Abstract

We report, for the first time to our knowledge, on the polarized absorption and emission spectra and efficient laser action of the Yb:Sr3La2(BO3)4 disordered crystal. The strongest absorption and emission occur at about 977 nm for polarization direction parallel to the crystallographic b axis, with the peak absorption and emission cross-sections amounting, respectively, to 1.95 × 10−20 and 2.45 × 10−20 cm2. Efficient continuous-wave laser action is demonstrated with a-, b-, and c-cut crystal samples longitudinally pumped by a 976-nm diode laser, producing an output power of up to 8.2 W with an optical-to-optical efficiency of 32% with respect to incident pump power. Depending on the output coupling utilized, the laser action could exhibit a transition from single-polarization oscillation to dual-orthogonal-polarization oscillation at a certain pump level.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Growth, thermal properties and laser operation of Nd:Ca3La2(BO3)4: A new disordered laser crystal

Zhongben Pan, Hengjiang Cong, Haohai Yu, Li Tian, Hao Yuan, Huaqiang Cai, Huaijin Zhang, Hui Huang, Jiyang Wang, Qing Wang, Zhiyi Wei, and Zhiguo Zhang
Opt. Express 21(5) 6091-6100 (2013)

High-energy passively Q-switched laser operation of Yb:Ca3La2(BO3)4 disordered crystal

Lisha Wang, Wenjuan Han, Zhongben Pan, Honghao Xu, Xiaowen Chen, Junhai Liu, Haohai Yu, and Huaijin Zhang
Appl. Opt. 55(13) 3447-3451 (2016)

References

  • View by:
  • |
  • |
  • |

  1. Y. Zhang and G. Wang, “Optical properties of Yb3+-doped Sr3Y2(BO3)4 crystal,” J. Mater. Res. 27(16), 2106–2110 (2012).
    [Crossref]
  2. J. Huang, Y. Chen, Y. Lin, X. Gong, Z. Luo, and Y. Huang, “High efficient 1.56 µm laser operation of Czochralski grown Er:Yb:Sr3Y2(BO3)4 crystal,” Opt. Express 16(22), 17243–17248 (2008).
    [Crossref] [PubMed]
  3. J. H. Huang, Y. J. Chen, X. H. Gong, Y. F. Lin, Z. D. Luo, and Y. D. Huang, “Growth, polarized spectral properties, and 1.5−1.6 μm laser operation of Er:Yb:Sr3Gd2(BO3)4 crystal,” Appl. Phys. B 97(2), 431–437 (2009).
    [Crossref]
  4. J. Huang, Y. Chen, X. Gong, Y. Lin, Z. Luo, and Y. Huang, “Spectral and laser properties of Er:Yb:Sr3Lu2(BO3)4 crystal at 1.5−1.6 μm,” Opt. Mater. Express 3(11), 1885–1892 (2013).
    [Crossref]
  5. Y. Chen, J. Huang, Y. Zou, Y. Lin, X. Gong, Z. Luo, and Y. Huang, “Diode-pumped passively Q-switched Er3+:Yb3+:Sr3Lu2(BO3)4 laser at 1534 nm,” Opt. Express 22(7), 8333–8338 (2014).
    [Crossref] [PubMed]
  6. Y. Zhang, Z. Lin, Z. Hu, and G. Wang, “Growth and spectroscopic properties of Nd3+-doped Sr3Y2(BO3)4 crystal,” J. Solid State Chem. 177(9), 3183–3186 (2004).
    [Crossref]
  7. Z. Pan, H. Yu, H. Cong, H. Zhang, J. Wang, Q. Wang, Z. Wei, Z. Zhang, and R. I. Boughton, “Polarized spectral properties and laser demonstration of Nd-doped Sr3Y2(BO3)4 crystal,” Appl. Opt. 51(30), 7144–7149 (2012).
    [Crossref] [PubMed]
  8. Z. Pan, H. Cong, H. Yu, H. Zhang, J. Wang, and R. I. Boughton, “Growth, morphology, and anisotropic thermal properties of Nd-doped Sr3Y2(BO3)4 crystal,” J. Cryst. Growth 363, 176–184 (2013).
    [Crossref]
  9. Y. Zhang and G. Wang, “Spectroscopic properties of Nd:Sr3Gd2(BO3)4 crystal,” Phys. Status Solidi., A Appl. Mater. Sci. 209(6), 1128–1133 (2012).
    [Crossref]
  10. Z. Pan, H. Cai, H. Huang, H. Yu, H. Zhang, and J. Wang, “Growth, thermal properties and laser operation of a new disordered crystal: Nd-doped Sr3La2(BO3)4,” J. Alloys Compd. 607, 16–22 (2014).
    [Crossref]
  11. S. Sun, J. Xu, Q. Wei, F. Lou, Y. Huang, F. Yuan, L. Zhang, Z. Lin, J. He, and G. Wang, “Yb3+:Sr3Y2(BO3)4: a potential ultrashort pulse laser crystal,” J. Alloys Compd. 632, 386–391 (2015).
    [Crossref]
  12. S. Sun, F. Lou, Y. Huang, B. Zhang, F. Yuan, L. Zhang, Z. Lin, G. Wang, and J. He, “Spectroscopy properties and high-efficiency semiconductor saturable absorber mode-locking operation with highly doped (11 at. %) Yb:Sr3Y2(BO3)4 crystal,” J. Alloys Compd. 687, 480–485 (2016).
    [Crossref]
  13. F. Lou, S. Sun, J. He, R. Zhao, J. Li, X. Su, Z. Lin, B. Zhang, and K. Yang, “Direct diode-pumped 58 fs Yb:Sr3Y2(BO3)4 laser,” Opt. Mater. 55, 1–4 (2016).
    [Crossref]
  14. J. Pan, Z. Lin, Z. Hu, L. Zhang, and G. Wang, “Crystal growth and spectral properties of Yb3+:Sr3La2(BO3)4 crystal,” Opt. Mater. 28(3), 250–254 (2006).
    [Crossref]
  15. Y. Zhang, Z. Lin, L. Zhang, and G. Wang, “Growth and optical properties of Yb3+-doped Sr3Gd2(BO3)4 crystal,” Opt. Mater. 29(5), 543–546 (2007).
    [Crossref]
  16. S. Sun, Y. Huang, F. Yuan, L. Zhang, Z. Lin, Q. Wei, and F. Lou, “A promising ultrafast pulses laser crystal with disordered structure: Yb3+:Sr3Gd2(BO3)4,” CrystEngComm 19(12), 1620–1626 (2017).
    [Crossref]
  17. A. S. Yasukevich, V. G. Shcherbitsky, V. E. Kisel, A. V. Mandrik, and N. V. Kuleshov, “Modified reciprocity method in laser crystals spectroscopy,” in Advanced Solid-State Photonics, OSA Technical Digest (Optical Society of America, 2004), paper WB8.
  18. J. Koerner, C. Vorholt, H. Liebetrau, M. Kahle, D. Kloepfel, R. Seifert, J. Hein, and M. C. Kaluza, “Measurement of temperature-dependent absorption and emission spectra of Yb:YAG, Yb:LuAG, and Yb:CaF2 between 20 °C and 200 °C and predictions on their influence on laser performance,” J. Opt. Soc. Am. B 29(9), 2493–2502 (2012).
    [Crossref]

