.

S. B. Mirov, V. V. Fedorov, D. V. Martyshkin, I. S. Moskalev, M. Mirov, and S. Vasilyev, “Progress in Mid-IR Lasers Based on Cr and Fe-Doped II–VI Chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 292–310 (2015).
[Crossref]

D. S. Hobbs, B. D. MacLeod, E. Sabatino, S. B. Mirov, and D. V. Martyshkin, “Laser damage resistant anti-reflection microstructures for mid-infrared metal-ion doped ZnSe gain media,” Proc. SPIE 8530, 85300P (2012).
[Crossref]

Mitchell, W.

Morris, G. M.

Moskalev, I.

Moskalev, I. S.

S. B. Mirov, V. V. Fedorov, D. V. Martyshkin, I. S. Moskalev, M. Mirov, and S. Vasilyev, “Progress in Mid-IR Lasers Based on Cr and Fe-Doped II–VI Chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 292–310 (2015).
[Crossref]

Muys, P.

F. Reversat, T. Berthou, S. Tisserand, L. Dupuy, S. Gautier, P. Muys, D. Delbeke, D. Grojo, M. Laraichi, and P. Delaporte, “Development of diffractive antireflection structures on ZnSe for high power CO2 laser applications,” Proc. SPIE 6992, 699201 (2008).
[Crossref]

Natoli, J.

H. Krol, C. Grezes-Besset, L. Gallais, J. Natoli, and M. Commandre, “Study of laser-induced damage at 2 microns on coated and uncoated ZnSe substrates,” Proc. SPIE 6403, 640316 (2006).
[Crossref]

Raguin, D. H.

Reversat, F.

F. Reversat, T. Berthou, S. Tisserand, L. Dupuy, S. Gautier, P. Muys, D. Delbeke, D. Grojo, M. Laraichi, and P. Delaporte, “Development of diffractive antireflection structures on ZnSe for high power CO2 laser applications,” Proc. SPIE 6992, 699201 (2008).
[Crossref]

Sabatino, E.

S. McDaniel, D. S. Hobbs, B. D. MacLeod, E. Sabatino, P. A. Berry, K. L. Schepler, W. Mitchell, and G. Cook, “Cr:ZnSe laser incorporating anti-reflection microstructures exhibiting low-loss, damage-resistant lasing at near quantum limit efficiency,” Opt. Mater. Express 4(11), 2225–2230 (2014).
[Crossref]

D. S. Hobbs, B. D. MacLeod, E. Sabatino, J. A. Britten, and C. J. Stolz, “Contamination resistant antireflection nano-textures in fused silica for laser optics,” Proc. SPIE 8885, 88850J (2013).
[Crossref]

D. S. Hobbs, B. D. MacLeod, E. Sabatino, S. B. Mirov, and D. V. Martyshkin, “Laser damage resistant anti-reflection microstructures for mid-infrared metal-ion doped ZnSe gain media,” Proc. SPIE 8530, 85300P (2012).
[Crossref]

B. D. MacLeod, D. S. Hobbs, and E. Sabatino, “Moldable AR microstructures for improved laser transmission and damage resistance in CIRCM fiber optic beam delivery systems,” Proc. SPIE 8016, 80160Q (2011).
[Crossref]

Schepler, K. L.

Smolski, V.

Stolz, C. J.

D. S. Hobbs, B. D. MacLeod, E. Sabatino, J. A. Britten, and C. J. Stolz, “Contamination resistant antireflection nano-textures in fused silica for laser optics,” Proc. SPIE 8885, 88850J (2013).
[Crossref]

Tisserand, S.

F. Reversat, T. Berthou, S. Tisserand, L. Dupuy, S. Gautier, P. Muys, D. Delbeke, D. Grojo, M. Laraichi, and P. Delaporte, “Development of diffractive antireflection structures on ZnSe for high power CO2 laser applications,” Proc. SPIE 6992, 699201 (2008).
[Crossref]

Vasilyev, S.

I. Moskalev, S. Mirov, M. Mirov, S. Vasilyev, V. Smolski, A. Zakrevskiy, and V. Gapontsev, “140 W Cr:ZnSe laser system,” Opt. Express 24(18), 21090–21104 (2016).
[Crossref] [PubMed]

S. B. Mirov, V. V. Fedorov, D. V. Martyshkin, I. S. Moskalev, M. Mirov, and S. Vasilyev, “Progress in Mid-IR Lasers Based on Cr and Fe-Doped II–VI Chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 292–310 (2015).
[Crossref]

Zakrevskiy, A.