2017 (1)

S. Sun, Y. Huang, F. Yuan, L. Zhang, Z. Lin, Q. Wei, and F. Lou, “A promising ultrafast pulses laser crystal with disordered structure: Yb3+:Sr3Gd2(BO3)4,” CrystEngComm 19(12), 1620–1626 (2017).
[Crossref]

2016 (2)

S. Sun, F. Lou, Y. Huang, B. Zhang, F. Yuan, L. Zhang, Z. Lin, G. Wang, and J. He, “Spectroscopy properties and high-efficiency semiconductor saturable absorber mode-locking operation with highly doped (11 at. %) Yb:Sr3Y2(BO3)4 crystal,” J. Alloys Compd. 687, 480–485 (2016).
[Crossref]

F. Lou, S. Sun, J. He, R. Zhao, J. Li, X. Su, Z. Lin, B. Zhang, and K. Yang, “Direct diode-pumped 58 fs Yb:Sr3Y2(BO3)4 laser,” Opt. Mater. 55, 1–4 (2016).
[Crossref]

2015 (1)

S. Sun, J. Xu, Q. Wei, F. Lou, Y. Huang, F. Yuan, L. Zhang, Z. Lin, J. He, and G. Wang, “Yb3+:Sr3Y2(BO3)4: a potential ultrashort pulse laser crystal,” J. Alloys Compd. 632, 386–391 (2015).
[Crossref]

2014 (2)

Z. Pan, H. Cai, H. Huang, H. Yu, H. Zhang, and J. Wang, “Growth, thermal properties and laser operation of a new disordered crystal: Nd-doped Sr3La2(BO3)4,” J. Alloys Compd. 607, 16–22 (2014).
[Crossref]

Y. Chen, J. Huang, Y. Zou, Y. Lin, X. Gong, Z. Luo, and Y. Huang, “Diode-pumped passively Q-switched Er3+:Yb3+:Sr3Lu2(BO3)4 laser at 1534 nm,” Opt. Express 22(7), 8333–8338 (2014).
[Crossref] [PubMed]

2013 (2)

Z. Pan, H. Cong, H. Yu, H. Zhang, J. Wang, and R. I. Boughton, “Growth, morphology, and anisotropic thermal properties of Nd-doped Sr3Y2(BO3)4 crystal,” J. Cryst. Growth 363, 176–184 (2013).
[Crossref]

J. Huang, Y. Chen, X. Gong, Y. Lin, Z. Luo, and Y. Huang, “Spectral and laser properties of Er:Yb:Sr3Lu2(BO3)4 crystal at 1.5−1.6 μm,” Opt. Mater. Express 3(11), 1885–1892 (2013).
[Crossref]

2012 (4)

2009 (1)

J. H. Huang, Y. J. Chen, X. H. Gong, Y. F. Lin, Z. D. Luo, and Y. D. Huang, “Growth, polarized spectral properties, and 1.5−1.6 μm laser operation of Er:Yb:Sr3Gd2(BO3)4 crystal,” Appl. Phys. B 97(2), 431–437 (2009).
[Crossref]

2008 (1)

2007 (1)

Y. Zhang, Z. Lin, L. Zhang, and G. Wang, “Growth and optical properties of Yb3+-doped Sr3Gd2(BO3)4 crystal,” Opt. Mater. 29(5), 543–546 (2007).
[Crossref]

2006 (1)

J. Pan, Z. Lin, Z. Hu, L. Zhang, and G. Wang, “Crystal growth and spectral properties of Yb3+:Sr3La2(BO3)4 crystal,” Opt. Mater. 28(3), 250–254 (2006).
[Crossref]

2004 (1)

Y. Zhang, Z. Lin, Z. Hu, and G. Wang, “Growth and spectroscopic properties of Nd3+-doped Sr3Y2(BO3)4 crystal,” J. Solid State Chem. 177(9), 3183–3186 (2004).
[Crossref]

Boughton, R. I.

Z. Pan, H. Cong, H. Yu, H. Zhang, J. Wang, and R. I. Boughton, “Growth, morphology, and anisotropic thermal properties of Nd-doped Sr3Y2(BO3)4 crystal,” J. Cryst. Growth 363, 176–184 (2013).
[Crossref]

Z. Pan, H. Yu, H. Cong, H. Zhang, J. Wang, Q. Wang, Z. Wei, Z. Zhang, and R. I. Boughton, “Polarized spectral properties and laser demonstration of Nd-doped Sr3Y2(BO3)4 crystal,” Appl. Opt. 51(30), 7144–7149 (2012).
[Crossref] [PubMed]

Cai, H.

Z. Pan, H. Cai, H. Huang, H. Yu, H. Zhang, and J. Wang, “Growth, thermal properties and laser operation of a new disordered crystal: Nd-doped Sr3La2(BO3)4,” J. Alloys Compd. 607, 16–22 (2014).
[Crossref]

Chen, Y.

Chen, Y. J.

J. H. Huang, Y. J. Chen, X. H. Gong, Y. F. Lin, Z. D. Luo, and Y. D. Huang, “Growth, polarized spectral properties, and 1.5−1.6 μm laser operation of Er:Yb:Sr3Gd2(BO3)4 crystal,” Appl. Phys. B 97(2), 431–437 (2009).
[Crossref]

Cong, H.

Z. Pan, H. Cong, H. Yu, H. Zhang, J. Wang, and R. I. Boughton, “Growth, morphology, and anisotropic thermal properties of Nd-doped Sr3Y2(BO3)4 crystal,” J. Cryst. Growth 363, 176–184 (2013).
[Crossref]

Z. Pan, H. Yu, H. Cong, H. Zhang, J. Wang, Q. Wang, Z. Wei, Z. Zhang, and R. I. Boughton, “Polarized spectral properties and laser demonstration of Nd-doped Sr3Y2(BO3)4 crystal,” Appl. Opt. 51(30), 7144–7149 (2012).
[Crossref] [PubMed]

Gong, X.

Gong, X. H.

J. H. Huang, Y. J. Chen, X. H. Gong, Y. F. Lin, Z. D. Luo, and Y. D. Huang, “Growth, polarized spectral properties, and 1.5−1.6 μm laser operation of Er:Yb:Sr3Gd2(BO3)4 crystal,” Appl. Phys. B 97(2), 431–437 (2009).
[Crossref]

He, J.

F. Lou, S. Sun, J. He, R. Zhao, J. Li, X. Su, Z. Lin, B. Zhang, and K. Yang, “Direct diode-pumped 58 fs Yb:Sr3Y2(BO3)4 laser,” Opt. Mater. 55, 1–4 (2016).
[Crossref]

S. Sun, F. Lou, Y. Huang, B. Zhang, F. Yuan, L. Zhang, Z. Lin, G. Wang, and J. He, “Spectroscopy properties and high-efficiency semiconductor saturable absorber mode-locking operation with highly doped (11 at. %) Yb:Sr3Y2(BO3)4 crystal,” J. Alloys Compd. 687, 480–485 (2016).
[Crossref]

S. Sun, J. Xu, Q. Wei, F. Lou, Y. Huang, F. Yuan, L. Zhang, Z. Lin, J. He, and G. Wang, “Yb3+:Sr3Y2(BO3)4: a potential ultrashort pulse laser crystal,” J. Alloys Compd. 632, 386–391 (2015).
[Crossref]

Hein, J.

Hu, Z.

J. Pan, Z. Lin, Z. Hu, L. Zhang, and G. Wang, “Crystal growth and spectral properties of Yb3+:Sr3La2(BO3)4 crystal,” Opt. Mater. 28(3), 250–254 (2006).
[Crossref]

Y. Zhang, Z. Lin, Z. Hu, and G. Wang, “Growth and spectroscopic properties of Nd3+-doped Sr3Y2(BO3)4 crystal,” J. Solid State Chem. 177(9), 3183–3186 (2004).
[Crossref]

Huang, H.

Z. Pan, H. Cai, H. Huang, H. Yu, H. Zhang, and J. Wang, “Growth, thermal properties and laser operation of a new disordered crystal: Nd-doped Sr3La2(BO3)4,” J. Alloys Compd. 607, 16–22 (2014).
[Crossref]

Huang, J.

Huang, J. H.

J. H. Huang, Y. J. Chen, X. H. Gong, Y. F. Lin, Z. D. Luo, and Y. D. Huang, “Growth, polarized spectral properties, and 1.5−1.6 μm laser operation of Er:Yb:Sr3Gd2(BO3)4 crystal,” Appl. Phys. B 97(2), 431–437 (2009).
[Crossref]

Huang, Y.