Appl. Opt. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

S. B. Mirov, V. V. Fedorov, D. V. Martyshkin, I. S. Moskalev, M. Mirov, and S. Vasilyev, “Progress in Mid-IR Lasers Based on Cr and Fe-Doped II–VI Chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 292–310 (2015).
[Crossref]

Opt. Express (1)

Opt. Mater. Express (1)

Proc. SPIE (6)

D. S. Hobbs, B. D. MacLeod, E. Sabatino, S. B. Mirov, and D. V. Martyshkin, “Laser damage resistant anti-reflection microstructures for mid-infrared metal-ion doped ZnSe gain media,” Proc. SPIE 8530, 85300P (2012).
[Crossref]

D. S. Hobbs and B. D. MacLeod, “Design, Fabrication and Measured Performance of Anti-Reflecting Surface Textures in Infrared Transmitting Materials,” Proc. SPIE 5786, 349 (2005).
[Crossref]

H. Krol, C. Grezes-Besset, L. Gallais, J. Natoli, and M. Commandre, “Study of laser-induced damage at 2 microns on coated and uncoated ZnSe substrates,” Proc. SPIE 6403, 640316 (2006).
[Crossref]

F. Reversat, T. Berthou, S. Tisserand, L. Dupuy, S. Gautier, P. Muys, D. Delbeke, D. Grojo, M. Laraichi, and P. Delaporte, “Development of diffractive antireflection structures on ZnSe for high power CO2 laser applications,” Proc. SPIE 6992, 699201 (2008).
[Crossref]

D. S. Hobbs, B. D. MacLeod, E. Sabatino, J. A. Britten, and C. J. Stolz, “Contamination resistant antireflection nano-textures in fused silica for laser optics,” Proc. SPIE 8885, 88850J (2013).
[Crossref]

B. D. MacLeod, D. S. Hobbs, and E. Sabatino, “Moldable AR microstructures for improved laser transmission and damage resistance in CIRCM fiber optic beam delivery systems,” Proc. SPIE 8016, 80160Q (2011).
[Crossref]

Other (1)

L. E. Busse, C. Florea, B. Shaw, V. Nguyen, J. S. Sanghera, I. Aggarwal, and F. Kung, “Antireflective surface structures on IR fibers for high power transmission,” in Advanced Solid-State Lasers Congress, G. Huber and P. Moulton, eds. OSA Technical Digest (online) (Optical Society of America, 2013), paper AM2A.5.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 Elevation (left) and overhead (right) SEM images of a Motheye ARMs texture in ZnSe.
Fig. 2
Fig. 2 Elevation (left) and overhead (right) SEM images of a RAR nano-texture in ZnSe.
Fig. 3
Fig. 3 Measured transmission of untreated, ARMs-treated, and thin-film AR coated ZnSe.
Fig. 4
Fig. 4 Measured transmission of untreated, ARMs-treated, and thin-film AR coated Cr:ZnSe.
Fig. 5
Fig. 5 Damage frequency for untreated, Motheye-textured, and thin-film AR coated Cr:ZnSe as a function of exposure fluence (2095nm wavelength, 60ns pulse width, 100Hz rep rate).
Fig. 6
Fig. 6 Bar chart comparing the pulsed LiDT data collected by SPICA for UT, ME, and TF AR coated ZnSe and Cr:ZnSe crystals (2095nm, a pulse duration of 60ns, and a 0.23mm spot area).
Fig. 7
Fig. 7 Damage frequency for untreated, Motheye-textured, and thin-film AR coated ZnSe crystals as a function of exposure fluence (2940nm wavelength, 100ns pulse width, 4Hz).
Fig. 8
Fig. 8 Pulsed LiDT data for untreated (UT), Motheye (ME) and Random AR-textured (RAR), and thin-film AR coated (TF) ZnSe and Cr:ZnSe laser crystals at a wavelength of 2940nm.
Fig. 9
Fig. 9 Experimental setup for accumulated power CW laser damage testing at 1908nm.
Fig. 10
Fig. 10 Measured incident and transmitted power over time for UT (no AR) and Motheye-textured ZnSe (left) and Cr:ZnSe (right) . Dashed curves are used for the Motheye-textured Cr:ZnSe data. Inset graphics show the exposure location on the surface of individual samples.
Fig. 11
Fig. 11 Damage frequency as a function of exposure intensity for untreated (open cross markers) and Motheye-textured (solid triangle markers) Cr:ZnSe crystals using focused beam diameters of 80µm (left) and 40µm (right).
Fig. 12
Fig. 12 Diagram of the Cr:ZnSe laser configuration used for the operational testing.
Fig. 13
Fig. 13 Slope efficiencies of Motheye textured and TFARC crystals in identical resonators.
Fig. 14
Fig. 14 CW laser damage on Motheye textured (left) and thin film AR coated (right) crystals.

Tables (1)

Tables Icon

Table 1 ZnSe LiDT, J/cm2, @ 2095nm, 60ns, 100Hz, 0.23mm spot area.

Metrics