S. Sun, Y. Huang, F. Yuan, L. Zhang, Z. Lin, Q. Wei, and F. Lou, “A promising ultrafast pulses laser crystal with disordered structure: Yb3+:Sr3Gd2(BO3)4,” CrystEngComm 19(12), 1620–1626 (2017).
[Crossref]

S. Sun, F. Lou, Y. Huang, B. Zhang, F. Yuan, L. Zhang, Z. Lin, G. Wang, and J. He, “Spectroscopy properties and high-efficiency semiconductor saturable absorber mode-locking operation with highly doped (11 at. %) Yb:Sr3Y2(BO3)4 crystal,” J. Alloys Compd. 687, 480–485 (2016).
[Crossref]

S. Sun, J. Xu, Q. Wei, F. Lou, Y. Huang, F. Yuan, L. Zhang, Z. Lin, J. He, and G. Wang, “Yb3+:Sr3Y2(BO3)4: a potential ultrashort pulse laser crystal,” J. Alloys Compd. 632, 386–391 (2015).
[Crossref]

Y. Chen, J. Huang, Y. Zou, Y. Lin, X. Gong, Z. Luo, and Y. Huang, “Diode-pumped passively Q-switched Er3+:Yb3+:Sr3Lu2(BO3)4 laser at 1534 nm,” Opt. Express 22(7), 8333–8338 (2014).
[Crossref] [PubMed]

J. Huang, Y. Chen, X. Gong, Y. Lin, Z. Luo, and Y. Huang, “Spectral and laser properties of Er:Yb:Sr3Lu2(BO3)4 crystal at 1.5−1.6 μm,” Opt. Mater. Express 3(11), 1885–1892 (2013).
[Crossref]

J. Huang, Y. Chen, Y. Lin, X. Gong, Z. Luo, and Y. Huang, “High efficient 1.56 µm laser operation of Czochralski grown Er:Yb:Sr3Y2(BO3)4 crystal,” Opt. Express 16(22), 17243–17248 (2008).
[Crossref] [PubMed]

Huang, Y. D.

J. H. Huang, Y. J. Chen, X. H. Gong, Y. F. Lin, Z. D. Luo, and Y. D. Huang, “Growth, polarized spectral properties, and 1.5−1.6 μm laser operation of Er:Yb:Sr3Gd2(BO3)4 crystal,” Appl. Phys. B 97(2), 431–437 (2009).
[Crossref]

Kahle, M.

Kaluza, M. C.

Kloepfel, D.

Koerner, J.

Li, J.

F. Lou, S. Sun, J. He, R. Zhao, J. Li, X. Su, Z. Lin, B. Zhang, and K. Yang, “Direct diode-pumped 58 fs Yb:Sr3Y2(BO3)4 laser,” Opt. Mater. 55, 1–4 (2016).
[Crossref]

Liebetrau, H.

Lin, Y.

Lin, Y. F.

J. H. Huang, Y. J. Chen, X. H. Gong, Y. F. Lin, Z. D. Luo, and Y. D. Huang, “Growth, polarized spectral properties, and 1.5−1.6 μm laser operation of Er:Yb:Sr3Gd2(BO3)4 crystal,” Appl. Phys. B 97(2), 431–437 (2009).
[Crossref]

Lin, Z.

S. Sun, Y. Huang, F. Yuan, L. Zhang, Z. Lin, Q. Wei, and F. Lou, “A promising ultrafast pulses laser crystal with disordered structure: Yb3+:Sr3Gd2(BO3)4,” CrystEngComm 19(12), 1620–1626 (2017).
[Crossref]

F. Lou, S. Sun, J. He, R. Zhao, J. Li, X. Su, Z. Lin, B. Zhang, and K. Yang, “Direct diode-pumped 58 fs Yb:Sr3Y2(BO3)4 laser,” Opt. Mater. 55, 1–4 (2016).
[Crossref]

S. Sun, F. Lou, Y. Huang, B. Zhang, F. Yuan, L. Zhang, Z. Lin, G. Wang, and J. He, “Spectroscopy properties and high-efficiency semiconductor saturable absorber mode-locking operation with highly doped (11 at. %) Yb:Sr3Y2(BO3)4 crystal,” J. Alloys Compd. 687, 480–485 (2016).
[Crossref]

S. Sun, J. Xu, Q. Wei, F. Lou, Y. Huang, F. Yuan, L. Zhang, Z. Lin, J. He, and G. Wang, “Yb3+:Sr3Y2(BO3)4: a potential ultrashort pulse laser crystal,” J. Alloys Compd. 632, 386–391 (2015).
[Crossref]

Y. Zhang, Z. Lin, L. Zhang, and G. Wang, “Growth and optical properties of Yb3+-doped Sr3Gd2(BO3)4 crystal,” Opt. Mater. 29(5), 543–546 (2007).
[Crossref]

J. Pan, Z. Lin, Z. Hu, L. Zhang, and G. Wang, “Crystal growth and spectral properties of Yb3+:Sr3La2(BO3)4 crystal,” Opt. Mater. 28(3), 250–254 (2006).
[Crossref]

Y. Zhang, Z. Lin, Z. Hu, and G. Wang, “Growth and spectroscopic properties of Nd3+-doped Sr3Y2(BO3)4 crystal,” J. Solid State Chem. 177(9), 3183–3186 (2004).
[Crossref]

Lou, F.

S. Sun, Y. Huang, F. Yuan, L. Zhang, Z. Lin, Q. Wei, and F. Lou, “A promising ultrafast pulses laser crystal with disordered structure: Yb3+:Sr3Gd2(BO3)4,” CrystEngComm 19(12), 1620–1626 (2017).
[Crossref]

S. Sun, F. Lou, Y. Huang, B. Zhang, F. Yuan, L. Zhang, Z. Lin, G. Wang, and J. He, “Spectroscopy properties and high-efficiency semiconductor saturable absorber mode-locking operation with highly doped (11 at. %) Yb:Sr3Y2(BO3)4 crystal,” J. Alloys Compd. 687, 480–485 (2016).
[Crossref]

F. Lou, S. Sun, J. He, R. Zhao, J. Li, X. Su, Z. Lin, B. Zhang, and K. Yang, “Direct diode-pumped 58 fs Yb:Sr3Y2(BO3)4 laser,” Opt. Mater. 55, 1–4 (2016).
[Crossref]

S. Sun, J. Xu, Q. Wei, F. Lou, Y. Huang, F. Yuan, L. Zhang, Z. Lin, J. He, and G. Wang, “Yb3+:Sr3Y2(BO3)4: a potential ultrashort pulse laser crystal,” J. Alloys Compd. 632, 386–391 (2015).
[Crossref]

Luo, Z.

Luo, Z. D.

J. H. Huang, Y. J. Chen, X. H. Gong, Y. F. Lin, Z. D. Luo, and Y. D. Huang, “Growth, polarized spectral properties, and 1.5−1.6 μm laser operation of Er:Yb:Sr3Gd2(BO3)4 crystal,” Appl. Phys. B 97(2), 431–437 (2009).
[Crossref]

Pan, J.

J. Pan, Z. Lin, Z. Hu, L. Zhang, and G. Wang, “Crystal growth and spectral properties of Yb3+:Sr3La2(BO3)4 crystal,” Opt. Mater. 28(3), 250–254 (2006).
[Crossref]

Pan, Z.

Z. Pan, H. Cai, H. Huang, H. Yu, H. Zhang, and J. Wang, “Growth, thermal properties and laser operation of a new disordered crystal: Nd-doped Sr3La2(BO3)4,” J. Alloys Compd. 607, 16–22 (2014).
[Crossref]

Z. Pan, H. Cong, H. Yu, H. Zhang, J. Wang, and R. I. Boughton, “Growth, morphology, and anisotropic thermal properties of Nd-doped Sr3Y2(BO3)4 crystal,” J. Cryst. Growth 363, 176–184 (2013).
[Crossref]

Z. Pan, H. Yu, H. Cong, H. Zhang, J. Wang, Q. Wang, Z. Wei, Z. Zhang, and R. I. Boughton, “Polarized spectral properties and laser demonstration of Nd-doped Sr3Y2(BO3)4 crystal,” Appl. Opt. 51(30), 7144–7149 (2012).
[Crossref] [PubMed]

Seifert, R.

Su, X.

F. Lou, S. Sun, J. He, R. Zhao, J. Li, X. Su, Z. Lin, B. Zhang, and K. Yang, “Direct diode-pumped 58 fs Yb:Sr3Y2(BO3)4 laser,” Opt. Mater. 55, 1–4 (2016).
[Crossref]

Sun, S.

S. Sun, Y. Huang, F. Yuan, L. Zhang, Z. Lin, Q. Wei, and F. Lou, “A promising ultrafast pulses laser crystal with disordered structure: Yb3+:Sr3Gd2(BO3)4,” CrystEngComm 19(12), 1620–1626 (2017).
[Crossref]

S. Sun, F. Lou, Y. Huang, B. Zhang, F. Yuan, L. Zhang, Z. Lin, G. Wang, and J. He, “Spectroscopy properties and high-efficiency semiconductor saturable absorber mode-locking operation with highly doped (11 at. %) Yb:Sr3Y2(BO3)4 crystal,” J. Alloys Compd. 687, 480–485 (2016).
[Crossref]

F. Lou, S. Sun, J. He, R. Zhao, J. Li, X. Su, Z. Lin, B. Zhang, and K. Yang, “Direct diode-pumped 58 fs Yb:Sr3Y2(BO3)4 laser,” Opt. Mater. 55, 1–4 (2016).
[Crossref]

S. Sun, J. Xu, Q. Wei, F. Lou, Y. Huang, F. Yuan, L. Zhang, Z. Lin, J. He, and G. Wang, “Yb3+:Sr3Y2(BO3)4: a potential ultrashort pulse laser crystal,” J. Alloys Compd. 632, 386–391 (2015).
[Crossref]

Vorholt, C.

Wang, G.

S. Sun, F. Lou, Y. Huang, B. Zhang, F. Yuan, L. Zhang, Z. Lin, G. Wang, and J. He, “Spectroscopy properties and high-efficiency semiconductor saturable absorber mode-locking operation with highly doped (11 at. %) Yb:Sr3Y2(BO3)4 crystal,” J. Alloys Compd. 687, 480–485 (2016).
[Crossref]

S. Sun, J. Xu, Q. Wei, F. Lou, Y. Huang, F. Yuan, L. Zhang, Z. Lin, J. He, and G. Wang, “Yb3+:Sr3Y2(BO3)4: a potential ultrashort pulse laser crystal,” J. Alloys Compd. 632, 386–391 (2015).
[Crossref]

Y. Zhang and G. Wang, “Spectroscopic properties of Nd:Sr3Gd2(BO3)4 crystal,” Phys. Status Solidi., A Appl. Mater. Sci. 209(6), 1128–1133 (2012).
[Crossref]

Y. Zhang and G. Wang, “Optical properties of Yb3+-doped Sr3Y2(BO3)4 crystal,” J. Mater. Res. 27(16), 2106–2110 (2012).
[Crossref]

Y. Zhang, Z. Lin, L. Zhang, and G. Wang, “Growth and optical properties of Yb3+-doped Sr3Gd2(BO3)4 crystal,” Opt. Mater. 29(5), 543–546 (2007).
[Crossref]

J. Pan, Z. Lin, Z. Hu, L. Zhang, and G. Wang, “Crystal growth and spectral properties of Yb3+:Sr3La2(BO3)4 crystal,” Opt. Mater. 28(3), 250–254 (2006).
[Crossref]

Y. Zhang, Z. Lin, Z. Hu, and G. Wang, “Growth and spectroscopic properties of Nd3+-doped Sr3Y2(BO3)4 crystal,” J. Solid State Chem. 177(9), 3183–3186 (2004).
[Crossref]

Wang, J.

Z. Pan, H. Cai, H. Huang, H. Yu, H. Zhang, and J. Wang, “Growth, thermal properties and laser operation of a new disordered crystal: Nd-doped Sr3La2(BO3)4,” J. Alloys Compd. 607, 16–22 (2014).
[Crossref]

Z. Pan, H. Cong, H. Yu, H. Zhang, J. Wang, and R. I. Boughton, “Growth, morphology, and anisotropic thermal properties of Nd-doped Sr3Y2(BO3)4 crystal,” J. Cryst. Growth 363, 176–184 (2013).
[Crossref]

Z. Pan, H. Yu, H. Cong, H. Zhang, J. Wang, Q. Wang, Z. Wei, Z. Zhang, and R. I. Boughton, “Polarized spectral properties and laser demonstration of Nd-doped Sr3Y2(BO3)4 crystal,” Appl. Opt. 51(30), 7144–7149 (2012).
[Crossref] [PubMed]

Wang, Q.

Wei, Q.

S. Sun, Y. Huang, F. Yuan, L. Zhang, Z. Lin, Q. Wei, and F. Lou, “A promising ultrafast pulses laser crystal with disordered structure: Yb3+:Sr3Gd2(BO3)4,” CrystEngComm 19(12), 1620–1626 (2017).
[Crossref]

S. Sun, J. Xu, Q. Wei, F. Lou, Y. Huang, F. Yuan, L. Zhang, Z. Lin, J. He, and G. Wang, “Yb3+:Sr3Y2(BO3)4: a potential ultrashort pulse laser crystal,” J. Alloys Compd. 632, 386–391 (2015).
[Crossref]

Wei, Z.

Xu, J.

S. Sun, J. Xu, Q. Wei, F. Lou, Y. Huang, F. Yuan, L. Zhang, Z. Lin, J. He, and G. Wang, “Yb3+:Sr3Y2(BO3)4: a potential ultrashort pulse laser crystal,” J. Alloys Compd. 632, 386–391 (2015).
[Crossref]

Yang, K.

F. Lou, S. Sun, J. He, R. Zhao, J. Li, X. Su, Z. Lin, B. Zhang, and K. Yang, “Direct diode-pumped 58 fs Yb:Sr3Y2(BO3)4 laser,” Opt. Mater. 55, 1–4 (2016).
[Crossref]

Yu, H.

Z. Pan, H. Cai, H. Huang, H. Yu, H. Zhang, and J. Wang, “Growth, thermal properties and laser operation of a new disordered crystal: Nd-doped Sr3La2(BO3)4,” J. Alloys Compd. 607, 16–22 (2014).
[Crossref]

Z. Pan, H. Cong, H. Yu, H. Zhang, J. Wang, and R. I. Boughton, “Growth, morphology, and anisotropic thermal properties of Nd-doped Sr3Y2(BO3)4 crystal,” J. Cryst. Growth 363, 176–184 (2013).
[Crossref]

Z. Pan, H. Yu, H. Cong, H. Zhang, J. Wang, Q. Wang, Z. Wei, Z. Zhang, and R. I. Boughton, “Polarized spectral properties and laser demonstration of Nd-doped Sr3Y2(BO3)4 crystal,” Appl. Opt. 51(30), 7144–7149 (2012).
[Crossref] [PubMed]

Yuan, F.

S. Sun, Y. Huang, F. Yuan, L. Zhang, Z. Lin, Q. Wei, and F. Lou, “A promising ultrafast pulses laser crystal with disordered structure: Yb3+:Sr3Gd2(BO3)4,” CrystEngComm 19(12), 1620–1626 (2017).
[Crossref]

S. Sun, F. Lou, Y. Huang, B. Zhang, F. Yuan, L. Zhang, Z. Lin, G. Wang, and J. He, “Spectroscopy properties and high-efficiency semiconductor saturable absorber mode-locking operation with highly doped (11 at. %) Yb:Sr3Y2(BO3)4 crystal,” J. Alloys Compd. 687, 480–485 (2016).
[Crossref]

S. Sun, J. Xu, Q. Wei, F. Lou, Y. Huang, F. Yuan, L. Zhang, Z. Lin, J. He, and G. Wang, “Yb3+:Sr3Y2(BO3)4: a potential ultrashort pulse laser crystal,” J. Alloys Compd. 632, 386–391 (2015).
[Crossref]

Zhang, B.

S. Sun, F. Lou, Y. Huang, B. Zhang, F. Yuan, L. Zhang, Z. Lin, G. Wang, and J. He, “Spectroscopy properties and high-efficiency semiconductor saturable absorber mode-locking operation with highly doped (11 at. %) Yb:Sr3Y2(BO3)4 crystal,” J. Alloys Compd. 687, 480–485 (2016).
[Crossref]

F. Lou, S. Sun, J. He, R. Zhao, J. Li, X. Su, Z. Lin, B. Zhang, and K. Yang, “Direct diode-pumped 58 fs Yb:Sr3Y2(BO3)4 laser,” Opt. Mater. 55, 1–4 (2016).
[Crossref]

Zhang, H.

Z. Pan, H. Cai, H. Huang, H. Yu, H. Zhang, and J. Wang, “Growth, thermal properties and laser operation of a new disordered crystal: Nd-doped Sr3La2(BO3)4,” J. Alloys Compd. 607, 16–22 (2014).
[Crossref]

Z. Pan, H. Cong, H. Yu, H. Zhang, J. Wang, and R. I. Boughton, “Growth, morphology, and anisotropic thermal properties of Nd-doped Sr3Y2(BO3)4 crystal,” J. Cryst. Growth 363, 176–184 (2013).
[Crossref]

Z. Pan, H. Yu, H. Cong, H. Zhang, J. Wang, Q. Wang, Z. Wei, Z. Zhang, and R. I. Boughton, “Polarized spectral properties and laser demonstration of Nd-doped Sr3Y2(BO3)4 crystal,” Appl. Opt. 51(30), 7144–7149 (2012).
[Crossref] [PubMed]

Zhang, L.

S. Sun, Y. Huang, F. Yuan, L. Zhang, Z. Lin, Q. Wei, and F. Lou, “A promising ultrafast pulses laser crystal with disordered structure: Yb3+:Sr3Gd2(BO3)4,” CrystEngComm 19(12), 1620–1626 (2017).
[Crossref]

S. Sun, F. Lou, Y. Huang, B. Zhang, F. Yuan, L. Zhang, Z. Lin, G. Wang, and J. He, “Spectroscopy properties and high-efficiency semiconductor saturable absorber mode-locking operation with highly doped (11 at. %) Yb:Sr3Y2(BO3)4 crystal,” J. Alloys Compd. 687, 480–485 (2016).
[Crossref]

S. Sun, J. Xu, Q. Wei, F. Lou, Y. Huang, F. Yuan, L. Zhang, Z. Lin, J. He, and G. Wang, “Yb3+:Sr3Y2(BO3)4: a potential ultrashort pulse laser crystal,” J. Alloys Compd. 632, 386–391 (2015).
[Crossref]

Y. Zhang, Z. Lin, L. Zhang, and G. Wang, “Growth and optical properties of Yb3+-doped Sr3Gd2(BO3)4 crystal,” Opt. Mater. 29(5), 543–546 (2007).
[Crossref]

J. Pan, Z. Lin, Z. Hu, L. Zhang, and G. Wang, “Crystal growth and spectral properties of Yb3+:Sr3La2(BO3)4 crystal,” Opt. Mater. 28(3), 250–254 (2006).
[Crossref]

Zhang, Y.

Y. Zhang and G. Wang, “Optical properties of Yb3+-doped Sr3Y2(BO3)4 crystal,” J. Mater. Res. 27(16), 2106–2110 (2012).
[Crossref]

Y. Zhang and G. Wang, “Spectroscopic properties of Nd:Sr3Gd2(BO3)4 crystal,” Phys. Status Solidi., A Appl. Mater. Sci. 209(6), 1128–1133 (2012).
[Crossref]

Y. Zhang, Z. Lin, L. Zhang, and G. Wang, “Growth and optical properties of Yb3+-doped Sr3Gd2(BO3)4 crystal,” Opt. Mater. 29(5), 543–546 (2007).
[Crossref]

Y. Zhang, Z. Lin, Z. Hu, and G. Wang, “Growth and spectroscopic properties of Nd3+-doped Sr3Y2(BO3)4 crystal,” J. Solid State Chem. 177(9), 3183–3186 (2004).
[Crossref]

Zhang, Z.

Zhao, R.

F. Lou, S. Sun, J. He, R. Zhao, J. Li, X. Su, Z. Lin, B. Zhang, and K. Yang, “Direct diode-pumped 58 fs Yb:Sr3Y2(BO3)4 laser,” Opt. Mater. 55, 1–4 (2016).
[Crossref]

Zou, Y.

Appl. Opt. (1)

Appl. Phys. B (1)

J. H. Huang, Y. J. Chen, X. H. Gong, Y. F. Lin, Z. D. Luo, and Y. D. Huang, “Growth, polarized spectral properties, and 1.5−1.6 μm laser operation of Er:Yb:Sr3Gd2(BO3)4 crystal,” Appl. Phys. B 97(2), 431–437 (2009).
[Crossref]

CrystEngComm (1)

S. Sun, Y. Huang, F. Yuan, L. Zhang, Z. Lin, Q. Wei, and F. Lou, “A promising ultrafast pulses laser crystal with disordered structure: Yb3+:Sr3Gd2(BO3)4,” CrystEngComm 19(12), 1620–1626 (2017).
[Crossref]

J. Alloys Compd. (3)

Z. Pan, H. Cai, H. Huang, H. Yu, H. Zhang, and J. Wang, “Growth, thermal properties and laser operation of a new disordered crystal: Nd-doped Sr3La2(BO3)4,” J. Alloys Compd. 607, 16–22 (2014).
[Crossref]

S. Sun, J. Xu, Q. Wei, F. Lou, Y. Huang, F. Yuan, L. Zhang, Z. Lin, J. He, and G. Wang, “Yb3+:Sr3Y2(BO3)4: a potential ultrashort pulse laser crystal,” J. Alloys Compd. 632, 386–391 (2015).
[Crossref]

S. Sun, F. Lou, Y. Huang, B. Zhang, F. Yuan, L. Zhang, Z. Lin, G. Wang, and J. He, “Spectroscopy properties and high-efficiency semiconductor saturable absorber mode-locking operation with highly doped (11 at. %) Yb:Sr3Y2(BO3)4 crystal,” J. Alloys Compd. 687, 480–485 (2016).
[Crossref]

J. Cryst. Growth (1)

Z. Pan, H. Cong, H. Yu, H. Zhang, J. Wang, and R. I. Boughton, “Growth, morphology, and anisotropic thermal properties of Nd-doped Sr3Y2(BO3)4 crystal,” J. Cryst. Growth 363, 176–184 (2013).
[Crossref]

J. Mater. Res. (1)

Y. Zhang and G. Wang, “Optical properties of Yb3+-doped Sr3Y2(BO3)4 crystal,” J. Mater. Res. 27(16), 2106–2110 (2012).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Solid State Chem. (1)

Y. Zhang, Z. Lin, Z. Hu, and G. Wang, “Growth and spectroscopic properties of Nd3+-doped Sr3Y2(BO3)4 crystal,” J. Solid State Chem. 177(9), 3183–3186 (2004).
[Crossref]

Opt. Express (2)

Opt. Mater. (3)

F. Lou, S. Sun, J. He, R. Zhao, J. Li, X. Su, Z. Lin, B. Zhang, and K. Yang, “Direct diode-pumped 58 fs Yb:Sr3Y2(BO3)4 laser,” Opt. Mater. 55, 1–4 (2016).
[Crossref]

J. Pan, Z. Lin, Z. Hu, L. Zhang, and G. Wang, “Crystal growth and spectral properties of Yb3+:Sr3La2(BO3)4 crystal,” Opt. Mater. 28(3), 250–254 (2006).
[Crossref]

Y. Zhang, Z. Lin, L. Zhang, and G. Wang, “Growth and optical properties of Yb3+-doped Sr3Gd2(BO3)4 crystal,” Opt. Mater. 29(5), 543–546 (2007).
[Crossref]

Opt. Mater. Express (1)

Phys. Status Solidi., A Appl. Mater. Sci. (1)

Y. Zhang and G. Wang, “Spectroscopic properties of Nd:Sr3Gd2(BO3)4 crystal,” Phys. Status Solidi., A Appl. Mater. Sci. 209(6), 1128–1133 (2012).
[Crossref]

Other (1)

A. S. Yasukevich, V. G. Shcherbitsky, V. E. Kisel, A. V. Mandrik, and N. V. Kuleshov, “Modified reciprocity method in laser crystals spectroscopy,” in Advanced Solid-State Photonics, OSA Technical Digest (Optical Society of America, 2004), paper WB8.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Room-temperature polarized absorption cross-section spectra (a) and emission cross-section spectra (b) determined for the Yb:SLB disordered crystal. A diagram of energy levels is illustrated as an inset to (b).
Fig. 2
Fig. 2 Output power versus incident pump power for the a-cut Yb:SLB crystal laser, measured under output coupling conditions of T = 0.5%, 3% (a); and T = 5%, 10%, 15%, 20% (b).
Fig. 3
Fig. 3 Emission spectra of the a-cut Yb:SLB crystal laser, measured for T = 0.5%, 3% (a); and measured at Pin = 12.9 W in the cases of T = 5%, 10%, 15%, 20% (b).
Fig. 4
Fig. 4 Polarized effective gain cross-section as a function of wavelength for different values of the parameter β.
Fig. 5
Fig. 5 Output power versus incident pump power for the b-cut Yb:SLB crystal laser, measured under output coupling conditions of T = 0.5%, 5%, 10% (a); and T = 15%, 20% (b).
Fig. 6
Fig. 6 Emission spectra of the b-cut Yb:SLB crystal laser, measured for T = 0.5%, 5%, 10% (a); and measured at Pin = 12.9 W in the cases of T = 15%, 20% (b).
Fig. 7
Fig. 7 Output power versus incident pump power for the c-cut Yb:SLB crystal laser, measured under output coupling conditions of T = 0.5%, 3% (a); and T = 5%, 10%, 15%, 20% (b).
Fig. 8
Fig. 8 Emission spectra of the c-cut Yb:SLB crystal laser, measured for T = 0.5%, 3% (a); and measured at Pin = 12.9 W in the cases of T = 5%, 10%, 15%, 20% (b).

Tables (1)

Tables Icon

Table 1 Operational Conditions and Resulting Polarization States for the a-, b-, and c-Cut Yb:SLB Lasers

Metrics